WO2021077902A1 - 一种风扇调速系统及方法 - Google Patents
一种风扇调速系统及方法 Download PDFInfo
- Publication number
- WO2021077902A1 WO2021077902A1 PCT/CN2020/112610 CN2020112610W WO2021077902A1 WO 2021077902 A1 WO2021077902 A1 WO 2021077902A1 CN 2020112610 W CN2020112610 W CN 2020112610W WO 2021077902 A1 WO2021077902 A1 WO 2021077902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fan
- temperature
- information
- speed control
- target
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 230000033228 biological regulation Effects 0.000 title claims abstract description 40
- 238000012544 monitoring process Methods 0.000 claims abstract description 114
- 238000004891 communication Methods 0.000 claims abstract description 17
- 238000012545 processing Methods 0.000 claims description 21
- 230000002159 abnormal effect Effects 0.000 claims description 11
- 238000005192 partition Methods 0.000 claims description 5
- 238000003491 array Methods 0.000 abstract description 13
- 238000010586 diagram Methods 0.000 description 15
- 230000017525 heat dissipation Effects 0.000 description 10
- 230000006870 function Effects 0.000 description 7
- 230000015654 memory Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/16—Combinations of two or more pumps ; Producing two or more separate gas flows
- F04D25/166—Combinations of two or more pumps ; Producing two or more separate gas flows using fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/001—Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/004—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/008—Stop safety or alarm devices, e.g. stop-and-go control; Disposition of check-valves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
- G06F1/206—Cooling means comprising thermal management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
- G06F1/325—Power saving in peripheral device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/303—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/70—Type of control algorithm
- F05D2270/706—Type of control algorithm proportional-integral-differential
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/80—Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
Definitions
- This application relates to the technical field of system heat dissipation of network equipment, and in particular to a fan speed regulation system and method.
- the cooling of fan arrays mainly adopts the cooling method of zoned speed regulation.
- the network device obtains the line card ambient temperature and the chip temperature through the monitoring board, and integrates the overall machine ambient temperature, and adjusts the overall speed of the corresponding partition fan.
- the existing heat dissipation methods of zoned speed regulation have the following defects: fan zones will lead to a large number of controls, resulting in insufficient fan speed adjustment; most fan output power is useless, wastes energy and produces loud noise; monitoring board is required For the overall control of the fan, if the monitoring circuit fails, the fan speed can no longer be adjusted normally.
- the present application provides a fan speed control system and method to meet the higher requirements of network equipment for heat dissipation, power consumption and noise.
- an embodiment of the present application provides a fan speed control system, which is applied to a network device, and includes a monitoring board, a signal backplane, at least one temperature sensor array, at least one fan assembly board, and at least one fan array; the monitoring board , The temperature sensor array, the fan assembly board is communicatively connected with the signal backplane, and the fan assembly board is communicatively connected with the fan array; wherein: the monitoring board or the fan assembly board is used for The temperature information and the preset speed adjustment method calculate the speed of the fan array and generate corresponding speed control information; wherein, the speed control information includes the target speed of each fan and the corresponding relationship between the fan and the temperature sensor sub-array;
- the signal backplane is used to transmit information; the temperature sensor array is used to collect the temperature information of the single board in the network device; the fan assembly board is also used to determine the speed of each fan in the fan array according to the speed control information Make adjustments; the fan array is used to dissipate heat from the network device.
- embodiments of the present application provide a fan speed control method, which is applied to a fan speed control system in a network device, and includes: a temperature sensor array collects temperature information of a single board in the network device; a monitoring board or a fan assembly board passes signals The backplane obtains the temperature information; the monitoring board or the fan assembly board calculates the rotation speed of the fan array according to the temperature information and a preset speed adjustment method, and generates corresponding rotation speed control information; wherein, the rotation speed control information Including the target rotation speed of each fan and the corresponding relationship between the fan and the temperature sensor sub-array; the fan assembly board adjusts the rotation speed of each fan in the fan array according to the rotation speed control information.
- an embodiment of the present application provides a network device, including the fan speed adjustment system described in the first aspect.
- Figure 1 is a schematic structural diagram of a fan speed regulation system provided by this application.
- Figure 2 is a schematic diagram of a partial architecture of a network device provided by this application.
- FIG. 3 is a schematic diagram of the effect of a correspondence relationship between fans provided by this application.
- FIG. 4 is a schematic diagram of the hardware topology of a fan speed regulation system provided by this application.
- FIG. 5 is a schematic diagram of the hardware topology of a fan speed regulation system provided by this application.
- FIG. 6 is a schematic flow diagram of a method for adjusting speed of a fan provided by this application.
- FIG. 7 is a schematic flow chart of a method for adjusting speed of a fan provided by this application.
- FIG. 8 is a schematic flow chart of a method for adjusting speed of a fan provided by this application.
- FIG. 9 is a schematic structural diagram of a network device provided by this application.
- FIG. 1 is a schematic structural diagram of a fan speed control system provided by this application.
- Figure 2 is a schematic diagram of a partial architecture of a network device provided by this application.
- the fan speed control system can be integrated in any type of network equipment, such as switch equipment.
- the fan speed regulation system includes: a monitoring board 10, a signal backplane 20, at least one temperature sensor array 30, at least one fan assembly board 40, and at least one fan array 50 ;
- the monitoring board 10, the temperature sensor array 30, the fan assembly board 40 are in communication connection with the signal backplane 20, and the fan assembly board 40 is in communication connection with the fan array 50;
- Set the speed control method to calculate the speed of the fan array 50 and generate corresponding speed control information; where the speed control information includes the target speed of each fan and the corresponding relationship between the fan and the temperature sensor sub-array;
- the signal backplane 20 is used to transmit information
- the temperature sensor array 30 is used to collect the temperature information of the single board in the network equipment;
- the fan assembly board 40 is also used to adjust the speed of each fan in the fan array 50 according to the speed control information;
- the fan array 50 is used to perform the network equipment Heat dissipation.
- the monitoring board 10 is a fan control management module in a network device, and is mainly used to calculate the rotation speed of the fan array 50 according to the temperature information collected by the temperature sensor array 30 and a preset speed regulation method, and generate corresponding rotation speed control information.
- the preset speed control mode includes, but is not limited to, automatic independent speed control mode, offline independent speed control mode, automatic partition speed control mode, or manual speed control mode.
- the automatic independent speed adjustment method requires the monitoring board 10 to sequentially obtain the temperature information of each position on the board from the temperature sensor array 30, and the specific position correspondence of the fans in the fan array 50, so as to dynamically adjust the fan speed at the corresponding position. Fans in other unrelated positions are reduced to appropriate gears through speed regulation strategies.
- the offline independent speed regulation mode is that when the monitoring board 10 is not in place or the monitoring board 10 is configured to the offline independent speed regulation mode, the fan assembly board 40 automatically recognizes the corresponding relationship between the fan and the temperature sensor array 30 according to the slot information, and directly The information of the corresponding temperature sensor is obtained to automatically adjust the rotation speed according to the corresponding relationship, and there is no need to care about the information of other temperature sensors.
- the automatic partitioned speed control mode and the manual speed control mode are traditional control methods, which only need to filter the temperature information obtained by the temperature sensor array 30 to obtain the highest temperature and the ambient temperature, and then use the partitioned method to control all fan speeds as a whole.
- the monitoring board 10 can also monitor electromechanical information such as voltage or power consumption of a single board in the network device, and can also complete functions such as issuing fan control, power-on and power-off control.
- the monitoring board 10 can communicate with a main control board in a network device to transmit electromechanical information.
- the monitoring board 10 may be a dedicated single board, or a small system with the same processing function, or a part of functional modules in a main control board, which is not limited in the embodiment of the present application.
- the signal backplane 20 is a transmission medium for communication signals and can be used to transmit information.
- the signal backplane 20 may be a circuit board, a connector, or a signal transmission medium such as an optical fiber and a network cable.
- the embodiment of the present application does not limit the specific structure of the signal backplane.
- the signal backplane 20 can transmit electromechanical information between the monitoring board 10 and other single boards, and can also transmit control information between the monitoring board 10 and the fan assembly board 40.
- the signal backplane 20 can also be inserted in different positions of the signal backplane 20 to obtain the correspondence between the fan and the single board.
- the temperature sensor array 30 is a temperature collection device on a single board, which can collect temperature information of different positions and different chips on the single board through multiple temperature sensors.
- the temperature sensor array 30 may be a dedicated temperature sensor chip, or a chip with a temperature measurement function, which is not limited in the embodiment of the present application.
- each single board is equipped with multiple temperature sensors to form multiple temperature sensor sub-arrays, and the temperature sensor sub-arrays transmit data to the monitoring board 10 or the fan assembly board 40 through the data bus.
- the fan assembly board 40 is a controller of the fan speed in the fan array 50, and can receive the speed control information sent by the monitoring board 10 to adjust the speed of each fan in the fan array 50, and can also independently monitor the temperature of the single board to generate speed control The information is used to adjust the rotation speed of each fan in the fan array 50.
- the rotation speed control information may be instruction information for controlling the fan array 50 to adjust the rotation speed of each fan, and may specifically include but is not limited to the target rotation speed of each fan and the corresponding relationship between the fan and the temperature sensor sub-array.
- the fan assembly board 40 may be an independent single board, or may be a part of a single board including a driving part, which is not limited in the embodiment of the present application.
- the fan array 50 may be a fan group composed of a plurality of fans, and is used to draw air or draw air to the network device to dissipate heat.
- the fan array 50 may adopt a multi-rotor fan formed by splicing multiple independent fans, and the number of fans may be determined by the density of temperature sensors and the volume of each fan.
- FIG. 3 is a schematic diagram of the effect of a fan correspondence relationship provided by this application.
- a single fan 60 may correspond to one temperature sensor sub-array 310, or multiple single fans 60 may correspond to one temperature sensor sub-array 310
- One fan assembly board 40 can control multiple fans at the same time, and one fan assembly board 40 can correspond to multiple temperature sensor sub-arrays 310.
- the monitoring board 10 can obtain the temperature information collected by all the temperature sensor arrays 30 through the signal backplane 20, and calculate the rotation speed of each fan through the obtained temperature information, thereby The corresponding rotation speed control information is generated and sent to the fan assembly board 40 through the signal backboard 20, so that the fan assembly board 40 controls the rotation speed of the driving fan according to the received rotation speed control information.
- a separate control system is configured on the fan assembly board 40, which can independently obtain the temperature information collected by the temperature sensor array 30, thereby generating corresponding speed control information and controlling the speed of the driving fan, which can be completed independently without the monitoring board 10 Control and regulation of fan speed.
- the fan speed regulation system in this application adopts a configurable way, so that the monitoring board, the fan assembly board and the temperature sensor array cooperate with each other, so as to realize the automatic speed regulation of the fan array.
- the high-density temperature sensor array and fan array to achieve the granularity of monitoring, and control the fan's range of action to a small level, thereby improving the fan control efficiency and reducing the fan's noise level. Since the number of fans is larger, their range of action is smaller, and when a single fan fails, the impact on the fan speed control system is minimal, and adjacent fans can also compensate for the air volume lost by the failed fan.
- the fan speed control system can also automatically switch to the fan assembly board for temperature detection and fan control, thereby minimizing the impact of some device failures. Improve the reliability of the whole machine.
- the temperature sensor array in the fan speed control system collects the temperature information of the single board in the network device.
- the monitoring board or the fan assembly board calculates the speed of the fan array according to the collected temperature information and the preset speed control method, and generates the corresponding
- the fan assembly board adjusts the speed of each fan in the fan array according to the speed control information, which solves the problems of low effectiveness and reliability of the existing network equipment cooling system, and realizes the The fine speed control and redundant backup improve the efficiency of fan control and reduce the noise level, thereby meeting the higher demands of network equipment for heat dissipation, power consumption and noise.
- the preset speed control mode may adopt an automatic independent speed control mode.
- Figure 4 is a schematic diagram of the hardware topology of a fan speed control system provided by this application.
- the monitoring board 10 can set the current speed control mode to the automatic independent speed control mode, and send the current speed control mode information to Fan assembly board 40.
- the fan assembly board 40 enters the slave mode after receiving the current speed regulation mode information.
- the monitoring board 10 obtains the temperature information through the communication bus of the signal backplane 20, and performs classification processing on the temperature information, and sets the target temperature information of each fan in the fan array 50 according to the classification processing result.
- the temperature information may include the real-time temperature of the chip and the ambient temperature near the chip; the target temperature information of each fan in the fan array 50 may include the correspondence between the fan and the temperature sensor sub-array and the target temperature of each fan.
- the monitoring board 10 may calculate the target speed of each fan according to the target temperature information and the actual temperature information, and then generate speed control information according to the target speed of each fan, and send the speed control information to the fan assembly board 40 through the signal backboard 20.
- the corresponding relationship between the temperature sensor sub-array and the fan can be determined through the monitoring board 10, and the available temperature can be filtered from the temperature information, And calculate the reference temperature based on the available temperature.
- the available temperature includes the short-term temperature of the ambient temperature and the temperature of the inlet and outlet air; the reference temperature is the standard deviation between the short-term temperature of the ambient temperature and the temperature of the inlet and outlet air.
- the monitoring board 10 sets the target temperature of each fan according to the reference temperature and target noise, and sets the target temperature information of each fan in the fan array 50 according to the target temperature of each fan and the corresponding relationship.
- the target temperature information can be used as the input variable through the monitoring board 10, and the actual temperature information can be used as the output variable, and the target temperature can be calculated.
- the difference between the information and the actual temperature information is used as the deviation; the target speed of each fan is calculated according to the preset speed regulation mode, input variables, output variables, and deviation.
- the fan assembly board 40 adjusts the speed of each fan in the fan array 50 according to the speed control information, and then uses It collects the feedback speed of each fan and feeds it back to the monitoring board 10.
- the monitoring board 10 is used to determine the working state of the fan speed control system according to the feedback speed of each fan, and to give an alarm when it is determined that the working state of the fan speed control system is abnormal.
- the preset speed regulation mode may adopt the offline independent speed regulation mode.
- Figure 5 is a schematic diagram of the hardware topology of a fan speed control system provided by this application.
- the monitoring board 10 can set the current speed control mode to the offline independent speed control mode, and send the current speed control mode information To the fan assembly board 40.
- the fan assembly board 40 enters the host mode after receiving the current speed control mode information; or, when the fan assembly board 40 determines that the number of times that the monitoring board 10 is not detected exceeds the preset threshold, it directly enters the host mode. Then, the fan assembly board 40 obtains the temperature information through the independent signal backplane 20 communication bus, and classifies the temperature information, and sets the target temperature information of each fan in the fan array 50 according to the classification processing result.
- the temperature information includes the real-time temperature of the chip and the ambient temperature near the chip
- the target temperature information of each fan in the fan array 50 includes the correspondence between the fan and the temperature sensor sub-array and the target temperature of each fan.
- the fan assembly board 40 may calculate the target speed of each fan according to the target temperature information and the actual temperature information, and generate speed control information according to the target speed of each fan.
- the corresponding relationship between the fan and the temperature sensor sub-array can be determined through the fan assembly board 40, and the available temperature information can be filtered out. Temperature, and calculate the reference temperature based on the available temperature. Among them, the available temperature includes the ambient temperature and the short-term temperature of the inlet and outlet air. Then, the fan assembly board 40 sets the target temperature of each fan according to the reference temperature and the target noise, and sets the target temperature information of each fan in the fan array 50 according to the target temperature of each fan and the corresponding relationship.
- the target temperature information can be used as the input variable through the fan assembly board 40, and the actual temperature information can be used as the output variable, and calculate The difference between the target temperature information and the actual temperature information is used as the deviation; the target speed of each fan is calculated according to the preset speed regulation mode, the input variable, the output variable, and the deviation.
- the fan assembly board 40 adjusts the speed of each fan in the fan array 50 according to the speed control information, and then It is used to collect the feedback speed of each fan to determine the working status of the fan speed control system according to the feedback speed of each fan, and set an alarm when the working status of the fan speed control system is determined to be abnormal.
- FIG. 6 is a schematic flowchart of a method for regulating fan speed provided by this application. This method can be applied to a situation where the speed of a fan used for heat dissipation in a network device is adjusted.
- a noise reduction method provided by the present application includes S110, S120, S130, and S140.
- the temperature sensor array collects temperature information of a single board in the network device.
- the monitoring board or the fan assembly board obtains the temperature information through the signal backplane.
- the monitoring board or the fan assembly board calculates the rotation speed of the fan array according to the temperature information and a preset speed adjustment method, and generates corresponding rotation speed control information.
- the rotational speed control information may include the target rotational speed of each fan and the corresponding relationship between the fan and the temperature sensor sub-array.
- the preset speed control mode may be a strategy used to adjust the speed of the fan.
- the preset speed control mode includes, but is not limited to, automatic independent speed control, offline independent speed control, and automatic partition speed control Mode or manual speed control mode.
- the fan assembly board adjusts the rotation speed of each fan in the fan array according to the rotation speed control information.
- the monitoring board can obtain the temperature information collected by all the temperature sensor arrays through the signal backplane, and use the obtained temperature information to calculate the speed that each fan should be configured to, thereby generating the corresponding speed control information and passing the signal
- the backplane is sent to the fan assembly board, so that the fan assembly board controls the rotation speed of the driving fan according to the received rotation speed control information.
- the fan assembly board is equipped with a separate control system, which can independently obtain the temperature information collected by the temperature sensor array, thereby generating the corresponding speed control information and controlling the speed of the driving fan, which can realize the independent completion of the fan speed without the monitoring board. Control adjustment.
- the fan speed regulation system in this application adopts a configurable way, so that the monitoring board, the fan assembly board and the temperature sensor array cooperate with each other, so as to realize the automatic speed regulation of the fan array.
- the high-density temperature sensor array and fan array to achieve the granularity of monitoring, and control the fan's range of action to a small level, thereby improving the fan control efficiency and reducing the fan's noise level. Since the number of fans is larger and their range of action is smaller, when a single fan fails, the impact on the fan speed control system is minimal, and the adjacent fans can also compensate for the air volume lost by the failed fan.
- the fan speed control system can also automatically switch to the fan assembly board for temperature detection and fan control, thereby minimizing the impact of some device failures. Improve the reliability of the whole machine.
- the temperature sensor array in the fan speed control system collects the temperature information of the single board in the network device.
- the monitoring board or the fan assembly board calculates the speed of the fan array according to the collected temperature information and the preset speed control method, and generates the corresponding
- the fan assembly board adjusts the speed of each fan in the fan array according to the speed control information, which solves the problems of low effectiveness and reliability of the existing network equipment cooling system, and realizes the The fine speed control and redundant backup improve the efficiency of fan control and reduce the noise level, thereby meeting the higher demands of network equipment for heat dissipation, power consumption and noise.
- the preset speed adjustment method may include an automatic independent speed adjustment method; the temperature information includes the real-time temperature of the chip and the ambient temperature near the chip; the monitoring board or the fan assembly board is based on the temperature Calculating the rotation speed of the fan array based on the information and the preset speed adjustment method and generating corresponding rotation speed control information may include: the monitoring board obtains the temperature information through the signal backplane communication bus, and classifies the temperature information, The target temperature information of each fan in the fan array is set according to the classification processing result; the monitoring board calculates the target speed of each fan according to the target temperature information and the actual temperature information; the monitoring board is based on The target rotation speed of each fan generates the rotation speed control information, and sends the rotation speed control information to the fan assembly board through a signal backplane.
- the target temperature information of each fan in the fan array includes the corresponding relationship between the fan and the temperature sensor sub-array and the target temperature of each fan, and the target temperature may be the temperature to be reached after heat dissipation by the fan; the actual temperature The information is the temperature collected by the temperature sensor array.
- the target speed is the speed at which the fan needs to be adjusted.
- the classification processing of the temperature information, and setting the target temperature information of each fan in the fan array according to the classification processing result may include: the monitoring board determining the temperature sensor sub-array and the fan Correspondence; the monitoring board screens the available temperature from the temperature information, and calculates the reference temperature according to the available temperature; wherein the available temperature includes the ambient temperature and the short-term temperature of the temperature of the inlet and outlet; The reference temperature is the standard deviation between the short-term temperature of the ambient temperature and the temperature of the inlet and outlet air; the monitoring board sets the target temperature of each fan according to the reference temperature and target noise, and according to the The target temperature of each fan and the corresponding relationship set target temperature information of each fan in the fan array.
- the available temperature may be a part of the temperature included in the temperature information that can be used to calculate the target temperature.
- the available temperature may include the short-term temperature of the ambient temperature and the temperature of the inlet and outlet air.
- the reference temperature may be temperature information used to calculate the target temperature. Specifically, the standard deviation between the ambient temperature and the short-term temperature of the inlet and outlet air temperatures may be used as the reference temperature.
- the target noise may be the noise to be generated by the fan after the speed of the fan is adjusted.
- the monitoring board calculating the target speed of each fan according to the target temperature information and the actual temperature information may include: the monitoring board uses the target temperature information as an input variable, and the actual Temperature information is used as an output variable, and the difference between the target temperature information and the actual temperature information is calculated as the deviation; the monitoring board is based on the preset speed control mode, the input variable, the output variable, and the deviation Calculate the target speed of each fan.
- the preset speed control mode may be a speed control mode set according to actual needs, such as a PID (Proportional-Integral-Derivative) setting mode, etc.
- PID Proportional-Integral-Derivative
- the present application does not limit the specific content of the preset speed control mode.
- before collecting the temperature information of the single board in the network device through the temperature sensor array it may include: setting the current speed control mode to the automatic independent speed control mode through the monitoring board, and setting the current speed control The speed mode information is sent to the fan assembly board; the fan assembly board enters the slave mode after receiving the current speed regulation mode information; the fan assembly board controls each fan in the fan array according to the speed control information After the rotation speed of each fan is adjusted, it may further include: the fan assembly board collects the feedback rotation speed of each fan and feeds it back to the monitoring board; the monitoring board determines the feedback rotation speed of each fan according to the The working state of the system, and an alarm is issued when it is determined that the working state of the system is an abnormal state.
- FIG. 7 is a schematic flow chart of a method for fan speed adjustment provided by this application.
- the fan speed adjustment method may include The following operations:
- the monitoring board sets the speed regulation strategy of the whole machine as an automatic independent speed regulation mode.
- the temperature sensor array reports the collected temperature data to the monitoring board through a bus on the signal backplane, and the monitoring board issues instructions to the fan assembly board through a bus.
- the fan assembly board After receiving the speed control mode, the fan assembly board enters the slave mode, as an ordinary fan speed control board, and waits for a fan speed control command.
- the monitoring board obtains the temperature at different positions of the single board from the temperature sensor array on each single board through the signal backplane communication bus.
- the temperature at different positions of the single board may include the real-time temperature of each chip and the ambient temperature near the chip.
- the monitoring board classifies the received temperature, distinguishes the temperature sensor sub-array and the fan by the slot number, and determines the corresponding relationship between the temperature sensor sub-array and the fan.
- Each fan of each fan array corresponds to a temperature sensor sub-array. Then, according to the collected temperature, the standard deviation between the short-term temperature of the ambient temperature and the temperature of the inlet and outlet air is selected as the reference temperature, and the target temperature is set according to the reference temperature and the target noise of the fan.
- the monitoring board takes the target temperature as the input variable, the actual temperature as the output variable, and the difference between the target temperature and the actual temperature as the deviation, and the appropriate coefficient is obtained through PID tuning, so as to calculate the target speed of each fan. And send the target speed to the fan assembly board.
- the fan assembly board receives the target speed of each fan, and adjusts the corresponding fan to the target speed.
- the fan assembly board collects the feedback speed of the fan, and feeds the feedback speed of the fan to the monitoring board.
- the monitoring board judges whether it is working normally according to the feedback speed, that is, it judges whether the feedback speed of the fan reaches the target speed. If it works abnormally, an alarm is sent to the main control board of the network device.
- the above-mentioned fan speed adjustment method can be executed repeatedly. After several cycles, the speed of the fan can obtain a close speed adjustment result, and the speed adjustment of the entire fan tends to be stable, reaching the best state of normal operation. During this period, all the collected information such as temperature and fan speed can be obtained at any time through the monitoring board, which is convenient for monitoring. It can be seen that the monitoring board can realize real-time closed-loop control to adjust the fan speed by obtaining the temperature collected by the temperature sensor array and the feedback speed of the fan fed back by the fan assembly board in real time.
- the preset speed adjustment method includes an offline independent speed adjustment method;
- the temperature information may include the real-time temperature of the chip and the ambient temperature near the chip;
- the monitoring board or the fan assembly board is based on the The temperature information and the preset speed adjustment method calculate the rotation speed of the fan array and generate corresponding rotation speed control information, which may include: the fan assembly board obtains the temperature information through an independent signal backplane communication bus, and combines the temperature information Perform classification processing, and set the target temperature information of each fan in the fan array according to the classification processing result; wherein, the target temperature information of each fan in the fan array includes the correspondence between the fan and the temperature sensor sub-array and each The target temperature of the fan; the fan assembly board calculates the target speed of each fan according to the target temperature information and the actual temperature information; the fan assembly board generates the speed control information according to the target speed of each fan .
- the classification processing of the temperature information, and setting the target temperature information of each fan in the fan array according to the classification processing result may include: the fan assembly board determines the fan and the temperature sensor sub-array The corresponding relationship; the fan assembly board filters the available temperature from the temperature information, and calculates the reference temperature according to the available temperature; wherein the available temperature includes the short-term temperature of the ambient temperature and the temperature of the inlet and outlet air; The fan assembly board sets the target temperature of each fan according to the reference temperature and target noise, and sets the target temperature of each fan in the fan array according to the target temperature of each fan and the corresponding relationship. Target temperature information.
- the fan assembly board calculating the target speed of each fan according to the target temperature information and the actual temperature information may include: the fan assembly board uses the target temperature information as an input variable, and the actual Temperature information is used as an output variable, and the difference between the target temperature information and the actual temperature information is calculated as the deviation; the fan assembly board is based on a preset speed control mode, the input variable, the output variable, and the The deviation amount calculates the target rotation speed of each fan.
- the fan assembly board before collecting the temperature information of the single board in the network device through the temperature sensor array, it may include: setting the current speed regulation mode to the offline independent speed regulation mode through the monitoring board, and setting the current The speed control mode information is sent to the fan assembly board; the fan assembly board enters the host mode after receiving the current speed control mode information; or, the fan assembly board determines that the number of times that the monitoring board is not detected exceeds In the case of a preset threshold, enter the host mode directly; after the fan assembly board adjusts the rotation speed of each fan in the fan array according to the rotation speed control information, it may include: the fan assembly board collects the The feedback speed of each fan; the fan assembly board determines the working state of the system according to the feedback speed of each fan, and when it is determined that the working state of the system is an abnormal state, an alarm is given by setting an alarm mode.
- the preset threshold may be a value set according to actual needs, such as 3, 5, or 10, etc.
- the specific value of the preset threshold is not limited in this application.
- the setting alarm method may be an alarm method adopted according to actual needs, such as alarming through an indicator light or an alarm, etc.
- the application also does not limit the specific type of the setting alarm method.
- FIG. 8 is a schematic flow diagram of a fan speed adjustment method provided by this application.
- the fan speed adjustment method can be Including the following operations:
- the monitoring board sets the speed regulation strategy of the whole machine to offline independent speed regulation mode, or the monitoring board is not in place.
- the sub-array of the temperature sensor array is connected to the fan assembly board through the signal backplane bus, and the fan assembly board can obtain temperature information through the bus.
- the fan assembly board enters the host mode after receiving the speed adjustment mode, or the fan assembly board enters the host mode after multiple detections of the monitoring board is not detected.
- the fan assembly board When the fan assembly board is in the host mode, it can enable its own monitoring function module and start to independently adjust the fan speed.
- the fan assembly board obtains the temperature of the corresponding position of the single board from the temperature sensor array on the corresponding single board through the independent signal backplane communication bus.
- the temperature at different positions of the single board may include the real-time temperature of each chip and the ambient temperature near the chip.
- the fan assembly board classifies the received temperature, distinguishes the temperature sensor sub-array and the fan by the slot number, and determines the corresponding relationship between the temperature sensor sub-array and the fan.
- Each fan of each fan array corresponds to a temperature sensor sub-array Then, according to the collected temperature, the standard deviation between the ambient temperature and the short-term temperature of the air inlet and outlet air temperature is selected as the reference temperature, and the target temperature is set according to the reference temperature and the target noise of the fan.
- the fan assembly board takes the target temperature as the input variable, the actual temperature as the output variable, and the difference between the target temperature and the actual temperature as the deviation, and the appropriate coefficient is obtained through PID tuning, so as to calculate the target speed of each fan , And send the target speed to the fan assembly board.
- the fan assembly board controls the corresponding fan adjustment speed according to the calculated target speed of each fan.
- the fan assembly board collects the feedback speed of the fan, and judges whether the feedback speed of the fan is normal, that is, it is judged whether the feedback speed of the fan reaches the target speed. If it is abnormal, the fan assembly board will give an alarm by setting an alarm method such as an indicator light.
- the above-mentioned fan speed adjustment method can be executed repeatedly. After several cycles, the speed of the fan can obtain a close speed adjustment result, and the speed adjustment of the entire fan tends to be stable, reaching the best state of normal operation. If the monitoring board is online, you can also access each fan assembly board through the monitoring board to obtain status information such as temperature, fans, and alarms.
- FIG. 9 is a schematic structural diagram of a network device provided by this application. As shown in Figure 9, the network equipment in this application may also include:
- the processor 21 and the storage device 22 in the network device may be connected through a bus or other methods.
- the connection through a bus is taken as an example.
- the storage device 22 can be configured to store software programs, computer-executable programs, and modules.
- the storage device 22 may include a storage program area and a storage data area.
- the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the device, and the like.
- the storage device 22 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
- the storage device 22 may further include a memory provided remotely with respect to the processor 21, and these remote memories may be connected to a network device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
- the network equipment of the present application may also include a fan speed regulation system.
- the fan speed regulation system includes a monitoring board, a signal backplane, at least one temperature sensor array, at least one fan assembly board, and at least one fan array; the monitoring board, the temperature sensor array, the fan assembly board and The signal backplane is in communication connection, and the fan assembly board is in communication connection with the fan array; wherein: the monitoring board or the fan assembly board is used to calculate the fan array based on the temperature information and a preset speed regulation method And generate corresponding speed control information; wherein, the speed control information includes the target speed of each fan and the corresponding relationship between the fan and the temperature sensor sub-array; the signal backplane is used to transmit information; the temperature sensor array It is used to collect temperature information of a single board in a network device; the fan assembly board is also used to adjust the rotation speed of each fan in the fan array according to the rotation speed control information; the fan array is used to control the network The device dissipates heat.
- the temperature sensor array in the fan speed control system collects the temperature information of the single board in the network device.
- the monitoring board or the fan assembly board calculates the speed of the fan array according to the collected temperature information and the preset speed control method, and generates the corresponding
- the fan assembly board adjusts the speed of each fan in the fan array according to the speed control information, which solves the problems of low effectiveness and reliability of the existing network equipment cooling system, and realizes the The fine speed control and redundant backup improve the efficiency of fan control and reduce the noise level, thereby meeting the higher demands of network equipment for heat dissipation, power consumption and noise.
- user terminal encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
- the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
- some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
- Computer program instructions can be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or source code written in any combination of one or more programming languages or Object code.
- ISA instruction set architecture
- the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
- the computer program can be stored on the memory.
- the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) DVD or CD disc) etc.
- Computer-readable media may include non-transitory storage media.
- the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (DSP), application-specific integrated circuits (ASIC), programmable logic devices (FGPA) And processors based on multi-core processor architecture.
- DSP digital signal processors
- ASIC application-specific integrated circuits
- FGPA programmable logic devices
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
一种风扇调速系统及方法,该系统包括:监控板(10)、信号背板(20)、至少一个温度传感器阵列(30)、至少一个风扇集合板(40)以及至少一个风扇阵列(50);监控板(10)、温度传感器阵列(30)、风扇集合板(40)与信号背板(20)通信连接,风扇集合板(40)与风扇阵列(50)通信连接;其中:监控板(10)或风扇集合板(40)用于根据温度信息以及预设调速方式计算风扇阵列(50)的转速,并生成对应的转速控制信息;信号背板(20)用于传递信息;温度传感器阵列(30)用于采集网络设备中单板的温度信息;风扇集合板(40)还用于根据转速控制信息对风扇阵列(50)中每个风扇的转速进行调整;风扇阵列(50)用于对网络设备进行散热。
Description
相关申请的交叉引用
本申请基于申请号为201911013555.9、申请日为2019年10月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本申请涉及网络设备的系统散热技术领域,具体涉及一种风扇调速系统及方法。
随着网络吞吐量的不断提高,大容量网络设备(如交换机设备等)的业务卡功耗越来越大,其对散热的需求也越来越大。目前大部分的网络设备主要采用风扇散热的方式,使用风扇或者风扇阵列以特定的出风风道散热。
目前,风扇阵列散热主要采用分区调速的散热方式。具体的,网络设备内部通过监控板获取线卡环境温度和芯片温度,综合整机环境温度,将对应的分区风扇进行整体调速。现有的分区调速的散热方式存在以下缺陷:风扇分区的同时会导致较多的控制数量,导致风扇转速调整不够平滑;多数风扇输出功率无用,浪费能量而且产生较大的噪音;需要监控板对风扇整体控制,如果监控线路失败,则无法再正常进行风扇调速。
发明内容
本申请提供一种风扇调速系统及方法,以满足网络设备对散热功耗和噪音的更高需求。
第一方面,本申请实施例提供一种风扇调速系统,应用于网络设备,包括监控板、信号背板、至少一个温度传感器阵列、至少一个风扇集合板以及至少一个风扇阵列;所述监控板、所述温度传感器阵列、所述风扇集合板与所述信号背板通信连接,所述风扇集合板与所述风扇阵列通信连接;其中:所述监控板或所述风扇集合板用于根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息;其中,所述转速控制信息包括每个风扇的目标转速以及风扇与温度传感器子阵列的对应关系;所述信号背板用于传递信息;所述温度传感器阵列用于采集网络设备中单板的温度信息;所述风扇集合板还用于根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整;所述风扇阵列用于对所述网络设备进行散热。
第二方面,本申请实施例提供一种风扇调速方法,应用于网络设备中的风扇调速系统,包括:温度传感器阵列采集网络设备中单板的温度信息;监控板或风扇集合板通过信号背板获取所述温度信息;所述监控板或所述风扇集合板根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息;其中,所述转速控制信息包括每个风扇的目标转速以及风扇与温度传感器子阵列的对应关系;所述风扇集合板根据所述转速控 制信息对所述风扇阵列中每个风扇的转速进行调整。
第三方面,本申请实施例提供一种网络设备,包括第一方面所述的风扇调速系统。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
图1为本申请提供的一种风扇调速系统的结构示意图;
图2为本申请提供的一种网络设备部分架构示意图;
图3为本申请提供的一种风扇对应关系效果示意图;
图4为本申请提供的一种风扇调速系统的硬件拓扑示意图;
图5为本申请提供的一种风扇调速系统的硬件拓扑示意图;
图6为本申请提供的一种风扇调速方法的流程示意图;
图7为本申请提供的一种风扇调速方法的流程示意图;
图8为本申请提供的一种风扇调速方法的流程示意图;
图9为本申请提供的一种网络设备的结构示意图。
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在一个示例性实施方式中,本申请提供了一种风扇调速系统,图1为本申请提供的一种风扇调速系统的结构示意图。图2为本申请提供的一种网络设备部分架构示意图。如图2所示,风扇调速系统可以集成在任意类型的网络设备中,如交换机设备上。
相应的,如图1和图2所示,本申请提供的风扇调速系统包括:监控板10、信号背板20、至少一个温度传感器阵列30、至少一个风扇集合板40以及至少一个风扇阵列50;监控板10、温度传感器阵列30、风扇集合板40与信号背板20通信连接,风扇集合板40与风扇阵列50通信连接;其中:监控板10或风扇集合板40用于根据温度信息以及预设调速方式计算风扇阵列50的转速,并生成对应的转速控制信息;其中,转速控制信息包括每个风扇的目标转速以及风扇与温度传感器子阵列的对应关系;信号背板20用于传递信息;温度传感器阵列30用于采集网络设备中单板的温度信息;风扇集合板40还用于根据转速控制信息对风扇阵列50中每个风扇的转速进行调整;风扇阵列50用于对网络设备进行散热。
监控板10是网络设备中的风扇控制管理模块,主要用于根据温度传感器阵列30采集的温度信息以及预设调速方式计算风扇阵列50的转速,并生成对应的转速控制信息。可选的,预设调速方式包括但不限于自动独立调速方式、脱机独立调速方式、自动分区调速方式或手动调速方式。其中,自动独立调速方式需要监控板10从温度传感器阵列30顺序 获取到单板上各个位置的温度信息,以及扇阵列50中的风扇的具体位置对应关系,从而动态调整对应位置的风扇转速,其他无关位置的风扇通过调速策略降低到合适的档位。脱机独立调速方式是当监控板10不在位或者监控板10配置到该脱机独立调速方式后,风扇集合板40根据槽位信息自动识别风扇和温度传感器阵列30的对应关系,并直接获取到对应温度传感器的信息以根据对应关系自动调整转速,不需要关心其他温度传感器的信息。自动分区调速方式和手动调速方式为传统控制方式,仅需要从温度传感器阵列30获取的温度信息中筛选得到最高温度和环境温度,然后使用分区的方式整体控制所有风扇调速。除此之外,监控板10还可以监控网络设备中单板的电压或功耗等机电信息,也还可以完成下发风扇控制、上下电控制等功能。监控板10可以与网络设备中的主控板进行通信,以传递机电信息。监控板10可以是专用单板,也可以是拥有相同处理功能的小系统或者是主控板中的一部分功能模块,本申请实施例对此并不进行限制。
信号背板20是一种通讯信号的传输介质,可以用于传递信息。信号背板20可以是电路板,也可以是连接器,还可以是光纤、网线等信号传输介质,本申请实施例并不对信号背板的具体结构进行限定。具体的,信号背板20可以传递监控板10与其他单板之间的机电信息,还可以传递监控板10与风扇集合板40的控制信息。同时,信号背板20还可以通过插在信号背板20的不同位置获取风扇与单板的对应关系。
温度传感器阵列30是单板上的温度采集装置,可以通过多个温度传感器采集到单板不同位置、不同芯片的温度信息。温度传感器阵列30可以是专用的温度传感器芯片,也可以是带有温度测量功能的芯片,本申请实施例对此并不进行限制。通常在网络设备中,每个单板上都配有多个温度传感器,组成多个温度传感器子阵列,温度传感器子阵列通过数据总线传递数据到监控板10或者风扇集合板40。
风扇集合板40是风扇阵列50中风扇转速的控制器,可以接收监控板10发送的转速控制信息以对风扇阵列50中每个风扇的转速进行调整,还可以独立监控单板的温度生成转速控制信息以对风扇阵列50中每个风扇的转速进行调整。其中,转速控制信息可以是控制风扇阵列50调整每个风扇转速的指令信息,具体可以包括但不限于每个风扇的目标转速以及风扇与温度传感器子阵列的对应关系。风扇集合板40可以是一个独立的单板,也可以是包含驱动部分的单板的一部分,本申请实施例对此并不限制。
风扇阵列50可以是多个风机组成的风扇组,用于给网络设备抽风或者吸风散热。风扇阵列50可以采用由多个独立风机拼接而成的多转子风扇,风机的数量可以由温度传感器的密集程度和每个风机的体积决定。
图3为本申请提供的一种风扇对应关系效果示意图,如图3所示,在结构上,单风扇60可以对应一个温度传感器子阵列310,或者多个单风扇60对应一个温度传感器子阵列310,一个风扇集合板40可以同时控制多个风扇,一个风扇集合板40可以对应多个温度传感器子阵列310。
在本申请中,如图1所示,监控板10可以通过信号背板20获取到所有温度传感器阵列30采集到的温度信息,并通过获取的温度信息来计算每个风扇应该配置的转速,从而生成对应的转速控制信息并通过信号背板20下发到风扇集合板40,以使风扇集合板40根据接收的转速控制信息控制驱动风扇的转速。风扇集合板40上配置单独的控制小系统,可以独立获取温度传感器阵列30采集的温度信息,从而生成对应的转速控制信息并控制驱动风扇的转速,可以实现在无监控板10的情况下独立完成风扇转速的控制调节。
综上所述,本申请中的风扇调速系统采用可配置的方式,使得监控板、风扇集合板与温度传感器阵列相互配合,从而实现对风扇阵列的自动调速。通过高密度的温度传感器阵列和风扇阵列实现监控的颗粒度细化,并且把风扇的作用范围控制在较小的水平,从而提高风扇控制效率并降低风扇的噪音水平。由于风扇的数量更多,其作用范围更小,在单个风扇失效时对风扇调速系统造成的影响最小,并且还可以通过相邻风扇来弥补失效风扇损失的风量。另外,当网络设备处于异常状态时,例如温度传感器失效或者监控板失效,风扇调速系统还可以自动切换至风扇集合板进行温度检测和风扇控制,从而最大程度减小部分器件失效造成的影响,提高整机可靠性。
本申请实施例通过风扇调速系统中的温度传感器阵列采集网络设备中单板的温度信息,监控板或风扇集合板根据采集的温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息,并由风扇集合板根据转速控制信息对风扇阵列中每个风扇的转速进行调整,解决了现有网络设备散热系统存在的有效性和可靠性较低等问题,实现了对风扇转速的精细控制和冗余备份,提高了风扇控制效率并降低了噪音水平,从而满足网络设备对散热功耗和噪音的更高需求。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个示例中,预设调速方式可以采用自动独立调速方式。图4为本申请提供的一种风扇调速系统的硬件拓扑示意图,如图4所示,监控板10可以将当前调速模式设置为自动独立调速方式,并将当前调速模式信息发送至风扇集合板40。风扇集合板40接收到当前调速模式信息后进入从机模式。然后,监控板10通过信号背板20通讯总线获取温度信息,并将温度信息进行分类处理,根据分类处理结果设定风扇阵列50中每个风扇的目标温度信息。其中,温度信息可以包括芯片的实时温度以及芯片附近的环境温度;风扇阵列50中每个风扇的目标温度信息可以包括风扇与温度传感器子阵列的对应关系以及每个风扇的目标温度。监控板10可以根据目标温度信息和实际温度信息计算每个风扇的目标转速,然后根据每个风扇的目标转速生成转速控制信息,并将转速控制信息通过信号背板20发送至风扇集合板40。
在一个示例中,如图4所示,当预设调速方式采用自动独立调速方式时,可以通过监控板10确定温度传感器子阵列与风扇的对应关系,从温度信息中筛选出可用温度,并根 据可用温度计算参考温度。其中,可用温度包括环境温度以及进风出风的温度的短期温度;参考温度为环境温度以及进风出风的温度的短期温度之间的标准差。然后,监控板10根据参考温度及目标噪音设定每个风扇的目标温度,并根据每个风扇的目标温度以及对应关系设定风扇阵列50中每个风扇的目标温度信息。
在一个示例中,如图4所示,当预设调速方式采用自动独立调速方式时,可以通过监控板10将目标温度信息作为输入变量,将实际温度信息作为输出变量,并计算目标温度信息与实际温度信息的差值作为偏差量;根据预设调速方式、输入变量、输出变量以及偏差量计算每个风扇的目标转速。
在一个示例中,如图4所示,当预设调速方式采用自动独立调速方式时,风扇集合板40在根据转速控制信息对风扇阵列50中每个风扇的转速进行调整之后,还用于采集每个风扇的反馈转速并反馈至监控板10。监控板10用于根据每个风扇的反馈转速确定风扇调速系统的工作状态,并在确定风扇调速系统的工作状态为异常状态时进行告警。
在一个示例中,预设调速方式可以采用脱机独立调速方式。图5为本申请提供的一种风扇调速系统的硬件拓扑示意图,如图5所示,监控板10可以将当前调速模式设置为脱机独立调速方式,并将当前调速模式信息发送至风扇集合板40。风扇集合板40接收到当前调速模式信息后进入主机模式;或,风扇集合板40在确定未检测到监控板10的次数超过预设阈值的情况下,直接进入主机模式。然后,风扇集合板40通过独立的信号背板20通讯总线获取温度信息,并将温度信息进行分类处理,根据分类处理结果设定风扇阵列50中每个风扇的目标温度信息。其中,温度信息包括芯片的实时温度以及芯片附近的环境温度,风扇阵列50中每个风扇的目标温度信息包括风扇与温度传感器子阵列的对应关系以及每个风扇的目标温度。风扇集合板40可以根据目标温度信息和实际温度信息计算每个风扇的目标转速,并根据每个风扇的目标转速生成转速控制信息。
在一个示例中,如图5所示,当预设调速方式采用脱机独立调速方式时,可以通过风扇集合板40确定风扇与温度传感器子阵列的对应关系,从温度信息中筛选出可用温度,并根据可用温度计算参考温度。其中,可用温度包括环境温度以及进风出风的温度的短期温度。然后,风扇集合板40根据参考温度及目标噪音设定每个风扇的目标温度,并根据每个风扇的目标温度以及对应关系设定风扇阵列50中每个风扇的目标温度信息。
在一个示例中,如图5所示,当预设调速方式采用脱机独立调速方式时,可以通过风扇集合板40将目标温度信息作为输入变量,将实际温度信息作为输出变量,并计算目标温度信息与实际温度信息的差值作为偏差量;根据预设调速方式、输入变量、输出变量以及所述偏差量计算每个风扇的目标转速。
在一个示例中,如图5所示,当预设调速方式采用脱机独立调速方式时,风扇集合板40在根据转速控制信息对风扇阵列50中每个风扇的转速进行调整之后,还用于采集每个风扇的反馈转速,以根据每个风扇的反馈转速确定风扇调速系统的工作状态,并在确定风 扇调速系统的工作状态为异常状态时通过设定告警方式进行告警。
在一个示例性实施方式中,图6为本申请提供的一种风扇调速方法的流程示意图。该方法可以适用于对网络设备中用于散热的风扇进行调速的情况。相应的,如图6所示,本申请提供的一种噪声降噪方法,包括S110、S120、S130和S140。
S110、温度传感器阵列采集网络设备中单板的温度信息。
S120、监控板或风扇集合板通过信号背板获取所述温度信息。
S130、所述监控板或所述风扇集合板根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息。
其中,所述转速控制信息可以包括每个风扇的目标转速以及风扇与温度传感器子阵列的对应关系。预设调速方式可以是用于对风扇进行调速采用的策略,可选的,所述预设调速方式包括但不限于自动独立调速方式、脱机独立调速方式、自动分区调速方式或手动调速方式。
S140、所述风扇集合板根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整。
在本申请中,监控板可以通过信号背板获取到所有温度传感器阵列采集到的温度信息,并通过获取的温度信息来计算每个风扇应该配置的转速,从而生成对应的转速控制信息并通过信号背板下发到风扇集合板,以使风扇集合板根据接收的转速控制信息控制驱动风扇的转速。风扇集合板上配置单独的控制小系统,可以独立获取温度传感器阵列采集的温度信息,从而生成对应的转速控制信息并控制驱动风扇的转速,可以实现在无监控板的情况下独立完成风扇转速的控制调节。
综上所述,本申请中的风扇调速系统采用可配置的方式,使得监控板、风扇集合板与温度传感器阵列相互配合,从而实现对风扇阵列的自动调速。通过高密度的温度传感器阵列和风扇阵列实现监控的颗粒度细化,并且把风扇的作用范围控制在较小的水平,从而提高风扇控制效率并降低风扇的噪音水平。由于风扇的数量更多,其作用范围更小,在单体风扇失效时对风扇调速系统造成的影响最小,并且还可以通过相邻风扇来弥补失效风扇损失的风量。另外,当网络设备处于异常状态时,例如温度传感器失效或者监控板失效,风扇调速系统还可以自动切换至风扇集合板进行温度检测和风扇控制,从而最大程度减小部分器件失效造成的影响,提高整机可靠性。
本申请实施例通过风扇调速系统中的温度传感器阵列采集网络设备中单板的温度信息,监控板或风扇集合板根据采集的温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息,并由风扇集合板根据转速控制信息对风扇阵列中每个风扇的转速进行调整,解决了现有网络设备散热系统存在的有效性和可靠性较低等问题,实现了对风扇转速的精细控制和冗余备份,提高了风扇控制效率并降低了噪音水平,从而满足网络设备对散热功耗和噪音的更高需求。
在上述实施例的基础上,提出了上述实施例的变型实施例,在此需要说明的是,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个示例中,所述预设调速方式可以包括自动独立调速方式;所述温度信息包括芯片的实时温度以及芯片附近的环境温度;所述监控板或所述风扇集合板根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息,可以包括:所述监控板通过信号背板通讯总线获取所述温度信息,并将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息;所述监控板根据所述目标温度信息和所述实际温度信息计算所述每个风扇的目标转速;所述监控板根据所述每个风扇的目标转速生成所述转速控制信息,并将所述转速控制信息通过信号背板发送至所述风扇集合板。
其中,所述风扇阵列中每个风扇的目标温度信息包括风扇与温度传感器子阵列的对应关系以及每个风扇的目标温度,目标温度可以是通过风扇进行散热后所要达到的温度;所述实际温度信息为温度传感器阵列所采集到的温度。目标转速即为需要将风扇进行调整的转速。
在一个示例中,所述将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息,可以包括:所述监控板确定温度传感器子阵列与风扇的对应关系;所述监控板从所述温度信息中筛选出可用温度,并根据所述可用温度计算参考温度;其中,所述可用温度包括环境温度以及进风出风的温度的短期温度;所述参考温度为所述环境温度以及进风出风的温度的短期温度之间的标准差;所述监控板根据所述参考温度及目标噪音设定所述每个风扇的目标温度,并根据所述每个风扇的目标温度以及所述对应关系设定所述风扇阵列中每个风扇的目标温度信息。
其中,可用温度可以是温度信息中包括的能够用于计算目标温度的部分温度,在一些示例中,可用温度可以包括环境温度以及进风出风的温度的短期温度。参考温度可以是用于计算目标温度的温度信息,具体的,可以将环境温度以及进风出风的温度的短期温度之间的标准差作为参考温度。目标噪音可以是对风扇进行调速后风扇所要产生的噪音。
在一个示例中,所述监控板根据所述目标温度信息和实际温度信息计算所述每个风扇的目标转速,可以包括:所述监控板将所述目标温度信息作为输入变量,将所述实际温度信息作为输出变量,并计算所述目标温度信息与所述实际温度信息的差值作为偏差量;所述监控板根据预设调速方式、所述输入变量、所述输出变量以及所述偏差量计算所述每个风扇的目标转速。
其中,预设调速方式可以是根据实际需求所设定的调速方式,如PID(比例-积分-微分)整定方式等,本申请并不对预设调速方式的具体内容进行限定。
在一个示例中,在所述通过温度传感器阵列采集网络设备中单板的温度信息之前,可以包括:通过所述监控板将当前调速模式设置为所述自动独立调速方式,并将当前调速模 式信息发送至所述风扇集合板;所述风扇集合板接收到所述当前调速模式信息后进入从机模式;在所述风扇集合板根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整之后,还可以包括:所述风扇集合板采集所述每个风扇的反馈转速并反馈至所述监控板;所述监控板根据所述每个风扇的反馈转速确定所述系统的工作状态,并在确定所述系统的工作状态为异常状态时进行告警。
图7为本申请提供的一种风扇调速方法的流程示意图,在一个具体的例子中,如图7所示,当预设调速方式采用自动独立调速方式时,风扇调速方法可以包括下述操作:
S210、监控板设置整机的调速策略为自动独立调速方式。
在风扇调速系统采用自动独立调速方式时,温度传感器阵列通过信号背板一条总线上报采集的温度数据给监控板,监控板通过一条总线下发指令给风扇集合板。
S220、风扇集合板接收到调速模式后进入从机模式,作为普通的风扇调速板,等待风扇调速指令。
S230、监控板通过信号背板通讯总线,从各个单板上的温度传感器阵列获取单板不同位置的温度。
其中,单板不同位置的温度可以包括各个芯片的实时温度,与芯片附近的环境温度。
S240、监控板将接收到的温度进行分类,通过槽位号区分温度传感器子阵列和风扇,确定温度传感器子阵列与风扇的对应关系,每个风扇阵列的每个风扇对应一个温度传感器子阵列,然后根据采集到的温度,选取其中的环境温度、进风出风的温度的短期温度之间的标准差作为参考温度,根据参考温度结合风扇的目标噪音来设定目标温度。
S250、监控板将目标温度作为输入变量,将实际温度作为输出变量,并将目标温度与实际温度的差值作为偏差量,通过PID整定得到合适的系数,从而计算出每个风扇的目标转速,并将目标转速下发到风扇集合板。
S260、风扇集合板接收到每个风扇的目标转速,将对应的风扇调整到目标转速。
S270、风扇集合板采集风扇的反馈转速,并将风扇的反馈转速反馈给监控板。
S280、监控板根据反馈的转速判断是否工作正常,即判定风扇的反馈转速是否达到目标转速。如果工作异常则向网络设备的主控板进行告警。
需要说明的是,上述风扇调速方法可以反复执行,在经过若干次循环后,风扇的转速可以得到趋近的调速结果,整个风扇调速趋于平稳,达到正常工作的最佳状态。期间可以通过监控板随时获取所有收集到的温度和风扇转速等信息,便于监控。由此可见,监控板可以通过实时获取温度传感器阵列采集的温度以及风扇集合板反馈的风扇的反馈转速实现实时闭环控制调整风扇转速。
在一个示例中,所述预设调速方式包括脱机独立调速方式;所述温度信息可以包括芯片的实时温度以及芯片附近的环境温度;所述监控板或所述风扇集合板根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息,可以包括:所述风 扇集合板通过独立的信号背板通讯总线获取所述温度信息,并将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息;其中,所述风扇阵列中每个风扇的目标温度信息包括风扇与温度传感器子阵列的对应关系以及每个风扇的目标温度;所述风扇集合板根据所述目标温度信息和实际温度信息计算所述每个风扇的目标转速;所述风扇集合板根据所述每个风扇的目标转速生成所述转速控制信息。
在一个示例中,所述将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息,可以包括:所述风扇集合板确定风扇与温度传感器子阵列的对应关系;所述风扇集合板从所述温度信息中筛选出可用温度,并根据所述可用温度计算参考温度;其中,所述可用温度包括环境温度以及进风出风的温度的短期温度;所述风扇集合板根据所述参考温度及目标噪音设定所述每个风扇的目标温度,并根据所述每个风扇的目标温度以及所述对应关系设定所述风扇阵列中每个风扇的目标温度信息。
在一个示例中,所述风扇集合板根据所述目标温度信息和实际温度信息计算所述每个风扇的目标转速,可以包括:所述风扇集合板将所述目标温度信息作为输入变量,将实际温度信息作为输出变量,并计算所述目标温度信息与所述实际温度信息的差值作为偏差量;所述风扇集合板根据预设调速方式、所述输入变量、所述输出变量以及所述偏差量计算所述每个风扇的目标转速。
在一个示例中,在所述通过温度传感器阵列采集网络设备中单板的温度信息之前,可以包括:通过所述监控板将当前调速模式设置为所述脱机独立调速方式,并将当前调速模式信息发送至所述风扇集合板;所述风扇集合板接收到所述当前调速模式信息后进入主机模式;或,所述风扇集合板在确定未检测到所述监控板的次数超过预设阈值的情况下,直接进入主机模式;在所述风扇集合板根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整之后,可以包括:所述风扇集合板采集所述每个风扇的反馈转速;所述风扇集合板根据所述每个风扇的反馈转速确定所述系统的工作状态,并在确定所述系统的工作状态为异常状态时通过设定告警方式进行告警。
其中,预设阈值可以是根据实际需求设定的数值,如3、5或10等,本申请并不对预设阈值的具体数值进行限定。设定告警方式可以是根据实际需求采用的告警方式,如通过指示灯或报警器进行告警等,本申请同样不对设定告警方式的具体类型进行限定。
图8为本申请提供的一种风扇调速方法的流程示意图,在一个具体的例子中,如图8所示,当预设调速方式采用脱机独立调速方式时,风扇调速方法可以包括下述操作:
S310、监控板设置整机的调速策略为脱机独立调速方式,或者监控板不在位。
在风扇调速系统采用脱机独立调速方式时,温度传感器阵列的子阵列通过信号背板总线连接到风扇集合板,风扇集合板可以通过该总线获取温度信息。
S320、风扇集合板接收到调速模式后进入主机模式,或,风扇集合板在多次检测没有检测到监控板后进入主机模式。
当风扇集合板处于主机模式时,可以启用自身的监控功能模块,开始独立对风扇进行调速。
S330、风扇集合板通过独立的信号背板通讯总线,从对应单板上的温度传感器阵列获取单板对应位置的温度。
其中,单板不同位置的温度可以包括各个芯片的实时温度,与芯片附近的环境温度。
S340、风扇集合板将接收到的温度进行分类,通过槽位号区分温度传感器子阵列和风扇,确定温度传感器子阵列与风扇的对应关系,每个风扇阵列的每个风扇对应一个温度传感器子阵列,然后根据采集到的温度,选取其中的环境温度、进风出风的温度的短期温度之间的标准差作为参考温度,根据参考温度结合风扇的目标噪音来设定目标温度。
S350、风扇集合板将目标温度作为输入变量,将实际温度作为输出变量,并将目标温度与实际温度的差值作为偏差量,通过PID整定得到合适的系数,从而计算出每个风扇的目标转速,并将目标转速下发到风扇集合板。
S360、风扇集合板根据计算出的每个风扇的目标转速控制对应的风扇调整转速。
S370、风扇集合板采集风扇的反馈转速,判断风扇的反馈转速是否正常,即判定风扇的反馈转速是否达到目标转速。如果异常,风扇集合板通过指示灯等设定告警方式进行告警。
需要说明的是,上述风扇调速方法可以反复执行,在经过若干次循环后,风扇的转速可以得到趋近的调速结果,整个风扇调速趋于平稳,达到正常工作的最佳状态。如果监控板在线,还可以通过监控板访问各个风扇集合板,以获取温度、风扇及告警等状态信息。
图9为本申请提供的一种网络设备的结构示意图。如图9所示,本申请中的网络设备还可以包括:
一个或多个处理器21和存储装置22;该网络设备的处理器21可以是一个或多个,图9中以一个处理器21为例;存储装置22用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器21执行。
网络设备中的处理器21、存储装置22可以通过总线或其他方式连接,图9中以通过总线连接为例。
存储装置22作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块。存储装置22可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储装置22可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置22可进一步包括相对于处理器21远程设置的存储器,这些远程存储器可以通过网络连接至网络设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
除上述部件外,本申请的网络设备还可以包括风扇调速系统。其中,所述风扇调速系统包括监控板、信号背板、至少一个温度传感器阵列、至少一个风扇集合板以及至少一个风扇阵列;所述监控板、所述温度传感器阵列、所述风扇集合板与所述信号背板通信连接,所述风扇集合板与所述风扇阵列通信连接;其中:所述监控板或所述风扇集合板用于根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息;其中,所述转速控制信息包括每个风扇的目标转速以及风扇与温度传感器子阵列的对应关系;所述信号背板用于传递信息;所述温度传感器阵列用于采集网络设备中单板的温度信息;所述风扇集合板还用于根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整;所述风扇阵列用于对所述网络设备进行散热。
本申请实施例通过风扇调速系统中的温度传感器阵列采集网络设备中单板的温度信息,监控板或风扇集合板根据采集的温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息,并由风扇集合板根据转速控制信息对风扇阵列中每个风扇的转速进行调整,解决了现有网络设备散热系统存在的有效性和可靠性较低等问题,实现了对风扇转速的精细控制和冗余备份,提高了风扇控制效率并降低了噪音水平,从而满足网络设备对散热功耗和噪音的更高需求。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、可编程逻辑器件(FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文已提供了对本申请的示范实施例的详细描述。但 结合附图和权利要求来考虑,对以上实施例的多种修改和调整对本领域技术人员来说是显而易见的,但不偏离本发明的范围。因此,本发明的恰当范围将根据权利要求确定。
Claims (21)
- 一种风扇调速系统,配置于网络设备,包括:监控板、信号背板、至少一个温度传感器阵列、至少一个风扇集合板以及至少一个风扇阵列;所述监控板、所述温度传感器阵列、所述风扇集合板与所述信号背板通信连接,所述风扇集合板与所述风扇阵列通信连接;其中:所述监控板或所述风扇集合板用于根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息;其中,所述转速控制信息包括每个风扇的目标转速以及风扇与温度传感器子阵列的对应关系;所述信号背板用于传递信息;所述温度传感器阵列用于采集网络设备中单板的温度信息;所述风扇集合板还用于根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整;所述风扇阵列用于对所述网络设备进行散热。
- 根据权利要求1所述的系统,其中,所述预设调速方式包括自动独立调速方式、脱机独立调速方式、自动分区调速方式或手动调速方式。
- 根据权利要求2所述的系统,其中,所述预设调速方式包括自动独立调速方式;所述温度信息包括芯片的实时温度以及芯片附近的环境温度;所述监控板用于将当前调速模式设置为所述自动独立调速方式,并将当前调速模式信息发送至所述风扇集合板;所述风扇集合板用于接收到所述当前调速模式信息后进入从机模式;所述监控板用于通过信号背板通讯总线获取所述温度信息,并将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息;其中,所述风扇阵列中每个风扇的目标温度信息包括风扇与温度传感器子阵列的对应关系以及每个风扇的目标温度;根据所述目标温度信息和实际温度信息计算所述每个风扇的目标转速;根据所述每个风扇的目标转速生成所述转速控制信息,并将所述转速控制信息通过信号背板发送至所述风扇集合板。
- 根据权利要求3所述的系统,其中,所述监控板用于确定温度传感器子阵列与风扇的对应关系,从所述温度信息中筛选出可用温度,并根据所述可用温度计算参考温度;其中,所述可用温度包括环境温度以及进风出风的温度的短期温度;所述参考温度为所述环境温度以及进风出风的温度的短期温度之间的标准差;根据所述参考温度及目标噪音设定所述每个风扇的目标温度,并根据所述每个风扇的目标温度以及所述对应关系设定所述风扇阵列中每个风扇的目标温度信息。
- 根据权利要求3所述的系统,其中,所述监控板用于将所述目标温度信息作为输入变量,将所述实际温度信息作为输出变量,并计算所述目标温度信息与所述实际温度信息 的差值作为偏差量;根据预设调速方式、所述输入变量、所述输出变量以及所述偏差量计算所述每个风扇的目标转速。
- 根据权利要求1所述的系统,其中,所述风扇集合板在根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整之后,还用于采集所述每个风扇的反馈转速并反馈至所述监控板;所述监控板用于根据所述每个风扇的反馈转速确定所述系统的工作状态,并在确定所述系统的工作状态为异常状态时进行告警。
- 根据权利要求2所述的系统,其中,所述预设调速方式包括脱机独立调速方式;所述温度信息包括芯片的实时温度以及芯片附近的环境温度;所述监控板用于将当前调速模式设置为所述脱机独立调速方式,并将当前调速模式信息发送至所述风扇集合板;所述风扇集合板用于接收到所述当前调速模式信息后进入主机模式;或所述风扇集合板用于在确定未检测到所述监控板的次数超过预设阈值的情况下,直接进入主机模式;所述风扇集合板用于通过独立的信号背板通讯总线获取所述温度信息,并将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息;其中,所述风扇阵列中每个风扇的目标温度信息包括风扇与温度传感器子阵列的对应关系以及每个风扇的目标温度;根据所述目标温度信息和实际温度信息计算所述每个风扇的目标转速;根据所述每个风扇的目标转速生成所述转速控制信息。
- 根据权利要求7所述的系统,其中,所述风扇集合板用于确定风扇与温度传感器子阵列的对应关系;从所述温度信息中筛选出可用温度,并根据所述可用温度计算参考温度;其中,所述可用温度包括环境温度以及进风出风的温度的短期温度;根据所述参考温度及目标噪音设定所述每个风扇的目标温度,并根据所述每个风扇的目标温度以及所述对应关系设定所述风扇阵列中每个风扇的目标温度信息。
- 根据权利要求7所述的系统,其中,所述风扇集合板用于将所述目标温度信息作为输入变量,将所述实际温度信息作为输出变量,并计算所述目标温度信息与所述实际温度信息的差值作为偏差量;根据预设调速方式、所述输入变量、所述输出变量以及所述偏差量计算所述每个风扇的目标转速。
- 根据权利要求1所述的系统,其中,所述风扇集合板在根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整之后,还用于采集所述每个风扇的反馈转速;根据所述每个风扇的反馈转速确定所述系统的工作状态,并在确定所述系统的工作状态为异常状态时通过设定告警方式进行告警。
- 一种风扇调速方法,应用于网络设备中的风扇调速系统,包括:温度传感器阵列采集网络设备中单板的温度信息;监控板或风扇集合板通过信号背板获取所述温度信息;所述监控板或所述风扇集合板根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息;其中,所述转速控制信息包括每个风扇的目标转速以及风扇与温度传感器子阵列的对应关系;所述风扇集合板根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整。
- 根据权利要求11所述的方法,其中:所述预设调速方式包括自动独立调速方式、脱机独立调速方式、自动分区调速方式或手动调速方式。
- 根据权利要求12所述的方法,其中,所述预设调速方式包括自动独立调速方式;所述温度信息包括芯片的实时温度以及芯片附近的环境温度;所述监控板或所述风扇集合板根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息,包括:所述监控板通过信号背板通讯总线获取所述温度信息,并将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息;其中,所述风扇阵列中每个风扇的目标温度信息包括风扇与温度传感器子阵列的对应关系以及每个风扇的目标温度;所述监控板根据所述目标温度信息和实际温度信息计算所述每个风扇的目标转速;所述监控板根据所述每个风扇的目标转速生成所述转速控制信息,并将所述转速控制信息通过信号背板发送至所述风扇集合板。
- 根据权利要求13所述的方法,其中,所述将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息,包括:所述监控板确定温度传感器子阵列与风扇的对应关系;所述监控板从所述温度信息中筛选出可用温度,并根据所述可用温度计算参考温度;其中,所述可用温度包括环境温度以及进风出风的温度的短期温度;所述参考温度为所述环境温度以及进风出风的温度的短期温度之间的标准差;所述监控板根据所述参考温度及目标噪音设定所述每个风扇的目标温度,并根据所述每个风扇的目标温度以及所述对应关系设定所述风扇阵列中每个风扇的目标温度信息。
- 根据权利要求13所述的方法,其中,所述监控板根据所述目标温度信息和实际温度信息计算所述每个风扇的目标转速,包括:所述监控板将所述目标温度信息作为输入变量,将所述实际温度信息作为输出变量,并计算所述目标温度信息与所述实际温度信息的差值作为偏差量;所述监控板根据预设调速方式、所述输入变量、所述输出变量以及所述偏差量计算所述每个风扇的目标转速。
- 根据权利要求11所述的方法,其中,在所述通过温度传感器阵列采集网络设备中单板的温度信息之前,包括:通过所述监控板将当前调速模式设置为所述自动独立调速方式,并将当前调速模式信息发送至所述风扇集合板;所述风扇集合板接收到所述当前调速模式信息后进入从机模式;在所述风扇集合板根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整之后,还包括:所述风扇集合板采集所述每个风扇的反馈转速并反馈至所述监控板;所述监控板根据所述每个风扇的反馈转速确定所述系统的工作状态,并在确定所述系统的工作状态为异常状态时进行告警。
- 根据权利要求12所述的方法,其中,所述预设调速方式包括脱机独立调速方式;所述温度信息包括芯片的实时温度以及芯片附近的环境温度;所述监控板或所述风扇集合板根据所述温度信息以及预设调速方式计算风扇阵列的转速,并生成对应的转速控制信息,包括:所述风扇集合板通过独立的信号背板通讯总线获取所述温度信息,并将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息;其中,所述风扇阵列中每个风扇的目标温度信息包括风扇与温度传感器子阵列的对应关系以及每个风扇的目标温度;所述风扇集合板根据所述目标温度信息和实际温度信息计算所述每个风扇的目标转速;所述风扇集合板根据所述每个风扇的目标转速生成所述转速控制信息。
- 根据权利要求17所述的方法,其中,所述将所述温度信息进行分类处理,根据分类处理结果设定所述风扇阵列中每个风扇的目标温度信息,包括:所述风扇集合板确定风扇与温度传感器子阵列的对应关系;所述风扇集合板从所述温度信息中筛选出可用温度,并根据所述可用温度计算参考温度;其中,所述可用温度包括环境温度以及进风出风的温度的短期温度;所述风扇集合板根据所述参考温度及目标噪音设定所述每个风扇的目标温度,并根据所述每个风扇的目标温度以及所述对应关系设定所述风扇阵列中每个风扇的目标温度信息。
- 根据权利要求17所述的方法,其中,所述风扇集合板根据所述目标温度信息和实际温度信息计算所述每个风扇的目标转速,包括:所述风扇集合板将所述目标温度信息作为输入变量,将实际温度信息作为输出变量,并计算所述目标温度信息与所述实际温度信息的差值作为偏差量;所述风扇集合板根据预设调速方式、所述输入变量、所述输出变量以及所述偏差量计算所述每个风扇的目标转速。
- 根据权利要求11所述的方法,其中,在所述通过温度传感器阵列采集网络设备中 单板的温度信息之前,包括:通过所述监控板将当前调速模式设置为所述脱机独立调速方式,并将当前调速模式信息发送至所述风扇集合板;所述风扇集合板接收到所述当前调速模式信息后进入主机模式;或所述风扇集合板在确定未检测到所述监控板的次数超过预设阈值的情况下,直接进入主机模式;在所述风扇集合板根据所述转速控制信息对所述风扇阵列中每个风扇的转速进行调整之后,包括:所述风扇集合板采集所述每个风扇的反馈转速;所述风扇集合板根据所述每个风扇的反馈转速确定所述系统的工作状态,并在确定所述系统的工作状态为异常状态时通过设定告警方式进行告警。
- 一种网络设备,包括权利要求1-10任一所述的风扇调速系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20879057.6A EP4047215B1 (en) | 2019-10-23 | 2020-08-31 | Fan speed regulation system and method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911013555.9A CN112696373B (zh) | 2019-10-23 | 2019-10-23 | 一种风扇调速系统及方法 |
CN201911013555.9 | 2019-10-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021077902A1 true WO2021077902A1 (zh) | 2021-04-29 |
Family
ID=75505231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/112610 WO2021077902A1 (zh) | 2019-10-23 | 2020-08-31 | 一种风扇调速系统及方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4047215B1 (zh) |
CN (1) | CN112696373B (zh) |
WO (1) | WO2021077902A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113671828A (zh) * | 2021-07-22 | 2021-11-19 | 浙江中烟工业有限责任公司 | 一种除尘风机集群的编队控制方法和系统 |
CN113719463A (zh) * | 2021-07-20 | 2021-11-30 | 深圳市风云实业有限公司 | 一种机架设备的散热系统及其异常识别方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11753983B2 (en) * | 2020-08-19 | 2023-09-12 | Komatsu America Corp. | Multi-fan cooling system |
CN113847095B (zh) * | 2021-09-29 | 2022-12-13 | 山东大学 | 一种高瓦斯隧道瓦斯涌出源勘测装置及其控制方法 |
CN114706462B (zh) * | 2022-03-25 | 2024-03-19 | 云尖信息技术有限公司 | 多节点bmc风扇控制方法、系统、计算机设备和存储介质 |
CN115263792A (zh) * | 2022-06-30 | 2022-11-01 | 成都市联洲国际技术有限公司 | 控制风扇运行的方法、装置、设备及存储介质 |
CN115559926A (zh) * | 2022-11-03 | 2023-01-03 | 扬州万方科技股份有限公司 | 基于大数据的vpx机箱风扇自动调节的系统及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101013328A (zh) * | 2007-01-30 | 2007-08-08 | 中兴通讯股份有限公司 | 一种温控风扇转速的装置和方法 |
CN101871465A (zh) * | 2009-04-24 | 2010-10-27 | 大唐移动通信设备有限公司 | Atca系统散热风扇的控制装置和方法 |
CN102767530A (zh) * | 2012-07-12 | 2012-11-07 | 杭州华三通信技术有限公司 | 一种分布式网络设备风扇调速方法及装置 |
CN202711093U (zh) * | 2012-05-23 | 2013-01-30 | 燕山大学 | 计算机或服务器用智能温度控制器 |
CN203308752U (zh) * | 2012-12-27 | 2013-11-27 | 汉柏科技有限公司 | 一种基于热分布控制的机箱环境控制系统 |
GB2520809A (en) * | 2013-09-27 | 2015-06-03 | Alifabs Cabinets & Ancillaries Ltd | Fan controller |
CN208607606U (zh) * | 2018-08-24 | 2019-03-15 | 贵州浪潮英信科技有限公司 | 一种服务器用风扇散热系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103382944A (zh) * | 2012-05-02 | 2013-11-06 | 鸿富锦精密工业(深圳)有限公司 | 风扇控制方法 |
CN103075360B (zh) * | 2013-01-30 | 2016-12-28 | 中兴通讯股份有限公司 | 一种机框风扇的控制方法及装置 |
CN104572399B (zh) * | 2015-02-03 | 2019-02-05 | 联想(北京)有限公司 | 一种温度控制方法及电子设备 |
US11041500B2 (en) * | 2015-09-22 | 2021-06-22 | International Business Machines Corporation | Parallel-series hybrid fan cooling apparatus and optimization |
JP6464979B2 (ja) * | 2015-10-05 | 2019-02-06 | 富士通株式会社 | 回転制御方法、回転制御プログラム、及び情報処理装置 |
CN106211715B (zh) * | 2016-08-12 | 2018-08-07 | 锐捷网络股份有限公司 | 一种风扇控制方法及装置 |
CN109445545A (zh) * | 2018-09-13 | 2019-03-08 | 华东计算技术研究所(中国电子科技集团公司第三十二研究所) | 系统风扇控制方法、系统及计算机可读存储介质 |
CN109563844B (zh) * | 2018-09-30 | 2020-08-11 | 北京比特大陆科技有限公司 | 风扇转速调整方法、装置、设备、存储介质、程序产品 |
CN109611367B (zh) * | 2018-12-11 | 2020-09-15 | 英业达科技有限公司 | 基于cpld的风扇控制系统及服务器 |
CN109958646B (zh) * | 2019-03-20 | 2020-12-18 | 浪潮商用机器有限公司 | 风扇控制方法及系统 |
-
2019
- 2019-10-23 CN CN201911013555.9A patent/CN112696373B/zh active Active
-
2020
- 2020-08-31 EP EP20879057.6A patent/EP4047215B1/en active Active
- 2020-08-31 WO PCT/CN2020/112610 patent/WO2021077902A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101013328A (zh) * | 2007-01-30 | 2007-08-08 | 中兴通讯股份有限公司 | 一种温控风扇转速的装置和方法 |
CN101871465A (zh) * | 2009-04-24 | 2010-10-27 | 大唐移动通信设备有限公司 | Atca系统散热风扇的控制装置和方法 |
CN202711093U (zh) * | 2012-05-23 | 2013-01-30 | 燕山大学 | 计算机或服务器用智能温度控制器 |
CN102767530A (zh) * | 2012-07-12 | 2012-11-07 | 杭州华三通信技术有限公司 | 一种分布式网络设备风扇调速方法及装置 |
CN203308752U (zh) * | 2012-12-27 | 2013-11-27 | 汉柏科技有限公司 | 一种基于热分布控制的机箱环境控制系统 |
GB2520809A (en) * | 2013-09-27 | 2015-06-03 | Alifabs Cabinets & Ancillaries Ltd | Fan controller |
CN208607606U (zh) * | 2018-08-24 | 2019-03-15 | 贵州浪潮英信科技有限公司 | 一种服务器用风扇散热系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4047215A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113719463A (zh) * | 2021-07-20 | 2021-11-30 | 深圳市风云实业有限公司 | 一种机架设备的散热系统及其异常识别方法 |
CN113671828A (zh) * | 2021-07-22 | 2021-11-19 | 浙江中烟工业有限责任公司 | 一种除尘风机集群的编队控制方法和系统 |
CN113671828B (zh) * | 2021-07-22 | 2024-02-20 | 浙江中烟工业有限责任公司 | 一种除尘风机集群的编队控制方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
EP4047215B1 (en) | 2024-10-16 |
CN112696373B (zh) | 2023-09-26 |
EP4047215A1 (en) | 2022-08-24 |
EP4047215A4 (en) | 2022-12-21 |
CN112696373A (zh) | 2021-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021077902A1 (zh) | 一种风扇调速系统及方法 | |
CN107346163B (zh) | 服务器机架电力管理 | |
US8321057B2 (en) | Infrastructure for adaptive environmental control for equipment in a bounded area | |
US11438189B2 (en) | Environmental control for HVAC system | |
US10375854B2 (en) | Liquid cooling system and control method thereof | |
CN109614293A (zh) | 一种fpga异构加速卡的管理系统及方法 | |
EP3367538B1 (en) | Smart power supply management for high standby power system | |
CN113204461B (zh) | 一种服务器硬件监控的方法、装置、设备及可读介质 | |
WO2017133455A1 (zh) | 液冷设备的控制方法、装置以及系统 | |
WO2017197963A1 (zh) | 一种设备风扇调速方法及装置、系统 | |
CN111722686B (zh) | 一种跨节点的带内散热控制方法和装置 | |
CN106325464A (zh) | 调整风扇转速的方法和设备 | |
CN107576020A (zh) | 一种机房空调控制的方法、装置及系统 | |
JP6136596B2 (ja) | 監視制御装置、監視制御方法及び監視制御プログラム | |
CN107026759A (zh) | 一种基于bmc的远程管理bbu模块的固件及其开发方法 | |
CN109489190A (zh) | 一种机房冷量的调控方法及系统 | |
CN110990215A (zh) | 一种存储设备辅助散热和双重温度监测报警装置及方法 | |
CN112328033A (zh) | 一种bmc中的风扇自动控制方法及相关设备 | |
CN114115395B (zh) | 一种基于ai的机房环境监控方法及系统 | |
CN106844176B (zh) | 一种多单元服务器的传感器数据集成处理方法 | |
CN116301248A (zh) | 服务器的散热控制方法和装置、存储介质及电子装置 | |
US20220283079A1 (en) | Assessment of humidity and non-humidity driven corrosion risk | |
CN115263793A (zh) | 一种服务器风扇的调速方法、调速装置、设备及介质 | |
JP7037057B2 (ja) | 電子装置、制御プログラムおよび制御方法 | |
CN118244865B (zh) | 内存安全保护系统、方法、计算机设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20879057 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020879057 Country of ref document: EP Effective date: 20220519 |