WO2021077900A1 - 一种陶瓷基复合材料流固耦合响应计算方法 - Google Patents

一种陶瓷基复合材料流固耦合响应计算方法 Download PDF

Info

Publication number
WO2021077900A1
WO2021077900A1 PCT/CN2020/112600 CN2020112600W WO2021077900A1 WO 2021077900 A1 WO2021077900 A1 WO 2021077900A1 CN 2020112600 W CN2020112600 W CN 2020112600W WO 2021077900 A1 WO2021077900 A1 WO 2021077900A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
solid
node
unloading
loading
Prior art date
Application number
PCT/CN2020/112600
Other languages
English (en)
French (fr)
Inventor
宋迎东
高希光
于国强
韩栋
张盛
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Priority to US17/431,412 priority Critical patent/US20220245313A1/en
Publication of WO2021077900A1 publication Critical patent/WO2021077900A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/12Cloth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites

Definitions

  • the invention relates to the field of fluid-solid coupling response calculation of woven ceramic matrix composites (CMCs), in particular to a method for calculating the fluid-structure coupling response of ceramic matrix composites.
  • CMCs woven ceramic matrix composites
  • Braided CMCs have the advantages of high specific strength, high specific modulus, and corrosion resistance at high temperatures, and are ideal materials for manufacturing high-temperature structures.
  • CMCs When CMCs are loaded, due to the brittleness of the ceramic matrix, the material will crack when the strain is small. Therefore, CMCs are usually in the non-linear section in engineering applications. In the process of vibration, CMCs are under continuous loading and unloading conditions, which will show complex stiffness and hysteresis.
  • the service environment of CMCs structure is usually accompanied by fluid-structure interaction (FSI), and FSI is sometimes the main factor leading to structural failure. Therefore, it is very necessary to develop a calculation method for the fluid-structure coupling response of CMCs.
  • FSI fluid-structure interaction
  • the solid domain does not consider the hysteresis behavior of the material. This is because in engineering applications, designers usually ensure that the material usually works in its linear section, even if it enters the nonlinear section, the hysteresis of metal materials The behavior can also be ignored. However, in the engineering application of CMCs, the variable stiffness and hysteresis behavior of CMCs cannot be ignored. In the vibration process, the CMCs are essentially subjected to an arbitrary loading and unloading process.
  • the stress-strain calculation method of CMCs such as the "Prediction Method for the Stress-strain Behavior of Unidirectional Ceramic Matrix Composites with Arbitrary Loading and Unloading" (Chinese Patent CN 104866690 B) discloses a calculation method for calculating the constitutive response of arbitrary loading and unloading , But this method requires repeated iterations and is not suitable for kinetic calculations.
  • dynamic simulation methods such as "A Method for Determining the Nonlinear Vibration Response of Ceramic Matrix Composites” (Chinese Patent CN 106777595 B)
  • a method for determining the vibration response of ceramic matrix composites is disclosed.
  • the calculation amount is greatly reduced and can be used for dynamic calculation.
  • the calculation amount of the sub-hysteresis loop in this patent is still large, and large errors will accumulate in the case of multiple loading and unloading, resulting in The robustness of kinetic calculations is poor.
  • the introduction of variable stiffness and hysteresis constitutive models also brings great challenges to the solution of dynamic equations. Because of the sudden change in stiffness under loading and unloading, discontinuities are introduced, which in turn causes non-convergence of the calculation results of the dynamic equations.
  • the purpose of the present invention is to provide a method for calculating the fluid-solid coupling response of a ceramic matrix composite material.
  • a calculation method for fluid-structure coupling response of ceramic matrix composites including:
  • the fluid load is calculated by computational fluid dynamics CFD, the fluid load is read and mapped to the solid node, and the solid node load is calculated;
  • the calculation method for calculating the loading and unloading hysteresis loop of the finite element model of the braided CMCs represents the volume element, and interpolating the arbitrary loading and unloading hysteresis loop response to obtain the arbitrary loading and unloading stress and strain calculation method, which specifically includes:
  • the maximum strain value gradually increases during the loading and unloading process, and hysteresis loops corresponding to different maximum strain values are obtained.
  • the calculation method for calculating the loading and unloading hysteresis loop of the finite element model of the braided CMCs represents the volume element, and interpolating the arbitrary loading and unloading hysteresis loop response to obtain the arbitrary loading and unloading stress and strain calculation method, which specifically includes:
  • is the stress
  • is the strain
  • ⁇ i is the maximum strain value of the i-th hysteresis loop, and + and-represent loading and unloading respectively;
  • any maximum strain value ⁇ t when the maximum strain value is between the maximum strain values calculated by any two finite element models representing volume elements, that is, when ( ⁇ i ⁇ t ⁇ i+1 ) ,
  • the polynomial coefficient interpolation of the current hysteresis loop is:
  • a and B respectively represent the upper and lower vertices of the hysteresis loop.
  • the fluid load is calculated by computational fluid dynamics CFD
  • the fluid load is read and mapped to the solid node
  • the solid node load is calculated
  • the fluid domain is solved by CFD.
  • the geometric information and load information of the fluid element on the fluid-solid coupling surface are obtained.
  • the fluid load is calculated by computational fluid dynamics CFD, the fluid load is read and mapped to the solid node, and the solid node load is calculated,
  • each solid unit corresponds to n fluid nodes
  • s represents solid
  • f represents fluid
  • F si represents the equivalent fluid load acting on the i-th node of any solid element
  • u fj represents the displacement of the j-th fluid node on any fluid unit, It means that the displacement of the i-th solid node of the solid element is mapped to the isoparametric interpolation coefficient corresponding to the j-th fluid node, and the isoparametric interpolation coefficient is calculated by the Newton iteration method; u si represents the displacement of the i-th solid node.
  • the present invention provides a ceramic matrix composite material fluid-structure coupling response calculation method, which realizes the calculation of the fluid-structure coupling response of CMCs; description of the variable stiffness and hysteresis behavior of CMCs under loading and unloading Simple and easy to implement; the robustness of dynamics solution is good, and it is not easy to diverge.
  • Fig. 1 is a schematic diagram of a stress-strain curve of an interpolation hysteresis loop in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of unloading stress and strain in a hysteresis loop in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of loading stress and strain in a hysteresis loop in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of fluid load mapping in an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of fluid-structure coupling displacement response in an embodiment of the present invention.
  • the present invention provides a method for calculating the fluid-structure coupling response of ceramic matrix composites.
  • the method includes: calculating the loading and unloading stress-strain hysteresis curve of the CMCs unit cell model through a multi-scale method; using the unit cell model Calculate the loading and unloading hysteresis loop, interpolate the response of any loading and unloading hysteresis loop, and use it as a proxy model for the fluid-structure coupling solid domain dynamics calculation; on the fluid-structure coupling interface, the fluid load is calculated by CFD and compiled
  • the program reads the fluid load and maps it to the solid node, and reads the displacement of the solid node and maps it to the fluid node.
  • the fluid domain and the solid domain use the same time step.
  • the RVE finite element model of braided CMCs is established.
  • a custom meso-constitutive model can be added to the RVE model, and the loading and unloading strain can be given to obtain the loading and unloading constitutive response curve.
  • dynamic calculations it is extremely time-consuming to directly use RVE model calculations. Therefore, a series of loading and unloading hysteresis loops are first calculated by the RVE model, and in the dynamic calculation, the interpolation calculation is performed between the series of hysteresis loops calculated before.
  • is the stress
  • is the strain
  • ⁇ i is the maximum strain value of the i-th hysteresis loop
  • polynomial coefficients can be expressed in the following form:
  • f( ⁇ i ) represents a function related to ⁇ i.
  • the current maximum hysteresis loop In the process of dynamic calculation, the current maximum hysteresis loop must first be calculated. If the maximum strain of the current hysteresis loop is ⁇ t , the maximum strain values corresponding to the hysteresis loop calculated by the RVE model are ⁇ i and ⁇ i+ Between 1 , the polynomial coefficients of the current hysteresis loop can be expressed as:
  • a and B respectively represent the upper and lower vertices of the hysteresis loop.
  • the interface mapping of fluid-structure coupling includes load mapping and displacement mapping.
  • Load mapping before each time step dynamic calculation, the fluid force is mapped to the solid finite element node.
  • Displacement mapping after the dynamics calculates the displacement, the displacement is mapped to the fluid node.
  • s represents solid
  • f represents fluid
  • F si represents the equivalent fluid load acting on the i-th node of a solid element
  • Isoparametric interpolation coefficients need to calculate the parameter coordinates of the fluid node in the solid element. It can be calculated by numerical methods such as Newton's iteration method.
  • the displacement mapping is similar to the fluid load mapping and can be expressed as:
  • u fj represents the displacement of the j-th fluid node on a coupling unit
  • u si represents the displacement of the i-th solid node
  • the method includes the following steps:
  • S10 Update the position of the flow field node according to the displacement result of the fluid node on the coupling surface calculated in S9, and perform the calculation of the next coupling step, that is, go to S6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Complex Calculations (AREA)

Abstract

一种陶瓷基复合材料流固耦合响应计算方法,该方法包括:通过多尺度方法计算CMCs单胞模型加卸载应力应变迟滞曲线;通过单胞模型计算所得到的加卸载迟滞回线,插值出任意加卸载迟滞回线响应,并将其作为代理模型用于流固耦合固体域动力学计算;流固耦合界面上,流体载荷通过CFD计算,编写程序读取流体载荷并映射到固体结点上,以及读取固体结点的位移并映射到流体结点上,流体域与固体域采用相同的时间步长。该方法实现了CMCs流固耦合响应的计算,CMCs加卸载下的变刚度、迟滞行为描述简单,易于实现;动力学求解的鲁棒性好,不易发散。

Description

一种陶瓷基复合材料流固耦合响应计算方法
本申请要求于2019年10月24日提交中国专利局、申请号为201911020077.4、发明名称为“一种陶瓷基复合材料流固耦合响应计算方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及编织陶瓷基复合材料(ceramic matrix composites,CMCs)流固耦合响应计算领域,特别是涉及一种陶瓷基复合材料流固耦合响应计算方法。
背景技术
编织CMCs在高温下,具有高比强度、高比模量、耐腐蚀等优点,是制造高温结构的理想材料。CMCs在受载时,由于陶瓷基体的脆性,材料在应变很小的情况下即会产生裂纹,因此工程应用中CMCs通常处于非线性段。在振动过程中,CMCs是处于不断加卸载情况下,会呈现复杂的变刚度、迟滞现象。此外,CMCs结构的服役环境通常伴随着流固耦合作用(fluid-structure interaction,FSI),FSI有时甚至是导致结构失效的主要因素。因此发展一种CMCs结构的流固耦合响应的计算方法是十分必要的。
目前,弱耦合求解方法在工程获得了广泛应用,因为可以最大程度地利用已有的固体域和流体域求解程序。然而目前在流固耦合仿真中,还少有考虑到材料加卸载下的变刚度和迟滞行为。如《一种基于交错迭代耦合技术的薄壁结构动力学热性预测方法》(中国专利CN 103177162 B)公开了一种计算薄壁流固耦合响应的方法,该专利中固体域采用Newmark法计算,未考虑材料的非线性。崔鹏、韩景龙(崔鹏,韩景龙.切尖三角翼极限环振荡的气动弹性模拟[J].航空学报,2010,31(12):2295-2301.)在切尖三角翼的流固耦合计算中,固体域考虑了材料非线性,并采用Newmark法计算动力学响应,但也未考虑材料的迟滞行为。
前述流固耦合相关的专利和论文,固体域均未考虑材料的迟滞行为, 这是因为工程应用中,设计人员通常保证材料通常工作于其线性段,就算进入的非线性段,金属材料的迟滞行为也可以忽略。然而CMCs在工程应用中,CMCs的变刚度、迟滞行为不能忽略。在振动过程中,CMCs承受的实质上是任意加卸载过程。针对任意加卸载下,CMCs的应力应变计算方法如《单向陶瓷基复合材料任意加卸载应力应变行为预测方法》(中国专利CN 104866690 B)公开了一种计算任意加卸载本构响应的计算方法,但是该方法需要反复迭代,不适合动力学计算。针对陶瓷基复合材料动力学仿真方法如《一种确定陶瓷基复合材料非线性振动响应的方法》(中国专利CN 106777595 B)公开了一种确定陶瓷基复合材料振动响应的方法,虽然该方法相较于上一个计算量大幅减少,可用于动力学计算,但该专利中在计算子迟滞回线时运算量还是较大,且在多次加卸载的情况下会积累较大的误差,从而导致动力学计算的鲁棒性较差。此外,变刚度、迟滞本构模型的引入,也给动力学方程的求解带来了极大挑战。因为加卸载下刚度会发生突变,从而引入了间断点,进而引起的动力学方程计算结果的不收敛。
可见,目前CMCs流固耦合计算仍面临以下问题:(1)固体域缺少能够描述材料变刚度、迟滞行为的高效本构模型;(2)考虑材料变刚度、迟滞行为的固体域动力学方程求解问题。
发明内容
本发明的目的是提供一种陶瓷基复合材料流固耦合响应计算方法。
为达到上述目的,本发明的技术方案为:
一种陶瓷基复合材料流固耦合响应计算方法,包括:
建立编织陶瓷基复合材料CMCs代表体元的有限元模型,并赋予纤维束合适的细观力学模型;
计算编织CMCs代表体元的有限元模型的加卸载迟滞回线,插值出任意加卸载迟滞回线响应,得到任意加卸载应力应变计算方法;
流固耦合界面上,通过计算流体动力学CFD计算流体载荷,读取流 体载荷并映射到固体结点上,并计算得到固体结点载荷;
基于所述任意加卸载应力应变计算方法,结合显式动力学积分和所述固体结点载荷,求得当前时间步的CMC结构的流固耦合动力学响应;
读取所述流固耦合动力学响应中的固体结点位移结果并映射到流体结点上,求得耦合面流体结点位移结果;其中,流体域与固体域采用相同的时间步长;
根据所述耦合面流体结点位移结果对流体结点位置进行更新,并转至“流固耦合界面上,通过计算流体动力学CFD计算流体载荷,读取流体载荷并映射到固体结点上,并计算得到固体结点载荷”的步骤,计算下一个时间步的CMC结构的流固耦合动力学响应。
可选的,所述计算编织CMCs代表体元的有限元模型的加卸载迟滞回线,插值出任意加卸载迟滞回线响应,得到任意加卸载应力应变计算方法,具体包括:
给予所述编织CMCs代表体元的有限元模型一系列加卸载路径,加卸载过程中最大应变值逐渐增大,获得与不同的最大应变值相对应的迟滞回线。
可选的,所述计算编织CMCs代表体元的有限元模型的加卸载迟滞回线,插值出任意加卸载迟滞回线响应,得到任意加卸载应力应变计算方法,具体包括:
利用三次多项式对所述迟滞回线进行拟合,拟合得到不同ε i对应的多项式系数a n,b n(n=1~4):
Figure PCTCN2020112600-appb-000001
式中,σ为应力,ε为应变,ε i为第i个迟滞回线的最大应变值,+、-分别代表加载与卸载;
则任意最大应变值ε t,当所述最大应变值处于任一两个代表体元的有限元模型计算所得的最大应变值之间时,即(ε i<ε t<ε i+1)时,则当前迟滞回线的多项式系数插值为:
Figure PCTCN2020112600-appb-000002
当振幅由大到小时,加卸载发生在最大迟滞回线内部时,假设当前应力应变状态在P点,所述P点的位置为(ε PP),通过动力学数值计算,得到下一时刻的位移,则确定相应的应变ε P',此时通过下式计算下一时刻P'点的应力值σ P'
Figure PCTCN2020112600-appb-000003
式中,A、B分别代表迟滞回线的上下顶点。
可选的,所述流固耦合界面上,通过计算流体动力学CFD计算流体载荷,读取流体载荷并映射到固体结点上,并计算得到固体结点载荷中,通过CFD进行流体域求解,获得所述流固耦合面上流体单元的几何信息 和载荷信息。
可选的,所述流固耦合界面上,通过计算流体动力学CFD计算流体载荷,读取流体载荷并映射到固体结点上,并计算得到固体结点载荷中,
对固体单元与流体单元进行配对;每个固体单元对应n个流体结点;
通过下式,确定流体载荷向固体结点的映射:
Figure PCTCN2020112600-appb-000004
式中,s代表固体,f代表流体,F si代表作用于任一固体单元第i个结点上的等效流体载荷,
Figure PCTCN2020112600-appb-000005
表示第k个流体单元作用力映射到第i个固体结点对应的等参插值系数,所述等参插值系数通过牛顿迭代法计算;
Figure PCTCN2020112600-appb-000006
表示第k个流体单元对当前固体单元的作用力。
可选的,所述读取所述流固耦合动力学响应中的固体结点位移结果并映射到流体结点上,求得耦合面流体结点位移结果中,
匹配每个固体单元的任一个面和面内的n个流体结点;
通过下式,确定固体结点的位移向流体结点的映射:
Figure PCTCN2020112600-appb-000007
式中,u fj代表任一流体单元上的第j个流体结点的位移,
Figure PCTCN2020112600-appb-000008
表示固体单元第i个固体结点的位移映射到第j个流体结点对应的等参插值系数,等参插值系数通过牛顿迭代法计算;u si表示第i个固体结点的位移。
本发明与现有技术相比的优点在于:本发明提供一种陶瓷基复合材料流固耦合响应计算方法,实现了CMCs流固耦合响应的计算;CMCs加卸载下的变刚度、迟滞行为的描述简单,易于实现;动力学求解的鲁棒性好,不易发散。
说明书附图
下面结合附图对本发明作进一步说明:
图1为本发明实施方式中插值迟滞回线应力应变曲线示意图;
图2为本发明实施方式中迟滞回线内卸载应力应变示意图;
图3为本发明实施方式中迟滞回线内加载应力应变示意图;
图4为本发明实施方式中流体载荷映射示意图;
图5为本发明实施方式中流固耦合位移响应示意图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。
如图1-图5所示,本发明提供了一种陶瓷基复合材料流固耦合响应计算方法,该方法包括:通过多尺度方法计算CMCs单胞模型加卸载应力应变迟滞曲线;通过单胞模型计算所得到的加卸载迟滞回线,插值出任意加卸载迟滞回线响应,并将其作为代理模型用于流固耦合固体域动力学计算;流固耦合界面上,流体载荷通过CFD计算,编写程序读取流体载荷并映射到固体结点上,以及读取固体结点的位移并映射到流体结点上,流体域与固体域采用相同的时间步长。
首先建立编织CMCs的RVE有限元模型,在RVE模型中可以加入自定义的细观本构模型,给与加卸载应变,获得加卸载本构响应曲线。在动力学计算中,直接使用RVE模型计算是极为耗时的。因此先通过RVE模型计算出一系列加卸载迟滞回线,而在动力学计算中,则在之前计算出的一系列迟滞回线之间进行插值计算。如图1所示,由于CMCs非线性迟滞行为与最大应变值ε max密切相关,每个迟滞回线的顶点位置和曲线形状都是由ε max决定,可通过数值拟合得到。RVE模型计算所得的第i个迟滞 回线,包括加载、卸载段,可拟合成以下多项式:
Figure PCTCN2020112600-appb-000009
其中,σ为应力,ε为应变,ε i为第i个迟滞回线的最大应变值,+、-分别代表加载与卸载,多项式系数可表达成以下形式:
Figure PCTCN2020112600-appb-000010
其中,f(ε i)表示与ε i相关的函数。
在进行动力学计算过程中,首先要计算当前最大迟滞回线,若当前迟滞回线最大应变为ε t,其处于RVE模型计算所得的迟滞回线对应的最大应变值为ε i和ε i+1之间,则当前迟滞回线的多项式系数可表达为:
Figure PCTCN2020112600-appb-000011
当振幅先大后小时,则需要在迟滞回线内部插值,如图2-图3所示,假设当前应力应变状态在P点,其位置为(ε PP)。通过动力学数值计算,得到了下一时刻的位移,则可确定相应的应变ε P',此时通过下式计算下一时刻P'点的应力值σ P'
Figure PCTCN2020112600-appb-000012
其中,A、B分别代表迟滞回线的上下顶点。
通过以上过程可以计算出编织CMCs在任意加卸载下的应力应变响应,并应用于CMCs非线性动力学计算。
在流固耦合计算中,固体域若采用Newmark等需要迭代的动力学求解方法,则CMCs的变刚度和迟滞行为,会在加卸载中引起刚度的间断,从而为动力学求解带来困难。本专利采用中心差分法等显示积分法计算振动响应,从而避免加卸载本构模型的迭代,避免了求解结果的发散。
流固耦合的界面映射包含载荷映射和位移映射。载荷映射,在每一时间步动力学计算之前,把流体作用力映射给固体有限元结点。位移映射,在动力学计算出位移后把位移映射给流体结点。
如图4所示,流体载荷映射,首先读取此时的各个耦合面单元的面心坐标以及作用力大小。由于固体域、流体域的网格是不匹配的,通常流体域的网格在耦合面上比固体域要密得多,因此需要将流体载荷映射到固体节点上。在某个耦合单元面内,有n个流体结点,则作用于固体结点的力表示为:
Figure PCTCN2020112600-appb-000013
其中s代表固体,f代表流体,F si代表作用于某固体单元第i个结点上的等效流体载荷,
Figure PCTCN2020112600-appb-000014
表示第k个流体单元作用力映射到第i个固体结点对应的等参插值系数;
Figure PCTCN2020112600-appb-000015
表示第k个流体单元对当前固体单元的作用力。
等参插值系数,需要计算流体结点在固体单元中的参数坐标。可通过数值方法如牛顿迭代法计算。
如图5所示,位移映射与流体载荷映射类似,可表达为:
Figure PCTCN2020112600-appb-000016
式中,u fj代表某耦合单元上的第j个流体结点的位移,
Figure PCTCN2020112600-appb-000017
表示第i个固体单元的位移映射到第j个流体结点对应的等参插值系数,u si表示第i个固体结点的位移。
接下来,结合具体实施方式对陶瓷基复合材料流固耦合响应计算方法进行具体描述,该方法包括以下步骤:
S1:建立编织CMCs代表体元的有限元模型,并赋予纤维束合适的细观力学模型。
S2:给予代表体元有限元模型一系列加卸载路径,加卸载过程中最大应变值应逐渐增大,获得与不同最大应变值相对应的迟滞回线,获得迟滞回线越多,计算结果将越精确。注意卸载时要卸载到裂纹闭合,即继续卸载,应力应变关系为线性。
S3:由于每个迟滞回线的凹凸性通常来说最多变化一次,因此利用三次多项式对这些迟滞回线进行拟合可获得足够的精度,拟合得到不同ε i对应的多项式系数a n,b n(n=1~4):
Figure PCTCN2020112600-appb-000018
S4:则任意最大应变值ε t,当其处于某两个RVE模型计算所得的最大应变值之间时,即(ε i<ε t<ε i+1)时,则当前迟滞回线的多项式系数可插值为:
Figure PCTCN2020112600-appb-000019
S5:当振幅由大到小时,加卸载发生在最大迟滞回线内部时,已知当前的应力应变,则下一时刻的应力可由下式求得:
Figure PCTCN2020112600-appb-000020
S7:进行固体单元与流体单元之间的配对,通常流体网格相较于固体网格要密得多,则每个固体单元对应n个流体结点。然后通过下式,实现流体载荷向固体结点的映射。其中的等参插值系数,已知流体面心坐标和4个固体结点坐标,可通过牛顿迭代法计算得到:
Figure PCTCN2020112600-appb-000021
S8:基于上述任意加卸载应力应变计算方法,结合显式动力学积分,其中,固体结点载荷为S7计算所得,即可求得当前时间步的CMC结构的流固耦合动力学响应。
S9:根据S8计算的固体结点位移结果,将固体结点的位移映射到耦合面的流体结点。固体结点位移映射,也要匹配每个固体单元的某个面和面内的n个流体结点。固体结点的位移通过下式,实现向流体结点的映射。其中的等参插值系数,与上一步类似,通过牛顿迭代法计算。
Figure PCTCN2020112600-appb-000022
S10:根据S9计算的耦合面流体结点位移结果对流场结点位置进行更新,进行下一个耦合步的计算,即转至S6。
需要注意的是,发明中所引用的如“上”、“下”、“左”、“右”、“前”、“后”等的用语,亦仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。

Claims (6)

  1. 陶瓷基复合材料流固耦合响应计算方法,其特征在于,包括:
    建立编织陶瓷基复合材料CMCs代表体元的有限元模型,并赋予纤维束合适的细观力学模型;
    计算编织CMCs代表体元的有限元模型的加卸载迟滞回线,插值出任意加卸载迟滞回线响应,得到任意加卸载应力应变计算方法;
    流固耦合界面上,通过计算流体动力学CFD计算流体载荷,读取流体载荷并映射到固体结点上,并计算得到固体结点载荷;
    基于所述任意加卸载应力应变计算方法,结合显式动力学积分和所述固体结点载荷,求得当前时间步的CMC结构的流固耦合动力学响应;
    读取所述流固耦合动力学响应中的固体结点位移结果并映射到流体结点上,求得耦合面流体结点位移结果;其中,流体域与固体域采用相同的时间步长;
    根据所述耦合面流体结点位移结果对流体结点位置进行更新,并转至“流固耦合界面上,通过计算流体动力学CFD计算流体载荷,读取流体载荷并映射到固体结点上,并计算得到固体结点载荷”的步骤,计算下一个时间步的CMC结构的流固耦合动力学响应。
  2. 如权利要求1所述的一种陶瓷基复合材料流固耦合响应计算方法,其特征在于,所述计算编织CMCs代表体元的有限元模型的加卸载迟滞回线,插值出任意加卸载迟滞回线响应,得到任意加卸载应力应变计算方法,具体包括:
    给予所述编织CMCs代表体元的有限元模型一系列加卸载路径,加卸载过程中最大应变值逐渐增大,获得与不同的最大应变值相对应的迟滞 回线。
  3. 如权利要求1所述的一种陶瓷基复合材料流固耦合响应计算方法,其特征在于,所述计算编织CMCs代表体元的有限元模型的加卸载迟滞回线,插值出任意加卸载迟滞回线响应,得到任意加卸载应力应变计算方法,具体包括:
    利用三次多项式对所述迟滞回线进行拟合,拟合得到不同ε i对应的多项式系数a n,b n(n=1~4):
    Figure PCTCN2020112600-appb-100001
    式中,σ为应力,ε为应变,ε i为第i个迟滞回线的最大应变值,+、-分别代表加载与卸载;
    则任意最大应变值ε t,当所述最大应变值处于任一两个代表体元的有限元模型计算所得的最大应变值之间时,即(ε i<ε t<ε i+1)时,则当前迟滞回线的多项式系数插值为:
    Figure PCTCN2020112600-appb-100002
    当振幅由大到小时,加卸载发生在最大迟滞回线内部时,假设当前应力应变状态在P点,所述P点的位置为(ε PP),通过动力学数值计算,得到下一时刻的位移,则确定相应的应变ε P',此时通过下式计算下一时刻P'点的应力值σ P'
    Figure PCTCN2020112600-appb-100003
    式中,A、B分别代表迟滞回线的上下顶点。
  4. 如权利要求1所述的一种陶瓷基复合材料流固耦合响应计算方法,其特征在于,所述流固耦合界面上,通过计算流体动力学CFD计算流体载荷,读取流体载荷并映射到固体结点上,并计算得到固体结点载荷中,通过CFD进行流体域求解,获得所述流固耦合面上流体单元的几何信息和载荷信息。
  5. 如权利要求1所述的一种陶瓷基复合材料流固耦合响应计算方法,其特征在于,所述流固耦合界面上,通过计算流体动力学CFD计算流体载荷,读取流体载荷并映射到固体结点上,并计算得到固体结点载荷中,对固体单元与流体单元进行配对;每个固体单元对应n个流体结点;
    通过下式,确定流体载荷向固体结点的映射:
    Figure PCTCN2020112600-appb-100004
    式中,s代表固体,f代表流体,F si代表作用于任一固体单元第i个结点上的等效流体载荷,
    Figure PCTCN2020112600-appb-100005
    表示第k个流体单元作用力映射到第i个固体结点对应的等参插值系数,所述等参插值系数通过牛顿迭代法计算;
    Figure PCTCN2020112600-appb-100006
    表示第k个流体单元对当前固体单元的作用力。
  6. 如权利要求1所述的一种陶瓷基复合材料流固耦合响应计算方法,其特征在于,所述读取所述流固耦合动力学响应中的固体结点位移结果并映射到流体结点上,求得耦合面流体结点位移结果中,
    匹配每个固体单元的任一个面和面内的n个流体结点;
    通过下式,确定固体结点的位移向流体结点的映射:
    Figure PCTCN2020112600-appb-100007
    式中,u fj代表任一流体单元上的第j个流体结点的位移,
    Figure PCTCN2020112600-appb-100008
    表示固体单元第i个固体结点的位移映射到第j个流体结点对应的等参插值系数,等参插值系数通过牛顿迭代法计算;u si表示第i个固体结点的位移。
PCT/CN2020/112600 2019-10-24 2020-08-31 一种陶瓷基复合材料流固耦合响应计算方法 WO2021077900A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/431,412 US20220245313A1 (en) 2019-10-24 2020-08-31 Method for calculating fluid-structure interaction response of ceramic matrix composites

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911020077.4 2019-10-24
CN201911020077.4A CN110633556B (zh) 2019-10-24 2019-10-24 一种陶瓷基复合材料流固耦合响应计算方法

Publications (1)

Publication Number Publication Date
WO2021077900A1 true WO2021077900A1 (zh) 2021-04-29

Family

ID=68977460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112600 WO2021077900A1 (zh) 2019-10-24 2020-08-31 一种陶瓷基复合材料流固耦合响应计算方法

Country Status (3)

Country Link
US (1) US20220245313A1 (zh)
CN (1) CN110633556B (zh)
WO (1) WO2021077900A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110633556B (zh) * 2019-10-24 2020-05-26 南京航空航天大学 一种陶瓷基复合材料流固耦合响应计算方法
CN118395805B (zh) * 2024-06-17 2024-08-30 湖南迈曦软件有限责任公司 一种基于稳定节点光滑有限元法的磁滞问题求解方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130289953A1 (en) * 2012-01-24 2013-10-31 The University Of Akron Self-optimizing, inverse analysis method for parameter identification of nonlinear material constitutive models
CN105930619A (zh) * 2016-05-17 2016-09-07 上海交通大学 纤维增强复合材料物理非线性模拟的态型近场动力学方法
CN106934133A (zh) * 2017-03-01 2017-07-07 大连理工大学 基于弹塑性分解的非线性有限元刚度矩阵更新方法
CN109271655A (zh) * 2018-07-23 2019-01-25 南京航空航天大学 一种基于非对称有限元算法的材料尺度效应分析方法
CN110633556A (zh) * 2019-10-24 2019-12-31 南京航空航天大学 一种陶瓷基复合材料流固耦合响应计算方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136237A (en) * 1999-04-13 2000-10-24 The Boeing Company Method of fabricating a fiber-reinforced ceramic matrix composite part
US7574338B1 (en) * 2005-01-19 2009-08-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates
CN104850689B (zh) * 2015-04-30 2019-01-04 昆明理工大学 一种基于固定网格技术的流固耦合计算方法
CN105701312A (zh) * 2015-12-17 2016-06-22 南京航空航天大学 复杂编织结构陶瓷基复合材料疲劳迟滞行为预测方法
CN105760605A (zh) * 2015-12-17 2016-07-13 南京航空航天大学 复杂编织结构陶瓷基复合材料疲劳寿命预测方法
US10571415B2 (en) * 2016-08-02 2020-02-25 Rolls-Royce Corporation Methods and apparatuses for evaluating ceramic matrix composite components
CN109614755B (zh) * 2018-12-29 2023-04-07 南京航空航天大学 一种通过迟滞耗散能预测编织陶瓷基复合材料高温疲劳纤维/基体界面剪应力的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130289953A1 (en) * 2012-01-24 2013-10-31 The University Of Akron Self-optimizing, inverse analysis method for parameter identification of nonlinear material constitutive models
CN105930619A (zh) * 2016-05-17 2016-09-07 上海交通大学 纤维增强复合材料物理非线性模拟的态型近场动力学方法
CN106934133A (zh) * 2017-03-01 2017-07-07 大连理工大学 基于弹塑性分解的非线性有限元刚度矩阵更新方法
CN109271655A (zh) * 2018-07-23 2019-01-25 南京航空航天大学 一种基于非对称有限元算法的材料尺度效应分析方法
CN110633556A (zh) * 2019-10-24 2019-12-31 南京航空航天大学 一种陶瓷基复合材料流固耦合响应计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FANG, GUANGWU ET AL.: "Multi-scale Stress-Strain Calculation Model of Laminated Ceramic Matrix Composites", JOURNAL OF AEROSPACE POWER, vol. 32, no. 6, 30 June 2017 (2017-06-30), pages 1375 - 1380, XP055805697, ISSN: 1000-8055 *

Also Published As

Publication number Publication date
CN110633556A (zh) 2019-12-31
CN110633556B (zh) 2020-05-26
US20220245313A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
Benson et al. Isogeometric shell analysis: the Reissner–Mindlin shell
WO2021077900A1 (zh) 一种陶瓷基复合材料流固耦合响应计算方法
Park et al. Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture
CN105183996B (zh) 面元修正与网格预先自适应计算方法
Biancolini et al. Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating
CN111859534B (zh) 热气动弹性分析适用的热固耦合结构动力学降阶模型方法
Li et al. High‐performance geometric nonlinear analysis with the unsymmetric 4‐node, 8‐DOF plane element US‐ATFQ4
CN111950149A (zh) 基于参数化水平集法的连续体结构非概率拓扑优化方法
CN113821887A (zh) 基于无网格efgm和plsm的各向异性结构热力耦合拓扑优化方法
Gupta et al. Large amplitude free flexural vibration analysis of finite element modeled FGM plates using new hyperbolic shear and normal deformation theory
Chen et al. Cohesive fracture analysis using Powell‐Sabin B‐splines
Liu et al. Isogeometric method based in-plane and out-of-plane free vibration analysis for Timoshenko curved beams
Li et al. N-sided polygonal smoothed finite element method (nSFEM) with non-matching meshes and their applications for brittle fracture problems
Kumar et al. On topology optimization of design‐dependent pressure‐loaded three‐dimensional structures and compliant mechanisms
CN115618503B (zh) 一种舵翼类结构增材工艺仿真及工艺优化方法
CN115631817B (zh) 基于复杂物理场的多材料全尺度拓扑优化设计方法及应用
CN112989661B (zh) 一种联合拓扑优化与形状优化的水下结构设计方法
Espath et al. A NURBS‐based finite element model applied to geometrically nonlinear elastodynamics using a corotational approach
Chiappa et al. A two-scale RBF meshless method for the interface stress retrieval in simply bended and torqued long-fibres laminates
CN112149286B (zh) 一种基于等效质点假设的热力特性数值模拟方法及系统
CN117094114A (zh) 一种理想弹塑性薄板塑性安定上下限载荷的数值计算方法
Morab et al. Fully finite volume method on a curvilinear grid-based arbitrary Lagrangian Eulerian approach for computational fluid flexible-structure interaction
Macquart et al. A finite beam element framework for variable stiffness structures
Van Der Helm et al. Comparison of artificial dissipation and limited flux schemes in Arbitrary Lagrangian–Eulerian finite element formulations
Bakshi et al. Analytical shape sensitivity computation using hybrid finite elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878779

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.05.2023)