WO2021077810A1 - 一种有机电致发光器件和显示装置 - Google Patents

一种有机电致发光器件和显示装置 Download PDF

Info

Publication number
WO2021077810A1
WO2021077810A1 PCT/CN2020/101652 CN2020101652W WO2021077810A1 WO 2021077810 A1 WO2021077810 A1 WO 2021077810A1 CN 2020101652 W CN2020101652 W CN 2020101652W WO 2021077810 A1 WO2021077810 A1 WO 2021077810A1
Authority
WO
WIPO (PCT)
Prior art keywords
triplet
independently selected
layer
organic electroluminescence
electroluminescence device
Prior art date
Application number
PCT/CN2020/101652
Other languages
English (en)
French (fr)
Inventor
李国孟
张跃威
魏金贝
李梦真
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2021077810A1 publication Critical patent/WO2021077810A1/zh
Priority to US17/514,617 priority Critical patent/US20220052266A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the application relates to an organic electroluminescence device and a display device, belonging to the technical field of organic electroluminescence.
  • Organic Light Emitting Diode (Organic Light Emitting Diode, abbreviated as: OLED) is a device that achieves the purpose of emitting light through current drive. Its main characteristics come from the organic light-emitting layer. When an appropriate voltage is applied, electrons and holes It will combine in the organic light-emitting layer to generate excitons and emit light of different wavelengths according to the characteristics of the organic light-emitting layer.
  • the light-emitting layer is composed of host materials and dyes, and the dyes are mostly selected from traditional fluorescent materials and traditional phosphorescent materials.
  • traditional phosphorescent materials have high efficiency, they are expensive and have poor stability, while traditional fluorescent materials are cheap but have extremely low efficiency.
  • the present application provides an organic electroluminescent device, which can effectively improve the luminous efficiency and color purity of the organic electroluminescent device by adjusting the composition of its light-emitting layer.
  • the present application also provides a display device, which has excellent luminous efficiency and color purity because it includes the above-mentioned organic electroluminescent device.
  • the present application provides an organic electroluminescence device, comprising a light-emitting layer, the light-emitting layer comprises a host material and a dye, the host material is a triplet-triplet annihilation material, and the dye is a boron nitrogen material represented by formula 1. ;
  • the singlet energy level of the triplet-triplet annihilation material is greater than the singlet energy level of the boron nitrogen material, and the triplet energy level of the triplet-triplet annihilation material is less than the triplet energy level of the boron nitrogen material State energy level
  • Y 1 , Y 2 and Y 3 are each independently selected from H or B, and at most one of them is H;
  • X 1 , X 2 and X 3 are each independently selected from N or H, and at most one of them is H;
  • X 4 , X 5 and X 6 are each independently selected from H, single bond, O, S or CR a , when X 4 , X 5 and X 6 are each independently selected from H, at most two are H, wherein R a is independently selected from one of the following substituted or unsubstituted groups: C1-C10 alkyl, C6-C30 monocyclic aromatic hydrocarbon or fused ring aromatic hydrocarbon, C5-C30 monocyclic heteroaromatic hydrocarbon or fused ring Heteroaromatics;
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 , Z 9 , Z 10 , Z 11 , Z 12 , Z 13 , Z 14 , Z 15 , Z 16 , Z 17 , Z 18 are each independently selected from N or CR b , wherein R b is independently selected from hydrogen, deuterium, halogen, cyano, or one of the following substituted or unsubstituted groups: C1-C36 alkane Group, C2-C6 alkenyl, C1-C6 alkoxy or thioalkoxy, C6-C48 monocyclic aromatic hydrocarbon or fused ring aromatic hydrocarbon, C3-C48 monocyclic heteroaromatic hydrocarbon or fused ring heteroaromatic hydrocarbon, and Two adjacent groups R b are independent of each other or at least two adjacent groups R b are bonded to each other to form C3-C10 cycloalkanes, C6-C30 aromatic hydrocarbons
  • Z 19 is selected from N or C
  • the substituents are independently selected from deuterium, cyano, halogen, C1-C10 alkyl or cycloalkyl, C2-C6 alkenyl or cycloalkenyl, C1- One of C6 alkoxy or thioalkoxy, nitro, amino, carbonyl, carboxy, ester, C6-C30 aryl, and C3-C30 heteroaryl.
  • the boron nitrogen material has a structure represented by formula 1-1 or formula 1-2,
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 , Z 9 , Z 10 , Z 11 , Z 12 , Z 13 , Z 14 , Z 15 , Z 16 , Z 17 , Z 18 , and Z 19 are each independently selected from N or CR b ;
  • Z 19 is selected from N or C.
  • At least one of Z 2 , Z 5 , Z 8 , Z 11 , Z 14 , and Z 17 is an N atom.
  • the R b is each independently selected from: hydrogen, deuterium, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 2-methyl Butyl, n-pentyl, sec-pentyl, cyclopentyl, neopentyl, n-hexyl, cyclohexyl, neohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, 2-ethylhexyl , Trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, phenyl, naphthyl, anthracenyl, benzanthracenyl, phenanthryl, triphenylphenanthryl, pyrenyl
  • the boron nitrogen material is selected from compounds having one of the structures shown in A-1 to A-150 in this application.
  • the mass proportion of the dye in the light-emitting layer is 0.1-20%.
  • the singlet energy level of the triplet-triplet annihilation material is greater than the singlet energy level of the boron nitrogen material, and the triplet energy level of the triplet-triplet annihilation material is less than that of the boron The triplet energy level of nitrogen materials.
  • the present application also provides a display device, which includes any one of the organic electroluminescent devices described above.
  • the organic electroluminescence device of the present application uses a triplet-triplet annihilation material as the host material to sensitize the boron nitrogen material of the structure shown in Formula 1 to emit light. Due to the special structure of the boron nitrogen material, it has the characteristics of extremely narrow emission spectrum, so it is beneficial to improve the color purity of the organic electroluminescent device; in addition, the energy level difference between the singlet state and the triplet state of the boron nitrogen material is extremely low. Combining it with the triplet-triplet annihilation material can effectively suppress the TPA (triple polaron annihilation) phenomenon, further improve the exciton utilization rate, and help increase the luminous efficiency of the device.
  • TPA triple polaron annihilation
  • the organic electroluminescent device of the present application includes an anode, a hole transport region, a light-emitting layer, an electron transport region, and a cathode that are sequentially deposited on a substrate.
  • the substrate, anode, hole transport area, electron transport area, and cathode can be made of materials commonly used in the art.
  • the substrate can be made of glass or polymer material with excellent mechanical strength, thermal stability, water resistance, and transparency;
  • the anode material can be made of indium tin oxide (ITO), indium zinc oxide (IZO), tin dioxide (SnO 2 ) , Zinc oxide (ZnO) and other oxide transparent conductive materials and any combination thereof;
  • the cathode can be magnesium (Mg), silver (Ag), aluminum (Al), aluminum-lithium (Al-Li), calcium (Ca), Metals or alloys such as magnesium-indium (Mg-In) and magnesium-silver (Mg-Ag) and any combination between them.
  • the light-emitting layer of the present application includes a host material and a dye, the host material is a triplet-triplet annihilation material, and the dye is a boron nitrogen material represented by formula 1;
  • the singlet energy level of the triplet-triplet annihilation material is greater than the singlet energy level of the boron nitrogen material, and the triplet energy level of the triplet-triplet annihilation material is smaller than that of the boron nitrogen material;
  • Y 1 , Y 2 and Y 3 are each independently selected from H or B, and at most one of them is H;
  • X 1 , X 2 and X 3 are each independently selected from N or H, and at most one of them is H;
  • X 4 , X 5 and X 6 are each independently selected from H, single bond, O, S or CR a , when X 4 , X 5 and X 6 are each independently selected from H, at most two are H, wherein R a is independently selected from one of the following substituted or unsubstituted groups: C1-C10 alkyl, C6-C30 monocyclic aromatic hydrocarbon or fused ring aromatic hydrocarbon, C5-C30 monocyclic heteroaromatic hydrocarbon or fused ring Heteroaromatics;
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 , Z 9 , Z 10 , Z 11 , Z 12 , Z 13 , Z 14 , Z 15 , Z 16 , Z 17 , Z 18 are each independently selected from N or CR b , wherein R b is independently selected from hydrogen, deuterium, halogen, cyano, or one of the following substituted or unsubstituted groups: C1-C36 alkane Group, C2-C6 alkenyl, C1-C6 alkoxy or thioalkoxy, C6-C48 monocyclic aromatic hydrocarbon or fused ring aromatic hydrocarbon, C3-C48 monocyclic heteroaromatic hydrocarbon or fused ring heteroaromatic hydrocarbon, and Two adjacent groups R b are independent of each other or at least two adjacent groups R b are bonded to each other to form C3-C10 cycloalkanes, C6-C30 aromatic hydrocarbons
  • Z 19 is selected from N or C
  • the substituents are independently selected from deuterium, cyano, halogen, C1-C10 alkyl or cycloalkyl, C2-C6 alkenyl or cycloalkenyl, C1-C6 One of the alkoxy or thioalkoxy, nitro, amine, carbonyl, carboxy, ester, C6-C30 aryl, C3-C30 heteroaryl.
  • At least two of Y 1 , Y 2 and Y 3 are B atoms, and at least two of X 1 , X 2 and X 3 are N atoms;
  • X 4 , X 5 and X 6 are independently selected from H atoms, at most two can be hydrogen atoms at the same time, that is, at least one must be a single bond, O, S or CR a ;
  • Z 19 is selected from N atom or C atom. It can be understood that when Z 19 is selected from N atom, then Z 19 is not connected to any group except for the heteroatom of the central pyridine;
  • R b is independently selected from hydrogen, deuterium, halogen, cyano, or one of the following substituted or unsubstituted groups: C1-C36 alkyl, and further C1-C10 alkyl; C2-C6 alkenyl; C1-C6 alkoxy or thioalkoxy; C6-C48 monocyclic aromatic hydrocarbons or condensed ring aromatic hydrocarbons, further C6-C30 monocyclic aromatic hydrocarbons or condensed ring aromatic hydrocarbons; C3-C48 The monocyclic heteroaromatics or fused ring heteroaromatics, further C3-C30 monocyclic heteroaromatics or fused ring heteroaromatics; two adjacent groups R b can be independent of each other without any connection relationship, or, at least two phases The adjacent groups R b can be bonded to each other to form C3-C10 cycloalkanes, C6-C30 aromatic hydrocarbons or C5-C30 heteroaromatic hydrocarbons,
  • R a and R b have substituents
  • the substituents are independently selected from deuterium, cyano, halogen, C1-C10 alkyl or cycloalkyl, C2-C6 alkenyl or cycloalkenyl, C1-C6 Alkoxy or thioalkoxy, nitro, amine, carbonyl, carboxyl, ester, C6-C30 aryl (including monocyclic aryl or condensed ring aryl), C3-C30 heteroaryl (Including monocyclic heteroaryl or condensed heteroaryl).
  • the boron nitrogen material represented by Formula 1 of the present application can be divided into three types.
  • the first category is: Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 , Z 9 , Z 10 , Z 11 , Z 12 , Z 13 , Z 14 , Z 15 , Z 16 , Z 17 , Z 18 , and Z 19 are all independently selected from CR b ;
  • the second category is Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 , Z 9 , Z 10 , Z 11 , Z 12 , Z 13 , Z 14 , Z 15 , Z 16 , Z 17 , Z 18 , and Z 19 are all selected from N;
  • the third category is Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 , Z 9 , Z 10 , Z 11
  • the blue color purity and luminous efficiency of the organic electroluminescent device can be significantly improved.
  • the boron nitrogen material of this application simultaneously introduces 2-3 boron atoms at positions 2, 4, and 6 of the benzene ring or pyridine ring, which increases the molecular absorption to a certain extent.
  • Thiazine and its derivative donors can increase the rigidity of the molecule after matching with 2-3 boron atoms, which is beneficial to further reduce its vibration relaxation and blue shift the spectrum; moreover, when X 4 , X 5 and When at most two of X 6 are hydrogen atoms, it can further increase the coordination rigidity between the ligand and the central boron atom, reduce unnecessary vibrational energy loss, and improve the luminous efficiency of the device by increasing the external quantum luminous efficiency.
  • the energy level difference between the singlet state and the triplet state of the above-mentioned boron nitrogen material with 2-3 boron atoms introduced is smaller, so that more triplet excitons are prone to up-conversion to singlet state.
  • the heavy state shifts to produce delayed fluorescence. Therefore, compared with the traditional fluorescent dyes and triplet-triplet annihilation materials, the boron nitrogen material of the present application as a dye can improve the utilization rate of excitons and further improve the luminous efficiency of the device.
  • triplet energy level migration of solves the problem of self-quenching of the triplet excitons of the boron nitrogen material, and is also conducive to the improvement of the luminous efficiency of the device;
  • the boron-nitrogen material when selected from the above-mentioned second or third type of materials, it has a more significant improvement in the luminous efficiency of the device, which may be due to the introduction of a type of ligand containing N heterocycles in the boron-nitrogen material, After it is combined with the B atom, it is beneficial to increase the electronegativity of the molecule, and has a regulatory effect on the HOMO/LUMO energy level of the compound, which can change the electron transport ability of the molecule to a large extent, which is beneficial to further improve the efficiency of the device.
  • boron nitrogen material of the present application may have a structure shown in formula 1-1 or formula 1-2,
  • Z 1 , Z 2 , Z 3 , Z 4 , Z 5 , Z 6 , Z 7 , Z 8 , Z 9 , Z 10 , Z 11 , Z 12 , Z 13 , Z 14 , Z 15 , Z 16 , Z 17 and Z 18 are each independently selected from N or CR b , and R b is the same as the aforementioned definition, and will not be repeated here.
  • Z 19 is selected from N or C.
  • Y 1 , Y 2 and Y 3 are all selected from B atoms, and X 1 , X 2 and X 3 are all selected from N atoms.
  • Y 1 , Y 2 and Y 3 are selected from B atoms, one is H atom, and X 1 , X 2 and X 3 are all selected from N atoms.
  • the applicant adjusted the N heterocyclic ligand and found that when the N atom in the N heterocyclic ligand is in the carbazolyl group, the ⁇ When it is in position, the coordination degree between the N ligand and the B atom in this specific N hetero position is the best, which is extremely beneficial to improve the electron transport ability of the molecule, and further improves the luminous efficiency of the device.
  • at least one of Z 2 , Z 5 , Z 8 , Z 11 , Z 14 , and Z 17 is an N atom.
  • R b is each independently selected from: hydrogen, deuterium, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec Butyl, tert-butyl, 2-methylbutyl, n-pentyl, sec-pentyl, cyclopentyl, neopentyl, n-hexyl, cyclohexyl, neohexyl, n-heptyl, cycloheptyl, n-octyl , Cyclooctyl, 2-ethylhexyl, trifluoromethyl, pen
  • the boron nitrogen material of the present application is preferably a compound having one of the following structures:
  • the performance of the device can be further optimized by controlling the mass percentage of the dye in the light-emitting layer.
  • the mass percentage of the dye in the light-emitting layer is generally controlled to be above 0.01%.
  • Reasonable control of the doping amount of the dye in the light-emitting layer is beneficial to further improving the efficiency and color purity of the device, so the quality content of the dye can be controlled above 0.1%.
  • the applicant’s research found that as the proportion of dyes in the light-emitting layer increases within a certain range, the efficiency and color purity of the device will gradually improve, and then remain basically unchanged or show a slight downward trend. Therefore, due to its excellent performance In consideration of chemical and preparation economics, the mass proportion of the dye in the light-emitting layer is generally controlled at 0.1%-20%.
  • the host material of this application is a triplet-triplet annihilation material, and its singlet energy level is higher than that of the boron nitrogen material, so that the singlet excitons of the host material can migrate to the dye singlet state.
  • the triplet energy level of the host material is lower than the triplet energy level of the boron nitrogen material, so that the migration of the triplet excitons of the dye to the triplet state of the host material can occur, and the dye itself is inhibited
  • the quenching of excitons is conducive to the improvement of device efficiency.
  • the host material of the present application may preferably be a compound having one of the following structures:
  • the hole transport region is located between the anode and the light-emitting layer.
  • the hole transport region may be a single-layered hole transport layer (HTL), including a single-layer hole transport layer containing only one compound and a single-layer hole transport layer containing multiple compounds.
  • the hole transport region may also be a multilayer structure including at least two of a hole injection layer (HIL), a hole transport layer (HTL), and an electron blocking layer (EBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • the material of the hole transport region can be selected from but not limited to phthalocyanine derivatives such as CuPc, conductive polymers or conductive dopant-containing polymers such as polyphenylene vinylene, polyaniline/twelve Alkylbenzene sulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonate) (PEDOT/PSS), polyaniline/camphorsulfonic acid (Pani/CSA) ), polyaniline/poly(4-styrene sulfonate) (Pani/PSS), aromatic amine derivatives.
  • phthalocyanine derivatives such as CuPc
  • conductive polymers or conductive dopant-containing polymers such as polyphenylene vinylene, polyaniline/twelve Alkylbenzene sulfonic acid (Pani/DBSA), poly(3,4-ethylenedioxythiophene)/poly(
  • the aromatic amine derivatives are the compounds shown below HT-1 to HT-34. If the material of the hole transport zone is an aromatic amine derivative, it may be one or more of the compounds shown in HT-1 to HT-34.
  • the hole injection layer is located between the anode and the hole transport layer.
  • the hole injection layer may be a single compound material or a combination of multiple compounds.
  • the hole injection layer may use one or more of the above-mentioned HT-1 to HT-34 compounds, or use one or more of the following HI1-HI3 compounds; it may also use HT-1 to HT-34 One or more of the compounds doped with one or more of the following HI1-HI3 compounds.
  • the electron transport region can be a single-layered electron transport layer (ETL), including a single-layer electron transport layer containing only one compound and a single-layer electron transport layer containing multiple compounds.
  • the electron transport region may also be a multilayer structure including at least two of an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the electron transport layer material can be selected from, but not limited to, one or more combinations of ET-1 to ET-57 listed below.
  • the structure of the light-emitting device may further include an electron injection layer located between the electron transport layer and the cathode.
  • the material of the electron injection layer includes, but is not limited to, one or a combination of more than one listed below.
  • each of the above-mentioned layers may adopt the conventional thickness of these layers in the art.
  • the present application also provides a method for preparing the organic electroluminescent device, which includes sequentially depositing an anode, a hole transport area, a light-emitting layer, an electron transport area, and a cathode on a substrate, and then encapsulate.
  • a multi-source co-evaporation method is used to adjust the vapor deposition rate of the host material and the vapor deposition rate of the dye so that the dye reaches the preset doping ratio, and the triplet-triplet annihilation of the material source and the above-mentioned
  • the luminescent layer is formed by the method of co-evaporating the boron nitrogen material source as described above.
  • the deposition methods of the anode, the hole transport area, the electron transport area, and the cathode are the same as the existing methods in the art.
  • An embodiment of the present application also provides a display device, which includes the organic electroluminescent device provided above.
  • the display device may specifically be a display device such as an OLED display, and any product or component with a display function, such as a TV, a digital camera, a mobile phone, a tablet computer, and the like including the display device.
  • the display device has the same advantages as the aforementioned organic electroluminescent device over the prior art, and will not be repeated here.
  • process (1) The method for synthesizing the boron nitrogen material shown in formula 1 of the present application is briefly described below (process (1)).
  • the hydrogen atoms are ortho-metalized.
  • a Bronsted base such as N,N-diisopropylethylamine is added. In this way, the Tandem Bora-Friedel-Crafts Reaction is carried out to obtain the target.
  • a pentane solution of tert-butyllithium (18.96mL, 1.60M, 30.34mmol) was slowly added to the Br-generation precursor A-9-1 (13.62g, 13.79mmol) of tert-butylbenzene (18.96mL, 1.60M, 30.34mmol) at 0°C. 150mL) solution, and then sequentially heated to 80°C, 100°C, and 120°C, and reacted for 1 hour each. After the reaction, the temperature was lowered to -30°C, boron tribromide (7.6 g, 30.34 mmol) was slowly added, and stirring was continued for 0.5 hour at room temperature.
  • N,N-diisopropylethylamine (5.35g, 41.37mmol) was added at room temperature, and the reaction was continued at 145°C for 5 hours and then stopped.
  • MALDI-TOF-MS results molecular ion peak: 926.45 elemental analysis results: theoretical value: C: 85.62%; H: 7.51%; B: 2.33%; N: 4.545%; experimental value: C: 85.72%; H: 7.66 %; B: 2.83%; N: 3.79%.
  • This example is basically the same as Synthesis Example 1, with the difference that: in this example, A-9-1 needs to be replaced with A-29-1 of the same amount.
  • the target compound A-29 (1.29 g, 10% yield, HPLC analytical purity 99.36%) is a yellow solid.
  • This example is basically the same as Synthesis Example 1, with the difference that: in this example, A-9-1 needs to be replaced with A-51-1 of the same amount.
  • the target compound A-51 (0.92 g, 10% yield, HPLC analytical purity 99.55%) was a yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 665.62 elemental analysis results: theoretical value: C, 86.65%; H, 3.79%; B, 3.25%; N, 6.32%; experimental value: C, 86.85%; H, 3.59 %; B, 3.05%; N, 6.52%.
  • This example is basically the same as Synthesis Example 1, with the difference that: in this example, A-9-1 needs to be replaced with A-63-1 in the same amount.
  • the target compound A-63 (0.90 g, 10% yield, HPLC analytical purity 99.55%) is a yellow solid.
  • MALDI-TOF-MS results molecular ion peak: 655.48
  • Elemental analysis results theoretical value: C, 76.97%; H, 3.54%; B, 3.30%; N, 6.41%; S, 9.78%; experimental value: C, 76.77 %; H, 3.74%; B, 3.50%; N, 6.31%; S, 9.68%.
  • a pentane solution of tert-butyllithium (31.03mL, 1.60M, 49.64mmol) was slowly added to a solution of A-91-1 (9.0g, 13.79mmol) in tert-butylbenzene (150mL) at 0°C
  • the temperature was increased to 80°C, 100°C, and 120°C for 1 hour each.
  • the temperature was lowered to -30°C, boron tribromide (12.43g, 49.64mmol) was slowly added, and stirring was continued for 0.5 hour at room temperature.
  • N,N-diisopropylethylamine (8.99g, 41.37mmol) was added at room temperature, and the reaction was continued at 145°C for 5 hours and then stopped.
  • MALDI-TOF-MS results molecular ion peak: 597.68 elemental analysis results: theoretical value: C: 84.49%; H: 3.04%; B: 5.43%; N: 7.04%; experimental value: C: 84.64%; H: 3.35 %; B: 4.83%; N: 7.18%.
  • the intermediate A-78-1 (24.4g, 50mmol, 1q), diphenylamine (9.3g, 55mmol, 1.1eq), Pd 2 (dba) 3 (2.54g, 2.5mmol, 0.05eq), s -Phos (2.05g, 5mmol, 0.1eq), sodium tert-butoxide (21.6g, 225mmol, 4.5eq), and toluene (500mL) were added to a 1000mL single-neck flask, filled with nitrogen three times, and heated to 130°C for overnight reaction.
  • the organic electroluminescent device of the present application will be further introduced by specific examples below.
  • Embodiments 1-26 respectively provide an organic electroluminescent device, the device structure of which in turn includes an ITO anode, a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), and an electron transport layer (ETL). ), electron injection layer (EIL) and cathode.
  • ITO anode a hole injection layer (HIL), a hole transport layer (HTL), a light emitting layer (EML), and an electron transport layer (ETL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EML light emitting layer
  • ETL electron transport layer
  • ETL electron injection layer
  • cathode cathode
  • the material of the hole injection layer is HI-3, and the total thickness is generally 1-10 nm, which is 2 nm in this embodiment.
  • the material of the hole transport layer is HT-28, and the total thickness is generally 5-50 nm, and this embodiment is 30 nm.
  • the host material of the light-emitting layer is a triplet-triplet annihilation material, the dye is a boron nitrogen material shown in Formula 1, and the thickness of the light-emitting layer is generally 1-60 nm, which is 20 nm in this embodiment.
  • the material of the electron transport layer is ET-52, and the thickness is generally 5-30 nm. In this embodiment, it is 25 nm.
  • the material of the electron injection layer is LiQ (1 nm), and the material of the cathode is Al (150 nm).
  • Comparative examples 1-5 provide an organic electroluminescent device, the device structure of which is consistent with that of embodiment 1-26, and the parameters of the corresponding functional layer are basically the same as that of embodiment 1-26. The only difference lies in the host material and dye of the light-emitting layer. The materials used are inconsistent or the doping concentration is inconsistent. The selection of specific materials is shown in Table 1.
  • the organic electroluminescent devices prepared by the above process were subjected to the following performance measurements: the current, voltage, brightness, luminescence spectrum, current efficiency, external quantum efficiency and other characteristics of the prepared devices.
  • the PR655 spectral scanning luminance meter and Keithley K 2400 digital source meter system were used for simultaneous testing.
  • the half-value width of the organic electroluminescent device is narrower and thus exhibits better color purity, while the luminous efficiency is significantly improved.
  • the overall characteristics are significantly better than the comparative example;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件和显示装置,有机电致发光器件包括发光层,所述发光层包括主体材料和染料,所述主体材料为三重态-三重态湮灭材料,所述染料为式1所示的硼氮材料。有机电致发光器件具有优异的发光效率以及色纯度。

Description

一种有机电致发光器件和显示装置 技术领域
本申请涉及一种有机电致发光器件和显示装置,属于有机电致发光技术领域。
背景技术
有机电致发光二极管(Organic Light Emitting Diode,简称:OLED),是一种通过电流驱动而达到发光目的的器件,其主要特性来自于其中的有机发光层,当施加适当电压后,电子和空穴会在有机发光层中结合产生激子并根据有机发光层的特性发出不同波长的光。
现阶段中,发光层由主体材料和染料构成,而染料多选自传统荧光材料、传统磷光材料。其中,传统磷光材料虽然效率高,但是价格昂贵且稳定性差,而传统荧光材料虽然价格低廉,但是效率极低。
即使将传统荧光材料作为染料搭配三重态-三重态湮灭材料的主体材料,蓝色荧光器件的内量子效率也较低,且仍然存在器件色纯度不足等问题。
发明内容
本申请提供一种有机电致发光器件,通过调控其发光层的组成,能够有效提升有机电致发光器件的发光效率以及色纯度。
本申请还提供一种显示装置,该显示装置由于包括上述有机电致发光器件,因此具有优异的发光效率以及色纯度。
本申请提供一种有机电致发光器件,包括发光层,所述发光层包括主体材料和染料,所述主体材料为三重态-三重态湮灭材料,所述染料为式1所示的硼氮材料;
所述三重态-三重态湮灭材料的单重态能级大于所述硼氮材料的单重态能级,所述三重态-三重态湮灭材料的三重态能级小于所述硼氮材料的三重态能级;
Figure PCTCN2020101652-appb-000001
其中,Y 1、Y 2和Y 3分别独立地选自H或B,且其中最多一个为H;
X 1、X 2和X 3分别独立地选自N或H,且其中最多一个为H;
X 4、X 5和X 6分别独立地选自H、单键、O、S或CR a,当X 4、X 5和X 6分别独立地选自H时,最多两个为H,其中R a分别独立地选自取代或未取代的下述基团中的一种:C1-C10的烷基、C6-C30的单环芳烃或稠环芳烃、C5-C30的单环杂芳烃或稠环杂芳烃;
Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18分别独立地选自N或CR b,其中R b分别独立地选自氢、氘、卤素、氰基、或者取代或未取代的下述基团中的一种:C1-C36的烷基、C2-C6的烯基、C1-C6的烷氧基或硫代烷氧基、C6-C48的单环芳烃或稠环芳烃、C3-C48的单环杂芳烃或稠环杂芳烃,且相邻的两个基团R b彼此独立或者至少两个相邻的基团R b彼此键合形成C3-C10的环烷烃、C6-C30的芳烃或C5-C30的杂芳烃;
Z 19选自N或C;
当上述基团存在取代基时,所述取代基分别独立地选自氘、氰基、卤素、C1-C10的烷基或环烷基、C2-C6的烯基或环烯基、、C1-C6的烷氧基或硫代烷氧基、硝基、胺基、羰基、羧基、酯基、C6-C30的芳基、C3-C30的杂芳基中的一种。
可选地,所述硼氮材料为式1-1或式1-2所示的结构,
Figure PCTCN2020101652-appb-000002
其中,Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19分别独立地选自N或CR b
Z 19选自N或C。
可选地,Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19中至多有六个为N原子。
可选地,Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19中至多有三个为N原子。
可选地,式1-1和式1-2中,Z 2、Z 5、Z 8、Z 11、Z 14、Z 17中至少有一个为N原子。
可选地,所述R b各自独立选自:氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、甲氧基、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、甲基取代的噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、甲基取代的吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5-嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基、9,9-二甲基吖啶基、(多)卤代苯、(多)氰基苯、(多)三氟甲基苯中的一种,或者选自以上两种取代基团的组合。
可选地,所述硼氮材料选自具有本申请中A-1~A-150所示结构之一的化合物。
可选地,所述染料在所述发光层中的质量占比为0.1-20%。
可选地,所述三重态-三重态湮灭材料的单重态能级大于所述硼氮材料的单重态能级,所述三重态-三重态湮灭材料的三重态能级小于所述硼氮材料的三重态能级。
本申请还提供一种显示装置,该显示装置包括上述任一所述的有机电致发光器件。
本申请的有机电致发光器件采用三重态-三重态湮灭材料作为主体材料敏化式1所示结构的硼氮材料发光。该硼氮材料由于特殊的结构,因此具有发射极窄光谱的特点,故而有利于提高有机电致发光器件的色纯度;此外,该硼氮材料的单重态与三重态的能级差极低,将其与三重态-三重态湮灭材料组合后,能够有效抑制TPA(三重态极化 子湮灭)现象,进一步提高激子的利用率,从而有助于增加器件的发光效率。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请的实施例,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的有机电致发光器件包括在基板上依次沉积的阳极、空穴传输区、发光层、电子传输区以及阴极。
其中,基板、阳极、空穴传输区、电子传输区以及阴极可以采用本领域常用的材料。例如,基板可以采用具有机械强度、热稳定性、防水性、透明度优异的玻璃或聚合物材料;阳极材料可以采用铟锡氧(ITO)、铟锌氧(IZO)、二氧化锡(SnO 2)、氧化锌(ZnO)等氧化物透明导电材料和它们的任意组合;阴极可以采用镁(Mg)、银(Ag)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)、镁-银(Mg-Ag)等金属或合金以及它们之间的任意组合。
以下,对发光层进行详细的介绍。
本申请的发光层包括主体材料和染料,所述主体材料为三重态-三重态湮灭材料,所述染料为式1所示的硼氮材料;
三重态-三重态湮灭材料的单重态能级大于硼氮材料的单重态能级,三重态-三重态湮灭材料的三重态能级小于硼氮材料的三重态能级;
Figure PCTCN2020101652-appb-000003
其中,Y 1、Y 2和Y 3分别独立地选自H或B,且其中最多一个为H;
X 1、X 2和X 3分别独立地选自N或H,且其中最多一个为H;
X 4、X 5和X 6分别独立地选自H、单键、O、S或CR a,当X 4、X 5和X 6分别独立地选自H时,最多两个为H,其中R a分别独立地选自取代或未取代的下述基团中的一种:C1-C10的烷基、C6-C30的单环芳烃或稠环芳烃、C5-C30的单环杂芳烃或稠环杂芳烃;
Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18 分别独立地选自N或CR b,其中R b分别独立地选自氢、氘、卤素、氰基、或者取代或未取代的下述基团中的一种:C1-C36的烷基、C2-C6的烯基、C1-C6的烷氧基或硫代烷氧基、C6-C48的单环芳烃或稠环芳烃、C3-C48的单环杂芳烃或稠环杂芳烃,且相邻的两个基团R b彼此独立或者至少两个相邻的基团R b彼此键合形成C3-C10的环烷烃、C6-C30的芳烃或C5-C30的杂芳烃;
Z 19选自N或C;
当上述基团存在取代基时,所述取代基分别独立地选自氘、氰基、卤素、C1-C10的烷基或环烷基、C2-C6的烯基或环烯基、C1-C6的烷氧基或硫代烷氧基、硝基、胺基、羰基、羧基、酯基、C6-C30的芳基、C3-C30的杂芳基中的一种。
式1中,Y 1、Y 2和Y 3中至少两个为B原子,X 1、X 2和X 3中至少两个为N原子;
当X 4、X 5和X 6分别独立地选自H原子时,最多可同时两个为氢原子,即,至少一个必须是单键、O、S或CR a
Z 19选自N原子或C原子,能够理解的是,当Z 19选自N原子时,则Z 19除了作为中心吡啶的杂原子外,不与任何基团连接;
进一步地,R b分别独立地选自氢、氘、卤素、氰基、或者取代或未取代的下述基团中的一种:C1-C36的烷基,进一步为C1-C10的烷基;C2-C6的烯基;C1-C6的烷氧基或硫代烷氧基;C6-C48的单环芳烃或稠环芳烃,进一步为C6-C30的单环芳烃或稠环芳烃;C3-C48的单环杂芳烃或稠环杂芳烃,进一步为C3-C30的单环杂芳烃或稠环杂芳烃;相邻的两个基团R b可以彼此独立无任何连接关系,或者,至少两个相邻的基团R b可以彼此键合形成C3-C10的环烷烃、C6-C30的芳烃或C5-C30的杂芳烃,其中,相邻的两个R b是指与两个R b连接的碳原子具有键结关系;
当R a和R b具有取代基时,取代基分别独立地选自氘、氰基、卤素、C1-C10的烷基或环烷基、C2-C6的烯基或环烯基、C1-C6的烷氧基或硫代烷氧基、硝基、胺基、羰基、羧基、酯基、C6-C30的芳基(包括单环芳基或稠环芳基)、C3-C30的杂芳基(包括单环杂芳基或稠环杂芳基)中的一种。
根据上述记载能够理解,本申请式1所示的硼氮材料可以分为三类。第一类为:Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19全部独立地选自CR b;第二类为Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19全部选自N;第三类为Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19中既含有N原子,也含有相同或 不同的CR b。在具体应用时,硼氮材料可以是上述三种材料的任意一种。
根据本申请提供的技术方案,通过将三重态-三重态湮灭材料作为主体材料搭配上述组成的染料作为发光层,可显著改善有机电致发光器件的蓝光色纯度以及发光效率。申请人基于此现象进行分析,认为可能是:本申请的硼氮材料同时在苯环或吡啶环的2、4、6位置引入2-3个的硼原子,一定程度上增大了分子的吸电子能力,形成与相邻的咔唑衍生物给体扣环,从而使分子结构HOMO-LOMO集中、平面共轭性良好且分子内部不存在明显的分子内电荷转移激发态,因此能够获得较窄的发光光谱,故而有助于器件光谱的窄化,提高器件色纯度;同时,该硼氮材料中心苯环或吡啶环的1、3和5位置分别引入刚性的咔唑、吩噁嗪或吩噻嗪及其衍生物给体,与2-3个的硼原子匹配后使分子刚性的增大,有利于进一步减少其振动弛豫,并使光谱蓝移;而且,当X 4、X 5和X 6中最多两个为氢原子时,能够进一步使配体与中心硼原子配位刚性增加,减少不必要的振转能量损失,通过提升外量子发光效率改善器件的发光效率。
此外,相对于单个硼原子而言,上述引入2-3个硼原子的硼氮材料的单重态和三重态的能级差更小,从而使更多的三重态激子容易发生上转换向单重态迁移而产生延迟荧光,因此相较于传统荧光染料与三重态-三重态湮灭材料搭配而言,本申请的硼氮材料作为染料能够提高激子的利用率而使器件的发光效率得到进一步改善;而且,由于硼氮材料的三重态能级高于三重态-三重态湮灭材料的三重态能级,部分来不及上转化的三重态激子也会向低能级的三重态-三重态湮灭材料的三重态能级迁移,解决了硼氮材料的三重态激子自身淬灭的问题,也有利于器件发光效率的提高;
并且,当硼氮材料选自上述第二类或第三类材料时,具有更为显著的器件发光效率的提升,可能是:由于在硼氮材料中引入一类含有N杂环的配体,将其与B原子配合后,有利于分子电负性的提升,并且对化合物的HOMO/LUMO能级具有调控作用,从而可以较大程度上改变分子的电子传输能力,有利于进一步提升器件效率。
进一步地,本申请的硼氮材料可以为式1-1或式1-2所示的结构,
Figure PCTCN2020101652-appb-000004
其中,Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18分别独立地选自N或CR b,R b与前述限定相同,此处不再赘述。
式1-2中,Z 19选自N或C。
具体地,在式1-1中,Y 1、Y 2和Y 3全部选自B原子,且X 1、X 2和X 3全部选自N原子。
在式1-2中,Y 1、Y 2和Y 3中的两个选自B原子,一个为H原子,且X 1、X 2和X 3全部选自N原子。
在一种实施方式中,当式1、式1-1以及式1-2中的Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19中含有N原子时,其中最多含有六个氮原子,其余皆为CR b。这种结构的化合物能够进一步提升材料的电子传输性能,进而提高器件性能,若N杂原子过多,与B配位的难度增大,分子结构稳定性不足;且合成难度大,不利于大规模生产。进一步地,当式1、式1-1以及式1-2中的Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19中含有N原子时,其中最多含有三个氮原子。
为了能够优化硼氮材料中的N杂环配体与B原子的配合度,申请人对N杂环配体进行了调节,发现当N杂环配体中的N原子在咔唑基中的γ位时,这种特定N杂位置的N配体与B原子的配合度最优,极利于改善分子的电子传输能力,进而使器件的发光效率得到进一步的提升。具体地,在式1、式1-1以及式1-2中,Z 2、Z 5、Z 8、Z 11、Z 14、Z 17中至少有一个为N原子。
当本申请的Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18中的至少一个为CR b时,R b各自独立选自:氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、甲氧基、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、甲基取代的噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、甲基取代的吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、 苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5-嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基、9,9-二甲基吖啶基、(多)卤代苯、(多)氰基苯、(多)三氟甲基苯中的一种,或者选自以上两种取代基团的组合。
具体地,本申请的硼氮材料优选具有以下结构之一的化合物:
Figure PCTCN2020101652-appb-000005
Figure PCTCN2020101652-appb-000006
Figure PCTCN2020101652-appb-000007
Figure PCTCN2020101652-appb-000008
Figure PCTCN2020101652-appb-000009
Figure PCTCN2020101652-appb-000010
Figure PCTCN2020101652-appb-000011
Figure PCTCN2020101652-appb-000012
Figure PCTCN2020101652-appb-000013
Figure PCTCN2020101652-appb-000014
Figure PCTCN2020101652-appb-000015
Figure PCTCN2020101652-appb-000016
Figure PCTCN2020101652-appb-000017
此外,还可以通过控制染料在发光层中的质量占比进一步优化器件的性能。
在本申请具体实施过程中,一般控制染料在发光层中的质量占比为0.01%以上。合理控制染料在发光层中的掺杂量,有利于进一步提高器件的效率以及色纯度,因此可将染料的质量含量控制在0.1%以上。申请人研究发现,随着染料在发光层中的占比在一定范围内增加,器件的效率以及色纯度都会出现逐步改善的现象,后基本保持不变或出现轻微下降趋势,因此出于性能优异化且制备经济性的考虑,一般将染料在发光层中的质量占比控制在0.1%-20%。
当然,本申请有机电致发光器件中的发光层中不同的主体材料和染料对于器件的性能都会产生影响。因此大致而言,对于不同的主体材料和染料等情况,当将染料在发光层中的质量占比控制在0.5%~5%,可基本保证器件具有优异的效率以及色纯度。
本申请的主体材料为三重态-三重态湮灭材料,其单重态能级高于硼氮材料的单重态能级,从而能够发生主体材料的单重态激子向染料单重态的迁移,有利于主体材料对染料的敏化发光;主体材料的三重态能级低于硼氮材料的三重态能级,从而能够发生染料的三重态激子向主体材料三重态的迁移,抑制染料自身激子的淬灭,有利于器件效率的提升。
进一步地,本申请的主体材料优选可以为具有以下结构之一的化合物:
Figure PCTCN2020101652-appb-000018
Figure PCTCN2020101652-appb-000019
Figure PCTCN2020101652-appb-000020
以下,对本申请的空穴传输区、电子传输区以及阴极进行介绍。空穴传输区位于阳极和发光层之间。空穴传输区可以为单层结构的空穴传输层(HTL),包括只含有一种化合物的单层空穴传输层和含有多种化合物的单层空穴传输层。空穴传输区也可以为包括空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)中的至少两层的多层结构。
空穴传输区的材料(包括HIL、HTL以及EBL)可以选自但不限于酞菁衍生物如CuPc、导电聚合物或含导电掺杂剂的聚合物如聚苯撑乙烯、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、聚苯胺/聚(4-苯乙烯磺酸盐)(Pani/PSS)、芳香胺衍生物。
其中,芳香胺衍生物如下面HT-1至HT-34所示的化合物。若空穴传输区的材料为芳香胺衍生物,可以为HT-1至HT-34所示的化合物的一种或多种。
Figure PCTCN2020101652-appb-000021
Figure PCTCN2020101652-appb-000022
空穴注入层位于阳极和空穴传输层之间。空穴注入层可以是单一化合物材料,也可以 是多种化合物的组合。例如,空穴注入层可以采用上述HT-1至HT-34的一种或多种化合物,或者采用下述HI1-HI3中的一种或多种化合物;也可以采用HT-1至HT-34的一种或多种化合物掺杂下述HI1-HI3中的一种或多种化合物。
Figure PCTCN2020101652-appb-000023
电子传输区可以为单层结构的电子传输层(ETL),包括只含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层。电子传输区也可以为包括电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)中的至少两层的多层结构。
本申请的一方面,电子传输层材料可以选自、但不限于以下所罗列的ET-1至ET-57的一种或多种的组合。
Figure PCTCN2020101652-appb-000024
Figure PCTCN2020101652-appb-000025
Figure PCTCN2020101652-appb-000026
发光器件的结构中还可以包括位于电子传输层与阴极之间的电子注入层,电子注入层材料包括但不限于以下罗列的一种或多种的组合。
LiQ,LiF,NaCl,CsF,Li 2O,Cs 2CO 3,BaO,Na,Li,Ca。
上述各层的厚度可以采用本领域中的这些层的常规厚度。
本申请还提供该有机电致发光器件的制备方法,包括在基板上依次沉积阳极、空穴传输区、发光层、电子传输区、阴极,然后封装。其中,在制备发光层时,利用多源共蒸的方法,调节主体材料的蒸镀速率和染料的蒸镀速率使染料达到预设掺杂比例,通 过三重态-三重态湮灭材料源和上述任一所述的硼氮材料源共同蒸镀的方法形成发光层。而阳极、空穴传输区、电子传输区、阴极的沉积方式与本领域现有的方式相同。
本申请实施例还提供一种显示装置,所述显示装置包括如上述提供的有机电致发光器件。该显示装置具体可以为OLED显示器等显示器件,以及包括该显示器件的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。该显示装置与上述有机电致发光器件相对于现有技术所具有的优势相同,在此不再赘述。
下面将以多个合成实施例为例来详述本申请的硼氮材料的具体制备方法,但本申请的制备方法并不限于这些合成实施例。
本申请中所用的各种化学药品如石油醚、叔丁苯、乙酸乙酯、硫酸钠、甲苯、二氯甲烷、碳酸钾、三溴化硼、N,N-二异丙基乙胺、反应中间体等基础化工原料均购自上海泰坦科技股份有限公司和西陇化工股份有限公司。确定下述化合物所用的质谱仪采用的是ZAB-HS型质谱仪测定(英国Micromass公司制造)。
下面对本申请的式1所示的硼氮材料的合成方法进行简要的说明(流程(1)),首先,利用正丁基锂或叔丁基锂等对X 1、X 2与X 3之间的氢原子进行邻位金属化。继而,添加三溴化硼或三氯化磷等,进行锂-硼或锂-磷的金属交换后,添加N,N-二异丙基乙基胺等布朗斯特碱(Bronsted base),由此进行串联式硼杂弗里德-克拉夫茨反应(Tandem Bora-Friedel-Crafts Reaction),而可获得目标物。
Figure PCTCN2020101652-appb-000027
更具体地,以下给出本申请的代表性具体化合物的合成方法。
合成实施例
合成实施例1:化合物A-9的合成
Figure PCTCN2020101652-appb-000028
氮气气氛下,将叔丁基锂的戊烷溶液(18.96mL,1.60M,30.34mmol)缓慢加入到0℃的Br代前驱体A-9-1(13.62g,13.79mmol)的叔丁苯(150mL)溶液中,而后依次升温至80℃、100℃、120℃各反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼(7.6g,30.34mmol),室温继续搅拌0.5小时。室温下加入N,N-二异丙基乙胺(5.35g,41.37mmol),并在145℃下继续反应5小时后停止。真空旋干溶剂,过硅胶柱(展开剂:乙酸乙酯∶石油醚=50∶1),得目标化合物C-9(1.00g,8%收率,HPLC分析纯度99.56%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:926.45元素分析结果:理论值:C:85.62%;H:7.51%;B:2.33%;N:4.545%;实验值:C:85.72%;H:7.66%;B:2.83%;N:3.79%。
合成实施例2:化合物A-29的合成
Figure PCTCN2020101652-appb-000029
本实施例与合成实施例1基本相同,其不同之处在于:本例中需将A-9-1换为等物质的量的A-29-1。目标化合物A-29(1.29g,10%收率,HPLC分析纯度99.36%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:923.31元素分析结果:理论值:C,85.82%;H,4.26%;B,2.34%;N,7.58%;实验值:C,85.83%;H,4.25%;B,2.24%;N,7.68%。
合成实施例3:化合物A-51的合成
Figure PCTCN2020101652-appb-000030
本实施例与合成实施例1基本相同,其不同之处在于:本例中需将A-9-1换为等物质的量的A-51-1。目标化合物A-51(0.92g,10%收率,HPLC分析纯度99.55%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:665.62元素分析结果:理论值:C,86.65%;H,3.79%;B,3.25%;N,6.32%;实验值:C,86.85%;H,3.59%;B,3.05%;N,6.52%。
合成实施例4:
化合物A-63的合成
Figure PCTCN2020101652-appb-000031
本实施例与合成实施例1基本相同,其不同之处在于:本例中需将A-9-1换为等物质的量的A-63-1。目标化合物A-63(0.90g,10%收率,HPLC分析纯度99.55%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:655.48元素分析结果:理论值:C,76.97%;H,3.54%;B,3.30%;N,6.41%;S,9.78%;实验值:C,76.77%;H,3.74%;B,3.50%;N,6.31%;S,9.68%。
合成实施例5:化合物A-91的合成
Figure PCTCN2020101652-appb-000032
氮气气氛下,将叔丁基锂的戊烷溶液(31.03mL,1.60M,49.64mmol)缓慢加入到0℃的A-91-1(9.0g,13.79mmol)的叔丁苯(150mL)溶液中,而后依次升温至80℃、100℃、120℃各反应1小时。反应结束后降温至-30℃,缓慢加入三溴化硼 (12.43g,49.64mmol),室温继续搅拌0.5小时。室温下加入N,N-二异丙基乙胺(8.99g,41.37mmol),并在145℃下继续反应5小时后停止。真空旋干溶剂,过硅胶柱(展开剂:乙酸乙酯∶石油醚=50∶1),得目标化合物A-91(0.60g,7.3%收率,HPLC分析纯度99.56%),为黄色固体。MALDI-TOF-MS结果:分子离子峰:597.68元素分析结果:理论值:C:84.49%;H:3.04%;B:5.43%;N:7.04%;实验值:C:84.64%;H:3.35%;B:4.83%;N:7.18%。
合成实施例6:化合物A-78的合成:
Figure PCTCN2020101652-appb-000033
(1)中间体A-78-1的制备:
室温下向1L单口瓶中加入γ-咔啉(38.3g,227.9mmol,2.2eq),1-溴-3,5-二氟苯(50.36g,103.60mmol,1eq),碳酸铯(148.5g,455.8mmol,4.5eq),N,N-二甲基甲酰胺(600mL),氮气保护下,120℃反应过夜。
停止加热,待冷却至室温后加入1000mL水搅拌10min,有大量浅白色固体析出,抽滤,PE∶EA=30∶1进行柱层析,得白色固体44.9g,即中间体A-78-1。
(2)中间体A-78-2的制备:
室温下,将中间体A-78-1(24.4g,50mmol,1q),二苯胺(9.3g,55mmol,1.1eq),Pd 2(dba) 3(2.54g,2.5mmol,0.05eq),s-Phos(2.05g,5mmol,0.1eq),叔丁醇钠(21.6g,225mmol,4.5eq),甲苯(500mL)加入至1000mL单口瓶中,抽充三次氮气,加热至130℃反应过夜。
反应液降至室温,拌硅藻土过滤。滤液浓缩,加入二氯甲烷溶解拌硅胶浓缩,柱层析(PE∶EA=30∶1)得到白色固体粗品29.6g,加入乙醇煮洗3小时得到白色固体产品26.6g,即中间体A-78-2。
(3)化合物A-78的制备:
冰浴中,氮气保护下,向中间体A-78-2(8.82g,15.3mmol)的4-叔丁基甲苯(200 mL)溶液中滴加正丁基锂的戊烷溶液(23mL,36.68mmol,1.6M),滴加完毕后继续冰浴搅拌10分钟,然后移至油浴中80℃反应。反应4小时后,降至室温,冷却至-40℃以下,用针管取三溴化硼(4.36mL,11.5g,46mmol)快速加至体系中,逐步恢复至室温反应1h。冰浴下,用注射器向体系中加入N,N-二异丙基乙胺(10.76mL,7.9g,61.2mol)然后移至油浴中130℃反应5小时。降至室温,用装有硅藻土的布氏漏斗抽滤,滤液减压浓缩,加入二氯甲烷溶解拌硅胶浓缩,准备柱层析。
柱层析(PE/DCM=25∶1)得到5.9g黄色固体粗品,加入50mL正己烷煮洗5h,得到4.8g黄色固体,TLC(PE/EA=50∶1)多次过柱子,得到纯品约1.6g,即化合物A-78,纯度99.8%。
结构表征:
质谱分子量理论值:593.26,分子量检测值:593.21。
元素分析理论值:C,80.98%;H,3.57%;N,11.81%,元素分析检测值:C,80.85%;H,3.91%;N,12.10%
以下通过具体实施例对本申请的有机电致发光器件进行进一步的介绍。
实施例1-26
实施例1-26分别提供一种有机电致发光器件,其器件结构依次包括ITO阳极、空穴注入层(HIL)、空穴传输层(HTL)、发光层(EML)、电子传输层(ETL)、电子注入层(EIL)和阴极。
其中,空穴注入层的材料为HI-3,一般总厚度为1-10nm,本实施例为2nm。空穴传输层的材料为HT-28,总厚度一般为5-50nm,本实施例为30nm。发光层的主体材料为三重态-三重态湮灭材料,染料为式1所示的硼氮材料,发光层的厚度一般为1-60nm,本实施例为20nm。电子传输层的材料为ET-52,厚度一般为5-30nm,本实施例为25nm。电子注入层的材料为LiQ(1nm)、阴极材料为Al(150nm)。
实施例1-26所提供的有机电致发光器件中,主体材料和染料的具体选择和掺杂浓度(在发光层中的质量占比)见表1。
对比例1-5
对比例1-5提供一种有机电致发光器件,其器件结构与实施例1-26一致,相应功能层的参数与实施例1-26也基本一致,区别仅在于发光层的主体材料与染料所用材料不一致或者掺杂浓度不一致。具体材料的选择如表1所示。
Figure PCTCN2020101652-appb-000034
对实施例以及对比例中的器件进行以下测试,测试结果见表1。
对由上述过程制备的有机电致发光器件(实施例1-26、对比例1-5)进行如下性能测定:制备得到器件的电流、电压、亮度、发光光谱、电流效率、外量子效率等特性采用PR655光谱扫描亮度计和Keithley K 2400数字源表系统同步测试。
表1
Figure PCTCN2020101652-appb-000035
Figure PCTCN2020101652-appb-000036
根据表1可知:
1、与对比例相比,当发光层采用式1所示的化合物作为染料时,有机电致发光器件的半峰宽较窄进而表现出较好的色纯度,同时发光效率得到显著改善,其整体特性明显优于对比例;
2、根据实施例2、21-26的对比可知,本申请的染料在发光层中的占比为0.1wt%-20wt%时,器件在寿命、半峰宽以及发光效率中表现较为优越,当染料在发光层中的占比在0.5wt%-5wt%时,器件在寿命、半峰宽以及发光效率中表现更为优越。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (20)

  1. 一种有机电致发光器件,包括发光层,其中,所述发光层包括主体材料和染料,所述主体材料为三重态-三重态湮灭材料,所述染料为式1所示的硼氮材料;
    Figure PCTCN2020101652-appb-100001
    其中,Y 1、Y 2和Y 3分别独立地选自H或B,且其中最多一个为H;
    X 1、X 2和X 3分别独立地选自N或H,且其中最多一个为H;
    X 4、X 5和X 6分别独立地选自H、单键、O、S或CR a,当X 4、X 5和X 6分别独立地选自H时,最多两个为H,其中R a分别独立地选自取代或未取代的下述基团中的一种:C1-C10的烷基、C6-C30的单环芳烃或稠环芳烃、C5-C30的单环杂芳烃或稠环杂芳烃;
    Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18分别独立地选自N或CR b,其中R b分别独立地选自氢、氘、卤素、氰基、或者取代或未取代的下述基团中的一种:C1-C36的烷基、C2-C6的烯基、C1-C6的烷氧基或硫代烷氧基、C6-C48的单环芳烃或稠环芳烃、C3-C48的单环杂芳烃或稠环杂芳烃,且相邻的两个基团R b彼此独立或者至少两个相邻的基团R b彼此键合形成C3-C10的环烷烃、C6-C30的芳烃或C5-C30的杂芳烃;
    Z 19选自N或C;
    当上述基团存在取代基时,所述取代基分别独立地选自氘、氰基、卤素、C1-C10的烷基或环烷基、C2-C6的烯基或环烯基、C1-C6的烷氧基或硫代烷氧基、硝基、胺基、羰基、羧基、酯基、C6-C30的芳基、C3-C30的杂芳基中的一种。
  2. 根据权利要求1所述的有机电致发光器件,其中,所述硼氮材料为式1-1或式1-2所示的结构,
    Figure PCTCN2020101652-appb-100002
    其中,Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18分别独立地选自N或CR b
    Z 19选自N或C。
  3. 根据权利要求2所述的有机电致发光器件,其中,在所述式1-1中,Y 1、Y 2和Y 3全部选自B原子,且X 1、X 2和X 3全部选自N原子。
  4. 根据权利要求2所述的有机电致发光器件,其中,在所述式1-2中,Y 1、Y 2和Y 3中的两个选自B原子,一个为H原子,且X 1、X 2和X 3全部选自N原子。
  5. 根据权利要求1或2所述的有机电致发光器件,其中,Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19中至多有六个为N原子。
  6. 根据权利要求1或2所述的有机电致发光器件,其中,Z 1、Z 2、Z 3、Z 4、Z 5、Z 6、Z 7、Z 8、Z 9、Z 10、Z 11、Z 12、Z 13、Z 14、Z 15、Z 16、Z 17、Z 18、Z 19中至多有三个为N原子。
  7. 根据权利要求2所述的有机电致发光器件,其中,式1-1和式1-2中,Z 2、Z 5、Z 8、Z 11、Z 14、Z 17中至少有一个为N原子。
  8. 根据权利要求7所述的有机电致发光器件,其中,当N杂环配体中的N原子在咔 唑基中的γ位时,N杂位置的N配体与B原子的配合度最优。
  9. 根据权利要求1-8所述的有机电致发光器件,其中,所述R b各自独立选自:氢、氘、甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、2-甲基丁基、正戊基、仲戊基、环戊基、新戊基、正己基、环己基、新己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟乙基、2,2,2-三氟乙基、甲氧基、苯基、萘基、蒽基、苯并蒽基、菲基、苯并菲基、芘基、窟基、茈基、荧蒽基、并四苯基、并五苯基、苯并芘基、联苯基、偶苯基、三联苯基、三聚苯基、四联苯基、芴基、螺二芴基、二氢菲基、二氢芘基、四氢芘基、顺式或反式茚并芴基、三聚茚基、异三聚茚基、螺三聚茚基、螺异三聚茚基、呋喃基、苯并呋喃基、异苯并呋喃基、二苯并呋喃基、噻吩基、甲基取代的噻吩基、苯并噻吩基、异苯并噻吩基、二苯并噻吩基、吡咯基、异吲哚基、咔唑基、茚并咔唑基、吡啶基、甲基取代的吡啶基、喹啉基、异喹啉基、吖啶基、菲啶基、苯并-5,6-喹啉基、苯并-6,7-喹啉基、苯并-7,8-喹啉基、吡唑基、吲唑基、咪唑基、苯并咪唑基、萘并咪唑基、菲并咪唑基、吡啶并咪唑基、吡嗪并咪唑基、喹喔啉并咪唑基、嗯唑基、苯并嗯唑基、萘并嗯唑基、蒽并嗯唑基、菲并嗯唑基、1,2-噻唑基、1,3-噻唑基、苯并噻唑基、哒嗪基、苯并哒嗪基、嘧啶基、苯并嘧啶基、喹喔啉基、1,5-二氮杂蒽基、2,7-二氮杂芘基、2,3-二氮杂芘基、1,6-二氮杂芘基、1,8-二氮杂芘基、4,5-二氮杂芘基、4,5,9,10-四氮杂茈基、吡嗪基、吩嗪基、吩噻嗪基、萘啶基、氮杂咔唑基、苯并咔啉基、菲咯啉基、1,2,3-三唑基、1,2,4-三唑基、苯并三唑基、1,2,3-噁二唑基、1,2,4-嗯二唑基、1,2,5-嗯二唑基、1,2,3-噻二唑基、1,2,4-噻二唑基、1,2,5-噻二唑基、1,3,4-噻二唑基、1,3,5-三嗪基、1,2,4-三嗪基、1,2,3-三嗪基、四唑基、1,2,4,5-四嗪基、1,2,3,4-四嗪基、1,2,3,5-四嗪基、嘌呤基、蝶啶基、吲嗪基、苯并噻二唑基、9,9-二甲基吖啶基、(多)卤代苯、(多)氰基苯、(多)三氟甲基苯中的一种,或者选自以上两种取代基团的组合。
  10. 根据权利要求1或2所述的有机电致发光器件,其中,所述硼氮材料选自下述结构所示的化合物,
    Figure PCTCN2020101652-appb-100003
    Figure PCTCN2020101652-appb-100004
    Figure PCTCN2020101652-appb-100005
    Figure PCTCN2020101652-appb-100006
    Figure PCTCN2020101652-appb-100007
    Figure PCTCN2020101652-appb-100008
    Figure PCTCN2020101652-appb-100009
    Figure PCTCN2020101652-appb-100010
    Figure PCTCN2020101652-appb-100011
    Figure PCTCN2020101652-appb-100012
    Figure PCTCN2020101652-appb-100013
    Figure PCTCN2020101652-appb-100014
    Figure PCTCN2020101652-appb-100015
    Figure PCTCN2020101652-appb-100016
  11. 根据权利要求1-10任一所述的有机电致发光器件,其中,所述染料在所述发光层中的质量占比为0.1%-20%。
  12. 根据权利要求1所述的有机电致发光器件,其中,所述三重态-三重态湮灭材料的单重态能级大于所述硼氮材料的单重态能级,所述三重态-三重态湮灭材料的三重态能级小于所述硼氮材料的三重态能级。
  13. 根据权利要求1所述的有机电致发光器件,其中,还包括空穴传输区,所述空穴传输区为包括空穴注入层HIL、空穴传输层HTL、电子阻挡层EBL中的至少两层的多层结构,其中所述空穴传输区的材料选自酞菁衍生物、导电聚合物或含导电掺杂剂的聚合物、芳香胺衍生物。
  14. 根据权利要求13所述的有机电致发光器件,其中,空穴传输区的材料为芳香胺衍生物,则为HT-1至HT-34中的化合物的一种或多种,
    Figure PCTCN2020101652-appb-100017
    Figure PCTCN2020101652-appb-100018
    Figure PCTCN2020101652-appb-100019
  15. 根据权利要求13所述的有机电致发光器件,其中,所述酞菁衍生物包括CuPc,所述导电聚合物或含导电掺杂剂的聚合物包括聚苯撑乙烯、聚苯胺/十二烷基苯磺酸Pani/DBSA、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)PEDOT/PSS、聚苯胺/樟脑磺酸Pani/CSA、聚苯胺/聚(4-苯乙烯磺酸盐)Pani/PSS。
  16. 根据权利要求14所述的有机电致发光器件,其中,所述空穴注入层位于阳极和所述空穴传输层之间,所述空穴注入层是单一化合物材料或多种化合物的组合。
  17. 根据权利要求16所述的有机电致发光器件,其中,所述空穴注入层采用所述HT-1至HT-34中的一种或多种化合物,或者采用HI1-HI3中的一种或多种化合物,或者采用所述HT-1至HT-34中的一种或多种化合物掺杂HI1-HI3中的一种或多种化合物,
    Figure PCTCN2020101652-appb-100020
  18. 根据权利要求1所述的有机电致发光器件,还包括电子传输区,所述电子传输区为单层结构的电子传输层ETL,包括含有一种化合物的单层电子传输层和含有多种化合物的单层电子传输层,或者所述电子传输区为包括电子注入层EIL、电子传输层ETL、空穴阻挡层HBL中的至少两层的多层结构。
  19. 根据权利要求18所述的有机电致发光器件,其中,电子传输层材料选自ET-1至ET-57中的一种或多种的组合,
    Figure PCTCN2020101652-appb-100021
    Figure PCTCN2020101652-appb-100022
    Figure PCTCN2020101652-appb-100023
  20. 一种显示装置,其中,包括权利要求1-18任一所述的有机电致发光器件。
PCT/CN2020/101652 2019-10-23 2020-07-13 一种有机电致发光器件和显示装置 WO2021077810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/514,617 US20220052266A1 (en) 2019-10-23 2021-10-29 Organic light emitting device and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911013744.6 2019-10-23
CN201911013744.6A CN110729408B (zh) 2019-10-23 2019-10-23 一种有机电致发光器件和显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/514,617 Continuation US20220052266A1 (en) 2019-10-23 2021-10-29 Organic light emitting device and display apparatus

Publications (1)

Publication Number Publication Date
WO2021077810A1 true WO2021077810A1 (zh) 2021-04-29

Family

ID=69222982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101652 WO2021077810A1 (zh) 2019-10-23 2020-07-13 一种有机电致发光器件和显示装置

Country Status (3)

Country Link
US (1) US20220052266A1 (zh)
CN (1) CN110729408B (zh)
WO (1) WO2021077810A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437229A (zh) * 2021-05-17 2021-09-24 清华大学 一种有机电致发光器件和显示装置
WO2023063757A1 (en) * 2021-10-15 2023-04-20 Samsung Display Co., Ltd. Organic molecules for optoelectronic devices

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11944005B2 (en) * 2019-07-30 2024-03-26 Samsung Display Co., Ltd. Organic molecules in particular for use in optoelectronic devices
CN110729408B (zh) * 2019-10-23 2021-09-28 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN111755615B (zh) * 2020-06-30 2022-09-13 昆山国显光电有限公司 有机电致发光器件和显示装置
CN111725413B (zh) * 2020-06-30 2022-09-13 昆山国显光电有限公司 有机电致发光器件和显示装置
CN112174992B (zh) * 2020-09-30 2023-05-02 清华大学 一种发光材料及其应用以及包含其的有机电致发光器件
CN114621270B (zh) * 2020-12-09 2024-04-12 清华大学 一种稠环芳香族化合物及其在电致发光器件中的应用
CN114621269B (zh) * 2020-12-09 2024-04-09 清华大学 一种稠环芳香族化合物及其在电致发光器件中的应用
CN112961175B (zh) * 2021-02-05 2022-09-09 吉林奥来德光电材料股份有限公司 多环芳族有机物、其合成工艺、发光材料和有机电致发光器件
CN113980040B (zh) * 2021-11-21 2024-02-27 吉林大学 一种含硼的不对称螺环化合物及其在有机电致发光器件中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075600A1 (en) * 2004-01-30 2005-08-18 Eastman Kodak Company Organic element for electroluminescent devices
EP3054498A1 (en) * 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
CN108948056A (zh) * 2017-09-29 2018-12-07 中国科学院福建物质结构研究所 一类基于芳基硼衍生物的热活化延迟荧光材料及有机电致发光器件
CN109411633A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件及其制备方法和显示装置
CN109817818A (zh) * 2019-01-31 2019-05-28 云谷(固安)科技有限公司 一种有机电致发光器件和显示装置
CN110317139A (zh) * 2019-05-09 2019-10-11 北京鼎材科技有限公司 一种化合物及其应用以及包含该化合物的有机电致发光器件
CN110729408A (zh) * 2019-10-23 2020-01-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075600A1 (en) * 2004-01-30 2005-08-18 Eastman Kodak Company Organic element for electroluminescent devices
EP3054498A1 (en) * 2015-02-06 2016-08-10 Idemitsu Kosan Co., Ltd. Bisimidazodiazocines
CN108948056A (zh) * 2017-09-29 2018-12-07 中国科学院福建物质结构研究所 一类基于芳基硼衍生物的热活化延迟荧光材料及有机电致发光器件
CN109411633A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件及其制备方法和显示装置
CN109817818A (zh) * 2019-01-31 2019-05-28 云谷(固安)科技有限公司 一种有机电致发光器件和显示装置
CN110317139A (zh) * 2019-05-09 2019-10-11 北京鼎材科技有限公司 一种化合物及其应用以及包含该化合物的有机电致发光器件
CN110729408A (zh) * 2019-10-23 2020-01-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437229A (zh) * 2021-05-17 2021-09-24 清华大学 一种有机电致发光器件和显示装置
CN113437229B (zh) * 2021-05-17 2022-04-01 清华大学 一种有机电致发光器件和显示装置
WO2023063757A1 (en) * 2021-10-15 2023-04-20 Samsung Display Co., Ltd. Organic molecules for optoelectronic devices

Also Published As

Publication number Publication date
CN110729408A (zh) 2020-01-24
CN110729408B (zh) 2021-09-28
US20220052266A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
CN110729408B (zh) 一种有机电致发光器件和显示装置
CN110407858B (zh) 一种新型化合物及其应用及采用该化合物的有机电致发光器件
WO2020151499A1 (zh) 芴类衍生物和电子器件
EP2871222B1 (en) Compound for organic optoelectric device, organic optoelectric device comprising same, and display apparatus comprising organic optoelectric device
EP4219483A1 (en) Heterocyclic compound, organic light-emitting device comprising same, and composition for organic material layer
CN111153919A (zh) 一种发光材料及其应用以及包含其的有机电致发光器件
EP3006433B1 (en) Compound, organic light emitting element comprising same, and display device comprising organic light emitting element
CN110729418B (zh) 一种有机电致发光器件和显示装置
CN110903311B (zh) 多环有机硼衍生物和电子器件
KR20180120619A (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102245926B1 (ko) 유기 발광 소자
CN113788852A (zh) 一种发光材料及其应用以及包含其的有机电致发光器件
CN112778253B (zh) 有机化合物及含有其的有机电致发光器件
KR20190052552A (ko) 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
JP2023508832A (ja) ヘテロ環化合物、これを含む有機発光素子、有機発光素子の有機物層用組成物、および有機発光素子の製造方法
WO2014104545A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
CN114195813A (zh) 含硼稠环化合物及电子器件
KR20220041305A (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
JP2014208602A (ja) 新規イミダゾール化合物、電子デバイス用材料、発光素子、電子デバイス及びその製造方法
WO2014051244A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR102652004B1 (ko) 헤테로 고리 화합물, 이를 포함하는 유기 발광 소자, 이의 제조방법 및 유기물층용 조성물
JP2024510476A (ja) 有機電界発光素子及び表示装置
EP2998380A1 (en) Compound for organic optoelectric device, organic light-emitting diode including same, display device including organic light-emitting diode
KR20180128268A (ko) 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
JP2022022206A (ja) 有機エレクトロルミネセント化合物、複数のホスト材料、及びこれらを含む有機エレクトロルミネセントデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20878634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20878634

Country of ref document: EP

Kind code of ref document: A1