WO2021077475A1 - 显示器件及其制备方法 - Google Patents

显示器件及其制备方法 Download PDF

Info

Publication number
WO2021077475A1
WO2021077475A1 PCT/CN2019/117106 CN2019117106W WO2021077475A1 WO 2021077475 A1 WO2021077475 A1 WO 2021077475A1 CN 2019117106 W CN2019117106 W CN 2019117106W WO 2021077475 A1 WO2021077475 A1 WO 2021077475A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
display area
functional layer
display device
light
Prior art date
Application number
PCT/CN2019/117106
Other languages
English (en)
French (fr)
Inventor
施杰
彭斯敏
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/652,205 priority Critical patent/US11322699B2/en
Publication of WO2021077475A1 publication Critical patent/WO2021077475A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/821Patterning of a layer by embossing, e.g. stamping to form trenches in an insulating layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This application relates to the field of display, in particular to a display device and a preparation method thereof.
  • the under-screen camera display device is developing rapidly.
  • the camera of the under-screen camera display device is placed below the display screen, and the display parts above the camera remain, and the pixel area of the substrate normally emits light.
  • the present application provides a display device and a manufacturing method thereof, which can solve the technical problem that the existing display device causes a large loss in the propagation path of the light received by the camera, thereby affecting the imaging quality of the camera.
  • This application provides a display device, including:
  • the substrate includes a non-display area and a display area arranged around the non-display area, the substrate is arranged in a light-concentrating structure at the non-display area;
  • a functional layer the functional layer is disposed on the substrate, the functional layer is provided with a via hole corresponding to the non-display area, and the via hole penetrates the functional layer.
  • the light-concentrating structure is a convex lens structure.
  • the height of the protrusion of the convex lens structure is smaller than the radius of the via hole.
  • the substrate located in the non-display area includes a first body portion, a first convex portion provided on one side of the first body portion, and The second raised part on the other side of the part.
  • the thickness of the first body portion is less than or equal to the thickness of the substrate at the display area.
  • the substrate located at the non-display area includes a second body portion and a third convex portion disposed on a side of the second body portion away from the functional layer;
  • the surface of the second body portion facing the functional layer is flush with the surface of the substrate located at the display area and facing the functional layer.
  • the thickness of the second body portion is less than or equal to the thickness of the substrate at the display area.
  • the functional layer includes an array layer, a light-emitting layer, and an encapsulation layer sequentially disposed on the substrate, and the via hole penetrates the array layer, the luminescence layer, and the encapsulation layer.
  • the via hole penetrates the array layer, the luminescence layer, and the encapsulation layer.
  • the material of the substrate is polyimide.
  • This application also provides a display device, including:
  • a substrate the material of the substrate is polyimide, the substrate includes a non-display area and a display area arranged around the non-display area, the substrate is arranged in a light-concentrating structure at the non-display area,
  • the condensing structure is a convex lens structure;
  • a functional layer the functional layer is disposed on the substrate, the functional layer is provided with a via hole corresponding to the non-display area, and the via hole penetrates the functional layer.
  • the height of the protrusion of the convex lens structure is smaller than the radius of the via hole.
  • the substrate located in the non-display area includes a first body portion, a first convex portion provided on one side of the first body portion, and The second raised part on the other side of the part.
  • the thickness of the first body portion is less than or equal to the thickness of the substrate at the display area.
  • the substrate located at the non-display area includes a second body portion and a third convex portion disposed on a side of the second body portion away from the functional layer;
  • the surface of the second body portion facing the functional layer is flush with the surface of the substrate located at the display area and facing the functional layer.
  • the thickness of the second body portion is less than or equal to the thickness of the substrate at the display area.
  • the functional layer includes an array layer, a light-emitting layer, and an encapsulation layer sequentially disposed on the substrate, and the via hole penetrates the array layer, the luminescence layer, and the encapsulation layer.
  • the present application also provides a manufacturing method of a display device, and the manufacturing method includes:
  • the substrate including a non-display area and a display area arranged around the non-display area;
  • the functional layer including an array layer, a light emitting layer, and an encapsulation layer sequentially disposed on the substrate;
  • a via hole is opened in the functional layer corresponding to the non-display area, and the via hole penetrates the functional layer.
  • the functional layer is provided with a via hole penetrating the functional layer, thereby reducing the thickness of the film layer above the camera, thereby ensuring that the vertically incident light can reach the camera with almost no loss.
  • the substrate is also arranged in the non-display area in a light-concentrating structure, so that the light is concentrated when emitted from the substrate, and is more easily absorbed by the camera, thereby reducing the amount of light in the process of transmitting to the camera. The loss greatly increases the light received by the camera and improves the imaging quality of the camera.
  • FIG. 1 is a schematic diagram of a first structure of a display device provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a second structure of a display device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a first structure of a substrate provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a second structure of a substrate provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a third structure of a substrate provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a fourth structure of a substrate provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a fifth structure of a substrate provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a sixth structure of a substrate provided by an embodiment of the application.
  • FIG. 9 is a flow chart of a manufacturing method of a display device provided by an embodiment of the application.
  • FIG. 1 is a schematic diagram of a first structure of a display device provided by an embodiment of the application.
  • the display device provided by the embodiment of the present application includes a substrate 101, a functional layer 102 provided on the substrate 101, a via 103 provided on the functional layer 102, and the substrate 101 includes a non- The display area 1011 and the display area 1012 arranged around the non-display area 1011, the substrate 101 is arranged in the non-display area 1012 in a light-concentrating structure, and the via 103 is arranged in the functional layer 102 in the corresponding The non-display area 1011 is located, and the via hole 103 penetrates the functional layer 102.
  • the thickness of the film layer above the camera can be reduced, thereby ensuring that vertically incident light can be almost lost.
  • the light reaches the camera, but when the light passes through the substrate 101 into the air and then is absorbed by the camera, the light will be refracted, causing the light to be emitted in a direction away from the normal, which causes part of the light to leak from the gap between the camera and the substrate 101. It cannot be absorbed by the camera.
  • the substrate 101 is arranged in the non-display area 1012 as a condensing structure, so that when the light is emitted from the substrate 101, it will follow a direction close to the normal line.
  • the light is emitted in the direction, so that the light is concentrated and absorbed by the camera more easily, thereby reducing the loss of light in the process of transmitting to the camera, greatly increasing the light received by the camera, and improving the imaging quality of the camera.
  • the light-concentrating structure is a convex lens structure.
  • the convex lens is made according to the principle of light refraction and has a certain light-gathering effect.
  • a convex lens is a lens with a thicker center and a thinner edge. It is mainly divided into three shapes: double-convex, plano-convex and concave-convex. Convex lenses include the entrance surface and the exit surface.
  • the double-convex lens means that both the entrance and exit surfaces of the convex lens are convex;
  • Plano-convex lens means that the entrance and exit surfaces of the convex lens are flat and the other is convex;
  • meniscus lens means that the entrance and exit surfaces of the convex lens are concave and the other is convex, and the shape of the concave-convex lens is similar to that of a crescent. .
  • the condensing structure is set as a convex lens structure to play the role of converging light, so that the camera can receive more light, so no matter whether the convex lens structure is a biconvex lens, a plano-convex lens or a meniscus lens, it can be used.
  • the height of the convex lens structure is smaller than the radius of the via hole 103, because only in this way can the focal length of the convex lens structure be greater than the radius of the via hole 103, so that the convex lens structure can attack the light.
  • the camera can receive more light, thereby improving the imaging quality of the camera.
  • the material of the substrate 101 is polyimide, which is an organic polymer material with the best overall performance due to its excellent mechanical and dielectric properties, The characteristics of high temperature resistance, low temperature resistance and radiation resistance have been widely used in the field of flexible substrates.
  • FIG. 2 is a second structural diagram of a display device provided by an embodiment of the application.
  • the functional layer 102 in the display device shown in 2 includes an array layer 1021, a light-emitting layer 1022, and an encapsulation layer 1023 that are sequentially disposed on the substrate 101, and the via hole 103 penetrates the array layer 1021, the The light-emitting layer 1022 and the encapsulation layer 1023.
  • FIG. 3 is a schematic diagram of a first structure of a substrate provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of a second structure of a substrate provided by an embodiment of the application
  • FIGS. 3 is a schematic diagram of a first structure of a substrate provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of a second structure of a substrate provided by an embodiment of the application
  • the substrate 101 located at the non-display area 1011 is divided into three parts, specifically the first body part 10111 , The first convex portion 10112 provided on one side of the first main body portion 10111 and the second convex portion 10113 provided on the other side of the first main body portion 10111, the difference is that the first main body portion The thickness of 10111 is not consistent.
  • the thickness of the first body portion 10111 is less than or equal to the thickness of the substrate 101 at the display area 1012. As shown in FIG. 3, the thickness of the first body portion 10111 is equal to the thickness of the substrate 101 at the display area 1012; as shown in FIG. 4, the thickness of the first body portion 10111 is smaller than that of the substrate 101 The thickness at the display area 1012; as shown in FIG. 5, the thickness of the first body portion 10111 is zero at this time, that is, the substrate 101 only includes the first convex portion 10112 and the second convex portion at this time Part 10113.
  • the camera can receive enough light, thereby improving the imaging quality of the camera. If the focal length of the convex lens structure is smaller than the distance between the convex lens structure and the camera, then all the light will converge on the focal point of the convex lens structure, and at this time, some parts of the camera will not receive light, which is not conducive to the camera. The imaging quality.
  • the convex lens structure is a double convex lens structure at this time.
  • FIG. 6 is a schematic diagram of a fourth structure of a substrate provided by an embodiment of the application
  • FIG. 7 is a schematic diagram of a fifth structure of a substrate provided by an embodiment of the application
  • FIG. The sixth structural schematic diagram of the substrate provided by the application embodiment In the schematic diagrams of the substrate structure shown in FIGS. 6, 7 and 8, it can be seen that the substrate 101 located in the non-display area 1011 is all divided Is a second body portion 10114 and a third convex portion 10115.
  • the third convex portion 10115 is disposed on the side of the second body portion 10114 away from the functional layer 102, and the second body portion 10114 faces The surface of the functional layer 102 is flush with the surface of the substrate 101 at the display area 1012 and facing the functional layer 102. The difference is that the thickness of the second body portion 10114 Inconsistent.
  • the thickness of the second body portion 10114 is less than or equal to the thickness of the substrate 101 at the display area 1012. As shown in FIG. 6, the thickness of the second body portion 10114 is equal to the thickness of the substrate 101 at the display area 1012; as shown in FIG. 7, the thickness of the second body portion 10114 is smaller than that of the substrate 101 The thickness at the display area 1012; as shown in FIG. 8, the thickness of the second body portion 10114 is zero at this time, that is, the substrate 101 only includes the third convex portion 10115 at this time.
  • the camera can receive enough light, thereby improving the imaging quality of the camera, because if The focal length of the convex lens structure is smaller than the distance between the convex lens structure and the camera, so all the light will converge on the focal point of the convex lens structure, and at this time, certain parts of the camera will not receive light, which is also not conducive to the camera. Image quality.
  • the convex lens structure is a plano-convex lens structure, and the convex surface is located on the side of the convex lens structure away from the functional layer 102.
  • the convex lens structure is a plano-convex lens structure, and the convex surface is located on the side of the convex lens structure close to the functional layer 102. At this time, the convex lens structure can also converge the light, thereby making the camera Receive more light, which improves the image quality of the camera.
  • the convex lens structure is a concave-convex lens structure, and the convex surface is located on the side of the convex lens structure away from the functional layer 102.
  • the concave-convex lens structure also has the function of converging light, enabling the camera to receive To get more light, thereby improving the image quality of the camera.
  • the functional layer 102 is provided with a via 103 penetrating the functional layer 102, thereby reducing the thickness of the film layer above the camera, thereby ensuring that the vertically incident light can reach the camera with almost no loss.
  • the substrate 101 in the non-display area 1011 in a light-concentrating structure the light is concentrated when emitted from the substrate 101 and is more easily absorbed by the camera, thereby reducing the process of light transmission to the camera.
  • the loss in the camera greatly increases the light received by the camera and improves the imaging quality of the camera.
  • FIG. 9 is a flow chart of a manufacturing method of a display device provided by an embodiment of the application.
  • the manufacturing method includes the following steps: 201.
  • a substrate is provided, and the substrate includes a non-display area and A display area arranged around the non-display area; 202.
  • the substrate is located in the non-display area by a nanoimprinting process and is arranged in a light-concentrating structure; 203.
  • a functional layer is formed on the substrate, and the functional layer includes successively The array layer, the light-emitting layer and the encapsulation layer are arranged on the substrate; 204.
  • a via hole is opened in the functional layer corresponding to the non-display area, and the via hole penetrates the functional layer.
  • nanoimprint technology is a new type of micro-nano processing technology, which is a technology that transfers the micro-nano structure on the template to the material to be processed with the assistance of photoresist.
  • the structure of the substrate shown in Figure 3, Figure 4 and Figure 5 are all formed by double-sided imprinting, and the same nanoimprint mold is used, but the depth of imprinting is different , Thus forming a different substrate structure.
  • the structure of the substrate shown in Fig. 6, Fig. 7 and Fig. 8 are all formed by a single-sided imprinting method, and the same nanoimprinting mold is used, but the depth of imprinting is different , Thus forming a different substrate structure.
  • the embossing depth cannot be too deep, because when the embossing depth is too deep, if the photopolymerization is achieved Depth, then all the light will be concentrated to a point after it is emitted from the substrate, so that the camera can only receive light at this point, and other parts of the camera will not receive light, which will affect the imaging quality of the camera.
  • the via hole is formed by a laser lift-off method, and the functional layer corresponding to the non-display area is directly hollowed out by laser after the packaging is completed, thereby forming a via hole penetrating the functional layer.
  • the display device prepared by the method for manufacturing the display device provided in the embodiments of the present application is provided with a via hole penetrating the functional layer in the functional layer, thereby reducing the thickness of the film layer above the camera, thereby ensuring that vertically incident light can be It reaches the camera with almost no loss, and the substrate is also set in the non-display area in a light-concentrating structure, so that the light is concentrated when emitted from the substrate, and is more easily absorbed by the camera, thereby reducing the transmission of light
  • the loss in the process of reaching the camera greatly increases the light received by the camera and improves the imaging quality of the camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

在本申请所提供的显示器件及其制备方法中,基板包括非显示区和围绕非显示区设置的显示区,基板在非显示区处设置成聚光结构;且功能层设置在基板上,功能层在对应非显示区处设置有过孔,过孔贯穿功能层,从而降低了光线在传输到摄像头的过程中的损失,大大增加了摄像头接收到的光,提高了摄像头的成像质量。

Description

显示器件及其制备方法 技术领域
本申请涉及显示领域,具体涉及一种显示器件及其制备方法。
背景技术
目前,屏下摄像头显示器件作为一种新兴的有机发光二极管显示器件,发展迅速。屏下摄像头显示器件的摄像头放置在显示屏下方,且摄像头上方的显示部件保留,基板的像素区域正常发光。
近年来,屏下摄像头显示器件的飞速发展也暴露出不少问题,由于摄像头上方有膜层阻挡,而且不同膜层间的折射率不同,所以外界照射到该区域的光在膜层间会发生折射和反射的现象,从而损失掉大量的光,使摄像头最终接收到的光大大减少,影响摄像头成像质量。
因此,如何在保证摄像头成像质量的前提下增加摄像头接收到的光是全世界面板厂家正在努力攻克的难关。
发明内容
本申请提供一种显示器件及其制备方法,可以解决现有的显示器件因摄像头接收到的光在传播路径中产生较大损失从而影响摄像头成像质量的技术问题。
本申请提供一种显示器件,包括:
基板,所述基板包括非显示区和围绕所述非显示区设置的显示区,所述基板在位于所述非显示区处设置成聚光结构;以及
功能层,所述功能层设置在所述基板上,所述功能层在对应所述非显示区处设置有过孔,所述过孔贯穿所述功能层。
在本申请所提供的显示器件中,所述聚光结构为凸透镜结构。
在本申请所提供的显示器件中,所述凸透镜结构凸起的高度小于所述过孔的半径。
在本申请所提供的显示器件中,在位于所述非显示区处的基板包括第一主体部分、设置在所述第一主体部分一侧的第一凸起部分以及设置在所述第一主体部 分另一侧的第二凸起部分。
在本申请所提供的显示器件中,所述第一主体部分的厚度小于等于所述基板在所述显示区处的厚度。
在本申请所提供的显示器件中,在位于所述非显示区处的基板包括第二主体部分以及设置在所述第二主体部分远离所述功能层一侧的第三凸起部分;所述第二主体部分朝向所述功能层一侧的表面与所述基板在位于所述显示区处、且朝向所述功能层一侧的表面平齐。
在本申请所提供的显示器件中,所述第二主体部分的厚度小于等于所述基板在所述显示区处的厚度。
在本申请所提供的显示器件中,所述功能层包括依次设置在所述基板上的阵列层、发光层以及封装层,所述过孔贯穿所述阵列层、所述发光层以及所述封装层。
在本申请所提供的显示器件中,所述基板的材质为为聚酰亚胺。
本申请还提供一种显示器件,包括:
基板,所述基板的材质为为聚酰亚胺,所述基板包括非显示区和围绕所述非显示区设置的显示区,所述基板在位于所述非显示区处设置成聚光结构,所述聚光结构为凸透镜结构;以及
功能层,所述功能层设置在所述基板上,所述功能层在对应所述非显示区处设置有过孔,所述过孔贯穿所述功能层。
在本申请所提供的显示器件中,所述凸透镜结构凸起的高度小于所述过孔的半径。
在本申请所提供的显示器件中,在位于所述非显示区处的基板包括第一主体部分、设置在所述第一主体部分一侧的第一凸起部分以及设置在所述第一主体部分另一侧的第二凸起部分。
在本申请所提供的显示器件中,所述第一主体部分的厚度小于等于所述基板在所述显示区处的厚度。
在本申请所提供的显示器件中,在位于所述非显示区处的基板包括第二主体部分以及设置在所述第二主体部分远离所述功能层一侧的第三凸起部分;所述第 二主体部分朝向所述功能层一侧的表面与所述基板在位于所述显示区处、且朝向所述功能层一侧的表面平齐。
在本申请所提供的显示器件中,所述第二主体部分的厚度小于等于所述基板在所述显示区处的厚度。
在本申请所提供的显示器件中,所述功能层包括依次设置在所述基板上的阵列层、发光层以及封装层,所述过孔贯穿所述阵列层、所述发光层以及所述封装层。本申请还提供一种显示器件的制备方法,所述制备方法包括:
提供一基板,所述基板包括非显示区和围绕非显示区设置的显示区;
通过纳米压印工艺把所述基板位于所述非显示区处设置成聚光结构;
在所述基板上形成功能层,所述功能层包括依次设置在所述基板上的阵列层、发光层以及封装层;
在所述功能层对应所述非显示区处开设过孔,且所述过孔贯穿所述功能层。
在本申请提供的显示器件及其制备方法中,通过在功能层设置贯穿功能层的过孔,从而降低了摄像头上方的膜层厚度,从而保证了垂直入射的光可以几乎无损失的到达摄像头,还通过把所述基板在位于所述非显示区处设置成聚光结构,从而使光线在从基板射出时被汇聚起来,更容易地被摄像头吸收,从而降低光线在传输到摄像头的过程中的损失,大大增加了摄像头接收到的光,提高了摄像头的成像质量。
发明概述
技术问题
问题的解决方案
发明的有益效果
对附图的简要说明
附图说明
为了更清楚地说明本申请中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根 据这些附图获得其他的附图。
图1为本申请实施例提供的显示器件的第一结构示意图;
图2为本申请实施例提供的显示器件的第二结构示意图;
图3为本申请实施例提供的基板的第一结构示意图;
图4为本申请实施例提供的基板的第二结构示意图;
图5为本申请实施例提供的基板的第三结构示意图;
图6为本申请实施例提供的基板的第四结构示意图;
图7为本申请实施例提供的基板的第五结构示意图;
图8为本申请实施例提供的基板的第六结构示意图;
图9为本申请实施例提供的显示器件的制备方法流程图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
请参阅图1,图1为本申请实施例提供的显示器件的第一结构示意图。如图1所示,本申请实施例提供的显示器件,包括基板101、设置在所述基板101上的功能层102、设置在所述功能层102上的过孔103、所述基板101包括非显示区1011和围绕所述非显示区1011设置的显示区1012,所述基板101在位于所述非显示区1012处设置成聚光结构,所述过孔103设置在所述功能层102在对应所述非显示区1011处,且所述过孔103贯穿所述功能层102。
可以理解的,通过在功能层102的对应所述非显示区1011处设置能贯穿功能层102的过孔,可以降低了摄像头上方的膜层厚度,从而保证了垂直入射的光可以几乎无损失的到达摄像头,但是光从基板101穿出到空气中再被摄像头吸收的过程中,光线会发生折射现象,使光线沿远离法线的方向射出,从而导致部分光从摄像头与基板101缝隙间漏出,无法被摄像头吸收,而在本申请实施例中,把所述基板101在位于所述非显示区1012处设置成聚光结构,这样光线在从所述基板101射出时,会沿靠近法线的方向射出,从而使光线汇聚起来,更容易地被摄 像头吸收,从而降低光线在传输到摄像头的过程中的损失,大大增加了摄像头接收到的光,提高了摄像头的成像质量。
其中,在一种实施方式中,所述聚光结构为凸透镜结构。凸透镜是根据光的折射原理制成的,且拥有一定的聚光作用。凸透镜是中央较厚,边缘较薄的透镜,主要分为双凸,平凸和凹凸三种形状;凸透镜包括入射面和出射面,双凸透镜就是指凸透镜的入射面和出射面均为凸面状;平凸透镜就是指凸透镜的入射面和出射面一个为平面状,一个为凸面状;凹凸透镜就是指凸透镜的入射面和出射面一个为凹面状,一个为凸面状,且凹凸透镜的形状类似于月牙。
其中,可以理解的,把聚光结构设置为凸透镜结构是为了起到汇聚光线的作用,从而使摄像头能够接收到更多的光线,所以不论凸透镜结构是采用双凸透镜、平凸透镜还是凹凸透镜都能够达成目前,但是需要满足凸透镜结构凸起的高度小于所述过孔103的半径,因为只有这样才能够使所述凸透镜结构的焦距大于所述过孔103的半径,从而凸透镜结构才能够对光线起到足够的汇聚作用,使摄像头接收到更多的光线,进而提高摄像头的成像质量。
其中,在一种实施方式中,所述基板101的材料为聚酰亚胺,聚酰亚胺为一种综合性能最佳的有机高分子材料,因其具有优良的机械性能和介电性能、耐高温、耐低温以及耐辐射的特性,已在柔性基板领域得到广泛应用。
具体地,请参阅图1、图2,图2为本申请实施例提供的显示器件的第二结构示意图,其中,图2所示的显示器件与图1所示的显示器件的区别在于,图2所示的显示器件中的所述功能层102包括依次设置在所述基板101上的阵列层1021、发光层1022以及封装层1023,且所述过孔103贯穿所述阵列层1021、所述发光层1022以及所述封装层1023。
具体地,请参阅图3、图4和图5,图3为本申请实施例提供的基板的第一结构示意图,图4为本申请实施例提供的基板的第二结构示意图,图5为本申请实施例提供的基板的第三结构示意图。在图3、图4和图5所示的基板结构中示意图中,可以看出,位于所述非显示区1011处的所述基板101都是分为三个部分,具体为第一主体部分10111、设置在所述第一主体部分10111一侧的第一凸起部分10112以及设置在所述第一主体部分10111另一侧的第二凸起部分10113,不同的在于 ,所述第一主体部分10111的厚度不一致。
其中,可以理解的,所述第一主体部分10111的厚度小于或等于所述基板101在所述显示区1012处的厚度。如图3所示,所述第一主体部分10111的厚度等于所述基板101在所述显示区1012处的厚度;如图4所示,所述第一主体部分10111的厚度小于所述基板101在所述显示区1012处的厚度;如图5所示,此时所述第一主体部分10111的厚度为零,即所述基板101此时只包括第一凸起部分10112和第二凸起部分10113。其中不论所述第一主体部分10111的厚度如何变化,只要能够满足所述凸透镜结构的焦距大于所述凸透镜结构到摄像头的距离,就能够使摄像头接收到足够的光线,从而提高摄像头成像质量,因为如果所述凸透镜结构的焦距小于所述凸透镜结构到摄像头的距离,那么所有的光线都会汇聚在凸透镜结构的焦点上,而此时摄像头的某些部位就不会接收到光,从而也不利于摄像头的成像质量。
其中,可以理解的,此时所述凸透镜结构为双凸透镜结构。
具体地,请参阅图6、图7和图8,图6为本申请实施例提供的基板的第四结构示意图,图7为本申请实施例提供的基板的第五结构示意图,图8为本申请实施例提供的基板的第六结构示意图,在图6、图7和图8所示的基板结构中示意图中,可以看出,位于所述非显示区1011处的所述基板101都是分为第二主体部分10114和第三凸起部分10115,所述第三凸起部分10115设置在所述第二主体部分10114远离所述功能层102的一侧,且所述第二主体部分10114朝向所述功能层102一侧的表面与所述基板101在位于所述显示区1012处、且朝向所述功能层102一侧的表面平齐,不同的在于,所述第二主体部分10114的厚度不一致。
其中,可以理解的,所述第二主体部分10114的厚度小于或等于所述基板101在所述显示区1012处的厚度。如图6所示,所述第二主体部分10114的厚度等于所述基板101在所述显示区1012处的厚度;如图7所示,所述第二主体部分10114的厚度小于所述基板101在所述显示区1012处的厚度;如图8所示,此时所述第二主体部分10114的厚度为零,即所述基板101此时只包括第三凸起部分10115。不论所述第二主体部分10114的厚度如何变化,只要能够满足所述凸透镜结构的焦距大于所述凸透镜结构到摄像头的距离,就能够使摄像头接收到足够的光线, 从而提高摄像头成像质量,因为如果所述凸透镜结构的焦距小于所述凸透镜结构到摄像头的距离,那么所有的光线都会汇聚在凸透镜结构的焦点上,而此时摄像头的某些部位就不会接收到光,从而也不利于摄像头的成像质量。
其中,可以理解的,此时所述凸透镜结构为平凸透镜结构,且凸面状位于所述凸透镜结构远离所述功能层102的一侧。
其中,在一种实施方式中,所述凸透镜结构为平凸透镜结构,且凸面状位于所述凸透镜结构靠近所述功能层102的一侧,此时也能对光线起到汇聚作用,从而使摄像头接收到更多的光,进而提升摄像头成像质量。
其中,在一种实施方式中,所述凸透镜结构为凹凸镜结构,且凸面状位于所述凸透镜结构远离所述功能层102的一侧,凹凸镜结构也具有汇聚光线的作用,能使摄像头接收到更多的光,从而提升摄像头成像质量。
在本申请提供的显示器件中,通过在功能层102设置贯穿功能层102的过孔103,从而降低了摄像头上方的膜层厚度,从而保证了垂直入射的光可以几乎无损失的到达摄像头,还通过把所述基板101在位于所述非显示区1011处设置成聚光结构,从而使光线在从基板101射出时被汇聚起来,更容易地被摄像头吸收,从而降低光线在传输到摄像头的过程中的损失,大大增加了摄像头接收到的光,提高了摄像头的成像质量。
参阅图9,图9为本申请实施例提供的显示器件的制备方法流程图,如图9所示,所述制备方法,包括以下步骤:201、提供一基板,所述基板包括非显示区和围绕非显示区设置的显示区;202、通过纳米压印工艺把所述基板位于所述非显示区处设置成聚光结构;203、在所述基板上形成功能层,所述功能层包括依次设置在所述基板上的阵列层、发光层以及封装层;204、在所述功能层对应所述非显示区处开设过孔,且所述过孔贯穿所述功能层。
其中,可以理解的,纳米压印技术是一种新型的微纳加工技术,是通过光刻胶辅助,将模板上的微纳米结构转移到待加工材料上的技术。其中,形成图3、图4和图5中所示的基板的结构,均是通过双面压印的方法来形成的,且采用的是同一个纳米压印模具,只不过压印的深度不同,从而形成了不同的基板结构。其中,形成图6、图7和图8中所示的基板的结构,均是通过单面压印的方法来形 成的且,采用的是同一个纳米压印模具,只不过压印的深度不同,从而形成了不同的基板结构。
其中,可以理解的,在通过纳米压印把位于非显示区处的所述基板设置成凸透镜结构的过程中,压印深度不能过深,因为压印深度过深的时候,如果达到光聚合的深度,那么所有的光线在从基板射出后都会聚集到一点,这样摄像头就只有在这一点的位置才能接收到光,摄像头的其他部位就不会接收到光,从而会影响摄像头的成像质量。
其中,可以理解的,所述过孔是通过激光剥离的方法形成的,在封装完成后直接通过激光挖空对应所述非显示区处的功能层,从而形成贯穿功能层的过孔。
其中,本申请所提供的显示器件的具体结构可参见前面的实施例,在此不再一一赘述。
可以理解的,通过本申请实施例提供的显示器件的制备方法制备的显示器件,在功能层设置贯穿功能层的过孔,从而降低了摄像头上方的膜层厚度,从而保证了垂直入射的光可以几乎无损失的到达摄像头,还把所述基板在位于所述非显示区处设置成聚光结构,从而使光线在从基板射出时被汇聚起来,更容易地被摄像头吸收,从而降低光线在传输到摄像头的过程中的损失,大大增加了摄像头接收到的光,提高了摄像头的成像质量。
以上对本申请实施方式提供了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (17)

  1. 一种显示器件,其包括:
    基板,所述基板包括非显示区和围绕所述非显示区设置的显示区,所述基板在位于所述非显示区处设置成聚光结构;以及
    功能层,所述功能层设置在所述基板上,所述功能层在对应所述非显示区处设置有过孔,所述过孔贯穿所述功能层。
  2. 根据权利要求1所述的显示器件,其中,所述聚光结构为凸透镜结构。
  3. 根据权利要求2所述的显示器件,其中,所述凸透镜结构凸起的高度小于所述过孔的半径。
  4. 根据权利要求2所述的显示器件,其特征在于,在位于所述非显示区处的基板包括第一主体部分、设置在所述第一主体部分一侧的第一凸起部分以及设置在所述第一主体部分另一侧的第二凸起部分。
  5. 根据权利要求4所述的显示器件,其中,所述第一主体部分的厚度小于等于所述基板在所述显示区处的厚度。
  6. 根据权利要求2所述的显示器件,其中,在位于所述非显示区处的基板包括第二主体部分以及设置在所述第二主体部分远离所述功能层一侧的第三凸起部分;
    所述第二主体部分朝向所述功能层一侧的表面与所述基板在位于所述显示区处、且朝向所述功能层一侧的表面平齐。
  7. 根据权利要求6所述的显示器件,其中,所述第二主体部分的厚度小于等于所述基板在所述显示区处的厚度。
  8. 根据权利要求1所述的显示器件,其中,所述功能层包括依次设置在所述基板上的阵列层、发光层以及封装层,所述过孔贯穿所述阵列层、所述发光层以及所述封装层。
  9. 根据权利要求1所述的显示器件,其中,所述基板的材质为聚酰亚胺。
  10. 一种显示器件,其包括:
    基板,所述基板的材质为聚酰亚胺,所述基板包括非显示区和围绕所述非显示区设置的显示区,所述基板在位于所述非显示区处设置成聚光结构,所述聚光结构为凸透镜结构;以及
    功能层,所述功能层设置在所述基板上,所述功能层在对应所述非显示区处设置有过孔,所述过孔贯穿所述功能层。
  11. 根据权利要求10所述的显示器件,其中,所述凸透镜结构凸起的高度小于所述过孔的半径。
  12. 根据权利要求10所述的显示器件,其中,在位于所述非显示区处的基板包括第一主体部分、设置在所述第一主体部分一侧的第一凸起部分以及设置在所述第一主体部分另一侧的第二凸起部分。
  13. 根据权利要求12所述的显示器件,其中,所述第一主体部分的厚度小于等于所述基板在所述显示区处的厚度。
  14. 根据权利要求10所述的显示器件,其中,在位于所述非显示区处的基板包括第二主体部分以及设置在所述第二主体部分远离所述功能层一侧的第三凸起部分;
    所述第二主体部分朝向所述功能层一侧的表面与所述基板在位于所述显示区处、且朝向所述功能层一侧的表面平齐。
  15. 根据权利要求14所述的显示器件,其中,所述第二主体部分的厚度小于等于所述基板在所述显示区处的厚度。
  16. 根据权利要求10所述的显示器件,其中,所述功能层包括依次设置在所述基板上的阵列层、发光层以及封装层,所述过孔贯穿所述阵列层、所述发光层以及所述封装层。
  17. 一种显示器件的制备方法,其中,所述制备方法包括:
    提供一基板,所述基板包括非显示区和围绕非显示区设置的显示区;
    通过纳米压印工艺把所述基板位于所述非显示区处设置成聚光结构;
    在所述基板上形成功能层,所述功能层包括依次设置在所述基板上的阵列层、发光层以及封装层;
    在所述功能层对应所述非显示区处开设过孔,且所述过孔贯穿所述功能层。
PCT/CN2019/117106 2019-10-25 2019-11-11 显示器件及其制备方法 WO2021077475A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/652,205 US11322699B2 (en) 2019-10-25 2019-11-11 Display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911025773.4A CN110828515A (zh) 2019-10-25 2019-10-25 显示器件及其制备方法
CN201911025773.4 2019-10-25

Publications (1)

Publication Number Publication Date
WO2021077475A1 true WO2021077475A1 (zh) 2021-04-29

Family

ID=69550603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117106 WO2021077475A1 (zh) 2019-10-25 2019-11-11 显示器件及其制备方法

Country Status (3)

Country Link
US (1) US11322699B2 (zh)
CN (1) CN110828515A (zh)
WO (1) WO2021077475A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111261800B (zh) * 2020-02-07 2021-07-06 武汉华星光电半导体显示技术有限公司 一种阵列基板及其制备方法、显示面板
CN111584566A (zh) * 2020-05-11 2020-08-25 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法、掩模版组
CN111897159B (zh) * 2020-08-11 2022-07-26 联想(北京)有限公司 一种显示装置和显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054424A (ja) * 2009-09-02 2011-03-17 Toppan Printing Co Ltd トップエミッション型有機elディスプレイ及びその製造方法並びにそれに用いる色フィルター
CN109164648A (zh) * 2018-09-30 2019-01-08 厦门天马微电子有限公司 一种显示面板及显示装置
CN109920822A (zh) * 2019-02-28 2019-06-21 武汉华星光电半导体显示技术有限公司 显示面板
CN110047878A (zh) * 2019-03-27 2019-07-23 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN209356799U (zh) * 2019-03-19 2019-09-06 北京京东方显示技术有限公司 一种显示装置和电子设备
CN110491912A (zh) * 2019-07-31 2019-11-22 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102166502B1 (ko) * 2014-09-16 2020-10-16 삼성디스플레이 주식회사 유기 발광 표시 장치
US20170026553A1 (en) * 2015-07-24 2017-01-26 Apple Inc. Displays With Camera Window Openings
KR20200073544A (ko) * 2018-12-14 2020-06-24 엘지디스플레이 주식회사 표시 장치
KR20200113957A (ko) * 2019-03-27 2020-10-07 삼성디스플레이 주식회사 표시 장치
KR20210008238A (ko) * 2019-07-11 2021-01-21 삼성디스플레이 주식회사 전자 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054424A (ja) * 2009-09-02 2011-03-17 Toppan Printing Co Ltd トップエミッション型有機elディスプレイ及びその製造方法並びにそれに用いる色フィルター
CN109164648A (zh) * 2018-09-30 2019-01-08 厦门天马微电子有限公司 一种显示面板及显示装置
CN109920822A (zh) * 2019-02-28 2019-06-21 武汉华星光电半导体显示技术有限公司 显示面板
CN209356799U (zh) * 2019-03-19 2019-09-06 北京京东方显示技术有限公司 一种显示装置和电子设备
CN110047878A (zh) * 2019-03-27 2019-07-23 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN110491912A (zh) * 2019-07-31 2019-11-22 武汉华星光电半导体显示技术有限公司 一种显示面板及其制备方法、显示装置

Also Published As

Publication number Publication date
US20210408407A1 (en) 2021-12-30
CN110828515A (zh) 2020-02-21
US11322699B2 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2021077475A1 (zh) 显示器件及其制备方法
WO2017071404A1 (zh) 一种光学结构及其制作方法以及显示基板和显示器件
US11201301B2 (en) Base support plate and method of manufacturing the same, and method of manufacturing a flexible display panel
US10823897B2 (en) Light guide plate and manufacturing method thereof, backlight module and display device
WO2016107097A1 (zh) 显示装置
US20160178965A1 (en) Display device and manufacturing method of the same
JP2006318807A (ja) 照明装置及びその製造方法
WO2020118976A1 (zh) 一种指纹识别柔性显示屏面板
WO2020186968A1 (zh) 发光显示面板及其制造方法、显示装置
WO2015188595A1 (zh) 显示面板及其制作方法、显示装置
EP1236216A1 (en) Organic light emitting diode having spherical shaped patterns--
WO2022183767A1 (zh) Oled显示基板及其制作方法、显示装置
WO2020052026A1 (zh) Oled显示装置及其制备方法
TW201833605A (zh) 微結構化光導板及包含其之裝置
WO2020238352A1 (zh) 屏幕指纹组件及终端设备
WO2022247180A1 (zh) 显示面板及显示装置
WO2021098631A1 (zh) 电子设备
TW201135287A (en) Wire grid polarizer, liquid crystal device including the wire grid polarizer, 3-D stereoscopic image display device including the wire grid polarizer, and method of manufacturing the wire grid polarizer
CN207851338U (zh) 光学膜
WO2016086450A1 (zh) 导光板、背光模组及液晶显示装置
TW202005139A (zh) 光提取設備及可撓性oled顯示器
CN105093663B (zh) 显示面板及其制作方法、显示装置
US9304244B1 (en) Light guide plate, backlight module, and liquid crystal display device
CN113031387A (zh) 一种掩膜版及显示面板的制作方法
TW200424608A (en) TFT liquid crystal display panel using micro lens array and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949657

Country of ref document: EP

Kind code of ref document: A1