WO2021075572A1 - グルクロン酸転移酵素、それをコードする遺伝子及びその利用方法 - Google Patents
グルクロン酸転移酵素、それをコードする遺伝子及びその利用方法 Download PDFInfo
- Publication number
- WO2021075572A1 WO2021075572A1 PCT/JP2020/039175 JP2020039175W WO2021075572A1 WO 2021075572 A1 WO2021075572 A1 WO 2021075572A1 JP 2020039175 W JP2020039175 W JP 2020039175W WO 2021075572 A1 WO2021075572 A1 WO 2021075572A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- amino acid
- acid sequence
- gene
- polypeptide
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 44
- 108090000623 proteins and genes Proteins 0.000 title abstract description 162
- 102000016354 Glucuronosyltransferase Human genes 0.000 title abstract 3
- 108010092364 Glucuronosyltransferase Proteins 0.000 title abstract 3
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 claims abstract description 88
- 229940097043 glucuronic acid Drugs 0.000 claims abstract description 88
- 241000196324 Embryophyta Species 0.000 claims abstract description 71
- XBZYWSMVVKYHQN-MYPRUECHSA-N (4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-10-hydroxy-2,2,6a,6b,9,12a-hexamethyl-9-[(sulfooxy)methyl]-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid Chemical compound C1C[C@H](O)[C@@](C)(COS(O)(=O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C XBZYWSMVVKYHQN-MYPRUECHSA-N 0.000 claims abstract description 45
- 230000000694 effects Effects 0.000 claims abstract description 44
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 29
- AEMOLEFTQBMNLQ-AQKNRBDQSA-N D-glucopyranuronic acid Chemical compound OC1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-AQKNRBDQSA-N 0.000 claims abstract 6
- MPDGHEJMBKOTSU-YKLVYJNSSA-N 18beta-glycyrrhetic acid Chemical compound C([C@H]1C2=CC(=O)[C@H]34)[C@@](C)(C(O)=O)CC[C@]1(C)CC[C@@]2(C)[C@]4(C)CC[C@@H]1[C@]3(C)CC[C@H](O)C1(C)C MPDGHEJMBKOTSU-YKLVYJNSSA-N 0.000 claims description 215
- MPDGHEJMBKOTSU-UHFFFAOYSA-N Glycyrrhetinsaeure Natural products C12C(=O)C=C3C4CC(C)(C(O)=O)CCC4(C)CCC3(C)C1(C)CCC1C2(C)CCC(O)C1(C)C MPDGHEJMBKOTSU-UHFFFAOYSA-N 0.000 claims description 109
- 229960003720 enoxolone Drugs 0.000 claims description 109
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 86
- 229920001184 polypeptide Polymers 0.000 claims description 84
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 84
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 79
- 108091033319 polynucleotide Proteins 0.000 claims description 77
- 102000040430 polynucleotide Human genes 0.000 claims description 77
- 239000002157 polynucleotide Substances 0.000 claims description 77
- 239000013604 expression vector Substances 0.000 claims description 66
- LPLVUJXQOOQHMX-UHFFFAOYSA-N glycyrrhetinic acid glycoside Natural products C1CC(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2=O)C(O)=O)C)(C)CC2)(C)C2C(C)(C)C1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O LPLVUJXQOOQHMX-UHFFFAOYSA-N 0.000 claims description 60
- UYRUBYNTXSDKQT-UHFFFAOYSA-N glycyrrhizic acid Natural products CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC34C)C(=O)O)OC6OC(C(O)C(O)C6OC7OC(O)C(O)C(O)C7C(=O)O)C(=O)O UYRUBYNTXSDKQT-UHFFFAOYSA-N 0.000 claims description 60
- 229960004949 glycyrrhizic acid Drugs 0.000 claims description 60
- 235000019410 glycyrrhizin Nutrition 0.000 claims description 60
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 claims description 60
- 239000004378 Glycyrrhizin Substances 0.000 claims description 59
- URRZRRQMNMZIAP-UHFFFAOYSA-N Kudzusapogenol C Natural products CC12CCC(O)C(C)(CO)C1CCC1(C)C2CC=C2C3CC(C)(C)C(O)CC3(C)CCC21C URRZRRQMNMZIAP-UHFFFAOYSA-N 0.000 claims description 44
- 239000012634 fragment Substances 0.000 claims description 44
- FSLPMRQHCOLESF-UHFFFAOYSA-N alpha-amyrenol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CCC3C21C FSLPMRQHCOLESF-UHFFFAOYSA-N 0.000 claims description 42
- JFSHUTJDVKUMTJ-QHPUVITPSA-N beta-amyrin Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C JFSHUTJDVKUMTJ-QHPUVITPSA-N 0.000 claims description 42
- QQFMRPIKDLHLKB-UHFFFAOYSA-N beta-amyrin Natural products CC1C2C3=CCC4C5(C)CCC(O)C(C)(C)C5CCC4(C)C3(C)CCC2(C)CCC1(C)C QQFMRPIKDLHLKB-UHFFFAOYSA-N 0.000 claims description 42
- PDNLMONKODEGSE-UHFFFAOYSA-N beta-amyrin acetate Natural products CC(=O)OC1CCC2(C)C(CCC3(C)C4(C)CCC5(C)CCC(C)(C)CC5C4=CCC23C)C1(C)C PDNLMONKODEGSE-UHFFFAOYSA-N 0.000 claims description 42
- MADZMXIFUWFDJK-AEARDBQCSA-N soyasapogenol B Natural products CC1(C)C[C@@H](O)[C@]2(C)CC[C@]3(C)C(=CC[C@@H]4[C@@]5(C)CC[C@H](O[C@@H]6O[C@@H]([C@@H](O)[C@H](O)[C@H]6O[C@@H]7O[C@H](CO)[C@@H](O)[C@H](O)[C@H]7O[C@@H]8OC[C@@H](O)[C@H](O)[C@H]8O)C(=O)O)[C@](C)(CO)[C@@H]5CC[C@@]34C)[C@H]2C1 MADZMXIFUWFDJK-AEARDBQCSA-N 0.000 claims description 42
- YOQAQNKGFOLRGT-UXXABWCISA-N (3beta,22beta)-olean-12-ene-3,22,24-triol Chemical compound C1C[C@H](O)[C@](C)(CO)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)[C@H](O)CC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C YOQAQNKGFOLRGT-UXXABWCISA-N 0.000 claims description 39
- 150000001413 amino acids Chemical class 0.000 claims description 37
- 239000002773 nucleotide Substances 0.000 claims description 28
- 125000003729 nucleotide group Chemical group 0.000 claims description 28
- 235000021374 legumes Nutrition 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 101100111941 Glycyrrhiza uralensis CYP72A154 gene Proteins 0.000 claims description 18
- 101100165165 Glycyrrhiza uralensis CYP88D6 gene Proteins 0.000 claims description 18
- 238000012258 culturing Methods 0.000 claims description 18
- 230000001590 oxidative effect Effects 0.000 claims description 7
- 241000220485 Fabaceae Species 0.000 claims description 6
- 150000003648 triterpenes Chemical class 0.000 claims description 6
- JCGXIYQLRYPHDG-DQOTWGJISA-N 30-hydroxy-11-oxo-beta-amyrin Chemical compound C([C@H]1C2=CC(=O)[C@H]34)[C@@](C)(CO)CC[C@]1(C)CC[C@@]2(C)[C@]4(C)CC[C@@H]1[C@]3(C)CC[C@H](O)C1(C)C JCGXIYQLRYPHDG-DQOTWGJISA-N 0.000 claims description 5
- -1 30-hydroxy-β-amylin Chemical compound 0.000 claims description 5
- UKAIYBGRLWQHDQ-KWRVYEIKSA-N 11-oxo-beta-amyrin Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CCC(C)(C)C[C@H]5C4=CC(=O)[C@@H]3[C@]21C UKAIYBGRLWQHDQ-KWRVYEIKSA-N 0.000 claims description 4
- MIJYXULNPSFWEK-GTOFXWBISA-N 3beta-hydroxyolean-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C MIJYXULNPSFWEK-GTOFXWBISA-N 0.000 claims description 4
- UKAIYBGRLWQHDQ-UHFFFAOYSA-N beta-Amyrenonol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C)CCC(C)(C)CC5C4=CC(=O)C3C21C UKAIYBGRLWQHDQ-UHFFFAOYSA-N 0.000 claims description 4
- NTWLPZMPTFQYQI-UHFFFAOYSA-N (3alpha)-olean-12-ene-3,23-diol Natural products C1CC(O)C(C)(CO)C2CCC3(C)C4(C)CCC5(C)CCC(C)(C)CC5C4=CCC3C21C NTWLPZMPTFQYQI-UHFFFAOYSA-N 0.000 claims description 3
- CDDWAYFUFNQLRZ-KJVHGCRFSA-N (3beta,21beta,22beta)-olean-12-ene-3,21,22,24-tetrol Chemical compound C([C@@]12C)C[C@H](O)[C@](C)(CO)[C@@H]1CC[C@]1(C)[C@@H]2CC=C2[C@@H]3CC(C)(C)[C@@H](O)[C@@H](O)[C@]3(C)CC[C@]21C CDDWAYFUFNQLRZ-KJVHGCRFSA-N 0.000 claims description 3
- JKLISIRFYWXLQG-UHFFFAOYSA-N Epioleonolsaeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)CC5C4CCC3C21C JKLISIRFYWXLQG-UHFFFAOYSA-N 0.000 claims description 3
- GCGBHJLBFAPRDB-UHFFFAOYSA-N Hederagenin Natural products CC1(C)CCC2(CCC3(C)C4CCC5C(C)(CO)C(O)CCC5(C)C4CC=C3C2C1)C(=O)O GCGBHJLBFAPRDB-UHFFFAOYSA-N 0.000 claims description 3
- IDGXIXSKISLYAC-WNTKNEGGSA-N Medicagenic acid Chemical compound C1[C@H](O)[C@H](O)[C@@](C)(C(O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C IDGXIXSKISLYAC-WNTKNEGGSA-N 0.000 claims description 3
- YBRJHZPWOMJYKQ-UHFFFAOYSA-N Oleanolic acid Natural products CC1(C)CC2C3=CCC4C5(C)CCC(O)C(C)(C)C5CCC4(C)C3(C)CCC2(C1)C(=O)O YBRJHZPWOMJYKQ-UHFFFAOYSA-N 0.000 claims description 3
- MIJYXULNPSFWEK-UHFFFAOYSA-N Oleanolinsaeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C)(C)CC5C4=CCC3C21C MIJYXULNPSFWEK-UHFFFAOYSA-N 0.000 claims description 3
- GCGBHJLBFAPRDB-KCVAUKQGSA-N Scutellaric acid Natural products CC1(C)CC[C@@]2(CC[C@@]3(C)[C@@H]4CC[C@H]5[C@@](C)(CO)[C@H](O)CC[C@]5(C)[C@H]4CC=C3[C@@H]2C1)C(=O)O GCGBHJLBFAPRDB-KCVAUKQGSA-N 0.000 claims description 3
- 230000000295 complement effect Effects 0.000 claims description 3
- PGOYMURMZNDHNS-MYPRUECHSA-N hederagenin Chemical compound C1C[C@H](O)[C@@](C)(CO)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C PGOYMURMZNDHNS-MYPRUECHSA-N 0.000 claims description 3
- FLDQIFMZAMYFJR-UHFFFAOYSA-N medicagenic acid Natural products CC1(C)CCC2(CCC3(C)C(=CCC4(C)C5(C)CC(O)C(O)C(C)(C5CCC34C)C(=O)O)C2C1)C(=O)O FLDQIFMZAMYFJR-UHFFFAOYSA-N 0.000 claims description 3
- 229940100243 oleanolic acid Drugs 0.000 claims description 3
- HZLWUYJLOIAQFC-UHFFFAOYSA-N prosapogenin PS-A Natural products C12CC(C)(C)CCC2(C(O)=O)CCC(C2(CCC3C4(C)C)C)(C)C1=CCC2C3(C)CCC4OC1OCC(O)C(O)C1O HZLWUYJLOIAQFC-UHFFFAOYSA-N 0.000 claims description 3
- CDDWAYFUFNQLRZ-UHFFFAOYSA-N soyasapogenol A Natural products CC12CCC(O)C(C)(CO)C1CCC1(C)C2CC=C2C3CC(C)(C)C(O)C(O)C3(C)CCC21C CDDWAYFUFNQLRZ-UHFFFAOYSA-N 0.000 claims description 3
- NTWLPZMPTFQYQI-FLZFTVBESA-N (3beta)-olean-12-ene-3,24-diol Chemical compound C1C[C@H](O)[C@](C)(CO)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CCC(C)(C)C[C@H]5C4=CC[C@@H]3[C@]21C NTWLPZMPTFQYQI-FLZFTVBESA-N 0.000 claims description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 2
- 244000068988 Glycine max Species 0.000 abstract description 53
- 235000010469 Glycine max Nutrition 0.000 abstract description 53
- 241001480167 Lotus japonicus Species 0.000 abstract description 31
- 238000012546 transfer Methods 0.000 abstract description 26
- 240000008917 Glycyrrhiza uralensis Species 0.000 abstract description 10
- 235000000554 Glycyrrhiza uralensis Nutrition 0.000 abstract description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 113
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 113
- 239000000523 sample Substances 0.000 description 81
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 71
- 239000013598 vector Substances 0.000 description 63
- 244000303040 Glycyrrhiza glabra Species 0.000 description 49
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 47
- 235000001453 Glycyrrhiza echinata Nutrition 0.000 description 46
- 235000017382 Glycyrrhiza lepidota Nutrition 0.000 description 46
- 229940010454 licorice Drugs 0.000 description 46
- 108090000992 Transferases Proteins 0.000 description 39
- 239000000284 extract Substances 0.000 description 38
- 238000006243 chemical reaction Methods 0.000 description 37
- 102000004357 Transferases Human genes 0.000 description 35
- 238000004458 analytical method Methods 0.000 description 33
- 239000002207 metabolite Substances 0.000 description 33
- 239000000758 substrate Substances 0.000 description 30
- 108090000790 Enzymes Proteins 0.000 description 26
- 210000004027 cell Anatomy 0.000 description 25
- 102000004190 Enzymes Human genes 0.000 description 23
- NARQRJFIZNOSJV-UHFFFAOYSA-N Soyasapogenol B monoglucuronide Natural products C12CC(C)(C)CC(O)C2(C)CCC(C2(CCC3C4(CO)C)C)(C)C1=CCC2C3(C)CCC4OC1OC(C(O)=O)C(O)C(O)C1O NARQRJFIZNOSJV-UHFFFAOYSA-N 0.000 description 23
- 238000003556 assay Methods 0.000 description 23
- 229940088598 enzyme Drugs 0.000 description 23
- NARQRJFIZNOSJV-JIHAXZPOSA-N soyasapogenol B 3-O-beta-glucuronide Chemical compound O([C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2[C@]1(CO)C)C)(C)CC[C@@]1(C)[C@H](O)CC(C[C@H]14)(C)C)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O NARQRJFIZNOSJV-JIHAXZPOSA-N 0.000 description 23
- 108020004414 DNA Proteins 0.000 description 22
- 238000001514 detection method Methods 0.000 description 22
- 239000000203 mixture Substances 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 239000002609 medium Substances 0.000 description 20
- 230000014509 gene expression Effects 0.000 description 19
- 239000013642 negative control Substances 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 16
- 239000013612 plasmid Substances 0.000 description 15
- 230000002441 reversible effect Effects 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000002299 complementary DNA Substances 0.000 description 14
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 12
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 12
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 11
- 239000002253 acid Substances 0.000 description 11
- 238000010367 cloning Methods 0.000 description 11
- 238000000605 extraction Methods 0.000 description 11
- 230000014759 maintenance of location Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 210000005253 yeast cell Anatomy 0.000 description 11
- 241001061264 Astragalus Species 0.000 description 10
- 230000002950 deficient Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 235000006533 astragalus Nutrition 0.000 description 9
- 230000003570 biosynthesizing effect Effects 0.000 description 9
- 238000001819 mass spectrum Methods 0.000 description 9
- 230000006798 recombination Effects 0.000 description 9
- 238000005215 recombination Methods 0.000 description 9
- 210000004233 talus Anatomy 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- QGJZLNKBHJESQX-UHFFFAOYSA-N 3-Epi-Betulin-Saeure Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(=C)C)C5C4CCC3C21C QGJZLNKBHJESQX-UHFFFAOYSA-N 0.000 description 8
- CLOUCVRNYSHRCF-UHFFFAOYSA-N 3beta-Hydroxy-20(29)-Lupen-3,27-oic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C(O)=O)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C CLOUCVRNYSHRCF-UHFFFAOYSA-N 0.000 description 8
- DIZWSDNSTNAYHK-XGWVBXMLSA-N Betulinic acid Natural products CC(=C)[C@@H]1C[C@H]([C@H]2CC[C@]3(C)[C@H](CC[C@@H]4[C@@]5(C)CC[C@H](O)C(C)(C)[C@@H]5CC[C@@]34C)[C@@H]12)C(=O)O DIZWSDNSTNAYHK-XGWVBXMLSA-N 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- QGJZLNKBHJESQX-FZFNOLFKSA-N betulinic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C(=C)C)[C@@H]5[C@H]4CC[C@@H]3[C@]21C QGJZLNKBHJESQX-FZFNOLFKSA-N 0.000 description 8
- PZXJOHSZQAEJFE-UHFFFAOYSA-N dihydrobetulinic acid Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(C)C)C5C4CCC3C21C PZXJOHSZQAEJFE-UHFFFAOYSA-N 0.000 description 8
- MQYXUWHLBZFQQO-UHFFFAOYSA-N nepehinol Natural products C1CC(O)C(C)(C)C2CCC3(C)C4(C)CCC5(C)CCC(C(=C)C)C5C4CCC3C21C MQYXUWHLBZFQQO-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- WCGUUGGRBIKTOS-GPOJBZKASA-N (3beta)-3-hydroxyurs-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C WCGUUGGRBIKTOS-GPOJBZKASA-N 0.000 description 7
- KFFJPIQLAPHYBF-UHFFFAOYSA-N Azukisaponin V Natural products COC(=O)C1OC(OC2CCC3(C)C(CCC4(C)C3CC=C5C6CC(C)(C)CC(O)C6(O)CCC45C)C2(C)CO)C(OC7OC(CO)C(O)C(O)C7OC8OC(C)C(O)C(O)C8O)C(O)C1O KFFJPIQLAPHYBF-UHFFFAOYSA-N 0.000 description 7
- 238000000137 annealing Methods 0.000 description 7
- 210000004899 c-terminal region Anatomy 0.000 description 7
- 230000036252 glycation Effects 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 238000002955 isolation Methods 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 229930182490 saponin Natural products 0.000 description 7
- 150000007949 saponins Chemical class 0.000 description 7
- 235000017709 saponins Nutrition 0.000 description 7
- PTDAHAWQAGSZDD-IOVCITQVSA-N soyasaponin I Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O[C@H]2[C@@H](O[C@@H]([C@@H](O)[C@@H]2O)C(O)=O)O[C@@H]2[C@]([C@H]3[C@]([C@@H]4[C@@]([C@@]5(CC[C@@]6(C)[C@H](O)CC(C)(C)C[C@H]6C5=CC4)C)(C)CC3)(C)CC2)(C)CO)O[C@H](CO)[C@H](O)[C@@H]1O PTDAHAWQAGSZDD-IOVCITQVSA-N 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- PLSAJKYPRJGMHO-UHFFFAOYSA-N ursolic acid Natural products CC1CCC2(CCC3(C)C(C=CC4C5(C)CCC(O)C(C)(C)C5CCC34C)C2C1C)C(=O)O PLSAJKYPRJGMHO-UHFFFAOYSA-N 0.000 description 7
- 229940096998 ursolic acid Drugs 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- JFHRJMPZZYINAI-UHFFFAOYSA-N Soyasaponin I Natural products CC1OC(OC2C(O)C(O)C(CO)OC2OC3C(O)C(O)C(CO)OC3OC4CCC5(C)C(CCC6(C)C5CC=C7C8CC(C)(C)CC(O)C8(C)CCC67C)C4(C)CO)C(O)C(O)C1O JFHRJMPZZYINAI-UHFFFAOYSA-N 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 108010064634 2,3-oxidosqualene-beta-amyrin-cyclase Proteins 0.000 description 5
- 241000701489 Cauliflower mosaic virus Species 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 5
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 230000002255 enzymatic effect Effects 0.000 description 5
- 239000000937 glycosyl acceptor Substances 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 5
- 238000002025 liquid chromatography-photodiode array detection Methods 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 230000037361 pathway Effects 0.000 description 5
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 150000008130 triterpenoid saponins Chemical class 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 241000219828 Medicago truncatula Species 0.000 description 4
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 4
- 102000057144 Uridine Diphosphate Glucose Dehydrogenase Human genes 0.000 description 4
- 108010054269 Uridine Diphosphate Glucose Dehydrogenase Proteins 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 239000000419 plant extract Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- TXJTZIIDMZBTEB-UHFFFAOYSA-N (3alpha,11alpha)-3,11,23-Trihydroxy-20(29)-lupen-28-oic acid Natural products C1CC(O)C(C)(CO)C2CCC3(C)C4(C)CCC5(C(O)=O)CCC(C(=C)C)C5C4CC(O)C3C21C TXJTZIIDMZBTEB-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000589158 Agrobacterium Species 0.000 description 3
- 241000228212 Aspergillus Species 0.000 description 3
- 244000063299 Bacillus subtilis Species 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 108700023372 Glycosyltransferases Proteins 0.000 description 3
- 102000051366 Glycosyltransferases Human genes 0.000 description 3
- 244000308760 Helichrysum petiolatum Species 0.000 description 3
- 235000013537 Helichrysum petiolatum Nutrition 0.000 description 3
- 125000002707 L-tryptophyl group Chemical group [H]C1=C([H])C([H])=C2C(C([C@](N([H])[H])(C(=O)[*])[H])([H])[H])=C([H])N([H])C2=C1[H] 0.000 description 3
- 241000219743 Lotus Species 0.000 description 3
- 229930185199 Sapogenol Natural products 0.000 description 3
- HDYANYHVCAPMJV-UHFFFAOYSA-N Uridine diphospho-D-glucuronic acid Natural products O1C(N2C(NC(=O)C=C2)=O)C(O)C(O)C1COP(O)(=O)OP(O)(=O)OC1OC(C(O)=O)C(O)C(O)C1O HDYANYHVCAPMJV-UHFFFAOYSA-N 0.000 description 3
- 238000012197 amplification kit Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 230000001851 biosynthetic effect Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 125000002168 glycyrrhetinic acid group Chemical group 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 125000000915 soyasapogenol B group Chemical group 0.000 description 3
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N squalane Chemical compound CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000005918 transglycosylation reaction Methods 0.000 description 3
- HDYANYHVCAPMJV-USQUEEHTSA-N udp-glucuronic acid Chemical compound O([P@](O)(=O)O[P@](O)(=O)OC[C@H]1[C@@H]([C@H]([C@@H](O1)N1C(NC(=O)C=C1)=O)O)O)[C@H]1O[C@@H](C(O)=O)[C@H](O)[C@@H](O)[C@@H]1O HDYANYHVCAPMJV-USQUEEHTSA-N 0.000 description 3
- 241000701447 unidentified baculovirus Species 0.000 description 3
- OYONPFUYHNGECE-UBWAPJCPSA-N (3S,4aR,6aR,6bS,8aS,11S,12aR,14aR,14bR)-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@](C)(CO)C[C@H]5C4=CC[C@@H]3[C@]21C OYONPFUYHNGECE-UBWAPJCPSA-N 0.000 description 2
- JZFSMVXQUWRSIW-BTJIZOSBSA-N 11-Deoxoglycyrrhetinic acid Chemical compound C([C@H]1C2=CC[C@H]34)[C@@](C)(C(O)=O)CC[C@]1(C)CC[C@@]2(C)[C@]4(C)CC[C@@H]1[C@]3(C)CC[C@H](O)C1(C)C JZFSMVXQUWRSIW-BTJIZOSBSA-N 0.000 description 2
- JZFSMVXQUWRSIW-UHFFFAOYSA-N 3alpha-hydroxyolean-12-en-30-oic acid Natural products C12CC=C3C4CC(C)(C(O)=O)CCC4(C)CCC3(C)C1(C)CCC1C2(C)CCC(O)C1(C)C JZFSMVXQUWRSIW-UHFFFAOYSA-N 0.000 description 2
- TWCMVXMQHSVIOJ-UHFFFAOYSA-N Aglycone of yadanzioside D Natural products COC(=O)C12OCC34C(CC5C(=CC(O)C(O)C5(C)C3C(O)C1O)C)OC(=O)C(OC(=O)C)C24 TWCMVXMQHSVIOJ-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- PLMKQQMDOMTZGG-UHFFFAOYSA-N Astrantiagenin E-methylester Natural products CC12CCC(O)C(C)(CO)C1CCC1(C)C2CC=C2C3CC(C)(C)CCC3(C(=O)OC)CCC21C PLMKQQMDOMTZGG-UHFFFAOYSA-N 0.000 description 2
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 2
- 241000194108 Bacillus licheniformis Species 0.000 description 2
- 241000194103 Bacillus pumilus Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 2
- 108010060309 Glucuronidase Proteins 0.000 description 2
- 102000053187 Glucuronidase Human genes 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 240000004670 Glycyrrhiza echinata Species 0.000 description 2
- 240000008693 Glycyrrhiza lepidota Species 0.000 description 2
- 241001164654 Glycyrrhiza yunnanensis Species 0.000 description 2
- 241000522165 Hardenbergia Species 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- 241000219745 Lupinus Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 101100111942 Medicago truncatula CYP72A63 gene Proteins 0.000 description 2
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 2
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 2
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 2
- VNGUCOGHCJHFID-FLZFTVBESA-N Soyasapogenol C Chemical compound C([C@@]12C)C[C@H](O)[C@](C)(CO)[C@@H]1CC[C@]1(C)[C@@H]2CC=C2[C@@H]3CC(C)(C)C=C[C@]3(C)CC[C@]21C VNGUCOGHCJHFID-FLZFTVBESA-N 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 239000004098 Tetracycline Substances 0.000 description 2
- 241000723873 Tobacco mosaic virus Species 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 239000013599 cloning vector Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- BABWHSBPEIVBBZ-UHFFFAOYSA-N diazete Chemical compound C1=CN=N1 BABWHSBPEIVBBZ-UHFFFAOYSA-N 0.000 description 2
- 238000001952 enzyme assay Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000003147 glycosyl group Chemical group 0.000 description 2
- PFOARMALXZGCHY-UHFFFAOYSA-N homoegonol Natural products C1=C(OC)C(OC)=CC=C1C1=CC2=CC(CCCO)=CC(OC)=C2O1 PFOARMALXZGCHY-UHFFFAOYSA-N 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 108010058731 nopaline synthase Proteins 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229930189104 soyasapogenol Natural products 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229960002180 tetracycline Drugs 0.000 description 2
- 229930101283 tetracycline Natural products 0.000 description 2
- 235000019364 tetracycline Nutrition 0.000 description 2
- 150000003522 tetracyclines Chemical class 0.000 description 2
- 230000006098 transglycosylation Effects 0.000 description 2
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- NBGQZFQREPIKMG-UHFFFAOYSA-N 3beta-hydroxy-beta-boswellic acid Natural products C1CC(O)C(C)(C(O)=O)C2CCC3(C)C4(C)CCC5(C)CCC(C)C(C)C5C4=CCC3C21C NBGQZFQREPIKMG-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 101150021974 Adh1 gene Proteins 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102100034042 Alcohol dehydrogenase 1C Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 101100309713 Arabidopsis thaliana SD129 gene Proteins 0.000 description 1
- 235000003911 Arachis Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 241001219293 Aspalathus Species 0.000 description 1
- 241000213948 Astragalus sinicus Species 0.000 description 1
- 241001203868 Autographa californica Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 101100277447 Bacillus subtilis (strain 168) degQ gene Proteins 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- NBGQZFQREPIKMG-PONOSELZSA-N Boswellic acid Chemical compound C1C[C@@H](O)[C@](C)(C(O)=O)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C NBGQZFQREPIKMG-PONOSELZSA-N 0.000 description 1
- 101100280051 Brucella abortus biovar 1 (strain 9-941) eryH gene Proteins 0.000 description 1
- 101150104073 CYP72A154 gene Proteins 0.000 description 1
- 101150013567 CYP72A63 gene Proteins 0.000 description 1
- 101150007143 CYP88D6 gene Proteins 0.000 description 1
- 241000220442 Cajanus Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000220451 Canavalia Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241001107114 Castanospermum Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000010521 Cicer Nutrition 0.000 description 1
- 241000220455 Cicer Species 0.000 description 1
- 101000796894 Coturnix japonica Alcohol dehydrogenase 1 Proteins 0.000 description 1
- 241000219748 Cyamopsis Species 0.000 description 1
- 241000252210 Cyprinidae Species 0.000 description 1
- 241000219758 Cytisus Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 240000002635 Dendrocalamus asper Species 0.000 description 1
- 241000522190 Desmodium Species 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000246169 Genista Species 0.000 description 1
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000202807 Glycyrrhiza Species 0.000 description 1
- 241001351508 Glycyrrhiza acanthocarpa Species 0.000 description 1
- 241000126700 Glycyrrhiza eurycarpa Species 0.000 description 1
- 241001278898 Glycyrrhiza inflata Species 0.000 description 1
- 241001279772 Glycyrrhiza pallidiflora Species 0.000 description 1
- 240000008669 Hedera helix Species 0.000 description 1
- 241000214032 Hedysarum Species 0.000 description 1
- 235000017443 Hedysarum boreale Nutrition 0.000 description 1
- 235000007858 Hedysarum occidentale Nutrition 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101000780463 Homo sapiens Alcohol dehydrogenase 1C Proteins 0.000 description 1
- 101000801742 Homo sapiens Triosephosphate isomerase Proteins 0.000 description 1
- 206010021033 Hypomenorrhoea Diseases 0.000 description 1
- 108700002232 Immediate-Early Genes Proteins 0.000 description 1
- 241001062009 Indigofera Species 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical group CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000219729 Lathyrus Species 0.000 description 1
- 241000522169 Lespedeza Species 0.000 description 1
- VTAJIXDZFCRWBR-UHFFFAOYSA-N Licoricesaponin B2 Natural products C1C(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2)C(O)=O)C)(C)CC2)(C)C2C(C)(C)CC1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O VTAJIXDZFCRWBR-UHFFFAOYSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 241001521402 Maackia <angiosperm> Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000009112 Mannose-Binding Lectin Human genes 0.000 description 1
- 108010087870 Mannose-Binding Lectin Proteins 0.000 description 1
- 241000219823 Medicago Species 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 241000122904 Mucuna Species 0.000 description 1
- 101100235161 Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) lerI gene Proteins 0.000 description 1
- 108010045510 NADPH-Ferrihemoprotein Reductase Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 241000522652 Ormosia <angiosperm> Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241001053158 Oxytropis Species 0.000 description 1
- 101150053185 P450 gene Proteins 0.000 description 1
- 241000219833 Phaseolus Species 0.000 description 1
- 241000219843 Pisum Species 0.000 description 1
- 101710182846 Polyhedrin Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 101710093543 Probable non-specific lipid-transfer protein Proteins 0.000 description 1
- 244000279064 Psophocarpus palustris Species 0.000 description 1
- 235000014465 Psophocarpus palustris Nutrition 0.000 description 1
- 244000086363 Pterocarpus indicus Species 0.000 description 1
- 235000009984 Pterocarpus indicus Nutrition 0.000 description 1
- 241000219780 Pueraria Species 0.000 description 1
- 108020005091 Replication Origin Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 244000100205 Robinia Species 0.000 description 1
- 101100545229 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ZDS2 gene Proteins 0.000 description 1
- 241000235343 Saccharomycetales Species 0.000 description 1
- 101100113084 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mcs2 gene Proteins 0.000 description 1
- 101000611441 Solanum lycopersicum Pathogenesis-related leaf protein 6 Proteins 0.000 description 1
- 241000219784 Sophora Species 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 241000246048 Spartium Species 0.000 description 1
- 241000976424 Styphnolobium Species 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 108010022394 Threonine synthase Proteins 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- 241001312519 Trigonella Species 0.000 description 1
- 102100033598 Triosephosphate isomerase Human genes 0.000 description 1
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 241000505722 Uraria Species 0.000 description 1
- 101100167209 Ustilago maydis (strain 521 / FGSC 9021) CHS8 gene Proteins 0.000 description 1
- 241000219873 Vicia Species 0.000 description 1
- 241000219977 Vigna Species 0.000 description 1
- 229930003451 Vitamin B1 Natural products 0.000 description 1
- 241000219995 Wisteria Species 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- RQBBFKINEJYDOB-UHFFFAOYSA-N acetic acid;acetonitrile Chemical compound CC#N.CC(O)=O RQBBFKINEJYDOB-UHFFFAOYSA-N 0.000 description 1
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 101150009288 amyB gene Proteins 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000011681 asexual reproduction Effects 0.000 description 1
- 238000013465 asexual reproduction Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000034303 cell budding Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 108010040093 cellulose synthase Proteins 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 244000195896 dadap Species 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 102000004419 dihydrofolate reductase Human genes 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 244000013123 dwarf bean Species 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 108010061330 glucan 1,4-alpha-maltohydrolase Proteins 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 229930182480 glucuronide Natural products 0.000 description 1
- 150000008134 glucuronides Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- HLDYLAJAWSKPFZ-QDPIGISRSA-N glycyrrhetic acid 3-O-glucuronide Chemical compound O([C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O HLDYLAJAWSKPFZ-QDPIGISRSA-N 0.000 description 1
- 239000001947 glycyrrhiza glabra rhizome/root Substances 0.000 description 1
- 239000001685 glycyrrhizic acid Substances 0.000 description 1
- 235000021331 green beans Nutrition 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000011147 magnesium chloride Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- IUCHKMAZAWJNBJ-RCYXVVTDSA-N oleanolic acid 3-O-beta-D-glucosiduronic acid Chemical compound O([C@H]1CC[C@]2(C)[C@H]3CC=C4[C@@]([C@@]3(CC[C@H]2C1(C)C)C)(C)CC[C@]1(CCC(C[C@H]14)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O IUCHKMAZAWJNBJ-RCYXVVTDSA-N 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 244000138993 panchioli Species 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000004161 plant tissue culture Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004366 reverse phase liquid chromatography Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 230000014639 sexual reproduction Effects 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 101150080369 tpiA gene Proteins 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000006276 transfer reaction Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000002094 transglycosylational effect Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 230000009417 vegetative reproduction Effects 0.000 description 1
- 238000013466 vegetative reproduction Methods 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011691 vitamin B1 Substances 0.000 description 1
- 235000010374 vitamin B1 Nutrition 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 239000007222 ypd medium Substances 0.000 description 1
- 239000007221 ypg medium Substances 0.000 description 1
- 239000007206 ypm medium Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/44—Preparation of O-glycosides, e.g. glucosides
- C12P19/56—Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/54—Leguminosae or Fabaceae, e.g. soybean, alfalfa or peanut
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/14—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y204/00—Glycosyltransferases (2.4)
- C12Y204/01—Hexosyltransferases (2.4.1)
- C12Y204/01017—Glucuronosyltransferase (2.4.1.17)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/10—Plasmid DNA
- C12N2800/102—Plasmid DNA for yeast
Definitions
- the present invention relates to an enzyme that transfers glucuronic acid to the hydroxyl group at the 3-position of an oleanane-type triterpenoid, a gene encoding the enzyme, and a method for producing glycyrrhizin.
- Glycyrrhiza uralensis (Glycyrrhiza uralensis) is a perennial herbaceous plant of the leguminous family. The root and stolon of this plant are known as "licorice", an important crude drug in Chinese medicine, and are widely used worldwide.
- the main active ingredient of licorice is glycyrrhizin, an oleanane-type triterpenoid saponin (Non-Patent Document 1). Glycyrrhizin has been studied from various aspects such as its pharmacognosy, pharmacological usefulness, and breeding research.
- the genes involved in the glycyrrhizin biosynthesis system and the expression level of the genes are used as markers to establish optimal production conditions and glycyrrhizin. It is necessary to breed high-producing plants of glycyrrhizin by selecting high-producing strains or introducing synthase genes. For that purpose, identification of genes involved in the biosynthetic system of glycyrrhizin is indispensable.
- Glycyrrhizin is commonly contained in plants and is biosynthesized by a two-step oxidation reaction and a two-step glycation reaction using ⁇ -amyrin, which belongs to the oleanane-type triterpenoid, as a starting material.
- ⁇ -Amyrin is known to be a precursor substance that serves as a biosynthetic junction between glycyrrhizin and soyasaponin I in the triterpenoid saponin biosynthesis system (Fig. 1).
- the synthases from ⁇ -amylline to glycyrrhizin have so far been the two-step oxidation reaction for biosynthesizing glycyrrhetinic acid, which is an aglycone (non-sugar portion) of glycyrrhizin, from ⁇ -amylin.
- Patent Document 1 Two oxidases CYP88D6 (Patent Document 1) and CYP72A154 (Patent Document 2) that catalyze each of the above, and synthesis that biosynthesizes glycyrrhizin by catalyzing the above-mentioned two-step glycation reaction with the obtained glycyrrhetinic acid.
- Patent Document 3 the glycosyltransferase UGT73P12 (Patent Document 3) that catalyzes the second step has been known.
- the present invention isolates a gene for glucuronic acid first transferase that catalyzes glucuronic acid transfer to the hydroxyl group at the 3-position of oleanane-type triterpenoids such as glycyrrhetinic acid, and expresses the gene. It is an object of the present invention to prepare and provide a biological expression system capable of biosynthesizing a large amount of ⁇ -amylin to glycyrrhizin in an individual or in a cell using the system.
- Legumes to which licorice plants belong generally have a pathway for biosynthesizing soyasaponin I from ⁇ -amyrin via soyasapogenol B as an intermediate (Fig. 1).
- the oleanane-type triterpenoid soyasapogenol B has a hydroxyl group at the 3-position, while the final product, soyasaponin I, has glucuronic acid bound at the 3-position.
- glycyrrhetinic acid which is an intermediate product and an oleanane-type triterpenoid, has a hydroxyl group at the 3-position, whereas glucuronic acid is bound to the 3-position of the final product, glycyrrhizin. That is, glucuronic acid first transferase that functions in the biosynthetic pathway from ⁇ -amyrin to glycyrrhizin may also function in the biosynthetic pathway from ⁇ -amyrin to soyasaponin I.
- the present inventors attempted to identify a gene capable of having glucuronic acid first transfer activity from soybean having a biosynthetic pathway from ⁇ -amyrin to soyasaponin I, and as a result, a specific function was obtained.
- As a result of verifying the transglycosylation activity of this enzyme using soyasapogenol B as a sugar-accepting substrate it was clarified that glucuronic acid is transglycosylated to the hydroxyl group at the 3-position of soyasapogenol B. This enzymatic activity was similar even when the sugar accepting substrate was glycyrrhetinic acid.
- the present inventors have succeeded in identifying the first glucuronic acid transferase that could not be isolated so far by changing the derived plant to soybean instead of the licorice genus plant.
- the present invention is based on the research results and provides the following.
- A Amino acid sequence shown by any of SEQ ID NOs: 1, 3, and 5.
- B An amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in any of SEQ ID NOs: 1, 3, and 5, or
- SEQ ID NOs: 1, 3, and 5 An amino acid sequence polypeptide having 80% or more identity with the amino acid sequence shown in any of the above.
- the oleanane-type triterpenoids are ⁇ -amyrin, 11-oxo- ⁇ -amyrin, 30-hydroxy-11-oxo- ⁇ -amyrin, 30-hydroxy- ⁇ -amylin, 24-hydroxy- ⁇ -amyrin, 11 -The polypeptide according to (1), which is selected from the group consisting of deoxoglycyrrhetinic acid, glycyrrhetinic acid, oleanolic acid, medicagenic acid, soyasapogenol B, soyasapogenol A, hederagenin, amyrinin, and psychogenin.
- the polypeptide according to (1) or (2) which is derived from a legume (Fabaceae) plant.
- the polynucleotide according to (4) which comprises any of the base sequences shown in (a) to (d) below.
- the method comprising the step of culturing the above-mentioned culture and the step of extracting the polypeptide according to any one of (1) to (3) from the culture.
- (13) A genetically recombinant product capable of biosynthesizing ⁇ -amyrin and containing all the expression vectors shown in (A) to (D) below for producing glycyrrhizin.
- a CYP88D6 expression vector which has an activity of oxidizing the 11th position of an oleanane-type triterpenoid and contains a polypeptide containing any of the amino acid sequences shown in (a) to (c) below.
- (A) The amino acid sequence shown in SEQ ID NO: 7.
- Array (B) A CYP72A154 expression vector, which has an activity of oxidizing the 30th position in an oleanane-type triterpenoid and contains a polypeptide containing any of the amino acid sequences shown in (d) to (f) below.
- a polypeptide having an activity of transferring glucuronic acid to the hydroxy group at the 3-position of an oleanane-type triterpenoid it is possible to provide a polypeptide having an activity of transferring glucuronic acid to the hydroxy group at the 3-position of an oleanane-type triterpenoid, a polynucleotide encoding the polypeptide, or a method using them.
- the biosynthetic pathway of glycyrrhizin and soyasaponin I in the triterpenoid saponin biosynthesis system is shown.
- the catalytic position of the acid first transferase CSyGT is shown.
- FIG. 5 is a conceptual diagram showing a triterpenoid-producing yeast strain used in the functional analysis of soybean Glyma.06G324300 and Glyma.06G324300 homologous protein derived from licorice and Lotus japonicus in Examples.
- the yeast strain of (a) produces glycyrrhetinic acid from 2,3-oxide squalane inherent in yeast by co-expressing the ⁇ -amyrin synthase gene (derived from Miyakogusa), CYP88D6 (derived from licorice), and CYP72A63 (derived from Medicago truncatula). It can be produced intracellularly.
- the yeast strain of (b) simultaneously expresses the ⁇ -amyrin synthase gene (derived from licorice), CYP93E3 (derived from licorice), and CYP72A566 (derived from licorice) to cell soyasapogenol B from 2,3-oxide squalene endogenous to yeast.
- ⁇ -amyrin synthase gene derived from licorice
- CYP93E3 derived from licorice
- CYP72A566 derived from licorice
- Sample A of (a) expresses Glyma.06G324300 derived from soybean
- sample B of (b) expresses Glyur003152s00037491 derived from licorice
- sample C of (c) expresses Lj3g3v1981230 derived from Lotus japonicus in glycyrrhetinic acid-producing yeast.
- This is the detection result of glycyrrhetinic acid monoglucuronide produced thereby.
- the peak of the black arrow indicates glycyrrhetinic acid monoglucuronide.
- Sample D in (d) is the detection result in glycyrrhetinic acid-producing yeast into which an empty vector was introduced as a negative control.
- sample H in (d) is the detection result in soyasapogenol B-producing yeast into which an empty vector was introduced as a negative control. It is a figure which shows the outline of the substrate feeding experiment.
- UDP-glucuronic acid intracellularly, UDP-glucose dehydrogenase (AtUGD) of Arabidopsis thaliana and Glyma.06G324300 and their homologous genes were co-expressed in yeast.
- A is a diagram of conversion reaction to monoglucuronide when glycyrrhetinic acid is administered to the yeast culture medium and
- (b) is a diagram of soyasapogenol B administered to the yeast culture medium.
- the peak of the black arrow indicates glycyrrhetinic acid monoglucuronide. It is a figure which shows the metabolite analysis result in Glyur003152s00037491 introduction yeast derived from licorice which fed glycyrrhetinic acid.
- A It is a conceptual diagram of the expected conversion reaction to glycyrrhetinic acid monoglucuronide when Glyur003152s00037491 is used.
- B The detection result of glycyrrhetinic acid before conversion is shown. The peak of the white arrow indicates glycyrrhetinic acid.
- the peak of the white arrow indicates glycyrrhetinic acid.
- C The detection result of glycyrrhetinic acid monoglucuronide produced by Lj3g3v1981230 is shown. The peak of the black arrow indicates glycyrrhetinic acid monoglucuronide. It is a figure which shows the metabolite analysis result in the empty vector-introduced yeast which fed glycyrrhetinic acid with the negative control of FIGS. 7-9.
- A It is a conceptual diagram of a possible conversion reaction to glycyrrhetinic acid monoglucuronide when an empty vector is used.
- glycyrrhetinic acid monoglucuronide It is expected that glycyrrhetinic acid monoglucuronide will not be produced due to lack of enzymatic activity.
- B The detection result of glycyrrhetinic acid before the reaction is shown. The peak of the white arrow indicates glycyrrhetinic acid.
- C The detection result of glycyrrhetinic acid monoglucuronide after the reaction is shown. The peak of the black arrow indicates glycyrrhetinic acid monoglucuronide. The dashed arrow indicates the peak occurrence position when glycyrrhetinic acid monoglucuronide is produced.
- the peak of the black arrow indicates soyasapogenol B monoglucuronide.
- D The detection result of Soyasapogenol B monoglucuronide produced by Lj3g3v1981230 derived from Lotus japonicus is shown. The peak of the black arrow indicates soyasapogenol B monoglucuronide.
- E The negative controls of (b) to (d) above. It is a figure which shows the LC-PDA / MS / MS analysis result of the Glyma.06G324300 homologous gene function-deficient mutant extract of Lotus japonicus.
- (A) shows the base peak ion chromatogram of the plant extract derived from the wild type (Gifu), and (b) and (c) show the plant extract derived from the transposon-inserted homozygous mutant (30006020, 30115796, respectively). It is a figure which shows the LC-PDA / MS / MS analysis result of the Glyma.06G324300 homologous gene function-deficient mutant extract of Lotus japonicus.
- (A) shows the total ion chromatogram of the plant extract derived from the wild type (Gifu), and (b) and (c) show the plant extract derived from the transposon-inserted homozygous mutant (30006020, 30115796, respectively).
- Sample Q in (a) is the AsCSyGT gene, which is a Glyma.06G324300 ortholog gene derived from astragalus
- Sample R in (b) is a Glyma04g255400 gene, which is a Glyma.06G324300 paralog gene derived from soybean
- Sample S in (c) is soybean.
- This is the detection result of glycyrrhetinic acid monoglucuronide produced by expressing the Glyma.11g151800 gene, which is the derived Glyma.06G324300 paralog gene, in glycyrrhetinic acid-producing yeast.
- the peak of the black arrow indicates glycyrrhetinic acid monoglucuronide.
- 11g151800 gene transfer yeast derived from soybean which fed betulinic acid (A) It is a conceptual diagram of a possible conversion reaction to betulinic acid monoglucuronide when using Glyma.11g151800 feeding assay extract (sample Y). (B) The detection result of betulinic acid monoglucuronide produced by Glyma.11 g151800 when sample Y is added is shown. The peak of the black arrow indicates betulinic acid monoglucuronide. (C) The detection result of monoglucuronide betulinate when the negative control sample Z is added is shown.
- a first aspect of the present invention relates to a glucuronic acid first transferase and a fragment thereof having a glucuronic acid first transfer activity, and a nucleic acid encoding them.
- the first glucuronic acid transferase of the present invention is obtained from ⁇ -amyrin, which can be biosynthesized by many plants, through a two-step oxidation reaction from ⁇ -amyrin in a synthetic pathway peculiar to the genus Licorice that biosynthesizes glycyrrhizin.
- the first glucuronic acid transfer enzyme of the present invention can not only transfer glucuronic acid to the hydroxyl group at the 3-position of oleanane-type triterpenoids such as glycyrrhetinic acid, but also participate in the biosynthetic pathway from ⁇ -amyrin to glycyrrhizin.
- oleanane-type triterpenoids such as glycyrrhetinic acid
- glucuronic acid first transferase (CSyGT)
- CSyGT glucuronic acid first transferase
- first as used herein means that the oleanane-type triterpenoid has the first glycosyl transfer activity in a two-step transglycosylation reaction at the hydroxyl group at the 3-position. The specific composition of the first glucuronic acid transferase will be described later.
- fragment thereof having glucuronic acid first transferase activity refers to an active fragment of the glucuronic acid first transferase.
- glucuronic acid first transfer activity refers to the activity of catalyzing the glycosyl transfer reaction of CSyGT, that is, the activity of transferring glucuronic acid to the hydroxyl group at the 3-position of the oleanane-type triterpenoid. This activity produces the oleanane-type triterpenoid monoglucuronide from the oleanane-type triterpenoid.
- CSyGT and fragments thereof having glucuronic acid first transferase activity are collectively referred to as "polypeptide having glucuronic acid first transferase activity" or "glucuronic acid first transferase etc. (CSyGT etc.)". write.
- the glucuronic acid first transferase or the like may be a glycoprotein to which a different sugar chain is added.
- the glucuronic acid first transferase to which a plant-derived sugar chain is added the glucuronic acid first transferase to which a yeast-derived sugar chain is added, and the like are all glucuronic acid first transferases and the like in the present specification. include.
- Oleanane-type triterpenoid refers to a C30 isoprenoid having a pentacyclic oleanane skeleton and consisting of 6 isoprene units. It corresponds to the non-sugar portion (aglycone) of glycyrrhizin, which is the final object in the present invention.
- the oleanane-type triterpenoid described in the present specification means an oleanane-type triterpenoid having a hydroxyl group (OH group) at the carbon at the 3-position.
- oleanane-type triterpenoids include, but are not limited to, ⁇ -amyrin, 11-oxo- ⁇ -amylin, 30-hydroxy-11-oxo- ⁇ -amylin, 30-hydroxy- ⁇ -amylin, and 24-hydroxy- ⁇ .
- the legume (Fabaceae) plant is not limited to the licorice genus plant, and includes all plant species belonging to the legume family in terms of plant taxonomy.
- Specific examples of licorice plants include G. glabra, G. inflata, G. aspera, G. eurycarpa, and G. pallidiflora (G. Paridiflora), G. yunnanensis (G. yunnanensis), G.
- lepidota G. lepidota
- G. echinata G. echinata
- G. acanthocarpa G. licorice carpa
- M. truncatula M. licorice; Medicago truncatula
- the first glucuronic acid transferase (CSyGT) of the present invention is a polypeptide consisting of the amino acid sequence shown in any of SEQ ID NOs: 1, 3, and 5.
- These polypeptides are wild-type CSyGT (GmCSyGT) from soybean (Glycine max), wild-type CSyGT (GuCSyGT) from licorice (G. uralensis), and wild-type CSyGT (GuCSyGT) from Lotus japonicus, respectively.
- GmCSyGT wild-type CSyGT
- GuCSyGT from licorice
- LjCSyGT derived from Lotus japonicus has 82% amino acid identity with that of GmCSyGT derived from soybean.
- CSyGT may have orthologs in many other plant species other than the above-mentioned plant species, especially in the legume (Fabaceae) plant species.
- the CSyGT of the present invention also includes allogeneic wild-type CSyGT paralogs and mutant CSyGT having glucuronic acid first transfer activity.
- wild type CSyGT orthologs and mutant CSyGT an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in any one of SEQ ID NOs: 1, 3, and 5.
- GuCSyGT and LjCSyGT are CSyGT orthologs of licorice and Lotus japonicus, respectively, as opposed to soybean GmCSyGT, but have amino acid identity of 80% or more as described above.
- the mutant CSyGT having the first glucuronic acid transfer activity is not limited, and specific examples thereof include splicing variants and mutants based on SNPs and the like.
- amino acid identity means that in the amino acid sequences of the two polypeptides to be compared, a gap is appropriately inserted in one or both of them as necessary so as to maximize the number of matching amino acid residues.
- the ratio (%) of the number of matching amino acid residues to the total number of amino acid residues when aligned. Alignment of two amino acid sequences to calculate amino acid identity can be performed using known programs such as Blast, FASTA, and Clustal W.
- substitution (of amino acids) refers to a group of conservative amino acids having similar properties such as charge, side chain, polarity, and aromaticity among the 20 amino acids that make up a natural protein. Refers to replacement. For example, a group of uncharged polar amino acids (Gly, Asn, Gln, Ser, Thr, Cys, Tyr) having a low side chain, a group of branched amino acids (Leu, Val, Ile), and a group of neutral amino acids (Gly, Ile).
- the "active fragment thereof" refers to a polypeptide fragment containing a part of the glucuronic acid first transferase and retaining the glucuronic acid first transferase activity.
- a polypeptide fragment containing a substrate binding site of glucuronic acid first transferase can be mentioned.
- the substrate of the first glucuronic acid transferase of the present invention include the above-mentioned oleanane-type triterpenoid. Glycyrrhetinic acid is preferable.
- the length of the amino acids of the polypeptide constituting the active fragment is not particularly limited.
- it may be a continuous region of at least 10, 15, 20, 25, 30, 50, 100 or 150 amino acids.
- CSyGT and its active fragments are often collectively referred to as "CSyGT or the like (glucuronic acid first transferase, etc.)".
- oleanane-type triterpenoid monoglucuronide can be obtained by glycosyl-transferring glucuronic acid to the hydroxyl group at the 3-position by glucuronic acid first transfer activity using oleanane-type triterpenoid as a glycosyl acceptor substrate. ..
- ⁇ -amyrin can be biosynthesized by many plant species other than licorice, an in vivo synthetic system using common plant species as a host is also possible. Furthermore, if the organism does not contain ⁇ -amyrin but can biosynthesize the precursor of ⁇ -amyrin, by using it together with the gene that biosynthesizes ⁇ -amyrin, even organisms other than plants can host them in vivo. A synthetic system is also possible.
- a second aspect of the present invention relates to a polynucleotide encoding the polypeptide (CSyGT, etc.) according to the first aspect, that is, a glucuronic acid first transferase gene and an active fragment thereof.
- the polynucleotide of the present invention enables the construction of the recombinant vector of the third aspect described later.
- the “glucuronic acid first transferase gene” (often referred to herein as the “CSyGT gene”) refers to the polynucleotide encoding the CSyGT described in the first aspect. As long as it is a polynucleotide encoding CSyGT, its base sequence is not particularly limited. Preferably, it is a polynucleotide encoding a wild-type CSyGT containing the amino acid sequences shown in SEQ ID NOs: 1, 3 and 5.
- a polynucleotide encoding a soybean-derived wild-type GmCSyGT consisting of the amino acid sequence shown in SEQ ID NO: 1 specifically, for example, a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 2, that is, a soybean-derived wild-type GmCSyGT gene.
- SEQ ID NO: 1 specifically, for example, a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 2, that is, a soybean-derived wild-type GmCSyGT gene.
- SEQ ID NO: 3 specifically, for example, a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 4, that is, a wild-type GuCSyGT gene derived from licorice.
- a polynucleotide encoding a wild-type LjCSyGT derived from Miyakogusa consisting of the amino acid sequence shown in SEQ ID NO: 5
- a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6 that is, a wild-type LjCSyGT gene derived from Miyakogusa.
- CSyGT gene is a polynucleotide containing a base sequence in which one or more bases of the wild-type CSyGT gene are deleted, substituted or added.
- a wild-type GmCSyGT gene derived from soybean for example, a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 2
- a wild-type GuCSyGT gene derived from Kanzo for example, a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 4).
- Bases in which one or more bases are deleted, substituted or added in the base sequence of either the nucleotide) or the wild-type LjCSyGT gene derived from Miyakogusa for example, a polynucleotide consisting of the base sequence shown in SEQ ID NO: 6).
- a polynucleotide containing a sequence for example, a polynucleotide consisting of the base sequence shown in SEQ ID NO: 6.
- Polynucleotides can be mentioned. Specifically, for example, a wild-type GmCSyGT gene derived from soybean (for example, a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 2) and a wild-type GuCSyGT gene derived from Kanzo (for example, a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 4).
- nucleotide sequence and the nucleotide sequence of either the wild-type LjCSyGT gene derived from Miyakogusa (for example, a polynucleotide consisting of the nucleotide sequence shown in SEQ ID NO: 6) and 80% or more, 85% or more, 87% or more, 90% or more, Examples thereof include polynucleotides containing a base sequence having a base identity of 95% or more, or 99% or more and less than 100%.
- nucleotide that retains enzymatic activity with a polynucleotide containing a nucleotide sequence that hybridizes under highly stringent conditions with a nucleotide fragment consisting of a nucleotide sequence complementary to the partial nucleotide sequence of the wild-type CSyGT gene.
- the "stringent condition” means a condition in which a non-specific hybrid is unlikely to be formed.
- the “high stringent condition” refers to a condition in which a non-specific hybrid is less likely to be formed or is not formed.
- the lower the salt concentration and the higher the temperature the higher the stringent conditions.
- the conditions are, for example, washing at 50 ° C. to 70 ° C., 55 ° C. to 68 ° C., or 65 ° C. to 68 ° C. with 0.1 ⁇ SSC and 0.1% SDS.
- other conditions such as probe concentration, probe base length, and hybridization time can be appropriately combined to increase the stringency of hybridization.
- the "active fragment thereof” refers to a fragment of the CSyGT gene in which the polypeptide encoded by the fragment has CSyGT activity.
- the polynucleotide encoding the active fragment of CSyGT according to the first aspect is applicable. Therefore, the length of the base sequence of the polynucleotide constituting the active fragment, that is, the number of bases may be three times the number of amino acid sequences in the active fragment of CSyGT according to the first aspect.
- a recombinant vector capable of expressing CSyGT and the active fragment thereof in a host cell can be constructed.
- CSyGT gene and its active fragments are often collectively referred to as "CSyGT gene, etc. (glucuronic acid first transferase gene, etc.)".
- the CSyGT gene and the like of this embodiment can be isolated from a suitable plant, for example, a legume by a known method.
- a primer pair having an appropriate nucleotide sequence length is designed based on the nucleotide sequence of the wild-type GmCSyGT gene derived from soybean shown in SEQ ID NO: 2.
- the primer pairs shown in SEQ ID NOs: 17 and 18 can be mentioned.
- the GmCSyGT gene can be obtained by performing a nucleic acid amplification reaction such as PCR using a nucleic acid derived from a soybean DNA library or a genomic DNA library as a template using the pair.
- polynucleotide of the present invention can be obtained by hybridization from the library or the like using a nucleic acid fragment consisting of a part of the base sequence shown in SEQ ID NO: 2 as a probe.
- a nucleic acid fragment consisting of a part of the base sequence shown in SEQ ID NO: 2 as a probe.
- a third aspect of the present invention relates to a recombinant vector.
- the recombinant vector of the present invention contains the polynucleotide described in the second aspect, and can clone the CSyGT gene or the like or express CSyGT or the like in a host cell.
- a CSyGT expression vector expressing CSyGT or the like is particularly preferably applied.
- the recombinant vector of the present invention can be constructed by introducing the polynucleotide described in the second aspect into an appropriate recombinant vector.
- the type of vector is not particularly limited.
- a vector for cloning (transformation), gene expression, etc. may be appropriately selected depending on the purpose or the host into which the vector is introduced.
- Vectors for plant transformation or (gene) expression vectors are particularly preferred.
- the "(gene) expression vector” is a gene expression system capable of transporting a polynucleotide encoding an encapsulated polypeptide into a target plant cell to express the polypeptide.
- an expression vector using a plasmid or a virus can be mentioned.
- a CSyGT expression vector that expresses CSyGT or the like incorporating a CSyGT gene or the like is applicable.
- the plasmid is not limited, but for example, pPZP system, pSMA system, pUC system, pBR system, pBluescript system (Agilent Technologies). , PTriEX TM system (TaKaRa company), or pBI system, pRI system, pGW system binary vector, etc. can be used.
- virus expression vector cauliflower mosaic virus (CaMV), green beans golden mosaic virus (BGMV), tobacco mosaic virus (TMV), etc. are used as the virus. can do.
- CaMV cauliflower mosaic virus
- BGMV green beans golden mosaic virus
- TMV tobacco mosaic virus
- the recombinant vector contains a promoter and terminator expression regulatory region.
- an enhancer a poly A addition signal, a 5'-UTR (untranslated region) sequence, a labeled or selective marker gene, a multicloning site, a replication origin, and the like can also be included.
- Each type is not particularly limited as long as it can exert its function in the host cell. Those known in the art may be appropriately selected depending on the host to be introduced.
- the host is a plant cell or a plant.
- promoter various promoters, for example, overexpressing promoters, constitutive promoters, site-specific promoters, time-specific promoters, and / or inducible promoters can be used.
- overexpressing and constitutive promoters that can operate in plant cells include the 35S promoter derived from cauliflower mosaic virus (CaMV), the promoter Pnos of the noparin synthase gene derived from Ti plasmid, the ubiquitin promoter derived from corn, and the rice-derived promoter. Actin promoter, tobacco-derived PR protein promoter and the like.
- a small subunit (Rubisco ssu) promoter of ribulose diphosphate carboxylase of various plant species, or a histone promoter can also be used.
- the maltogenic amylase gene of Bacillus stearothermophilus the ⁇ -amylase gene of Bacillus licheniformis (B. licheniformis), and Bacillus amyloliquefaciens (B. amyloliquefaciens) ) BAN amylase gene, Bacillus subtillis (B. subtillis) alkaline protease gene or Bacillus pumilus (B. pumilus) xylosidase gene promoter, or phage lambda PR or PL promoter, Escherichia coli lac, trp or tac promoter, etc. Can be mentioned.
- promoters that can operate in yeast host cells include promoters derived from yeast glycolytic genes, alcohol dehydrogenase gene promoters, TPI1 promoters, ADH2-4c promoters and the like.
- fungal-operable promoters include ADH3 promoter, tpiA promoter and the like.
- promoters that can be activated in animal cells include the SV40 early promoter, SV40 late promoter, and CMV promoter.
- promoters that can be activated in insect cells are the polyhedrin promoter, the P10 promoter, and the baculovirus Autographa californica polyhedrosis. -Calihornica polyhedrosis) basic protein promoter, baculovirus immediate early gene 1 promoter, baculovirus 39K delayed early gene promoter and the like.
- Terminators include, for example, nopaline synthase (NOS) gene terminator, octopine synthase (OCS) gene terminator, CaMV 35S terminator, Escherichia coli lipopolyprotein lpp 3'terminator, trp operon terminator, amyB terminator, ADH1 gene terminator. And so on.
- NOS nopaline synthase
- OCS octopine synthase
- CaMV 35S terminator CaMV 35S terminator
- Escherichia coli lipopolyprotein lpp 3'terminator trp operon terminator
- amyB terminator ADH1 gene terminator.
- ADH1 gene terminator ADH1 gene terminator.
- the sequence is not particularly limited as long as it is a sequence capable of terminating the transcription of the gene transcribed by the promoter.
- an enhancer region containing an upstream sequence in the CaMV35S promoter can be mentioned.
- an enhancer region containing an upstream sequence in the CaMV35S promoter can be mentioned.
- the expression efficiency of the nucleic acid encoding the active peptide can be enhanced.
- Selection marker genes include drug resistance genes (eg, tetracycline resistance gene, ampicillin resistance gene, canamycin resistance gene, hyglomycin resistance gene, spectinomycin resistance gene, chloramphenicol resistance gene, or neomycin resistance gene), fluorescence, or Luminescent reporter genes (eg, luciferase, ⁇ -galactosidase, ⁇ -glucuronidase (GUS), or green fluorescence protein (GFP)), neomycin phosphotransferase II (NPT II), dihydrofolate reductase and other enzyme genes can be mentioned.
- drug resistance genes eg, tetracycline resistance gene, ampicillin resistance gene, canamycin resistance gene, hyglomycin resistance gene, spectinomycin resistance gene, chloramphenicol resistance gene, or neomycin resistance gene
- fluorescence eg, luciferase, ⁇ -galactosidase, ⁇ -glucuronidase (GUS
- the manipulation and / or expression of the polynucleotide according to the second aspect can be easily controlled, and the expression of CSyGT or the like in the host cell can be manipulated.
- a fourth aspect of the present invention relates to a transformant or its progeny.
- the transformant or its progeny of the present invention contains the polynucleotide described in the second aspect or the recombinant vector described in the third aspect in the cell, and clones the CSyGT gene or the like and / or expresses CSyGT or the like. can do.
- composition refers to a host transformed by the introduction of the polynucleotide described in the second aspect or the recombinant vector described in the third aspect.
- the host to be transformed is not particularly limited.
- bacteria such as Escherichia coli or Bacillus subtilis, such as budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) or methanol assimilating yeast (Pichia pastoris), aspergillus.
- Fungi such as (Aspergillus), Aspergillus, Neurospora, Fuzarium or Trichoderma, monocotyledonous plants, dicotyledonous plants, or plant cells, mammalian cells, or insect cells (eg, sf9, or sf21).
- It is preferably a legume or yeast.
- the transformant of the present invention includes clones having the same genetic information.
- the host is an asexually reproducing unicellular microorganism such as Escherichia coli or yeast
- a clone newly generated from the first generation of the transformant by division or budding is also included in the transformant of the present invention.
- the host is a plant
- a part of the plant collected from the first generation of the transformant for example, a plant tissue such as epidermis, master, soft tissue, wood or rhizome, leaves, petals, stems.
- Plant organs such as roots or seeds, or clones obtained from plant cells by plant tissue culture, cuttings, grafting or cuttings, or transformants such as rhizomes, lump roots, bulbs, runners, etc. New clones newly generated from the vegetative reproduction organ obtained by asexual reproduction are also included in the transformants of the present invention.
- the transformant of the present invention may further have one or more other polynucleotides or other recombinant vectors in addition to the polynucleotide described in the second aspect or the recombinant vector described in the third aspect. ..
- the term "other polynucleotide” as used herein refers to a polynucleotide other than the polynucleotide described in the second aspect.
- the other recombinant vector refers to a recombinant vector other than the recombinant vector described in the third aspect.
- the transformant of the present invention can be prepared by introducing the above-mentioned polynucleotide or recombinant vector into an appropriate host.
- a method for introducing the polynucleotide or recombinant vector a method known in the art, for example, an Agrobacterium method, a PEG-calcium phosphate method, an electroporation method, a liposome method, a particle gun method, or a microinjection method can be used. it can.
- the introduced polynucleotide may be integrated into the genomic DNA of the host or may be present in the state of the introduced polynucleotide (eg, as it is contained in a foreign vector).
- the introduced polynucleotide may continue to be maintained in the host cell as if it had been integrated into the host's genomic DNA, or it may be transiently retained.
- the presence or absence of introduction of the desired polynucleotide is determined by the PCR method, the Southern hybridization method, or the Northern hybridization method. , In situ hybridization and the like.
- the "host” is a progeny of the first generation of the transformant via sexual reproduction, and is the polynucleotide described in the second aspect of the present invention or the recombination described in the third aspect. It means a host that holds the vector in an expressible state. Preferably, it refers to a host progeny that retains the polynucleotide described in the second aspect of the polynucleotide or the recombinant vector in an expressible state. For example, when the transformant is a plant, the seedling of the transformant is applicable. It doesn't matter what the next generation is.
- the oleanane-type triterpenoid existing in the host cell can be converted to the oleanane-type triterpenoid monoglucuronide by enhancing the expression of the introduced polynucleotide.
- a glucuronic acid first transferase to which a different sugar chain is added can be obtained.
- the host of the transformant is yeast, unlike the case where a legume is used as a host, glucuronic acid first transferase to which a high mannose type sugar chain is added is expressed. This is because the glycosylation reaction in yeast is different from that in plants (Strasser R. Glycobiology, 2016, 26 (9): 926-939).
- Method for producing glucuronic acid first transferase and its active fragment (CSyGT, etc.) 5-1.
- the transformant or the progeny of the fourth aspect is cultured, and the polypeptide having the first glucuronic acid transfer activity according to the first aspect, that is, CSyGT or the like, is obtained from the culture.
- the present invention relates to a manufacturing method such as CSyGT including extraction. According to the method for producing a polynucleotide of the present invention, it is possible to stably obtain a large amount of CSyGT or the like by using the host as a biological production system.
- the production method of the present invention includes a culture step and an extraction step as essential steps. Hereinafter, each step will be specifically described.
- the “culturing step” is a step of culturing the transformant or the progeny of the fourth aspect.
- the transformant or progeny used in the present invention it is preferable to use a transformant or progeny capable of overexpressing or constitutively expressing the polypeptide according to the first aspect.
- the recombinant vector is an expression vector containing an overexpressing promoter or a constitutive promoter.
- the transformant of the fourth aspect or its progeny may be any host, but is preferably a legume or yeast. By changing the host, a glycoprotein to which a different sugar chain is added can be obtained even if the first glucuronic acid transferase described in the same first aspect is expressed.
- a medium suitable for culturing the host may be appropriately used.
- a medium known in the art can be used.
- a medium for culturing a bacterium such as Escherichia coli as a host, LB medium or M9 medium, etc.
- yeast when culturing yeast as a host, YPD medium, YPG medium, YPM medium, YPDM medium, etc. , SMM medium, etc.
- suitable culture medium and medium for hydroponic cultivation can be mentioned.
- the medium is a carbon source (for example, glucose, glycerin, mannitol, fructose, lactose, etc.), a nitrogen source (for example, inorganic nitrogen such as ammonium sulfate, ammonium chloride, etc., casein decomposition product, yeast extract, polypeptone, bactotripton, beef extraction).
- Organic nitrogen sources such as substances
- inorganic salts for example, sodium diphosphate, potassium diphosphate, magnesium chloride, magnesium sulfate, calcium chloride, etc.
- vitamins vitamin B1, etc.
- drugs ampicillin, tetracycline, canamycin, etc.
- Antibiotics and the like are appropriately contained.
- the culture conditions are not particularly limited as long as they are suitable for the expression of the polynucleotide, but are usually aerated, irradiated, and / or stirred at temperatures of 10 to 45 ° C, 15 to 40 ° C, and 18 to 37 ° C as necessary. Incubate for several hours to several hundred hours.
- the “extraction step” is a step of extracting CSyGT or the like from the culture obtained in the culture step.
- culture refers to a culture supernatant or a cultured transformant. Not only the intracellular of the transformant but also the content supernatant may contain CSyGT and the like secreted from the transformant.
- the polypeptide present in the culture may be extracted by a known method and purified if necessary.
- solvent extraction method, salting out method, solvent precipitation method, dialysis method, ultrafiltration method, gel electrophoresis method, gel filtration chromatography, ion exchange chromatography, reverse phase chromatography, affinity chromatography, etc. can be performed alone.
- the desired polypeptide can be obtained by appropriately combining them.
- the method of Hayashi et al. Hayashi et al., 1996, Phytochemistry, 42: 665-666
- Noguchi et al. Noguchi et al.
- the expression polypeptide of the present invention has a high mannose-type sugar chain added, so that a mannose-binding lectin (for example, UDA lectin, BC2L-A) is added. It can also be extracted and purified using a lectin or the like).
- a mannose-binding lectin for example, UDA lectin, BC2L-A
- a sixth aspect of the present invention is a genetically modified product for producing glycyrrhizin.
- the gene recombinant of the present invention catalyzes a set of enzymes required for the biosynthetic pathway from ⁇ -amylin to glycyrrhizin in plants of the genus Licorice, namely, a two-step oxidation reaction and a two-step glycation reaction.
- the gene recombinant of the present invention can biosynthesize glycyrrhizin from ⁇ -amyrin in living cells, whereby it can be used as a biological production system for glycyrrhizin.
- the genetic recombinants of the present invention are characterized by the fact that they contain a set of 4 types of enzymes required for the biosynthetic pathway from ⁇ -amyrin to glycyrrhizin and / or their active fragments in host cells. It contains at least an expression vector containing the encoding polynucleotide. If necessary, an expression vector containing a polynucleotide encoding the ⁇ -amyrin synthase gene may be further included.
- the four enzymes are polypeptides that catalyze the first-stage and second-stage oxidation reactions of ⁇ -amyrin, the first-stage glycation reaction and the second-stage glycation reaction of oleanane-type triterpenoids.
- Expression vectors containing each enzyme or an active fragment thereof are shown in (1) to (4) below, and will be specifically described. In (1) to (4), the four types of expression vectors are described separately, but the genes of each enzyme may be contained in different expression vectors or the same expression vector. May be contained in two or more types.
- CYP88D6 expression vector is a polypeptide having an activity of oxidizing the 11th position of an oleanane-type triterpenoid, that is, CYP88D6 and an active fragment thereof (often referred to as "CYP88D6 etc.” in the present specification). It contains a gene encoding and a fragment thereof (often referred to herein as "CYP88D6 gene, etc.”). Therefore, CYP88D6 and the like are expressed by the CYP88D6 expression vector in the recombinant body.
- CYP88D6 include, but are not limited to, CYP88D6 derived from licorice (G. uralensis) consisting of the amino acid sequence shown in SEQ ID NO: 7. Further, it is composed of an amino acid sequence having the activity of the first stage of oxidation and in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 7, or the amino acid sequence shown in SEQ ID NO: 7. Polypeptides consisting of amino acid sequences having 80% or more identity are also exemplified.
- the 11-position thereof is oxidized mainly by using endogenous or extrinsic ⁇ -amyrin as a substrate by the catalytic activity of CYP88D6 expressed from the CYP88D6 expression vector.
- 30-hydroxy-11-oxo- ⁇ -amyrin can be produced by oxidizing the 11th position using 30-hydroxy- ⁇ -amyrin as a substrate.
- 11-deoxoglycyrrhetinic acid can be used as a substrate and its 11-position can be oxidized to produce glycyrrhetinic acid.
- composition of the plasmid region in the CYP88D6 expression vector conforms to the expression vector in the recombinant vector described in the third aspect. Further, the recombinant vector described in Japanese Patent No. 5526323 may be used.
- CYP72A154 expression vector is a polypeptide having an activity of oxidizing the 30th position in an oleanane-type triterpenoid, that is, CYP72A154 and an active fragment thereof (often referred to as "CYP72A154 etc.” in the present specification). It contains a gene encoding and a fragment thereof (often referred to herein as "CYP72A154 gene, etc.”). Therefore, CYP72A154 and the like are expressed by the CYP72A154 expression vector in the recombinant body.
- CYP72A154 include, but are not limited to, CYP72A154 derived from G. uralensis consisting of the amino acid sequence shown in SEQ ID NO: 9, and CYP72A154 derived from G. glabra consisting of the amino acid sequence shown in SEQ ID NO: 11. , And CYP72A63 derived from Medicago truncatula consisting of the amino acid sequence shown in SEQ ID NO: 13.
- amino acid sequence having the activity of the second stage of oxidation and having one or more amino acids deleted, substituted or added in the amino acid sequence shown in any of SEQ ID NOs: 9, 11 and 13 is composed of, or Also exemplified are polypeptides consisting of an amino acid sequence having 80% or more identity with the amino acid sequence shown in any of SEQ ID NOs: 9, 11, and 13.
- ⁇ -amyrin and 11-oxo- ⁇ -amyrin are mainly used as substrates, and the 30th position thereof is used due to the catalytic activity of CYP72A154 etc. expressed from the CYP72A154 expression vector. It can be oxidized to produce 30-hydroxy- ⁇ -amyrin and 30-hydroxy-11-oxo- ⁇ -amyrin, respectively. Further, using 30-hydroxy-11-oxo- ⁇ -amyrin as a substrate, the 30-position thereof can be further oxidized to produce glycyrrhetinic acid.
- composition of the plasmid region in the CYP72A154 expression vector conforms to the expression vector in the recombinant vector described in the third aspect. Further, the recombinant vector described in Japanese Patent No. 5771846 may be used.
- UGT73P12 recombinant vector is a polypeptide that transfers glucuronic acid to the hydroxy group at the 2-position of glucuronic acid in the oleanane-type triterpenoid monoglucuronide, that is, UGT73P12 and an active fragment thereof (the present specification). Contains a gene encoding (often referred to as "UGT73P12, etc.") and a fragment thereof (often referred to herein as "UGT73P12, etc.”). Therefore, UGT73P12 and the like are expressed by the UGT73P12 expression vector in the recombinant body.
- UGT73P12 examples include, but are not limited to, UGT73P12 derived from licorice (G. uralensis) consisting of the amino acid sequence shown in SEQ ID NO: 15. Further, the amino acid sequence having the second-stage glycosylation activity and consisting of an amino acid sequence in which one or more amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 15 or the amino acid sequence shown in SEQ ID NO: 15 Polypeptides consisting of amino acid sequences having 80% or more identity are also exemplified.
- composition of the plasmid region in the UGT73P12 expression vector conforms to the expression vector in the recombinant vector described in the third aspect. Further, the recombinant vector described in Japanese Patent No. 6344774 may be used.
- the "glycyrrhetinic acid production gene recombinant" of the present invention is a transformant into which an expression vector containing at least the above four enzyme gene groups has been introduced, or a gene group thereof.
- the successor to hold. Therefore, the basic composition may be the same as that of the transformant and its progeny according to the fourth aspect, except that the type of expression vector to be included is different.
- the present invention is a gene recombinant capable of biosynthesizing glycyrrhizin from ⁇ -amyrin in cells, it is a host capable of biosynthesizing ⁇ -amyrin, which is a starting material in the biosynthesis system, in cells. Is preferable.
- the biosynthesis of ⁇ -amyrin in the host may be based on an endogenous synthetic system or an extrinsic synthetic system. Since ⁇ -amyrin, which is an oleanane-type triterpenoid, can be biosynthesized by many plants, the host of the present invention is preferably a plant based on an endogenous synthetic system.
- it is a plant species having high ⁇ -amyrin synthesizing ability, vigorous fertility, and easy to grow. More preferably, it is a plant relatively closely related to licorice, that is, a legume. For example, a species belonging to the genus Grikiliza, a species belonging to the genus Soybean, a species belonging to the genus Lotus japonicus and the like can be mentioned.
- the host itself may be a species that cannot biosynthesize ⁇ -amyrin.
- a transformant of the yeast can be used as a host capable of intracellular biosynthesis of ⁇ -amyrin.
- a seventh aspect of the present invention is a method for producing glycyrrhizin.
- the production method of the present invention is characterized in that glycyrrhizin is produced from ⁇ -amyrin by using the gene recombinant for producing glycyrrhizin according to the sixth aspect as a biological production system. According to the production method of the present invention, glycyrrhizin, which has been expensive in the past, can be stably produced in large quantities without relying on extraction from licorice.
- the production method of the present invention includes a culturing step as an essential step and an "extraction step” as a selection step.
- Culturing Step The “culturing step” in this aspect may basically follow the culturing step described in the fifth aspect.
- the genetically modified product is a plant
- a method for culturing a known conditional plant may be applied.
- glycyrrhizin is produced in the gene recombinant for producing glycyrrhizin according to the sixth aspect.
- Extraction Step The “extraction step” in this aspect may basically follow the extraction step described in the fifth aspect.
- the recombinant is a plant, the same method as for extracting glycyrrhizin from licorice can be used.
- glycyrrhizin can be stably produced in large quantities from various gene recombinants without relying on extraction from licorice.
- Example 1 Isolation of soybean-derived cellulose synthase-like gene Glyma.06G324300> The seeds of the soybean (Glycine max) variety "Williams 82" cultivated in the greenhouse during ripening were collected. Total RNA was prepared using the RNA extraction reagent RNeasy Plant Mini Kit (QIAGEN) according to the attached protocol. Using 200 ng of the obtained total RNA, fast-strand cDNA was synthesized using the QuantiTech Reverse Transcription Kit (QIAGEN) according to the attached protocol.
- QIAGEN QuantiTech Reverse Transcription Kit
- the oligo DNAs at the locations corresponding to the N-terminal and C-terminal of the polypeptide estimated from Glyma.06G324300 were used as a forward primer (SEQ ID NO: 17) and a reverse primer (SEQ ID NO: 17), respectively.
- SEQ ID NO: 17 a forward primer
- SEQ ID NO: 17 a reverse primer
- 30 cycles of PCR were performed using PrimeSTAR GXL DNA Polymerase (Takara Bio Co., Ltd.) at an annealing temperature of 55 ° C. and a reaction temperature of 68 ° C.
- the forward primer has 12 bases (AAAAAGCAGGCT) at the 5'end. ), And 12 bases (AGAAAGCTGGGT) are artificially added to the reverse primer at the 5'end.
- a DNA fragment amplified from seed-derived fast-strand cDNA was cloned into pDONR TM 221 by a nucleotide sequence-specific recombination reaction (GATEWAY attB x attP reaction) using Gateway BP Clonase II Enzyme Mix (Thermo Fisher Technologies). The polynucleotide sequences of the three independent clones obtained were determined. The sequence thus obtained was SEQ ID NO: 2, and the polypeptide sequence deduced from it was SEQ ID NO: 1.
- Example 2 Search for licorice-derived Glyma.06G324300 homologous gene> Glyma.06G324300 homologous gene was searched as an ortholog gene candidate of Glyma.06G324300 by gene homology search from licorice (Glycyrrhiza uralensis), which is the same legume as soybean and is known to biosynthesize glycyrrhizin.
- Glyma.06G324300 using the BLAST homology search function in Glycyrrhiza uralensis GDB (http://ngs-data-archive.psc.riken.jp/Gur-genome/index.pl), which is a genome information database of licorice.
- Glyur003152s00037491 that encodes a protein that exhibits high amino acid identity.
- the polypeptide inferred from Glyur003152s00037491 showed 81% amino acid identity to Glyma.06G324300.
- RNA was prepared from licorice root using the RNA extraction reagent PureLink Plant RNA Reagent (Thermo Fisher Scientific). Using 1 ⁇ g of the obtained total RNA, fast-strand cDNA synthesis was performed using the SMART RACE cDNA amplification kit (Clontech) according to the attached protocol.
- oligo DNA at the N-terminal and C-terminal parts of the polypeptide estimated from Glyur003152s00037491 was used as the forward primer (SEQ ID NO: 19) and reverse primer (SEQ ID NO: 20), respectively, and PrimeSTAR Max. 30 cycles of PCR were performed using DNA Polymerase (Takara Bio) at an annealing temperature of 55 ° C and a reaction temperature of 72 ° C. Since it is necessary for cloning into the pENTR TM / D-TOPO (registered trademark) entry vector (Thermo Fisher Technologies), 4 bases (cacc) are artificially added to the 5'end of the forward primer. ing.
- the amplified DNA fragment was cloned into the pENTR TM / D-TOPO entry vector, and the four independent clones obtained were sequenced.
- the nucleotide sequence of the Glyma.06G324300 homologous gene of licorice obtained thereby is SEQ ID NO: 4, and the polypeptide sequence deduced from it is SEQ ID NO: 3.
- the amino acid sequence of SEQ ID NO: 3 had 82% identity to the amino acid sequence shown in SEQ ID NO: 1.
- Example 4 Search for Lotus japonicus-derived Glyma.06G324300 homologous gene> The Glyma.06G324300 homologous gene was searched for as a candidate for the Glyma.06G324300 ortholog gene derived from Lotus japonicus by the same method as in Example 2. High amino acid identity to Glyma.06G324300 using the BLAST homology search function in Miyakogusa.jp (http://www.kazusa.or.jp/lotus/release1/index.html), which is the genome information database of Lotus japonicus. We found one base sequence Lj3g3v1981230 encoding a protein showing the above. The polypeptide estimated from Lj3g3v1981230 showed 81.4% amino acid identity to Glyma.06G324300.
- Example 5 Isolation of Glyma.06G324300 homologous gene derived from Lotus japonicus> Using 1 ⁇ g of total RNA obtained from Lotus japonicus, fast-strand cDNA was synthesized using the SMART RACE cDNA amplification kit (Clontech) according to the attached protocol. Using 2 ⁇ l of first-strand cDNA as a template, oligo DNA at the N-terminal and C-terminal of the polypeptide estimated from Lj3g3v1981230 was used as the forward primer (SEQ ID NO: 37) and reverse primer (SEQ ID NO: 38), respectively, and PrimeSTAR Max.
- SEQ ID NO: 37 forward primer
- SEQ ID NO: 38 reverse primer
- SEQ ID NO: 6 The nucleotide sequence of the Lotus japonicus Glyma.06G324300 homologous gene thus obtained is SEQ ID NO: 6, and the polypeptide sequence deduced from it is SEQ ID NO: 5. SEQ ID NO: 5 had 82% identity to the amino acid sequence shown in SEQ ID NO: 1.
- Example 6 Construction of destination vector for yeast expression>
- 06G324300 and its homologous proteins isolated in Examples 1, 3 and 5 an expression vector for each protein was constructed using a yeast expression system.
- the yeast (Saccharomyces cerevisiae) INVSc1 strain used does not contain UDP-glucuronic acid, which is a sugar donor substrate, in the glycation reaction expected in the candidate gene product. Therefore, the UDP-glucose dehydrogenase (UGD) gene, which synthesizes UDP-glucuronic acid using UDP-glucose in yeast as a substrate, was introduced into a destination vector for yeast expression.
- UDP-glucose dehydrogenase (UGD) gene which synthesizes UDP-glucuronic acid using UDP-glucose in yeast as a substrate, was introduced into a destination vector for yeast expression.
- the oligo DNA at the N-terminal and C-terminal of the polypeptide is used as a forward primer (SEQ ID NO: 21) and a reverse primer (SEQ ID NO: 22), respectively.
- SEQ ID NO: 21 a forward primer
- SEQ ID NO: 22 a reverse primer
- 30 cycles of PCR were performed at an annealing temperature of 55 ° C and a reaction temperature of 72 ° C.
- the forward primer contains 15 bases upstream of the cloning position of the destination vector and 4 bases (aaaa) at the 5'end of the polynucleotide shown by SEQ ID NO: 23 (gggcggccgcactag). A total of 19 bases are artificially added. Further, in the reverse primer, 15 bases downstream of the cloning position of the destination vector are added to the 3'end of the polynucleotide shown by SEQ ID NO: 24 (atccatcgatactag).
- SpeI is a destination vector pESC-HIS-GW made by introducing Gateway cassette A (Thermo Fisher Technologies) into the SrfI restriction enzyme site in MCS2 of the pESC-HIS® yeast expression vector (Agilent Technologies). Treat with restriction enzymes, mix with DNA fragments amplified from cDNA, and use In-Fusion® HD Cloning Kit (Takara Bio) to extract the DNA fragment shown by SEQ ID NO: 25 in pESC-HIS-GW. It was introduced into MCS1 to obtain the destination vector pESC-HIS-AtUGD2-GW.
- Gateway cassette A Thermo Fisher Technologies
- Example 7 Construction of yeast expression clone> The plasmid (entry clone) having the polynucleotide shown in SEQ ID NO: 2 prepared in Example 1 and the destination vector pESC-HIS-AtUGD2-GW prepared in Example 6 were mixed, and Gateway LR Clonase II Enzyme Mix (Thermo Fisher) was mixed.
- yeast expression vector pESC- of the gene shown in SEQ ID NO: 2 HIS-AtUGD2-Glyma.06 G324300 was obtained.
- yeast expression vectors pESC-HIS-AtUGD2-Glyur003152s00037491 and pESC-HIS-AtUGD2-Lj3g3v1981230 of the genes shown in SEQ ID NOs: 4 and 6 prepared in Examples 3 and 5 were obtained by the same method as above.
- ⁇ Example 8 Introduction into yeast strains producing glycyrrhetinic acid and soyasapogenol B> Expression vector of Lotus japonicus ⁇ -amylin synthase (LjOSC1) gene in yeast INVScI strain (Thermo Fisher Technologies) (MATa his3D1 leu2 trp1-289 ura3-52 MATAlpha his3D1 leu2 trp1-289 ura3-52) pYES3-BAS, CYP88D6 Glycyrrhetinic acid-producing yeast by introducing the expression vector pDEST52-CYP72A63 of the CYP72A63 gene, which is the tarumagoyashi ortholog of the gene and the lotus japonicus citchrome P450 reductase (LjCPR1), pESC-CPR-CYP88D6 and Kanzo CYP72A154 A strain was obtained (Fig.
- the pESC-HIS-AtUGD2-Glyma.06G324300, pESC-HIS-AtUGD2-Glyur003152s00037491, and pESC-HIS-AtUGD2-Lj3g3v1981230 obtained in Example 7 were introduced into these yeast strains, respectively.
- pESC-HIS-AtUGD2 which corresponds to an empty vector, was introduced into a glycyrrhetinic acid-producing yeast strain.
- Yeast transformation was performed using Frozen-EZ Yeast Transformation II (Zymo Research) according to the attached protocol.
- Example 9 In vivo enzyme assay using recombinant yeast> Glycyrrhetinic acid-producing yeast strain carrying pESC-HIS-AtUGD2-Glyma.06G324300, pESC-HIS-AtUGD2-Glyur003152s00037491, pESC-HIS-AtUGD2-Lj3g3v1981230 or negative control pESC-HIS-AtUGD2 obtained in Example 8.
- YNB Yeast nitrogen base
- YNB Yeast nitrogen base
- yeast cell pellets The obtained yeast cell pellet was suspended in 1 mL of Yeast nitrogen base (YNB) medium (-Trp / -Leu / -Ura / -His), and then centrifuged again at 3,000 g at 4 ° C for 5 minutes to obtain yeast cells. Pellets were obtained. The obtained yeast cell pellet was suspended in 5 mL of Yeast nitrogen base (YNB) medium (-Trp / -Leu / -Ura / -His) containing 2% galactose, and cultured with shaking at 30 ° C. and 200 rpm for 5 days. ..
- YNB Yeast nitrogen base
- a metabolite extract (sample A) derived from a glycyrrhetinic acid-producing yeast strain expressing the polypeptide represented by SEQ ID NO: 1 (Glyma.06G324300) and glycyrrhetinic acid production expressing the polypeptide represented by SEQ ID NO: 3 (Glyur003152s00037491).
- Metabolite extract derived from yeast strain (Sample B), metabolite extract derived from glycyrrhetinic acid-producing yeast strain expressing the polypeptide (Lj3g3v1981230) shown in SEQ ID NO: 5 (Sample C), and an empty vector that does not express any gene.
- a metabolite extract (Sample D) derived from a glycyrrhetinic acid-producing yeast strain was obtained.
- the product was extracted.
- a metabolite extract (sample E) derived from a yeast strain producing soyasapogenol B expressing the polypeptide shown in SEQ ID NO: 1 (Glyma.06G324300) and soyasapogenol B producing the polypeptide shown in SEQ ID NO: 3 (Glyur003152s00037491) were produced.
- a metabolite extract derived from a yeast strain (Sample F), a metabolite extract derived from a soyasapogenol B-producing yeast strain expressing the polypeptide (Lj3g3v1981230) shown in SEQ ID NO: 5 (Sample G), and an empty vector that does not express any gene.
- a metabolite extract (Sample H) derived from a soyasapogenol B-producing yeast strain was obtained.
- Example 10 Analysis of yeast metabolite extract> Samples A, B, C, and D obtained in Example 9 and samples E, F, G, and H were evaporated using a rotary evaporator. The precipitate was suspended in 300 ⁇ L of methanol and filtered through Millex-GV, 0.22 ⁇ m, PVDF, 4 mm (Merck) to prepare a sample for LC-MS analysis.
- FIG. 4 shows the results of the enzymatic activity of Glyma.06G324300 or its homologue when glycyrrhetinic acid and glucuronic acid were used as substrates.
- sample A of (a) one peak corresponding to glycyrrhetinic acid monoglucuronide was detected (black arrow).
- the retention time of the peak and the mass spectrum were in good agreement with glycyrrhetinic acid monoglucuronide.
- a peak corresponding to glycyrrhetinic acid monoglucuronide was detected in sample B of (b) and sample C of (c) (black arrow).
- FIG. 5 shows the results of the enzymatic activity of Glyma.06G324300 or its homologue when soyasapogenol B and glucuronic acid were used as substrates.
- sample E of (a) one peak corresponding to soyasapogenol B monoglucuronide was detected (black arrow).
- a peak corresponding to soyasapogenol B monoglucuronide was also detected in sample F in (b) and sample G in (c) (black arrow).
- the retention time and mass spectrum of each peak were in good agreement with soyasapogenol B monoglucuronide.
- no peak corresponding to soyasapogenol B monoglucuronide was detected in sample H of (d), which is a negative control group.
- Example 11 Preparation of transformed yeast for substrate feeding assay>
- the pESC-HIS-AtUGD2-Glyma.06G324300, pESC-HIS-AtUGD2-Glyur003152s00037491, and pESC-HIS-AtUGD2-Lj3g3v1981230 obtained in Example 8 were introduced into the yeast INVScI strain, respectively.
- pESC-HIS-AtUGD2 which corresponds to an empty vector, was introduced into the same yeast INVScI strain.
- Yeast transformation was performed using Frozen-EZ Yeast Transformation II (Zymo Research) according to the attached protocol.
- Example 12 Substrate feeding assay using recombinant yeast> A transformed yeast carrying pESC-HIS-AtUGD2-Glyma.06G324300, pESC-HIS-AtUGD2-Glyur003152s00037491, pESC-HIS-AtUGD2-Lj3g3v1981230, or negative control pESC-HIS-AtUGD2 obtained in Example 11. 2 mL of Yeast nitrogen base (YNB) medium (-His) containing 2% glucose was used for shaking culture at 30 ° C. and 200 rpm for 24 hours. Then, the culture solution was centrifuged at 3,000 g at 4 ° C. for 5 minutes to obtain yeast cell pellets.
- YNB Yeast nitrogen base
- -His containing 2% glucose
- the obtained yeast cell pellet was suspended in 2 mL of Yeast nitrogen base (YNB) medium (-His), and then centrifuged again at 3,000 g at 4 ° C. for 5 minutes to obtain yeast cell pellet.
- the resulting yeast cell pellet was suspended in 10 mL of Yeast nitrogen base (YNB) medium (-His) containing 2% galactose and bisected into 5 mL.
- YNB Yeast nitrogen base
- YNB Yeast nitrogen base
- Fig. 4 a final concentration of 5 ⁇ M soyasapogenol B
- a feeding assay extract (Sample I) in which glycyrrhetinic acid was added to a transformed yeast expressing the polypeptide (Glyma.06G324300) shown in SEQ ID NO: 1 and a feeding assay extract (Sample M) in which Soyasapogenol B was added.
- Feeding assay extract (Sample J) in which glycyrrhetinic acid was added to transformed yeast expressing the polypeptide (Glyur003152s00037491) shown in SEQ ID NO: 3
- Feeding assay extract (Sample N) in which Soyasapogenol B was added, and sequence.
- Feeding assay extract (Sample K) in which glycyrrhetinic acid was added to transformed yeast expressing the polypeptide (Lj3g3v1981230) shown by No. 5, Feeding assay extract (Sample O) in which Soyasapogenol B was added, and all genes were expressed.
- a feeding assay extract (Sample L) in which glycyrrhetinic acid was added to a transformed yeast containing only an empty vector and a feeding assay extract (Sample P) in which Soyasapogenol B was added were obtained.
- Example 13 Analysis of substrate feeding assay extract> Samples I, J, K, L, M, N, O, and P obtained in Example 12 were evaporated using a rotary evaporator. The precipitate was suspended in 300 ⁇ L of methanol and filtered through Millex-GV, 0.22 ⁇ m, PVDF, 4 mm (Merck) to prepare a sample for LC-MS analysis.
- Soyasapogenol B monoglucuronide 633.8
- Soyasapogenol B diglucuronide 809.9 were analyzed as parameters.
- the identification of metabolites was determined by comparing the LC retention time and MS spectrum using a sample of commercially available glycyrrhetinic acid monoglucuronide, glycyrrhizin, and soyasapogenol B monoglucuronide dissolved in methanol at a concentration of 1 ⁇ M as a standard.
- FIG. 7 shows the results of the substrate feeding assay in Sample I. From (b), a peak (white arrow) corresponding to the glycosyl acceptor substrate glycyrrhetinic acid was detected, and from (c), one peak considered to be glycyrrhetinic acid with one molecule of glucuronic acid added (white arrow). Black arrow) was detected. The retention time of the peak and the mass spectrum were in good agreement with glycyrrhetinic acid monoglucuronide.
- the result of the substrate feeding assay when soyasapogenol B is used as a glycosyl acceptor substrate is shown in FIG.
- the sample O containing Lj3g3v1981230 derived from Miyako grass shown in (d) all of them.
- the soybean-derived novel enzyme Glyma.06G324300 obtained in Example 1 the licorice-derived novel enzyme Glyur003152s00037491 obtained in Example 3, and Example 5 were obtained. It was revealed that the novel enzyme Lj3g3v1981230 derived from licorice has a first glucuronic acid transfer activity that converts glycyrrhetinic acid into glycyrrhetinic acid monoglucuronide by transferring glucuronic acid to the hydroxy group at the 3-position of glycyrrhetinic acid. ..
- Example 14 Isolation of Glyma.06G324300 homologous gene function-deficient mutant of Lotus japonicus> Based on the sequence information of Lotus japonicus genes and proteins, and their expression database Lotus Base (https://lotus.au.dk/), we searched for mutant strains with LORE insertion in Lj3g3v1981230. The strain was a hit. From these strains, two strains (30006020, 30115796) were selected based on the LORE1 insertion position in Lj3g3v1981230 and the number of LORE1 insertions in other genes, and seeds were obtained from a distribution organization (Aarhus University, Denmark).
- PCR genomic DNA was extracted from a part of the developed cotyledons, and the insertion of LORE1 into Lj3g3v1981230 was confirmed by PCR.
- 25 cycles of PCR were performed using GoTaq (registered trademark) Colorless Master Mix (Promega) at an annealing temperature of 60 ° C. and a reaction temperature of 72 ° C.
- GoTaq registered trademark
- a reverse primer SEQ ID NO: 27 for 300006020, SEQ ID NO: 29 for 30115796
- P2 primer SEQ ID NO: 30
- Example 15 Triterpenoid saponin composition analysis of Glyma.06G324300 homologous gene function-deficient mutant of Lotus japonicus> After sowing in Example 14, the whole plant of the Lotus japonicus Glyma. 06G324300 homologous gene function-deficient mutant line (30006020, 30115796) was freeze-dried one month later, and then 10 times the dry weight of 80% methanol was added. added. The mixture was shaken at room temperature for 1 hour and centrifuged at 15 krpm for 5 minutes.
- the supernatant obtained by centrifugation was cleaned with a membrane filter (GL chromatodisc 4P, GL science) having a pore size of 0.45 ⁇ m, and 2 ⁇ L of each extract was subjected to LC-PDA / MS / MS analysis.
- the apparatus used was Ultimate 3000SD HPLC / LTQ orbitrap discovery MS (both from Thermo Fisher Scientific). Apply the extract to a reverse phase column (C30, Develosil C30-UG-3, Nomura Kagaku) and apply a linear grangeant of acetonitrile (20-80% /) containing 0.1% (v / v) formic acid at a flow rate of 0.15 ml / min. 60 minutes) to elute saponins.
- a reverse phase column C30, Develosil C30-UG-3, Nomura Kagaku
- the eluate was detected by UV absorption and mass spectrometry (parent ion was detected by orbitrap type, fragment ion was detected by ion trap type).
- the eluate vaporized and positively ionized by the electrospray ionization method was injected into the mass spectrometer.
- Example 16 Construction of expression vector for Lotus japonicus> Using the cloning vector containing the Glyma. 06G324300 homologous gene derived from Kanzo prepared in Example 4 as a template, a forward primer (SEQ ID NO: 31) and a reverse primer (SEQ ID NO: 32) that amplify from the start codon to the stop codon of SEQ ID NO: 4 are used. ), And using PrimeSTAR GXL DNA Polymerase (Takara Bio), PCR was performed for 30 cycles at an annealing temperature of 60 ° C and a reaction temperature of 68 ° C.
- the amplified DNA fragment was cloned into pDONR TM 221 by a nucleotide sequence-specific recombination reaction (GATEWAY attB x attP reaction) using Gateway BP Clonase II Enzyme Mix (Thermo Fisher Technologies), and the three independent cells obtained were obtained.
- GATEWAY attB x attP reaction Gateway BP Clonase II Enzyme Mix (Thermo Fisher Technologies)
- the polynucleotide sequence was determined and confirmed to match SEQ ID NO: 4.
- the plasmid pDONR-Glyur003152s00037491 having the polynucleotide was obtained as an entry clone.
- the plasmid pDONR-Lj3g3v1981230 having the polynucleotide was obtained as an entry clone. Since it is necessary for a base sequence-specific recombination reaction (GATEWAY attB ⁇ attP reaction) at the time of cloning into pDONR TM 221 (Thermo Fisher Technologies), the forward primer has SEQ ID NO: 35 at the 5'end. The 12 bases shown in (AAAAAGCAGGCT) and the reverse primer have 12 bases (AGAAAGCTGGGT) shown in SEQ ID NO: 36 added to the 5'end.
- the plasmid (entry clone) pDONR-Glyma.06g324300 having the polynucleotide shown in SEQ ID NO: 2 or the plasmid (entry clone) having the polynucleotide shown in SEQ ID NO: 4 prepared in Example 1 is shown in SEQ ID NO: 6
- a plasmid having a polynucleotide (entry clone) pDONR-Lj3g3v1981230 and a destination vector pG35NGw are mixed, and a nucleotide sequence-specific recombination reaction (GATEWAY attL ⁇ attR reaction) is used using Gateway LR Clonase II Enzyme Mix (Thermo Fisher Technologies).
- Example 17 Rescue experiment by introducing soybean Glyma.06G324300 and Glyma.06G324300 homologous gene of licorice and Lotus japonicus into Lotus japonicus mutant> Glyma.06G324300 homologous genes in Diaz et al., (2005) Induction of hairy roots for symbiotic gene expression studies. In Lotus japonicus Handbook, AJ Marquez, ed (Dordrecht, The Netherlands: Springer), pp. 261-277. It was introduced into a Glyma. 06G324300 homologous gene function-deficient mutant of Miyakogusa according to the method described. Seeds obtained from a mutant homozygous strain of Glyma.
- 06G324300 homologous gene function-deficient mutant 300006020 obtained in Example 14 with hypochlorous acid (including 0.02% Tween20) having an effective chlorine concentration of 2% were used for 20 After sterilization for minutes, it was allowed to absorb water overnight in sterile distilled water. The seed coats of the absorbed seeds were removed, sowed on 0.8% water agar medium, shielded from light with aluminum foil, cultured at 25 ° C. for 4 days, and then exposed to light for 1 day. The vector prepared in Example 16 was introduced into Agrobacterium (LBA1334), plated on the anterior surface of L medium, and cultured at 28 ° C. for 1 day.
- Agrobacterium LBA13344
- Agrobacterium cultured for 1 day in 10 mL of sterile water is suspended and placed in a round sterile petri dish, and then the seedlings of the mutant homozygous of Miyakogusa's Glyma.06G324300 homologous gene function-deficient mutant 300006020 are soaked in the razor.
- the hypocotyl was cut with a blade.
- the cut seedlings were placed in a coexisting medium, shielded from light with aluminum foil, and co-cultured at 21 ° C. for 4 days.
- the plants were arranged on HRE medium and grown at light period 16 hours, 25 ° C / dark period 8 hours, and 23 ° C for 2 weeks. Plants with hairy roots were confirmed to have GFP fluorescence under a fluorescent stereomicroscope.
- Example 18 Triterpenoid saponin composition analysis of Lotus japonicus hairy root>
- the hairy root-developing plant obtained in Example 17 was transplanted into a pot filled with vermiculite, B & D hydroponic solution (Diaz et al., 2005) was added, and the plant was grown for 1 month.
- Well-grown plants were freeze-dried and crushed with a multi-bead shocker (Yasui Kikai Co., Ltd.) at 2500 rpm for 30 seconds.
- 80% methanol, 100 times the weight of the lyophilized product, was added, shaken at room temperature for 1 hour, and then centrifuged at 15 krpm for 5 minutes to collect the supernatant.
- Example 19 Search and isolation of Glyma.06G324300 homologous gene derived from astragalus>
- the Glyma.06G324300 homologous gene was searched for as an ortholog gene candidate for Glyma.06G324300 by gene homology search from Astragalus sinicus, which is the same legume as soybean.
- Astragalus sinicus which is the same legume as soybean.
- AsCSyGT one base sequence, AsCSyGT, that encodes a protein that exhibits high amino acid identity in Glyma.06G324300.
- First-strand cDNA was synthesized using 1 ⁇ g of total RNA obtained from astragalus stalk using the SMART RACE cDNA amplification kit (Clontech) according to the attached protocol. Using 2 ⁇ L of first-strand cDNA as a template, oligo DNA at the N-terminal and C-terminal of the polypeptide estimated from AsCSyGT was used as the forward primer (SEQ ID NO: 39) and reverse primer (SEQ ID NO: 40), respectively, and PrimeSTAR Max. 30 cycles of PCR were performed using DNA Polymerase (Takara Bio) at an annealing temperature of 55 ° C and a reaction temperature of 72 ° C.
- DNA Polymerase Takara Bio
- Example 20 Isolation of soybean-derived Glyma.06G324300 homologous gene>
- the Glyma.06G324300 homologous gene was searched for as a paralog gene candidate for Glyma.06G324300 by gene homology search from soybean.
- Soybase https://soybase.org
- Glyma.11g 151800 were found.
- Glyma.06G324300 homologous genes Glyma.04g255400 and Glyma.11g151800
- pDONR TM 221 Thermo Fisher Technologies
- the oligo DNA at the N-terminal and C-terminal parts of the polypeptide estimated from Glyma.04g255400 was used as the forward primer (SEQ ID NO: 43) and the reverse primer (SEQ ID NO: 44), respectively, and the poly estimated from Glyma.11g151800.
- the oligo DNAs corresponding to the N-terminal and C-terminal of the peptide were used as the forward primer (SEQ ID NO: 45) and the reverse primer (SEQ ID NO: 46), respectively. Since it is necessary for a base sequence-specific recombination reaction (GATEWAY attB x attP reaction) when cloning into pDONR TM 221 (Thermo Fisher Technologies), the forward primer has 12 bases (AAAAAGCAGGCT) at the 5'end. ), And 12 bases (AGAAAGCTGGGT) are artificially added to the reverse primer at the 5'end.
- a DNA fragment amplified from seed-derived fast-strand cDNA was cloned into pDONR TM 221 by a nucleotide sequence-specific recombination reaction (GATEWAY attB x attP reaction) using Gateway BP Clonase II Enzyme Mix (Thermo Fisher Technologies).
- the polynucleotide sequences were determined for the three independent clones obtained for each. The sequences thus obtained are SEQ ID NO: 47 and SEQ ID NO: 49, and the polypeptide sequences deduced from them are SEQ ID NO: 48 and SEQ ID NO: 50.
- SEQ ID NO: 48 and SEQ ID NO: 50 had 93.9% and 71.1% identity with respect to the amino acid sequence shown in SEQ ID NO: 1, respectively.
- Example 21 Introduction of Glyma.06G324300 homologous genes of astragalus and soybean into glycyrrhetinic acid and soyasapogenol B-producing yeast strains>
- pESC-HIS-AsCSyGT and pESC-HIS-AtUGD2 which are yeast expression clones of the soybean Glyma.06G324300 homologous gene obtained in Example 19 and the soybean obtained in Example 20.
- -Glyma04g255400 and pESC-HIS-AtUGD2-Glyma. 11g151800 were constructed and introduced into glycyrrhetinic acid and soyasapogenol B-producing yeast strains by the method shown in Example 8, respectively.
- Example 22 In vivo enzyme assay using recombinant yeast introduced with Glyma.06G324300 homologous gene of astragalus and soybean> Recombinant yeast was cultured and metabolites were extracted by the method shown in Example 9.
- a metabolite extract (sample Q) derived from the glycyrrhetinic acid-producing yeast strain expressing the polypeptide (AsCSyGT) shown in SEQ ID NO: 42
- a metabolite extract derived from (Sample R) and a metabolite extract derived from a glycyrrhetinic acid-producing yeast strain expressing the polypeptide (Glyma.11g151800) shown in SEQ ID NO: 50 (Sample S) were obtained.
- Soyasapogenol B-producing yeast strains carrying pESC-HIS-AsCSyGT, pESC-HIS-AtUGD2-Glyma04g255400, and pESC-HIS-AtUGD2-Glyma.11g151800 were also cultured and metabolites were extracted in the same manner.
- a metabolite extract (sample T) derived from the soyasapogenol B-producing yeast strain expressing the polypeptide (AsCSyGT) shown in SEQ ID NO: 42, and a soyasapogenol B-producing yeast strain expressing the polypeptide (Glyma04g255400) shown in SEQ ID NO: 48.
- a metabolite extract (sample U) derived from the soyasa pogenol B-producing yeast strain expressing the polypeptide (Glyma. 11g151800) shown in SEQ ID NO: 50 was obtained.
- Example 23 Analysis of metabolite extract of yeast into which Glyma.06G324300 homologous gene of astragalus and soybean was introduced>
- a sample for LC-MS analysis was prepared and analyzed by the method shown in Example 10. The results are shown in FIGS. 14 and 15. From the sample Q of (a) shown in FIG. 14, one peak corresponding to glycyrrhetinic acid monoglucuronide was detected (black arrow). The retention time of the peak and the mass spectrum were in good agreement with glycyrrhetinic acid monoglucuronide.
- Example 24 Preparation of transformed yeast for substrate feeding assay of soybean Glyma.06G324300 homologous gene>
- the pESC-HIS-AtUGD2-Glyma04g255400 and pESC-HIS-AtUGD2-Glyma.11g151800 obtained in Example 21 were introduced into the yeast INVScI strain, respectively.
- Yeast transformation was performed using Frozen-EZ Yeast Transformation II (Zymo Research) according to the attached protocol.
- Example 25 Substrate feeding assay using transformed yeast into which a soybean Glyma.06G324300 homologous gene has been introduced>
- the recombinant yeast obtained in Example 24 was cultured by the method shown in Example 12.
- the suspension of each yeast cell obtained was divided into equal parts, and ursolic acid, a ursan-type triterpenoid, or bethulinic acid, a lupine-type triterpenoid, at a final concentration of 5 ⁇ M was added. Then, the cells were cultured again and the metabolites were extracted by the method shown in Example 12.
- Example 26 Analysis of substrate feeding assay extract using transformed yeast into which Glyma.06G324300 homologous gene of soybean was introduced>
- FIG. 16 is an analysis result of a feeding assay extract (sample W) in which ursolic acid was added to a transformed yeast expressing the polypeptide (Glyma.11g151800) shown in SEQ ID NO: 50.
- FIG. 17 is an analysis result of a feeding assay extract (sample Y) in which bethulinic acid was added to a transformed yeast expressing the polypeptide (Glyma.11g151800) shown in SEQ ID NO: 50.
- a peak presumed to be betulinic acid monoglucuronide was detected in sample Y shown in (b).
- the negative control sample Z shown in (c) a peak presumed to be betulinic acid monoglucuronide was not detected.
- the polypeptide shown in SEQ ID NO: 50 is not only an oleanane-type triterpenoid, but also a hydroxy group at the 3-position of a ursan-type triterpenoid such as ursolic acid and ⁇ -boswellic acid, and a lupine-type triterpenoid such as betulinic acid. Is also considered to be the first glucuronic acid transferase capable of transferring glucuronic acid.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Botany (AREA)
- Nutrition Science (AREA)
- Cell Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Physiology (AREA)
- Developmental Biology & Embryology (AREA)
- Environmental Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Plant Substances (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
(a)配列番号1、3、及び5のいずれかで示すアミノ酸配列、
(b)配列番号1、3、及び5のいずれかで示すアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
(c)配列番号1、3、及び5のいずれかで示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列
ポリペプチド。
(2)前記オレアナン型トリテルペノイドが、β-アミリン、11-オキソ-β-アミリン、30-ヒドロキシ-11-オキソ-β-アミリン、30-ヒドロキシ-β-アミリン、24-ヒドロキシ-β-アミリン、11-デオキソグリチルレチン酸、グリチルレチン酸、オレアノール酸、メジカゲニン酸、ソヤサポゲノールB、ソヤサポゲノールA、ヘデラゲニン、カメリアゲニン、及びサイコゲニンからなる群から選択される、(1)に記載のポリペプチド。
(3)マメ科(Fabaceae)植物に由来する、(1)又は(2)に記載のポリペプチド。
(4)(1)~(3)のいずれかに記載のポリペプチドをコードするポリヌクレオチド。
(5)以下の(a)~(d)で示すいずれかの塩基配列を含む、(4)に記載のポリヌクレオチド。
(a)配列番号2、4、及び6のいずれかで示す塩基配列、
(b)配列番号2、4、及び6のいずれかで示す塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列、
(c)配列番号2、4、及び6のいずれかで示す塩基配列と80%以上の同一性を有する塩基配列、又は
(d)配列番号2、4、及び6のいずれかで示す塩基配列に相補的な塩基配列と高ストリンジェントな条件でハイブリダイズする塩基配列
(6)(4)又は(5)に記載のポリヌクレオチドを含むCSyGT発現ベクター。
(7)(4)又は(5)に記載のポリヌクレオチド又は(6)に記載のCSyGT発現ベクターを含む形質転換体、又は前記ポリヌクレオチド又は前記CSyGT発現ベクターを保持したその後代。
(8)宿主がマメ科(Fabaceae)植物である、(7)に記載の形質転換体又はその後代。
(9)宿主が酵母である、(7)に記載の形質転換体又はその後代。
(10)(9)に記載の形質転換体又はその後代から得られる酵母由来の糖鎖が付加された(1)~(3)のいずれかに記載のポリペプチド。
(11)前記酵母由来の糖鎖が高マンノース型糖鎖である、(10)に記載のポリペプチド。
(12)オレアナン型トリテルペノイドにおけるグルクロン酸の2位のヒドロキシ基にグルクロン酸を転移する活性を有するポリペプチドを製造する方法であって、(7)又は(8)に記載の形質転換体又はその後代を培養する工程、及び前記培養物から(1)~(3)のいずれかに記載のポリペプチドを抽出する工程を含む、前記方法。
(13)β-アミリンを生合成でき、かつ以下の(A)~(D)で示す全ての発現ベクターを含むグリチルリチン製造用の遺伝子組換え体。
(A)オレアナン型トリテルペノイドにおける11位を酸化する活性を有し、以下の(a)~(c)で示すいずれかのアミノ酸配列を含むポリペプチドを包含するCYP88D6発現ベクター、
(a)配列番号7で示すアミノ酸配列、
(b)配列番号7で示すアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
(c)配列番号7で示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列、
(B)オレアナン型トリテルペノイドにおける30位を酸化する活性を有し、以下の(d)~(f)で示すいずれかのアミノ酸配列を含むポリペプチドを包含するCYP72A154発現ベクター、
(d)配列番号9、11、及び13のいずれかで示すアミノ酸配列、
(e)配列番号9、11、及び13のいずれかで示すアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
(f)配列番号9、11、及び13のいずれかで示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列、
(C)オレアナン型トリテルペノイドモノグルクロニドにおけるグルクロン酸の2位のヒドロキシ基にグルクロン酸を転移する活性を有し、以下の(g)~(i)で示すいずれかのアミノ酸配列を含むポリペプチドを包含するUGT73P12発現ベクター、
(g)配列番号15で示すアミノ酸配列、
(h)配列番号15で示すアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
(i)配列番号15で示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列、及び
(D)(6)に記載のCSyGT発現ベクター
(14)宿主がマメ科植物である、(13)に記載の遺伝子組換え体。
(15)β-アミリンからグリチルリチンを製造する方法であって、(13)又は(14)に記載の遺伝子組換え体を培養する工程を含む前記製造方法。
本明細書は本願の優先権の基礎となる日本国特許出願番号2019-190060号の開示内容を包含する。
1-1.概要
本発明の第1の態様は、グルクロン酸第1転移酵素及びグルクロン酸第1転移活性を有するその断片、並びにそれらをコードする核酸に関する。本発明のグルクロン酸第1転移酵素は、多くの植物が生合成可能なβ-アミリンから、グリチルリチンを生合成するカンゾウ属特有の合成経路において、β-アミリンから2段階の酸化反応を経て得られるグリチルレチン酸の3位のヒドロキシル基へのグルクロン酸の配糖化反応を触媒する活性を有する。本発明のグルクロン酸第1転移酵素等により、グリチルレチン酸をはじめとするオレアナン型トリテルペノイドの3位のヒドロキシル基にグルクロン酸を糖転移できるだけでなく、β-アミリンからグリチルリチンまでの生合成経路に関与する既知の酵素と組み合わせることにより、カンゾウ属植物以外の植物を宿主としたβ-アミリンからグリチルリチンまでの生物生産系の作出が可能となる。それにより、良質のグリチルリチンを安定的に、かつ持続的に提供することができる。
本明細書において頻用する以下の用語について定義する。
本明細書において「グルクロン酸第1転移酵素(CSyGT)」(本明細書では、しばしば「CSyGT」と表記する)とは、3位の炭素にヒドロキシル基を有するオレアナン型トリテルペノイドに対し、そのヒドロキシル基に糖の一種であるグルクロン酸を1つ転移する糖転移反応を触媒する酵素をいう。ここでいう「第1」とは、オレアナン型トリテルペノイドの3位のヒドロキシル基における2段階の糖転移反応において、最初の糖転移活性を有することをいう。グルクロン酸第1転移酵素の具体的な構成については、後述する。
本発明のグルクロン酸第1転移酵素(CSyGT)は、配列番号1、3、及び5のいずれかで示すアミノ酸配列からなるポリペプチドである。これらのポリペプチドは、それぞれ、ダイズ(Glycine max)由来の野生型CSyGT(GmCSyGT)、カンゾウ(G. uralensis;G.ウラレンシス)由来の野生型CSyGT(GuCSyGT)、及びミヤコグサ(Lotus japonicus)由来の野生型CSyGT(LjCSyGT)に該当する。カンゾウ由来のGuCSyGTは、ダイズ由来のGmCSyGTに対して81%のアミノ酸同一性を有する。またミヤコグサ由来のLjCSyGTは、ダイズ由来のGmCSyGTに対して82%のアミノ酸同一性を有する。
2-1.概要
本発明の第2の態様は、第1態様に記載のポリペプチド(CSyGT等)をコードするポリヌクレオチド、すなわちグルクロン酸第1転移酵素遺伝子及びその活性断片に関する。本発明のポリヌクレオチドにより、後述の第3態様の組換えベクターの構築が可能となる。
「グルクロン酸第1転移酵素遺伝子」(本明細書では、しばしば「CSyGT遺伝子」と表記する)とは、第1態様に記載のCSyGTをコードするポリヌクレオチドをいう。CSyGTをコードするポリヌクレオチドであれば、その塩基配列は特には限定しない。好ましくは配列番号1、3、5で示すアミノ酸配列を含む野生型CSyGTをコードするポリヌクレオチドである。例えば、配列番号1で示すアミノ酸配列からなるダイズ由来の野生型GmCSyGTをコードするポリヌクレオチド、具体的には、例えば、配列番号2で示す塩基配列からなるポリヌクレオチド、すなわちダイズ由来の野生型GmCSyGT遺伝子が挙げられる。また、配列番号3で示すアミノ酸配列からなるカンゾウ由来の野生型GuCSyGTをコードするポリヌクレオチド、具体的には、例えば、配列番号4で示す塩基配列からなるポリヌクレオチド、すなわちカンゾウ由来の野生型GuCSyGT遺伝子が挙げられる。そして、配列番号5で示すアミノ酸配列からなるミヤコグサ由来の野生型LjCSyGTをコードするポリヌクレオチド、具体的には、例えば、配列番号6で示す塩基配列からなるポリヌクレオチド、すなわちミヤコグサ由来の野生型LjCSyGT遺伝子が挙げられる。
3-1.概要
本発明の第3の態様は、組換えベクターに関する。本発明の組換えベクターは、上記第2態様に記載のポリヌクレオチドを含み、宿主細胞内で、CSyGT遺伝子等をクローニングすること、又はCSyGT等を発現することができる。本態様では、特に、CSyGT等を発現するCSyGT発現ベクターが好ましく適用される。
本発明の組換えベクターは、第2態様に記載のポリヌクレオチドを適当な組換えベクターに導入することによって構築することができる。ベクターの種類は、特に限定しない。クローニング用(形質転換用)、又は遺伝子発現用等のベクターを目的に応じて、又は導入する宿主に応じて、適宜選択すればよい。植物形質転換用ベクター又は(遺伝子)発現ベクターは特に好ましい。
4-1.概要
本発明の第4の態様は、形質転換体又はその後代に関する。本発明の形質転換体又はその後代は、前記第2態様に記載のポリヌクレオチド又は前記第3態様に記載の組換えベクターを細胞内に含み、CSyGT遺伝子等のクローニング、及び/又はCSyGT等を発現することができる。本発明の形質転換体によれば、インビボ発現系でCSyGT等を安定的に生合成することかが可能となる。
本明細書において「形質転換体」とは、第2態様に記載のポリヌクレオチド又は第3態様に記載の組換えベクターの導入によって形質転換された宿主をいう。
5-1.概要
本発明の第5の態様は、第4態様の形質転換体又はその後代を培養して、その培養物から第1態様に記載のグルクロン酸第1転移活性を有するポリペプチド、すなわちCSyGT等を抽出することを含む、CSyGT等の製造方法に関する。本発明のポリヌクレオチドの製造方法によれば、宿主を生物生産系として利用することで、CSyGT等を安定的に、かつ大量に得ることが可能となる。
本発明の製造方法は、必須の工程として培養工程及び抽出工程を含む。以下、各工程について具体的に説明をする。
本態様において「培養工程」は、第4態様の形質転換体又はその後代を培養する工程である。本発明で使用する形質転換体又はその後代は、第1態様に記載のポリペプチドを過剰発現可能な又は構成的に発現可能な、形質転換体又はその後代を用いることが好ましい。例えば、第3態様に記載の組換えベクターを有する形質転換体又はその後代であれば、組換えベクターが過剰発現型プロモーターや構成的プロモーターを含む発現ベクターであることが好ましい。第4態様の形質転換体又はその後代は、いずれを宿主としていてもよいが、好ましくはマメ科植物又は酵母である。宿主を変えることによって、同じ第1態様に記載のグルクロン酸第1転移酵素を発現しても、異なる糖鎖が付加された糖タンパク質を得ることができる。
本態様において「抽出工程」は、前記培養工程で得られた培養物からCSyGT等を抽出する工程である。
6-1.概要
本発明の第6の態様は、グリチルリチン製造用遺伝子組換え体である。本発明の遺伝子組換え体は、カンゾウ属植物におけるβ-アミリンからグリチルリチンに至る生合成経路に必要とされる1組の酵素群、すなわち2段階の酸化反応及び2段階の配糖化反応を触媒する4種の酵素群を発現する発現ベクターを含む。本発明の遺伝子組換え体は、生物細胞内でβ-アミリンからグリチルリチンを生合成することができ、それによりグリチルリチンの生物生産系として利用することができる。
6-2-1.包含する発現ベクター
本発明の遺伝子組換え体は、その特徴として宿主細胞内にβ-アミリンからグリチルリチンに至る生合成経路に必要とされる4種1組の酵素群及び/又はそれぞれの活性断片をコードするポリヌクレオチドを包含する発現ベクターを少なくとも含む。必要に応じて、β-アミリン合成酵素遺伝子をコードするポリヌクレオチドを包含する発現ベクターをさらに含んでいてもよい。前記4種の酵素は、β-アミリンの第1段階酸化反応及び第2段階酸化反応、オレアナン型トリテルペノイドの第1段階配糖化反応及び第2段階配糖化反応のそれぞれを触媒するポリペプチドである。それぞれの酵素又はその活性断片を含む発現ベクターを以下の(1)~(4)で示し、具体的に説明する。なお、(1)~(4)では、前記4種の発現ベクターをそれぞれ別個に記載しているが、各酵素の遺伝子は、それぞれ異なる発現ベクターに含まれていてもよいし、同一の発現ベクターに2種以上含まれていてもよい。
「CYP88D6発現ベクター」は、オレアナン型トリテルペノイドにおける11位を酸化する活性を有するポリペプチド、すなわちCYP88D6及びその活性断片(本明細書では、しばしば「CYP88D6等」と表記する)をコードする遺伝子及びその断片(本明細書では、しばしば「CYP88D6遺伝子等」と表記する)を含んでいる。したがって、遺伝子組換え体内ではCYP88D6発現ベクターによりCYP88D6等が発現する。
「CYP72A154発現ベクター」は、オレアナン型トリテルペノイドにおける30位を酸化する活性を有するポリペプチド、すなわちCYP72A154及びその活性断片(本明細書では、しばしば「CYP72A154等」と表記する)をコードする遺伝子及びその断片(本明細書では、しばしば「CYP72A154遺伝子等」と表記する)を含んでいる。したがって、遺伝子組換え体内ではCYP72A154発現ベクターによりCYP72A154等が発現する。
「UGT73P12組換えベクター」は、オレアナン型トリテルペノイドモノグルクロニドにおけるグルクロン酸の2位のヒドロキシ基にグルクロン酸を転移する活性をポリペプチド、すなわちUGT73P12及びその活性断片(本明細書では、しばしば「UGT73P12等」と表記する)をコードする遺伝子及びその断片(本明細書では、しばしば「UGT73P12遺伝子等」と表記する)を含んでいる。したがって、遺伝子組換え体内ではUGT73P12発現ベクターによりUGT73P12等が発現する。
「CSyGT発現ベクター」は、前記第3態様に記載のCSyGT組換えベクターにおけるCSyGT発現ベクターが該当するので、ここでの詳細な説明は省略する。
本発明の「グリチルレチン酸製造用遺伝子組換え体」とは、少なくとも前記4種の酵素遺伝子群を含む発現ベクターを導入された形質転換体、又はそれらの酵素遺伝子群を保持するその後代をいう。したがって、包含する発現ベクターの種類が異なることを除けば、その基本構成は、前記第4態様に記載の形質転換体及びその後代と同じでよい。ただし、本発明は、細胞内でβ-アミリンからグリチルリチンを生合成可能な遺伝子組換え体であることから、前記生合成系における出発物質であるβ-アミリンを細胞内で生合成できる宿主であることが好ましい。宿主におけるβ-アミリンの生合成は、内因的な合成系に基づくものであってもよいし、外因的な合成系に基づくものであってもよい。オレアナン型トリテルペノイドであるβ-アミリンは多くの植物が生合成可能であることから、内因的な合成系に基づく場合、本発明の宿主は植物が好ましい。好ましくはβ-アミリン合成能が高く、繁殖力が旺盛で、育成しやすい植物種である。より好ましくはカンゾウに比較的近縁な植物、すなわちマメ科植物である。例えば、グリキルリザ属に属する種、ダイズ属に属する種、ミヤコグサ属に属する種等が挙げられる。一方、β-アミリンの生合成が外因的な合成系に基づく場合、宿主自身がβ-アミリンを生合成できない生物種であってもよい。例えば、β-アミリン合成酵素遺伝子を含む発現ベクターを酵母に導入しておくことで、その酵母の形質転換体をβ-アミリンを細胞内で生合成できる宿主として利用することができる。
7-1.概要
本発明の第7の態様は、グリチルリチンの製造方法である。本発明の製造方法は、前記第6態様のグリチルリチン製造用遺伝子組換え体を生物生産系として使用し、β-アミリンからグリチルリチンを製造することを特徴とする。
本発明の製造方法によれば、従来高価であったグリチルリチンをカンゾウからの抽出に依ることなく、安定的に、かつ大量に製造することが可能となる。
本発明の製造方法は、必須の工程として培養工程を、また選択工程として「抽出工程」を含む。
(1)培養工程
本態様における「培養工程」は、基本的には第5態様に記載の培養工程に準ずればよい。遺伝子組換え体が植物の場合、公知の条件植物を培養する方法を適用すればよい。本工程により前記第6態様のグリチルリチン製造用遺伝子組換え体中でグリチルリチンが製造される。
(2)抽出工程
本態様における「抽出工程」は、基本的には第5態様に記載の抽出工程に準ずればよい。遺伝子組換え体が植物の場合、カンゾウからグリチルリチンを抽出する方法と同じ方法を用いることができる。
温室で栽培したダイズ(Glycine max)品種「Williams 82」の登熟中の種子を採取した。RNA抽出試薬RNeasy Plant Mini Kit (QIAGEN社)を用いて添付のプロトコルに従い、トータルRNAを調製した。得られたトータルRNAを200ng用いて、QuantiTech Reverse Transcription Kit (QIAGEN社)を用いて添付のプロトコルに従いファーストストランドcDNAを合成した。5倍希釈したファーストストランドcDNA各1μLを鋳型として、Glyma.06G324300から推定されるポリペプチドのN末端とC末端に相当する箇所のオリゴDNAをそれぞれフォワードプライマー(配列番号17)及びリバースプライマー(配列番号18)に用い、PrimeSTAR GXL DNA Polymerase(タカラバイオ社)を用いてアニール温度55℃、反応温度68℃で30サイクルのPCRを行った。なお、pDONRTM221(Thermo Fisher Technologies社)へのクローニングの際の塩基配列特異的な組み換え反応(GATEWAY attB × attP反応)に必要なことから前記フォワードプライマーには、5’末端に12塩基(AAAAAGCAGGCT)が、そして前記リバースプライマーには、5’末端に12塩基(AGAAAGCTGGGT)が、人工的に付加されている。種子由来のファーストストランドcDNAから増幅されたDNA断片をGateway BP Clonase II Enzyme Mix(Thermo Fisher Technologies社)を用いて塩基配列特異的な組み換え反応(GATEWAY attB × attP反応)によりpDONRTM221にクローニングし、得られた3個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列が配列番号2であり、それから推定されるポリペプチド配列が配列番号1であった。
ダイズと同じマメ科植物であり、グリチルリチンを生合成することが知られているカンゾウ(Glycyrrhiza uralensis)から、遺伝子相同検索によってGlyma.06G324300のオルソログ遺伝子候補としてGlyma.06G324300相同遺伝子を探索した。カンゾウのゲノム情報データベースであるGlycyrrhiza uralensis GDB(http://ngs-data-archive.psc.riken.jp/Gur-genome/index.pl)内のBLAST相同性探索機能を使用し、Glyma.06G324300に高いアミノ酸同一性を示すタンパク質をコードする1種の塩基配列Glyur003152s00037491を見出した。Glyur003152s00037491から推定されるポリペプチドは、Glyma.06G324300に対して81%のアミノ酸同一性を示した。
カンゾウの根から、RNA抽出試薬PureLink Plant RNA Reagent (Thermo Fisher Scientific社)を用いてトータルRNAを調製した。得られたトータルRNAを1μg用いて、SMART RACE cDNA amplification kit (Clontech社)を用いて添付のプロトコルに従いファーストストランドcDNA合成を行った。ファーストストランドcDNA 2μLを鋳型として、Glyur003152s00037491から推定されるポリペプチドのN末端とC末端に相当する箇所のオリゴDNAをそれぞれフォワードプライマー(配列番号19)及びリバースプライマー(配列番号20)に用い、PrimeSTAR Max DNA Polymerase(タカラバイオ社)を用いてアニール温度55℃、反応温度72℃で30サイクルのPCRを行った。なお、pENTRTM/D-TOPO(登録商標)エントリーベクター(Thermo Fisher Technologies社)へのクローニングに必要なことから、前記フォワードプライマーには、5’末端に4塩基(cacc)が人工的に付加されている。増幅されたDNA断片をpENTRTM/D-TOPOエントリーベクターにクローニングし、得られた4個の独立クローンについて塩基配列を決定した。これにより得られたカンゾウのGlyma.06G324300相同遺伝子の塩基配列が配列番号4であり、それから推定されるポリペプチド配列が配列番号3である。配列番号3のアミノ酸配列は配列番号1で示すアミノ酸配列に対して82%の同一性を有していた。
実施例2と同様の方法で、ミヤコグサ(Lotus japonicus)由来のGlyma.06G324300オルソログ遺伝子候補としてGlyma.06G324300相同遺伝子を探索した。ミヤコグサのゲノム情報データベースであるmiyakogusa.jp(http://www.kazusa.or.jp/lotus/release1/index.html)内のBLAST相同性検索機能を使用し、Glyma.06G324300に高いアミノ酸同一性を示すタンパク質をコードする1種の塩基配列Lj3g3v1981230を見出した。Lj3g3v1981230から推定されるポリペプチドはGlyma.06G324300に対して81.4%のアミノ酸同一性を示した。
ミヤコグサから得られたトータルRNAを1μg用いて、SMART RACE cDNA amplification kit (Clontech社)を用いて添付のプロトコルに従いファーストストランドcDNAを合成した。ファーストストランドcDNA 2μlを鋳型として、Lj3g3v1981230から推定されるポリペプチドのN末端とC末端に相当する箇所のオリゴDNAをそれぞれフォワードプライマー(配列番号37)及びリバースプライマー(配列番号38)に用い、PrimeSTAR Max DNA Polymerase(タカラバイオ社)を用いてアニール温度55℃、反応温度72℃で30サイクルのPCRを行った。なお、pENTRTM/D-TOPO(登録商標)エントリーベクター(Thermo Fisher Technologies社)へのクローニングに必要なことから、前記フォワードプライマーには、5’末端に4塩基(cacc)が人工的に付加されている。増幅されたDNA断片をpENTRTM/D-TOPOエントリーベクターにクローニングし、得られた2個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られたミヤコグサのGlyma.06G324300相同遺伝子の塩基配列が配列番号6であり、それから推定されるポリペプチド配列が配列番号5である。配列番号5は配列番号1で示すアミノ酸配列に対して82%の同一性を有していた。
実施例1、3、及び5で単離されたGlyma.06G324300とその相同タンパク質の予想される糖転移活性を調べるため、酵母発現系を用いて、各タンパク質の発現ベクターを構築した。
実施例1で作製した配列番号2で示すポリヌクレオチドを有するプラスミド(エントリークローン)と実施例6で作製したデスティネーションベクターpESC-HIS-AtUGD2-GWを混合し、Gateway LR Clonase II Enzyme Mix(Thermo Fisher Technologies社)を用いて塩基配列特異的な組み換え反応(GATEWAY attL × attR反応)により、配列番号2で示すDNA断片をpESC-HISに移し替えることで配列番号2で示す遺伝子の酵母発現ベクターpESC-HIS-AtUGD2-Glyma.06G324300を得た。また、上記と同じ手法で実施例3、5において作製した配列番号4、及び6で示す遺伝子の酵母発現ベクターpESC-HIS-AtUGD2-Glyur003152s00037491、pESC-HIS-AtUGD2-Lj3g3v1981230をそれぞれ得た。
酵母INVScI株(Thermo Fisher Technologies社)(MATa his3D1 leu2 trp1-289 ura3-52 MATAlpha his3D1 leu2 trp1-289 ura3-52)に、ミヤコグサのβ-アミリン合成酵素(LjOSC1)遺伝子の発現ベクターpYES3-BAS、CYP88D6遺伝子とミヤコグサのシトクロムP450レダクターゼ(LjCPR1)の同時発現ベクターpESC-CPR-CYP88D6、カンゾウCYP72A154遺伝子のタルウマゴヤシオルソログであるCYP72A63遺伝子の発現ベクターpDEST52-CYP72A63を導入し、同時発現させることでグリチルレチン酸生産酵母株を得た(図3(a))。同時に、β-アミリン合成酵素遺伝子の発現ベクターpYES3-BAS、CYP93E3遺伝子とミヤコグサのシトクロムP450レダクターゼ(LjCPR1)の同時発現ベクターpESC-CPR-CYP93E3、CYP72A566遺伝子の発現ベクターpDEST52-CYP72A566を導入し、同時発現させることでソヤサポゲノールB生産酵母を得た(図3(b))。これらの酵母株に、実施例7で得られたpESC-HIS-AtUGD2-Glyma.06G324300、pESC-HIS-AtUGD2-Glyur003152s00037491、pESC-HIS-AtUGD2-Lj3g3v1981230をそれぞれ導入した。陰性対照として、グリチルレチン酸生産酵母株に空ベクターに相当するpESC-HIS-AtUGD2を導入した。酵母の形質転換は、Frozen-EZ Yeast Transformation II(Zymo Research社)を用いて添付のプロトコルに従い行った。
実施例8で得られた、pESC-HIS-AtUGD2-Glyma.06G324300、pESC-HIS-AtUGD2-Glyur003152s00037491、pESC-HIS-AtUGD2-Lj3g3v1981230又は陰性対照用pESC-HIS-AtUGD2を保持するグリチルレチン酸生産酵母株を、2%グルコースを含む1mLのYeast nitrogen base(YNB)培地(-Trp/-Leu/-Ura/-His)を用いて、30℃、200rpmで24時間振とう培養した。その後、培養液を3,000g、4℃で5分間遠心して酵母細胞のペレットを得た。得られた酵母細胞のペレットを1mLのYeast nitrogen base(YNB)培地(-Trp/-Leu/-Ura/-His)に懸濁した後、再び3,000g、4℃で5分間遠心して酵母細胞のペレットを得た。得られた酵母細胞のペレットを2%ガラクトースを含む5mLのYeast nitrogen base(YNB)培地(-Trp/-Leu/-Ura/-His)に懸濁し、30℃、200rpmで5日間振とう培養した。その後、培養液に1mL相当の体積のガラスビーズ(SIGMA社)と、4mLの1-ブタノールを加えた。酵母細胞を破砕するために、30分間ストロングシェーカーで激しく撹拌し、得られた液体を、10,000g、4℃で10分間遠心した後、上清を酵母代謝産物抽出物として回収した。残った液体に4mLの1-ブタノールを新たに加えて、再度30分間撹拌し、得られた液体を、10,000g、4℃で10分間遠心した後、上清を抽出した。その結果、配列番号1で示すポリペプチド(Glyma.06G324300)を発現するグリチルレチン酸生産酵母株由来の代謝産物抽出物(サンプルA)、配列番号3で示すポリペプチド(Glyur003152s00037491)を発現するグリチルレチン酸生産酵母株由来の代謝産物抽出物(サンプルB)、配列番号5で示すポリペプチド(Lj3g3v1981230)を発現するグリチルレチン酸生産酵母株由来の代謝産物抽出物(サンプルC)と、どの遺伝子も発現しない空ベクターのみのグリチルレチン酸生産酵母株由来の代謝産物抽出物(サンプルD)を得た。
実施例9で得られたサンプルA、B、C、及びD、並びにサンプルE、F、G、及びHを、ロータリーエバポレーターを用いて蒸発させた。沈殿物を300μLのメタノールに懸濁した後、マイレクス(Millex)-GV、0.22 μm、 PVDF、 4 mm(Merck社)を用いてろ過し、LC-MS分析の試料とした。
図4はグリチルレチン酸とグルクロン酸を基質としたときの、Glyma.06G324300又はその相同物の酵素活性の結果である。(a)のサンプルAからは、グリチルレチン酸モノグルクロニドに相当する1本のピークが検出された(黒矢印)。そのピークの保持時間、及びマススペクトルが、グリチルレチン酸モノグルクロニドと良く一致した。同じく、(b)のサンプルB、及び(c)のサンプルCからも、グリチルレチン酸モノグルクロニドに相当するピークが検出された(黒矢印)。各ピークの保持時間、及びマススペクトルが、グリチルレチン酸モノグルクロニドと良く一致した。一方、陰性対照である(d)のサンプルDについてはグリチルレチン酸モノグルクロニドに相当するピークは検出されなかった。
酵母INVScI株に、実施例8で得られたpESC-HIS-AtUGD2-Glyma.06G324300、pESC-HIS-AtUGD2-Glyur003152s00037491、pESC-HIS-AtUGD2-Lj3g3v1981230をそれぞれ導入した。陰性対照として、同じ酵母INVScI株に空ベクターに相当するpESC-HIS-AtUGD2を導入した。酵母の形質転換は、Frozen-EZ Yeast Transformation II(Zymo Research社)を用いて添付のプロトコルに従い行った。
実施例11で得られたpESC-HIS-AtUGD2-Glyma.06G324300、pESC-HIS-AtUGD2-Glyur003152s00037491、pESC-HIS-AtUGD2-Lj3g3v1981230、又は陰性対照用pESC-HIS-AtUGD2を保持する形質転換酵母を、2%グルコースを含む2mLのYeast nitrogen base(YNB)培地(-His)を用いて、30℃、200rpmで24時間振とう培養した。その後、培養液を3,000g、4℃で5分間遠心して酵母細胞のペレットを得た。得られた酵母細胞のペレットを2mLのYeast nitrogen base(YNB)培地(-His)に懸濁した後、再び3,000g、4℃で5分間遠心して酵母細胞のペレットを得た。得られた酵母細胞のペレットを2%ガラクトースを含む10mLのYeast nitrogen base(YNB)培地(-His)に懸濁し、5mLに二等分した。一つのサンプルには終濃度5μMのグリチルレチン酸を加え、もう片方のサンプルには終濃度5μMのソヤサポゲノールBを加えた(図4)。その後、30℃、200rpmで10日間振とう培養した。培養液に1mL相当の体積のガラスビーズ(SIGMA社)と、4mLの1-ブタノールを加えた。酵母細胞を破砕するために、30分間ストロングシェーカーで激しく撹拌し、得られた液体を、10,000g、4℃で10分間遠心した後、上清を酵母フィーディングアッセイ抽出物として回収した。残った液体に4mLの1-ブタノールを新たに加えて、再度抽出した。その結果、配列番号1で示すポリペプチド(Glyma.06G324300)を発現する形質転換酵母にグリチルレチン酸を加えたフィーディングアッセイ抽出物(サンプルI)、ソヤサポゲノールBを加えたフィーディングアッセイ抽出物(サンプルM)、配列番号3で示すポリペプチド(Glyur003152s00037491)を発現する形質転換酵母にグリチルレチン酸を加えたフィーディングアッセイ抽出物(サンプルJ)、ソヤサポゲノールBを加えたフィーディングアッセイ抽出物(サンプルN)、配列番号5で示すポリペプチド(Lj3g3v1981230)を発現する形質転換酵母にグリチルレチン酸を加えたフィーディングアッセイ抽出物(サンプルK)、ソヤサポゲノールBを加えたフィーディングアッセイ抽出物(サンプルO)、どの遺伝子も発現しない空ベクターのみの形質転換酵母にグリチルレチン酸を加えたフィーディングアッセイ抽出物(サンプルL)と、ソヤサポゲノールBを加えたフィーディングアッセイ抽出物(サンプルP)を得た。
実施例12で得られたサンプルI、J、K、L、M、N、O、及びPを、ロータリーエバポレーターを用いて蒸発させた。沈殿物を300μLのメタノールに懸濁した後、マイレクス(Millex)-GV、0.22 μm、 PVDF、 4 mm(Merck)を用いてろ過し、LC-MS分析の試料とした。
ミヤコグサの遺伝子及びタンパク質の配列情報、さらにそれらの発現データベースであるLotus Base(https://lotus.au.dk/)に基づいて、Lj3g3v1981230にLOREの挿入を持つ変異体系統を検索した結果、19系統がヒットした。それらの系統の中から、Lj3g3v1981230へのLORE1挿入位置や他の遺伝子へのLORE1挿入数に基づき、2系統(30006020、30115796)を選抜し、種子を配布機関(デンマークAarhus大学)から入手した。その種子を播種し、展開した子葉の一部からゲノムDNAを抽出して、PCRによりLj3g3v1981230へのLORE1の挿入を確認した。PCRは、GoTaq(登録商標) Colorless Master Mix(Promega社)を用いアニール温度60℃、反応温度72℃で25サイクルのPCRを行った。PCRにはフォワードプライマー(30006020は配列番号26、30115796は配列番号28)とリバースプライマー(30006020は配列番号27、30115796は配列番号29)及びP2プライマー(配列番号30)を用いた。
実施例14で播種し、1カ月後のミヤコグサのGlyma.06G324300相同遺伝子機能欠損変異体系統(30006020、30115796)の植物体全体を凍結乾燥させた後、乾燥重量の10倍量の80%メタノールを加えた。室温で1時間振とうさせ、15k rpmで5分間遠心分離した。遠心分離で得た上清を孔径0.45μmのメンブレンフィルター(GLクロマトディスク4P、GLサイエンス)で清浄化し、各抽出液2μLをLC-PDA/MS/MS分析に供した。装置は、Ultimate 3000SD HPLC/LTQ orbitrap discovery MS(いずれもThermo Fisher Scientific社)を用いた。抽出液を逆相カラム(C30、Develosil C30-UG-3、野村化学)にアプライし、流速0.15ml/minで0.1%(v/v)ギ酸を含むアセトニトリルのリニアグランジエント(20-80%/60分)によりサポニン類を溶出した。溶出物は、UV吸収と質量分析(ペアレントイオンをオービトラップ型、フラグメントイオンをイオントラップ型)で検出した。質量分析計には、エレクトロスプレーイオン化法で気化・正イオン化した溶出物をインジェクトした。分析の標品にはソヤサポニンBb(m/z=943.52)を用いMS/MS分析によるフラグメントパターンにより、各サポニン分子のアノテーションを行った。
実施例4で作成したカンゾウ由来のGlyma.06G324300相同遺伝子を含むクローニング用ベクターを鋳型として、配列番号4の開始コドンから終止コドンまでを増幅させるフォワードプライマー(配列番号31)とリバースプライマー(配列番号32)を用い、PrimeSTAR GXL DNA Polymerase(タカラバイオ社)を用いてアニール温度60℃、反応温度68℃で30サイクルのPCRを行った。増幅されたDNA断片をGateway BP Clonase II Enzyme Mix(Thermo Fisher Technologies社)を用いて塩基配列特異的な組み換え反応(GATEWAY attB × attP反応)によりpDONRTM221にクローニングし、得られた3個の独立クローンについて、ポリヌクレオチド配列を決定し、配列番号4と一致することを確認した。そのポリヌクレオチドを有するプラスミドpDONR-Glyur003152s00037491をエントリークローンとして得た。
Glyma.06G324300相同遺伝子を、Diaz et al., (2005) Induction of hairy roots for symbiotic gene expression studies. In Lotus japonicus Handbook, A.J. Marquez, ed (Dordrecht, The Netherlands: Springer), pp. 261-277.に記載の方法に従ってミヤコグサのGlyma.06G324300相同遺伝子機能欠損変異体に導入した。実施例14で得られたミヤコグサのGlyma.06G324300相同遺伝子機能欠損変異体30006020の変異体ホモ系統から得られた種子を、有効塩素濃度2%の次亜塩素酸(0.02%Tween20を含む)で20分間滅菌後、滅菌蒸留水中で一晩吸水させた。吸水させた種子の種皮を除き、0.8%水寒天培地に播種し、アルミホイルで遮光し、25℃で4日間培養した後、光に1日当てた。実施例16で作成したベクターをアグロバクテリウム(LBA1334)に導入し、L培地前面にプレーティングし、28℃で1日培養した。10mLの滅菌水に1日培養したアグロバクテリウムを懸濁し、丸型滅菌シャーレに入れた後、その中でミヤコグサのGlyma.06G324300相同遺伝子機能欠損変異体30006020の変異体ホモの芽生えを浸し、カミソリ刃で胚軸を切断した。切断した芽生えを共存培地に並べ、アルミホイルで遮光し、21℃で4日間共存培養した。共存培養後、植物をHRE培地に並べ、明期16時間、25℃/暗期8時間、23℃で2週間生育させた。毛状根が発生した植物は、蛍光実体顕微鏡下でGFP蛍光を確認した。
実施例17で得られた毛状根を発生させた植物を、バーミキュライトを詰めたポットに移植し、B&D水耕液(Diaz et al., 2005)を加え、1カ月生育させた。十分生育した植物を凍結乾燥し、マルチビーズショッカー(安井器械株式会社)で2500rpm、30秒間粉砕した。凍結乾燥物の重量の100倍量の80%メタノールを加え、室温で1時間振とう後、15krpmで5分間遠心分離し、上清を回収した。この上清を実施例15で示す方法で、LC-PDA/MS/MS分析した結果、図13で示すように、変異体で消失していたサポニンが、形質転換毛状根で復活していた。このことから、Glyma.06G324300相同遺伝子は、生体内でもサポニン合成反応を触媒していると考えられた。
ダイズと同じマメ科植物であるレンゲ(Astragalus sinicus)から、遺伝子相同検索によってGlyma.06G324300のオルソログ遺伝子候補としてGlyma.06G324300相同遺伝子を探索した。レンゲの根、茎、葉から得られたRNAシークエンスデータを統合した配列データセットからGlyma.06G324300に高いアミノ酸同一性を示すタンパク質をコードする1種の塩基配列AsCSyGTを見出した。レンゲの茎から得られたトータルRNAを1μg用いて、SMART RACE cDNA amplification kit (Clontech社)を用いて添付のプロトコルに従いファーストストランドcDNAを合成した。ファーストストランドcDNA 2μLを鋳型として、AsCSyGTから推定されるポリペプチドのN末端とC末端に相当する箇所のオリゴDNAをそれぞれフォワードプライマー(配列番号39)及びリバースプライマー(配列番号40)に用い、PrimeSTAR Max DNA Polymerase(タカラバイオ社)を用いてアニール温度55℃、反応温度72℃で30サイクルのPCRを行った。なお、pENTRTM/D-TOPO(登録商標)エントリーベクター(Thermo Fisher Technologies社)へのクローニングに必要なことから、前記フォワードプライマーには、5’末端に4塩基(cacc)が人工的に付加されている。増幅されたDNA断片をpENTRTM/D-TOPOエントリーベクターにクローニングし、得られた2個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られたレンゲのGlyma.06G324300相同遺伝子の塩基配列が配列番号41であり、それから推定されるポリペプチド配列が配列番号42である。配列番号42は配列番号1で示すアミノ酸配列に対して77%の同一性を有していた。
ダイズから遺伝子相同検索によってGlyma.06G324300のパラログ遺伝子候補としてGlyma.06G324300相同遺伝子を探索した。ダイズのゲノム情報データベースであるSoybase (https://soybase.org)内のBLAST相同性探索機能を使用し、Glyma.06G324300に高いアミノ酸同一性を示すタンパク質をコードする2種の塩基配列Glyma.04g255400及びGlyma.11g151800を見出した。実施例1に示した方法により2種のGlyma.06G324300相同遺伝子であるGlyma.04g255400及びGlyma.11g151800を増幅しpDONRTM221(Thermo Fisher Technologies社)にクローニングした。Glyma.04g255400から推定されるポリペプチドのN末端とC末端に相当する箇所のオリゴDNAをそれぞれフォワードプライマー(配列番号43)及びリバースプライマー(配列番号44)に用い、Glyma.11g151800から推定されるポリペプチドのN末端とC末端に相当する箇所のオリゴDNAをそれぞれフォワードプライマー(配列番号45)及びリバースプライマー(配列番号46)に用いた。なお、pDONRTM221(Thermo Fisher Technologies社)へのクローニングの際の塩基配列特異的な組み換え反応(GATEWAY attB × attP反応)に必要なことから前記フォワードプライマーには、5’末端に12塩基(AAAAAGCAGGCT)が、そして前記リバースプライマーには、5’末端に12塩基(AGAAAGCTGGGT)が、人工的に付加されている。種子由来のファーストストランドcDNAから増幅されたDNA断片をGateway BP Clonase II Enzyme Mix(Thermo Fisher Technologies社)を用いて塩基配列特異的な組み換え反応(GATEWAY attB × attP反応)によりpDONRTM221にクローニングし、それぞれについて得られた3個の独立クローンについてポリヌクレオチド配列を決定した。これにより得られた配列が配列番号47及び配列番号49であり、それらから推定されるポリペプチド配列が配列番号48及び配列番号50である。配列番号48及び配列番号50は配列番号1で示すアミノ酸配列に対してそれぞれ93.9%及び71.1%の同一性を有していた。
実施例7に示した方法により、実施例19で得られたレンゲ、及び実施例20で得られたダイズのGlyma.06G324300相同遺伝子の酵母発現クローンであるpESC-HIS-AsCSyGT、pESC-HIS-AtUGD2-Glyma04g255400、pESC-HIS-AtUGD2-Glyma. 11g151800を構築し、実施例8に示した方法により、グリチルレチン酸及びソヤサポゲノールB生産酵母株にそれぞれ導入した。
実施例9に示した方法により、組換え酵母の培養、及び代謝物の抽出を行った。その結果、配列番号42で示すポリペプチド(AsCSyGT)を発現するグリチルレチン酸生産酵母株由来の代謝産物抽出物(サンプルQ)、配列番号48で示すポリペプチド(Glyma04g255400)を発現するグリチルレチン酸生産酵母株由来の代謝産物抽出物(サンプルR)、配列番号50で示すポリペプチド(Glyma.11g151800)を発現するグリチルレチン酸生産酵母株由来の代謝産物抽出物(サンプルS)を得た。pESC-HIS-AsCSyGT、pESC-HIS-AtUGD2-Glyma04g255400、pESC-HIS-AtUGD2-Glyma.11g151800を保持するソヤサポゲノールB生産酵母株についても同様に培養、及び代謝産物の抽出を行った。その結果、配列番号42で示すポリペプチド(AsCSyGT)を発現するソヤサポゲノールB生産酵母株由来の代謝産物抽出物(サンプルT)、配列番号48で示すポリペプチド(Glyma04g255400)を発現するソヤサポゲノールB生産酵母株由来の代謝産物抽出物(サンプルU)、配列番号50で示すポリペプチド(Glyma.11g151800)を発現するソヤサポゲノールB生産酵母株由来の代謝産物抽出物(サンプルV)を得た。
実施例10に示した方法によりLC-MS分析の試料を調製、及び分析を行った。その結果を図14及び図15で示す。
図14に示した(a)のサンプルQからは、グリチルレチン酸モノグルクロニドに相当する1本のピークが検出された(黒矢印)。そのピークの保持時間、及びマススペクトルが、グリチルレチン酸モノグルクロニドと良く一致した。同じく、(b)のサンプルR、及び(c)のサンプルSからも、グリチルレチン酸モノグルクロニドに相当するピークが検出された(黒矢印)。各ピークの保持時間、及びマススペクトルが、グリチルレチン酸モノグルクロニドと良く一致した。
図15に示した(a)のサンプルTからは、ソヤサポゲノールBモノグルクロニドに相当する1本のピークが検出された(黒矢印)。(b)のサンプルU、及び(c)のサンプルVからも、ソヤサポゲノールBモノグルクロニドに相当するピークが検出された(黒矢印)。各ピークの保持時間、及びマススペクトルが、ソヤサポゲノールBモノグルクロニドと良く一致した。
酵母INVScI株に、実施例21で得られたpESC-HIS-AtUGD2-Glyma04g255400及びpESC-HIS-AtUGD2-Glyma.11g151800をそれぞれ導入した。酵母の形質転換は、Frozen-EZ Yeast Transformation II(Zymo Research社)を用いて添付のプロトコルに従い行った。
実施例24で得られた組換え酵母を、実施例12に示した方法により培養した。得られた各酵母細胞の懸濁液を等分し、終濃度5μMのウルサン型トリテルペノイドのウルソール酸、又はルパン型トリテルペノイドのベツリン酸をそれぞれ加えた。その後、実施例12に示した方法により再度培養、及び代謝物の抽出を行った。その結果、配列番号48で示すポリペプチド(Glyma04g255400)、又は配列番号50で示すポリペプチド(Glyma.11g151800)を発現する形質転換酵母にウルサン型トリテルペノイドであるウルソール酸を加えたフィーディングアッセイ抽出物、及びルパン型トリテルペノイドであるベツリン酸を加えたフィーディングアッセイ抽出物を得た。
実施例25で得られたサンプルを実施例10と同じ条件で分析した、MSはSIMモードを用いて、想定される各反応生成物のm/z、ウルソール酸モノグルクロニド=631(図16、a)、ベツリン酸モノグルクロニド=631(図17、a)をパラメータとして分析した。図16は、配列番号50で示すポリペプチド(Glyma.11g151800)を発現する形質転換酵母にウルソール酸を加えたフィーディングアッセイ抽出物(サンプルW)の分析結果である。(b)に示したサンプルWからウルソール酸モノグルクロニドと推定されるピークが検出された。一方、(c)で示す陰性対照のサンプルXでは、ウルソール酸モノグルクロニドと推定されるピークは検出されなかった。
Claims (12)
- オレアナン型トリテルペノイドにおける3位のヒドロキシ基にグルクロン酸を転移する活性を有し、以下の(a)~(c)で示すいずれかのアミノ酸配列を含むポリペプチド又は前記活性を有するその断片。
(a)配列番号1、3、及び5のいずれかで示すアミノ酸配列、
(b)配列番号1、3、及び5のいずれかで示すアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
(c)配列番号1、3、及び5のいずれかで示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列
ポリペプチド。 - 前記オレアナン型トリテルペノイドが、β-アミリン、11-オキソ-β-アミリン、30-ヒドロキシ-11-オキソ-β-アミリン、30-ヒドロキシ-β-アミリン、24-ヒドロキシ-β-アミリン、11-デオキソグリチルレチン酸、グリチルレチン酸、オレアノール酸、メジカゲニン酸、ソヤサポゲノールB、ソヤサポゲノールA、ヘデラゲニン、カメリアゲニン、及びサイコゲニンからなる群から選択される、請求項1に記載のポリペプチド。
- マメ科(Fabaceae)植物に由来する、請求項1又は2に記載のポリペプチド。
- 請求項1~3のいずれか一項に記載のポリペプチドをコードするポリヌクレオチド。
- 以下の(a)~(d)で示すいずれかの塩基配列を含む、請求項4に記載のポリヌクレオチド。
(a)配列番号2、4、及び6のいずれかで示す塩基配列、
(b)配列番号2、4、及び6のいずれかで示す塩基配列において1若しくは複数個の塩基が欠失、置換若しくは付加された塩基配列、
(c)配列番号2、4、及び6のいずれかで示す塩基配列と80%以上の同一性を有する塩基配列、又は
(d)配列番号2、4、及び6のいずれかで示す塩基配列に相補的な塩基配列と高ストリンジェントな条件でハイブリダイズする塩基配列 - 請求項4又は5に記載のポリヌクレオチドを含むCSyGT発現ベクター。
- 請求項4又は5に記載のポリヌクレオチド又は請求項6に記載のCSyGT発現ベクターを含む形質転換体、又は前記ポリヌクレオチド又は前記CSyGT発現ベクターを保持したその後代。
- マメ科(Fabaceae)植物である、請求項7に記載の形質転換体又はその後代。
- オレアナン型トリテルペノイドにおけるグルクロン酸の2位のヒドロキシ基にグルクロン酸を転移する活性を有するポリペプチドを製造する方法であって、
請求項7又は8に記載の形質転換体又はその後代を培養する工程、及び
前記培養物から請求項1~3のいずれか一項に記載のポリペプチドを抽出する工程を含む、前記方法。 - β-アミリンを生合成でき、かつ以下の(1)~(4)で示す全ての発現ベクターを含むグリチルリチン製造用の遺伝子組換え体。
(1)オレアナン型トリテルペノイドにおける11位を酸化する活性を有し、以下の(a)~(c)で示すいずれかのアミノ酸配列を含むポリペプチドを包含するCYP88D6発現ベクター、
(a)配列番号7で示すアミノ酸配列、
(b)配列番号7で示すアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
(c)配列番号7で示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列、
(2)オレアナン型トリテルペノイドにおける30位を酸化する活性を有し、以下の(d)~(f)で示すいずれかのアミノ酸配列を含むポリペプチドを包含するCYP72A154発現ベクター、
(d)配列番号9、11、及び13のいずれかで示すアミノ酸配列、
(e)配列番号9、11、及び13のいずれかで示すアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
(f)配列番号9、11、及び13のいずれかで示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列、
(3)オレアナン型トリテルペノイドモノグルクロニドにおけるグルクロン酸の2位のヒドロキシ基にグルクロン酸を転移する活性を有し、以下の(g)~(i)で示すいずれかのアミノ酸配列を含むポリペプチドを包含するUGT73P12発現ベクター、
(g)配列番号15で示すアミノ酸配列、
(h)配列番号15で示すアミノ酸配列において1若しくは複数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列、又は
(i)配列番号15で示すアミノ酸配列と80%以上の同一性を有するアミノ酸配列、及び
(4)請求項6に記載のCSyGT発現ベクター - 宿主がマメ科植物である、請求項10に記載の遺伝子組換え体。
- β-アミリンからグリチルリチンを製造する方法であって、請求項10又は11に記載の遺伝子組換え体を培養する工程を含む前記製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227016589A KR20220092528A (ko) | 2019-10-17 | 2020-10-16 | 글루쿠론산 전이 효소, 그것을 코딩하는 유전자 및 그 이용 방법 |
CN202080087149.1A CN114829577A (zh) | 2019-10-17 | 2020-10-16 | 葡萄糖醛酸转移酶、编码该酶的基因及其利用方法 |
JP2021552482A JPWO2021075572A1 (ja) | 2019-10-17 | 2020-10-16 | |
EP20877715.1A EP4046479A4 (en) | 2019-10-17 | 2020-10-16 | GLUCURONYLTRANSFERASE, GENE ENCODING THEREFOR AND METHOD OF USE |
IL292111A IL292111A (en) | 2019-10-17 | 2020-10-16 | Glucuronosyltransferase, gene encoding it and method of using it |
US17/769,627 US20220403437A1 (en) | 2019-10-17 | 2020-10-16 | Glucuronosyltransferase, gene encoding same and method for using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-190060 | 2019-10-17 | ||
JP2019190060 | 2019-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021075572A1 true WO2021075572A1 (ja) | 2021-04-22 |
Family
ID=75537424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/039175 WO2021075572A1 (ja) | 2019-10-17 | 2020-10-16 | グルクロン酸転移酵素、それをコードする遺伝子及びその利用方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220403437A1 (ja) |
EP (1) | EP4046479A4 (ja) |
JP (1) | JPWO2021075572A1 (ja) |
KR (1) | KR20220092528A (ja) |
CN (1) | CN114829577A (ja) |
IL (1) | IL292111A (ja) |
WO (1) | WO2021075572A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116732060B (zh) * | 2023-05-25 | 2024-05-03 | 四川农业大学 | 喜树中的cyp716c氧化酶基因、载体、微粒体蛋白及应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5526323B2 (ja) | 1977-03-17 | 1980-07-12 | ||
JPS6344774B2 (ja) | 1980-12-26 | 1988-09-06 | Asahi Glass Co Ltd | |
US20040031072A1 (en) * | 1999-05-06 | 2004-02-12 | La Rosa Thomas J. | Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement |
WO2009020231A1 (ja) * | 2007-08-06 | 2009-02-12 | Riken | カンゾウ属植物由来トリテルペン酸化酵素、それをコードする遺伝子およびその利用 |
WO2010024437A1 (ja) * | 2008-08-29 | 2010-03-04 | 独立行政法人理化学研究所 | カンゾウ属植物由来トリテルペン酸化酵素、それをコードする遺伝子及びその利用法 |
WO2014163174A1 (ja) * | 2013-04-04 | 2014-10-09 | 独立行政法人理化学研究所 | グルクロン酸転移酵素、それをコードする遺伝子及びその利用方法 |
WO2019090181A1 (en) * | 2017-11-03 | 2019-05-09 | Kaleido Biosciences, Inc. | Methods of producing glycan polymers |
JP2019190060A (ja) | 2018-04-20 | 2019-10-31 | タキゲン製造株式会社 | マグネットキャッチ |
WO2020049572A1 (en) * | 2018-09-06 | 2020-03-12 | Yeda Research And Development Co. Ltd. | Cellulose-synthase-like enzymes and uses thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102286057B (zh) * | 2011-07-07 | 2016-08-03 | 北华大学 | 齐墩果烷型三萜类化合物及其制备方法和医疗用途 |
CN102702298B (zh) * | 2012-05-18 | 2015-05-27 | 中国药科大学 | 一种甘草次酸衍生物、其制备方法及医药用途 |
US12071629B2 (en) * | 2013-08-06 | 2024-08-27 | Commonwealth Scientific And Industrial Research Organisation | Wheat having high levels of beta-glucan |
CN107254453B (zh) * | 2014-12-22 | 2019-10-25 | 武汉康复得生物科技股份有限公司 | 一种在生理pH条件下有活力的草酸氧化酶及其应用 |
CA2988764A1 (en) * | 2015-06-08 | 2016-12-15 | Indigo Agriculture, Inc. | Streptomyces endophyte compositions and methods for improved agronomic traits in plants |
-
2020
- 2020-10-16 US US17/769,627 patent/US20220403437A1/en active Pending
- 2020-10-16 KR KR1020227016589A patent/KR20220092528A/ko unknown
- 2020-10-16 EP EP20877715.1A patent/EP4046479A4/en active Pending
- 2020-10-16 CN CN202080087149.1A patent/CN114829577A/zh active Pending
- 2020-10-16 IL IL292111A patent/IL292111A/en unknown
- 2020-10-16 WO PCT/JP2020/039175 patent/WO2021075572A1/ja unknown
- 2020-10-16 JP JP2021552482A patent/JPWO2021075572A1/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5526323B2 (ja) | 1977-03-17 | 1980-07-12 | ||
JPS6344774B2 (ja) | 1980-12-26 | 1988-09-06 | Asahi Glass Co Ltd | |
US20040031072A1 (en) * | 1999-05-06 | 2004-02-12 | La Rosa Thomas J. | Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement |
WO2009020231A1 (ja) * | 2007-08-06 | 2009-02-12 | Riken | カンゾウ属植物由来トリテルペン酸化酵素、それをコードする遺伝子およびその利用 |
WO2010024437A1 (ja) * | 2008-08-29 | 2010-03-04 | 独立行政法人理化学研究所 | カンゾウ属植物由来トリテルペン酸化酵素、それをコードする遺伝子及びその利用法 |
JP5771846B2 (ja) | 2008-08-29 | 2015-09-02 | 国立研究開発法人理化学研究所 | カンゾウ属植物由来トリテルペン酸化酵素、それをコードする遺伝子及びその利用法 |
WO2014163174A1 (ja) * | 2013-04-04 | 2014-10-09 | 独立行政法人理化学研究所 | グルクロン酸転移酵素、それをコードする遺伝子及びその利用方法 |
WO2019090181A1 (en) * | 2017-11-03 | 2019-05-09 | Kaleido Biosciences, Inc. | Methods of producing glycan polymers |
JP2019190060A (ja) | 2018-04-20 | 2019-10-31 | タキゲン製造株式会社 | マグネットキャッチ |
WO2020049572A1 (en) * | 2018-09-06 | 2020-03-12 | Yeda Research And Development Co. Ltd. | Cellulose-synthase-like enzymes and uses thereof |
Non-Patent Citations (10)
Title |
---|
CHUNG SOO YEON, SEKI HIKARU, FUJISAWA YUKIKO, SHIMODA YOSHIKAZU, HIRAGA SUSUMU, NOMURA YUHTA, SAITO KAZUKI, ISHIMOTO MASAO, MURANA: "A cellulose synthase-derived enzyme catalyses 3-0- glucuronosylation in saponin biosynthesis", NATURE COMMUNICATIONS, vol. 11, no. 5664, 16 November 2020 (2020-11-16), pages 1 - 11, XP055818986 * |
DATABASE UNIPROT KB [online] 8 May 2019 (2019-05-08), "SubName: Full=Cellulose synthase-like protein G1", retrieved from Uniprot Database accession no. A0A445KH18 * |
DIAZ ET AL.: "Lotus japonicus Handbook", 2005, THE NETHERLANDS: SPRINGER, article "Induction of hairy roots for symbiotic gene expression studies", pages: 261 - 277 |
GIBSON, M. R., LLOYDIA-THE JOURNAL OF NATURAL PRODUCTS, vol. 41, no. 4, 1978, pages 348 - 354 |
GREENSAMBROOK: "Molecular Cloning", 2012, COLD SPRING HARBOR LABORATORY PRESS |
HAYASHI ET AL., PHYTOCHEMISTRY, vol. 42, 1996, pages 665 - 666 |
JOZWIAK, A. ET AL.: "Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery", NATURE CHEMICAL BIOLOGY, vol. 16, July 2020 (2020-07-01), pages 740 - 748, XP037175980, DOI: 10.1038/s41589-020-0541-x * |
NOGUCHI ET AL., J. BIOL. CHEM., vol. 282, 2007, pages 23581 - 23590 |
See also references of EP4046479A4 |
STRASSER R, GLYCOBIOLOGY, vol. 26, no. 9, 2016, pages 926 - 939 |
Also Published As
Publication number | Publication date |
---|---|
KR20220092528A (ko) | 2022-07-01 |
JPWO2021075572A1 (ja) | 2021-04-22 |
IL292111A (en) | 2022-06-01 |
EP4046479A4 (en) | 2024-05-01 |
EP4046479A1 (en) | 2022-08-24 |
US20220403437A1 (en) | 2022-12-22 |
CN114829577A (zh) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101802547B1 (ko) | 스테비올 글리코시드의 재조합 생산 | |
JP6526716B2 (ja) | 高麗人参由来の糖転移酵素を用いた新規なジンセノサイド糖転移方法 | |
KR101983115B1 (ko) | 사프란 화합물의 재조합 생성을 위한 방법 및 물질 | |
KR101765369B1 (ko) | 돌외 유래의 신규한 당전이효소 및 이의 용도 | |
JP4474518B2 (ja) | 2−ヒドロキシイソフラバノンデヒドラターゼをコードするポリヌクレオチドおよびその応用 | |
US20230106588A1 (en) | Transferase enzymes | |
JP2008237110A (ja) | ステビオール合成酵素遺伝子及びステビオールの製造方法 | |
CN112969785A (zh) | 纤维素合酶样酶及其用途 | |
CN114096673B (zh) | 胡萝卜植物中花青素的生物合成 | |
Winefield et al. | Investigation of the biosynthesis of 3‐deoxyanthocyanins in Sinningia cardinalis | |
WO2007046148A1 (ja) | 新規芳香族アシル基転移酵素遺伝子 | |
WO2021075572A1 (ja) | グルクロン酸転移酵素、それをコードする遺伝子及びその利用方法 | |
JP2022524214A (ja) | Udp-ラムノースの生合成生産 | |
US7935802B2 (en) | Lignan glycosidase and utilization of the same | |
KR20240032944A (ko) | 람노스가 고도로 특이적인 글리코실트랜스퍼라제 및 이의 응용 | |
JP5526323B2 (ja) | カンゾウ属植物由来トリテルペン酸化酵素、それをコードする遺伝子およびその利用 | |
JP7450867B2 (ja) | 植物形質転換体 | |
JP2009065886A (ja) | 植物の形態調整方法 | |
CN113667655B (zh) | 一种仙茅糖基转移酶Co84A-471基因及在制备苔黑酚葡萄糖苷中的应用 | |
KR102559326B1 (ko) | 다중 유전자 발현 시스템을 이용한 코니페린 함량이 증가된 형질전환 식물체의 제조방법 | |
CN111019919B (zh) | 用莲类黄酮c-糖基转移酶ugt708n1合成类黄酮c-糖苷的方法 | |
US20210317497A1 (en) | Monbretin a (mba) synthesis using a heterologous nucleic acid(s) encoding a mba pathway enzyme | |
JP2009213413A (ja) | 3−デオキシアントシアニジン配糖化酵素遺伝子とその利用 | |
JP2011019447A (ja) | デルフィニウム(Delphiniumspp.)から単離された配糖体化酵素とその利用 | |
JP2012095644A (ja) | イソフラボノイドの生産方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20877715 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021552482 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20227016589 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020877715 Country of ref document: EP Effective date: 20220517 |