WO2021075186A1 - モータ制御装置、磁石温度推定器、および磁石温度推定方法 - Google Patents

モータ制御装置、磁石温度推定器、および磁石温度推定方法 Download PDF

Info

Publication number
WO2021075186A1
WO2021075186A1 PCT/JP2020/034407 JP2020034407W WO2021075186A1 WO 2021075186 A1 WO2021075186 A1 WO 2021075186A1 JP 2020034407 W JP2020034407 W JP 2020034407W WO 2021075186 A1 WO2021075186 A1 WO 2021075186A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
magnet
motor
coil
cooling oil
Prior art date
Application number
PCT/JP2020/034407
Other languages
English (en)
French (fr)
Inventor
佐藤 弘明
安島 俊幸
重幸 野々村
恒平 明円
永呉 岸本
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2021075186A1 publication Critical patent/WO2021075186A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor

Definitions

  • the present invention relates to a motor control device including a magnet temperature estimator for estimating the temperature of a permanent magnet attached to a rotor of a motor, the magnet temperature estimator thereof, and a magnet temperature estimation method.
  • PM motors Embedded permanent magnet synchronous motors equipped with permanent magnets on the rotor are frequently used as the main motors in electrified vehicles.
  • the temperature estimation of permanent magnets it is required that the temperature can be estimated with high accuracy regardless of the operating state of the PM motor and that the temperature can be estimated by a simple method.
  • the temperature of the permanent magnet is estimated by switching the estimation formula according to the operating state of the PM motor (rotation speed and torque of the PM motor). Therefore, the constants of a plurality of estimation formulas must be adjusted in advance, resulting in an increase in development cost and an increase in software processing load. Further, although it is possible to suppress an increase in cost and an increase in software processing load by reducing the number of estimation formulas, there is a possibility that the temperature cannot be estimated with high accuracy.
  • the present invention has been made in view of the above problems, and an object of the present invention is a motor provided with a magnet temperature estimator capable of accurately estimating the temperature of the permanent magnet of the motor even though it has a simple configuration. It is an object of the present invention to provide a control device, a magnet temperature estimator thereof, and a magnet temperature estimation method.
  • the motor control device includes a motor having a rotor with a permanent magnet and a stator around which a coil is wound, and a coil temperature detector for detecting the temperature of the coil.
  • the permanent magnet of the motor using the cooling oil temperature detection unit that detects the temperature of the cooling oil that cools the motor, the detection value of the coil temperature detection unit, and the detection value of the cooling oil temperature detection unit.
  • the magnet temperature estimator includes a magnet temperature estimator for estimating the magnet temperature of the coil temperature, and the magnet temperature estimator has a first coefficient that changes according to a detection value of the coil temperature detection unit and a detection value of the cooling oil temperature detection unit.
  • the magnet temperature is estimated using a second coefficient that changes according to.
  • the magnet temperature of the motor can be estimated accurately even though the configuration is simple.
  • FIG. 3 is a diagram showing a heat flow rate when the amount of heat generated by the coil is large and the temperature of the cooling oil is low in FIG.
  • FIG. 3 is a diagram showing a heat flow rate when the amount of heat generated by the coil in FIG. 3 is large and the temperature of the cooling oil is high.
  • It is a thermal circuit diagram which represented the thermal resistance Roc in FIG. 3 by the change of Rom and Rcm.
  • FIG. 1 shows the configuration of the motor control device 800 according to the first embodiment of the present invention.
  • the motor control device 800 is mounted on, for example, a drive system of an electrified vehicle, and has a motor 300, a motor drive device 100, and a magnet temperature estimator 400.
  • the motor drive device 100 is composed of a CPU (Central Processing Unit) that performs arithmetic processing and a computer (microcomputer) that includes a memory for storing data, programs, and the like.
  • the motor drive device 100 includes a current detection unit 120, a current control unit 110, an inverter 130, and a current command generation unit 140.
  • the battery 200 is a DC voltage source of the motor drive device 100.
  • the DC power stored in the battery 200 is converted into three-phase AC power having a variable voltage and a variable frequency by the inverter 130 of the motor drive device 100.
  • the inverter 130 supplies the three-phase AC power to the motor 300.
  • the motor 300 is a synchronous motor that is rotationally driven by the supply of three-phase AC power. As the motor 300, a permanent magnet synchronous motor is applied in the present embodiment.
  • the motor 300 is a cooling oil temperature detection unit that detects the temperatures of the rotor 310, the rotation angle sensor 320, the stator 330, the coil 380 wound around the stator 330, the cooling oil 340, and the cooling oil 340. It is composed of 350 and a coil temperature detection unit 360 that detects the temperature of the coil 380.
  • a permanent magnet (hereinafter, may be simply referred to as a magnet) is attached to the rotor 310, for example, a neodymium magnet.
  • the motor 300 may be a surface magnet type motor in which a permanent magnet is installed on the surface of the rotor, or an embedded magnet type motor in which the permanent magnet is embedded in the rotor.
  • a resolver 320 is attached to the motor 300 as the rotation angle sensor in order to control the phase of the three-phase AC voltage according to the phase of the induced voltage of the motor 300. Since the resolver 320 is composed of an iron core and a winding, it is excellent in use environment resistance. However, as the rotation angle sensor, a GMR sensor or a sensor using a Hall element may be applied.
  • a copper wire is wound around the stator 330 as a coil 380, and a temperature sensor is provided as a coil temperature detection unit 360 that detects the temperature of the coil 380.
  • a temperature sensor is provided as a coil temperature detection unit 360 that detects the temperature of the coil 380.
  • the temperature of the coil 380 is used in this embodiment, the temperature of the stator 330 may be detected and used as another method.
  • the motor 300 has cooling oil 340 for cooling the motor 300.
  • the cooling oil 340 is circulated by a cooling oil pump 370 or the like to cool the motor 300. Further, it has a temperature sensor or the like as a cooling oil temperature detecting unit 350 for detecting the temperature of the cooling oil 340.
  • the motor drive device 100 has a current control function for controlling the output of the motor 300, but in the present embodiment, so-called vector control is applied as follows.
  • the current detection unit 120 determines the three-phase motor current values (Iu, Iv, Iw) detected by the current sensor (for example, CT (Current Transformer)) according to the rotation angle ⁇ of the motor 300 detected by the resolver 320. Dq conversion is performed, and the dq axis current detection value (Id, Iq) is output.
  • the current control unit 110 has a dq-axis voltage so that the dq-axis current detection value (Id, Iq) and the dq-axis current command value (Id *, Iq *) created by the current command generation unit 140 match. Create and output commands (Vd *, Vq *).
  • the current command generation unit 140 receives a torque command for driving the motor 300 from a higher-level control unit (not shown), and calculates a dq-axis current command (Id *, Iq *).
  • the dq-axis voltage command (Vd *, Vq *) is converted into a three-phase motor voltage command (Vu *, Vv *, Vw *) according to the rotation angle ⁇ , and the three-phase motor voltage command is converted.
  • a drive signal created by pulse width modulation (PWM) as a modulated wave is created.
  • PWM pulse width modulation
  • the magnet temperature estimator 400 receives the temperature of the coil 380 detected by the coil temperature detection unit 360 and the temperature of the cooling oil 340 detected by the cooling oil temperature detection unit 350, and attaches the magnet temperature estimator 400 to the rotor 310 based on these. Estimate the temperature of the permanent magnet (magnet temperature).
  • the estimated magnet temperature (hereinafter, also referred to as the magnet temperature estimated value) is transmitted to, for example, the current command generation unit 140.
  • the current command generator 140 adjusts the torque command or the current command so as to suppress the mechanical output (torque x rotation speed) of the motor 300 in order to prevent the temperature of the magnet from rising. It is transmitted to the current control unit 110 as current command values (Id *, Iq *).
  • FIG. 2 shows the configuration of the magnet temperature estimator 400 in this embodiment.
  • the magnet temperature estimator 400 includes a coil temperature function 410, a cooling oil temperature function 420, a first multiplier 430, a second multiplier 440, and an adder 450.
  • the coil temperature function 410 takes the coil temperature (detected value of the coil temperature detection unit 360) detected by the coil temperature detection unit 360 as an input and outputs the first coefficient.
  • the cooling oil temperature function 420 inputs the cooling oil temperature (detected value of the cooling oil temperature detecting unit 350) detected by the cooling oil temperature detecting unit 350, and outputs the second coefficient.
  • the first multiplier 430 multiplies the first coefficient by the coil temperature.
  • the second multiplier 440 multiplies the second coefficient by the cooling oil temperature.
  • the output (multiplication value) of the first multiplier 430 and the output (multiplication value) of the second multiplier 440 are added and output as the estimated magnet temperature.
  • the magnet temperature of the permanent magnet attached to the rotor 310 is as shown in FIG. 3 based on the temperature of the coil 380 wound around the stator 330 and the temperature of the cooling oil 340. Obtained from the thermal circuit.
  • a coil, a magnet, and cooling oil are connected by thermal resistance (Roc, Rom, Rcm).
  • the magnet temperature is obtained by the thermal circuit of FIG. 3, it can be obtained if the three thermal resistances, the coil temperature, and the cooling oil temperature are known, but it is difficult to accurately grasp the thermal resistance.
  • Patent Document 1 it is required to change the estimation formula or change the thermal resistance according to the operating state (rotation speed / torque) of the motor 300.
  • the three thermal resistances according to the operating state of the motor 300 is often sought experimentally, and experimental work and thermal resistance identification work are required, resulting in an increase in development cost and magnets. This has led to the complication of the temperature estimator.
  • This embodiment prevents such an increase in development cost and complication of the magnet temperature estimator.
  • FIG. 4 shows the operation of the thermal circuit (same shape as FIG. 3) when the heat generation amount of the coil 380 is large and the temperature of the cooling oil 340 is low in the motor 300 in the present embodiment.
  • the calorific value of the coil 380 which is a heat generation source
  • the temperature difference between the coil 380 and the cooling oil 340 is large, so that the heat generated by the coil 380 is easily transmitted to the cooling oil 340 and cooled from the coil 380.
  • the heat flow to the oil 340 increases. Since the heat flow rate to the cooling oil 340 is large, the heat flow rate from the coil 380 to the magnet is small.
  • the heat flow rate transferred to the magnet changes depending on the temperature of the coil 380 and the temperature of the cooling oil 340. That is, as shown in FIG. 6, the thermal resistance Rom between the cooling oil 340 and the magnet changes with the temperature of the cooling oil 340 (depending on the temperature of the cooling oil 340), and the thermal resistance between the coil 380 and the magnet. If Rcm is changed with the temperature of the coil 380 (depending on the temperature of the coil 380), the magnet temperature can be estimated without considering the thermal resistance Roc between the coil 380 and the cooling oil 340. Since the configuration can be simple, it is possible to prevent complication.
  • the coil temperature function 410 in the present embodiment is represented by, for example, the following ⁇ Equation 1>
  • the cooling oil temperature function 420 is represented by, for example, the following ⁇ Equation 2>.
  • the magnet temperature can be expressed as, for example, ⁇ Equation 3> below.
  • the first coefficient which is the output of the coil temperature function 410
  • changes according to the temperature of the coil 380 which is the detection value of the coil temperature detection unit 360
  • the second coefficient which is the output of the cooling oil temperature function 420.
  • the coil temperature function 410 and the cooling oil temperature function 420 To determine the coil temperature function 410 and the cooling oil temperature function 420, measure the coil temperature, magnet temperature, and cooling oil temperature in advance. A magnet temperature estimate is calculated from the measured coil temperature and cooling oil temperature using ⁇ Equation 3>, and the coil temperature function 410 and cooling oil temperature function 420 are used so that the measured magnet temperature and magnet temperature estimate become smaller. Should be decided. At this time, the coil temperature function 410 and the cooling oil temperature function 420 can be determined by using an optimization algorithm such as the least squares method. By performing these series of operations under various operating conditions (rotation speed, torque, atmospheric temperature), the coil temperature function 410 and the cooling oil temperature function 420 can be determined.
  • the coil temperature detection unit 360 that detects the temperature of the coil 380 wound around the stator 330 is used, but the temperature of the stator 330 is used (detected) to obtain the temperature of the coil 380. You may. Further, although the temperature of the cooling oil 340 is obtained by the cooling oil temperature detection unit 350, the cooling oil 340 uses (detects) the temperature of the case of the cooling oil 340 and the housing (not shown) of the motor 300. You may get the temperature.
  • the input of the coil temperature function 410 is the temperature of the coil 380
  • the input of the cooling oil temperature function 420 is the temperature of the cooling oil 340.
  • the temperature difference between the coil 380 and the cooling oil 340 as shown in FIG. 7 is input. It may be in the form of.
  • the coil temperature function 410A and the cooling oil temperature function 420A input the temperature difference between the coil 380 and the cooling oil 340, and output the first coefficient and the second coefficient, respectively.
  • the first multiplier 430A multiplies the first coefficient by the coil temperature.
  • the second multiplier 440A multiplies the second coefficient by the cooling oil temperature.
  • the output (multiplication value) of the first multiplier 430A and the output (multiplication value) of the second multiplier 440A are added and output as the estimated magnet temperature.
  • the above ⁇ Equation 1> is adopted for the coil temperature function 410 and the above ⁇ Equation 2> is adopted for the cooling oil temperature function 420, but a function expressed by a quadratic equation or an exponential function may be used. Of course.
  • the motor control device 800 of the present embodiment has a motor 300 having a rotor 310 to which a permanent magnet is attached and a stator 330 around which a coil 380 is wound, and the temperature of the coil 380.
  • the coil temperature detection unit 360 to detect, the cooling oil temperature detection unit 350 to detect the temperature of the cooling oil 340 that cools the motor 300, the temperature of the coil 380 which is the detection value of the coil temperature detection unit 360, and the cooling oil.
  • the magnet temperature estimator 400 includes a magnet temperature estimator 400 that estimates the magnet temperature of the permanent magnet of the motor 300 using the temperature of the cooling oil 340, which is a value detected by the temperature detection unit 350.
  • the magnet temperature is estimated using a first coefficient that changes according to the detection value of the coil temperature detection unit 360 and a second coefficient that changes according to the detection value of the cooling oil temperature detection unit 350. To do.
  • the magnet temperature estimator 400 of the present embodiment has a first coefficient that changes according to the temperature of the coil 380 wound around the stator 330 of the motor 300, and a cooling oil 340 that cools the motor 300. Using a second coefficient that changes with temperature, the magnet temperature of the permanent magnet attached to the rotor 310 of the motor 300 is estimated.
  • the coil temperature function 410 and the cooling oil temperature function 420 are set so that the thermal resistance Rom and Rcm change according to the coil temperature and the cooling oil temperature.
  • the magnet temperature can be estimated without using the thermal resistance Roc, so that the development cost can be reduced and the magnet temperature estimator can be prevented from becoming complicated. The magnet temperature can be estimated accurately.
  • the first coefficient and the second coefficient are the difference between the detection value of the coil temperature detection unit 360 and the detection value of the cooling oil temperature detection unit 350 (that is, the coil).
  • FIG. 8 shows the configuration of the motor control device 900 according to the second embodiment of the present invention.
  • the motor control device 900 includes a motor 300, a motor drive device 100, a rotation speed calculation unit 150, and a magnet temperature estimator 500.
  • the temperature of the coil 380 and the temperature of the cooling oil 340 detected by the cooling oil temperature detecting unit 350 and the magnet temperature of the input of the magnet temperature estimator 500 are detected by the coil temperature detecting unit 360. It differs from the motor control device 800 of the first embodiment in that it is an estimated value and that it includes a rotation speed calculation unit 150. Since the other configurations are the same as those of the first embodiment, detailed description thereof will be omitted.
  • the rotation speed calculation unit 150 converts the rotation angle ⁇ of the rotor 310 detected by the resolver 320 into the rotation speed (rpm) of the motor 300 and transmits it to the magnet temperature estimator 500.
  • the torque command transmitted from the host control device is input to the magnet temperature estimator 500 in addition to being transmitted to the current command generation unit 140 as in the first embodiment.
  • FIG. 9 shows the configuration of the magnet temperature estimator 500 in this embodiment.
  • the magnet temperature estimator 500 includes a coil temperature function 510, a cooling oil temperature function 520, a magnet temperature function 530, a loss map 540, a first multiplier 550, a second multiplier 560, and a third. It includes a multiplier 570, a loss-to-temperature conversion coefficient 580, and an adder 590.
  • the functions of the coil temperature function 510, the cooling oil temperature function 520, the first multiplier 550, and the second multiplier 560 are the coil temperature function 410 and the cooling oil temperature function of FIG. 2 in the first embodiment. Since it is the same as 420, the first multiplier 430, and the second multiplier 440, detailed description thereof will be omitted here.
  • the thermal resistance Rom and Rcm are changed according to the temperature of the cooling oil 340 and the temperature of the coil 380, so that the magnet temperature can be estimated accurately with a simple configuration. Indicated. However, in reality, since the magnet (or rotor 310) has a heat capacity, the temperature of the coil 380 and the temperature of the cooling oil 340 are not immediately reflected in the magnet. Therefore, in the second embodiment, the heat capacity is added by estimating the magnet temperature using the previous value of the estimated magnet temperature (magnet temperature estimated value).
  • the heat flow rate transferred to the magnet changes depending on the temperature of the coil 380 and the temperature of the cooling oil 340, the heat capacity of the magnet (or rotor 310) also changes equivalently. It is regarded.
  • the magnet temperature function 530 provides this function as a function.
  • the magnet temperature function 530 outputs a third coefficient by inputting the estimated magnet temperature (previous value) output by the magnet temperature estimator 500.
  • the third coefficient determined by the estimated magnet temperature (previous value) is input to the third multiplier 570, and the result of multiplication with the estimated magnet temperature (previous value) is input to the adder 590.
  • the magnet temperature function 530 (that is, the third coefficient) can be determined by the same method as the coil temperature function 410 and the cooling oil temperature function 420 in the first embodiment.
  • a loss map 540 determined by the rotation speed transmitted from the rotation speed calculation unit 150 and the torque transmitted from the upper control device (not shown) is provided to obtain the calorific value of the magnet.
  • the calorific value of the magnet obtained in the loss map 540 is multiplied by the conversion coefficient 580 of the loss and the temperature, converted into the magnet temperature, and input to the adder 590.
  • the adder 590 includes an output (multiplication value) of the first multiplier 550, an output (multiplication value) of the second multiplier 560, an output (multiplication value) of the third multiplier 570, and a conversion coefficient 580.
  • the sum of the outputs of is output as the estimated magnet temperature.
  • the input to the coil temperature function 510A and the cooling oil temperature function 520A may be the temperature difference between the coil 380 and the cooling oil 340.
  • the input to the magnet temperature function 530A may be at least one of the difference between the temperature of the coil 380 and the estimated magnet temperature (previous value) or the difference between the temperature of the cooling oil 340 and the estimated magnet temperature (previous value).
  • the coil temperature function 510A and the cooling oil temperature function 520A input the temperature difference between the coil 380 and the cooling oil 340, and output the first coefficient and the second coefficient, respectively.
  • the magnet temperature function 530A inputs at least one of the difference between the temperature of the coil 380 and the estimated magnet temperature (previous value) or the difference between the temperature of the cooling oil 340 and the estimated magnet temperature (previous value), and outputs a third coefficient.
  • the first multiplier 550A multiplies the first coefficient by the coil temperature.
  • the second multiplier 560A multiplies the second coefficient by the cooling oil temperature.
  • the third multiplier 570A multiplies the third coefficient by the estimated magnet temperature (previous value).
  • the loss map 540A takes the rotation speed and torque as inputs to obtain the calorific value of the magnet, and the conversion coefficient 580A converts the calorific value of the obtained magnet into the magnet temperature.
  • the output of the first multiplier 550A (multiplication value), the output of the second multiplier 560A (multiplication value), the output of the third multiplier 570A (multiplication value), and the output of the conversion coefficient 580A are output. Add and output as the estimated magnet temperature.
  • the loss-temperature conversion coefficient 580 and 580A do not have to be fixed values. For example, it may be a value that changes according to the number of rotations.
  • the motor control device 900 (magnet temperature estimator 500) of the second embodiment has the magnet temperature estimated value output by the magnet temperature estimator 500 in addition to the first embodiment.
  • the magnet temperature of the permanent magnet of the motor 300 is estimated using the third coefficient determined by the previous value and the loss of the motor 300 determined by the rotation speed and torque.
  • a magnet temperature function 530 that is, a third coefficient
  • a loss map 540 that takes into account the heat generated by the magnet.
  • the first coefficient and the second coefficient are the difference between the detection value of the coil temperature detection unit 360 and the detection value of the cooling oil temperature detection unit 350 (that is, the coil). Obtained from the temperature difference between 380 and the cooling oil 340), the third coefficient is the difference between the detection value of the coil temperature detection unit 360 and the previous value of the magnet temperature estimation value, or the detection value of the cooling oil temperature detection unit 350.
  • the present invention is not limited to the above-described embodiment, and includes various modified forms.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD Solid State Drive
  • control lines and information lines indicate those that are considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it can be considered that almost all configurations are interconnected.

Abstract

永久磁石同期モータの永久磁石の磁石温度を簡易な構成ながらも精度良く推定することができる磁石温度推定器を備えるモータ制御装置、その磁石温度推定器、および磁石温度推定方法を提供する。磁石温度推定器400は、モータ300の固定子に巻回されるコイル380の温度に応じて変化する第一の係数と、モータ300を冷却する冷却油340の温度に応じて変化する第二の係数と、を用いて、モータ300の回転子310に取り付けられる永久磁石の磁石温度を推定する。

Description

モータ制御装置、磁石温度推定器、および磁石温度推定方法
 本発明は、モータの回転子に取り付けられる永久磁石の温度を推定する磁石温度推定器を備えるモータ制御装置、その磁石温度推定器、および磁石温度推定方法に関する。
 電動化車両における主機モータでは、回転子に永久磁石を備えた埋込型永久磁石同期モータ(PMモータ)が頻繁に用いられている。
 一般に、永久磁石は高温状態になると減磁することが知られており、所定の温度を超えると不可逆減磁が発生する。このため、永久磁石の温度を検出する技術が求められているが、永久磁石は回転子に埋め込まれているため、温度センサを取り付けて温度を計測することができない。そこで、永久磁石の温度を推定する技術が求められている。
 永久磁石の温度を推定する技術には、PMモータのコイルや冷却油の温度から永久磁石の温度を推定するものがある(例えば、特許文献1参照)。
特開2018-102102号公報
 永久磁石の温度推定に対しては、PMモータの運転状態に依らず高精度に温度を推定できることや、簡易な方法で温度を推定できることが要求される。
 前述の特許文献1に記載の従来技術では、PMモータの運転状態(PMモータの回転数やトルク)に応じて推定式を切り替えることで永久磁石の温度を推定する。このため、複数の推定式の定数を事前に調整しなければならず、開発コストの増大やソフトウェアの処理負荷の増大が発生する。また、推定式の数を減らすことでコストの増大やソフトウェアの処理負荷の増大を抑えることができるが、高精度に温度を推定できなくなる可能性がある。
 本発明は、上記課題に鑑みてなされたもので、その目的とするところは、簡易な構成でありながらも、モータの永久磁石の温度を精度良く推定することができる磁石温度推定器を備えるモータ制御装置、その磁石温度推定器、および磁石温度推定方法を提供することにある。
 上記課題を解決するために、本発明によるモータ制御装置は、永久磁石が取り付けられた回転子とコイルが巻回された固定子とを有するモータと、前記コイルの温度を検出するコイル温度検出部と、前記モータを冷却する冷却油の温度を検出する冷却油温度検出部と、前記コイル温度検出部の検出値と前記冷却油温度検出部の検出値とを用いて、前記モータの前記永久磁石の磁石温度を推定する磁石温度推定器と、を備え、前記磁石温度推定器は、前記コイル温度検出部の検出値に応じて変化する第一の係数と、前記冷却油温度検出部の検出値に応じて変化する第二の係数と、を用いて、前記磁石温度を推定する。
 本発明によれば、簡易な構成でありながらも、モータの磁石温度を精度良く推定することができる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明に係る第一の実施形態におけるモータ制御装置の構成図である。 図1における磁石温度推定器の構成図である。 本実施形態におけるモータの熱等価回路を示す熱回路図である。 図3におけるコイルの発熱量が大きく冷却油の温度が低い場合の熱流量を示す図である。 図3におけるコイルの発熱量が大きく冷却油の温度が高い場合の熱流量を示す図である。 図3における熱抵抗RocをRomとRcmの変化で表した熱回路図である。 図2におけるコイル温度関数と冷却油温度関数の入力をコイルと冷却油の温度差とした、第一の実施形態の他例の磁石温度推定器の構成図である。 本発明に係る第二の実施形態におけるモータ制御装置の構成図である。 図8における磁石温度推定器の構成図である。 図9におけるコイル温度関数と冷却油温度関数の入力をコイルと冷却油の温度差とした、第二の実施形態の他例の磁石温度推定器の構成図である。
 以下、本発明の実施形態について図面を用いて説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
[第一の実施形態]
 図1は、本発明に係る第一の実施形態におけるモータ制御装置800の構成を示す。
 モータ制御装置800は、例えば電動化車両の駆動システムに搭載され、モータ300とモータ駆動装置100と磁石温度推定器400を有している。
 モータ駆動装置100は、図示しないが、演算処理を行うCPU(Central Processing Unit)、データやプログラムなどを格納するメモリなどを備えるコンピュータ(マイコン)で構成されている。本実施形態では、モータ駆動装置100は、電流検出部120、電流制御部110、インバータ130、電流指令生成部140を有している。
 バッテリ200は、モータ駆動装置100の直流電圧源である。バッテリ200に蓄電される直流電力は、モータ駆動装置100のインバータ130によって、可変電圧・可変周波数の3相交流電力に変換される。インバータ130は、この3相交流電力をモータ300に供給する。
 モータ300は、3相交流電力の供給により回転駆動される同期モータである。なお、モータ300として、本実施形態では、永久磁石同期モータが適用される。モータ300は、回転子310と、回転角センサ320と、固定子330と、固定子330に巻回されるコイル380と、冷却油340と、冷却油340の温度を検出する冷却油温度検出部350と、コイル380の温度を検出するコイル温度検出部360から構成されている。
 回転子310には永久磁石(以下、単に磁石ということがある)が取り付けられており、例えばネオジム磁石である。また、モータ300は、永久磁石を回転子の表面に設置した表面磁石型モータでもよいし、永久磁石を回転子に埋め込んだ埋込磁石型モータでもよい。
 また、モータ300には、モータ300の誘起電圧の位相に合わせて3相交流電圧の位相を制御するために、前記回転角センサとしてレゾルバ320が取り付けられている。レゾルバ320は、鉄心と巻線とから構成されるので、耐使用環境性に優れているが、回転角センサとしては、GMRセンサや、ホール素子を用いたセンサを適用してもよい。
 固定子330にはコイル380として銅線が巻回されており、コイル380の温度を検出するコイル温度検出部360として温度センサが備えられている。本実施形態ではコイル380の温度を用いているが、その他の方法として固定子330の温度を検出して使用してもよい。
 モータ300は、モータ300を冷却するために冷却油340を有している。冷却油340は、冷却油ポンプ370などによって循環してモータ300を冷却する。また、この冷却油340の温度を検出する冷却油温度検出部350として温度センサなどを有している。
 モータ駆動装置100は、モータ300の出力を制御するための電流制御機能を有しているが、本実施形態では、次のように、いわゆるベクトル制御が適用される。
 電流検出部120は、電流センサ(例えば、CT(Current Transformer))によって検出される3相のモータ電流値(Iu、Iv、Iw)を、レゾルバ320によって検出されるモータ300の回転角度θに応じてdq変換して、dq軸電流検出値(Id、Iq)を出力する。電流制御部110は、dq軸電流検出値(Id、Iq)と、電流指令生成部140にて作成されるdq軸電流指令値(Id*、Iq*)とが一致するように、dq軸電圧指令(Vd*、Vq*)を作成して出力する。電流指令生成部140は、上位制御部(図示せず)よりモータ300を駆動するためのトルク指令を受信し、dq軸電流指令(Id*、Iq*)を演算する。
 インバータ130においては、dq軸電圧指令(Vd*、Vq*)を回転角度θに応じて3相のモータ電圧指令(Vu*、Vv*、Vw*)に変換し、3相のモータ電圧指令を変調波とするパルス幅変調(PWM)により作成されるドライブ信号が作成される。このドライブ信号によって、インバータ130における主回路を構成する半導体スイッチ素子をオン/オフ制御することにより、インバータ130は、モータ電圧指令に応じて3相の電圧(Vu、Vv、Vw)をモータ300に出力する。
 磁石温度推定器400は、コイル温度検出部360によって検出されたコイル380の温度と、冷却油温度検出部350によって検出された冷却油340の温度を受信し、これらに基づいて回転子310に取り付けられた永久磁石の温度(磁石温度)を推定する。本実施形態では、推定磁石温度(以下、磁石温度推定値ともいう)は、例えば電流指令生成部140に送信される。推定磁石温度が所定の温度より高い場合、電流指令生成部140では磁石の温度上昇を防ぐためにモータ300の機械出力(トルク×回転数)を抑えるようにトルク指令或いは電流指令を調整することが行われ、電流指令値(Id*、Iq*)として電流制御部110に送信される。
 続いて、本実施形態における磁石温度推定器400の動作について、図2を参照しながら説明する。
 図2は、本実施形態における磁石温度推定器400の構成を示したものである。磁石温度推定器400は、コイル温度関数410と、冷却油温度関数420と、第一の乗算器430と、第二の乗算器440と、加算器450を備えている。
 コイル温度関数410は、コイル温度検出部360によって検出されたコイル温度(コイル温度検出部360の検出値)を入力とし、第一の係数を出力する。
 冷却油温度関数420は、冷却油温度検出部350によって検出された冷却油温度(冷却油温度検出部350の検出値)を入力とし、第二の係数を出力する。
 第一の乗算器430は、第一の係数とコイル温度を乗算する。第二の乗算器440は、第二の係数と冷却油温度を乗算する。加算器450では、第一の乗算器430の出力(乗算値)と第二の乗算器440の出力(乗算値)を加算し、推定磁石温度として出力する。
 続いて、コイル温度関数410と冷却油温度関数420について図3~図6を参照しながら説明する。本実施形態のように、回転子310に取り付けられた永久磁石の磁石温度は、固定子330に巻回されたコイル380の温度と冷却油340の温度を基に、図3に示したような熱回路から求められる。図3の熱回路は、コイル、磁石、冷却油が熱抵抗(Roc、Rom、Rcm)で接続されたものである。図3の熱回路で磁石温度を求める場合、3つの熱抵抗とコイル温度と冷却油温度が既知であれば求められるが、熱抵抗を正確に把握することは困難である。そのため、例えば特許文献1のようにモータ300の運転状態(回転数・トルク)に応じて推定式を変更したり、熱抵抗を変えたりすることで求められている。ところが、3つの熱抵抗をモータ300の運転状態に応じてどのように変化させるかは、実験的に求められることが多く、実験作業や熱抵抗の同定作業が生じるため、開発コストの増大や磁石温度推定器の複雑化を招いていた。本実施形態は、このような開発コストの増大や磁石温度推定器の複雑化を防ぐものである。
 図4は、本実施形態におけるモータ300において、コイル380の発熱量が大きく、冷却油340の温度が低い時の熱回路(図3と同形)の動作を示したものである。発熱源であるコイル380の発熱量が大きく、冷却油340の温度が低い場合、コイル380と冷却油340の温度差が大きいため、コイル380の発熱は冷却油340へ伝わりやすく、コイル380から冷却油340への熱流量が大きくなる。冷却油340への熱流量が大きいため、コイル380から磁石への熱流量は小さくなる。
 一方、図5のように、発熱源であるコイル380の発熱量が大きく、冷却油340の温度が高い場合は、コイル380と冷却油340の温度差が小さいため、コイル380の発熱は冷却油340へ伝わりにくく、コイル380から冷却油340への熱流量は小さくなる。その結果、コイル380から磁石への熱流量が大きくなる。
 図4、図5の動作で述べたように、コイル380の温度と冷却油340の温度によって、磁石へ伝わる熱流量が変化する。すなわち、図6に示すように、冷却油340と磁石の間の熱抵抗Romは冷却油340の温度で(冷却油340の温度に依存して)変化し、コイル380と磁石の間の熱抵抗Rcmはコイル380の温度で(コイル380の温度に依存して)変化するようにすれば、コイル380と冷却油340の間の熱抵抗Rocを考慮せずに磁石温度を推定することができ、簡易な構成とすることができるため、複雑化を防ぐことができる。図2におけるコイル温度関数410と冷却油温度関数420は、図4、図5の動作を反映するように構成されている。本実施形態におけるコイル温度関数410は、例えば以下の<数1>のように表され、冷却油温度関数420は、例えば以下の<数2>のように表される。これらのコイル温度関数410と冷却油温度関数420を用いれば、磁石温度は例えば以下の<数3>のように表すことができる。これにより、コイル温度関数410の出力である第一の係数は、コイル温度検出部360の検出値であるコイル380の温度に応じて変化し、冷却油温度関数420の出力である第二の係数は、冷却油温度検出部350の検出値である冷却油340の温度に応じて変化するものとなり、図4、図5の動作を反映するそれらの係数を用いて磁石温度(推定磁石温度)を推定できるため、複雑化を招くことなく簡易な構成で磁石温度を推定することができる。
<数1>
  F1 = A×Tc + B
   F1:コイル温度関数、A,B:定数、Tc:コイル温度
<数2>
  F2 = C×To + D
   F2:冷却油温度関数、C,D:定数、To:冷却油温度
<数3>
  Tm = F1×Tc + F2×To
   Tm:磁石温度
 コイル温度関数410と冷却油温度関数420の決定には、予めコイル温度、磁石温度、冷却油温度を測定しておく。測定したコイル温度と冷却油温度から<数3>を使用して磁石温度推定値を計算し、計測した磁石温度と磁石温度推定値が小さくなるように、コイル温度関数410と冷却油温度関数420を決定すればよい。このとき、最小二乗法などの最適化アルゴリズムを使用することで、コイル温度関数410と冷却油温度関数420を決定することができる。これら一連の操作を、種々の運転条件(回転数・トルク・雰囲気温度)で行うことで、コイル温度関数410と冷却油温度関数420が決定できる。
 本実施形態では、固定子330に巻回されるコイル380の温度を検出するコイル温度検出部360を用いたが、固定子330の温度を使用して(検出して)コイル380の温度を得てもよい。また、冷却油340の温度を冷却油温度検出部350によって得ているが、冷却油340のケースやモータ300のハウジング(図示せず)の温度を使用して(検出して)冷却油340の温度を得てもよい。
 また、コイル温度関数410の入力はコイル380の温度、冷却油温度関数420の入力は冷却油340の温度としているが、いずれも図7に示すようなコイル380と冷却油340の温度差を入力とした形態でもよい。
 図7に示す磁石温度推定器400Aでは、コイル温度関数410Aおよび冷却油温度関数420Aは、コイル380と冷却油340の温度差を入力とし、それぞれ第一の係数および第二の係数を出力する。第一の乗算器430Aは、第一の係数とコイル温度を乗算する。第二の乗算器440Aは、第二の係数と冷却油温度を乗算する。加算器450Aでは、第一の乗算器430Aの出力(乗算値)と第二の乗算器440Aの出力(乗算値)を加算し、推定磁石温度として出力する。
 また、本実施形態では、コイル温度関数410に上記<数1>、冷却油温度関数420に上記<数2>を採用したが、2次式で表される関数や指数関数を用いてもよいことは勿論である。
 以上で説明したように、本実施形態のモータ制御装置800は、永久磁石が取り付けられた回転子310とコイル380が巻回された固定子330とを有するモータ300と、前記コイル380の温度を検出するコイル温度検出部360と、前記モータ300を冷却する冷却油340の温度を検出する冷却油温度検出部350と、前記コイル温度検出部360の検出値であるコイル380の温度と前記冷却油温度検出部350の検出値である冷却油340の温度とを用いて、前記モータ300の前記永久磁石の磁石温度を推定する磁石温度推定器400と、を備え、前記磁石温度推定器400は、前記コイル温度検出部360の検出値に応じて変化する第一の係数と、前記冷却油温度検出部350の検出値に応じて変化する第二の係数と、を用いて、前記磁石温度を推定する。
 また、本実施形態の磁石温度推定器400は、前記モータ300の固定子330に巻回されるコイル380の温度に応じて変化する第一の係数と、前記モータ300を冷却する冷却油340の温度に応じて変化する第二の係数と、を用いて、前記モータ300の回転子310に取り付けられる永久磁石の磁石温度を推定する。
 本実施形態によれば、コイル温度と冷却油温度に応じて熱抵抗RomおよびRcmが変化するようにコイル温度関数410と冷却油温度関数420(すなわち、第一の係数と第二の係数)を設けることによって、熱抵抗Rocを用いずに磁石温度を推定することができるため、開発コストの削減や磁石温度推定器の複雑化を防ぐことができるので、簡易な構成でありながらも、モータ300の磁石温度を精度良く推定することができる。
 また、図7に示す例のように、前記第一の係数および前記第二の係数は、前記コイル温度検出部360の検出値と前記冷却油温度検出部350の検出値の差(つまり、コイル380と冷却油340の温度差)から求めることによって、図4、図5の動作、すなわち、コイル380と冷却油340の温度差を反映した動作をより精緻に反映できるようになるため、モータ300の磁石温度をより精度良く推定することができる。
[第二の実施形態]
 次に、本発明に係る第二の実施形態について、図6および図8~図10を参照しながら説明する。
 図8は、本発明に係る第二の実施形態におけるモータ制御装置900の構成を示したものである。
 モータ制御装置900は、モータ300とモータ駆動装置100と回転数演算部150と磁石温度推定器500を有している。本実施形態におけるモータ制御装置900は、磁石温度推定器500の入力がコイル温度検出部360により検出されるコイル380の温度と冷却油温度検出部350により検出される冷却油340の温度と磁石温度推定値となっている点と、回転数演算部150を備えた点が、第一の実施形態のモータ制御装置800と異なる。それ以外の構成は、第一の実施形態と同様であるため、詳細な説明は省略する。
 回転数演算部150は、レゾルバ320で検出した回転子310の回転角度θを、モータ300の回転数(rpm)に変換し、磁石温度推定器500に送信する。
 また、上位制御装置(図示せず)から送信されるトルク指令は、第一の実施形態と同様に電流指令生成部140に送信されるのに加え、磁石温度推定器500にも入力される。
 図9は、本実施形態における磁石温度推定器500の構成を示したものである。磁石温度推定器500は、コイル温度関数510と、冷却油温度関数520と、磁石温度関数530と、損失マップ540と、第一の乗算器550と、第二の乗算器560と、第三の乗算器570と、損失と温度の変換係数580と、加算器590を備えている。
 コイル温度関数510と、冷却油温度関数520と、第一の乗算器550と、第二の乗算器560の働きは、第一の実施形態における図2のコイル温度関数410と、冷却油温度関数420と、第一の乗算器430と、第二の乗算器440と同じであるため、ここでは詳細な説明を省略する。
 第一の実施形態では、図6のように熱抵抗Rom、Rcmを冷却油340の温度とコイル380の温度に応じて変更することで、簡易な構成ながらも精度良く磁石温度を推定できる形態を示した。ところが、実際には磁石(或いは回転子310)は熱容量があるため、コイル380の温度や冷却油340の温度が直ちに磁石に反映されるわけではない。そこで、本第二の実施形態では、推定磁石温度(磁石温度推定値)の前回値を用いて磁石温度を推定することで、熱容量を加味する。第一の実施形態で示したように、コイル380の温度や冷却油340の温度によって、磁石へ伝わる熱流量が変化するため、磁石(或いは回転子310)の熱容量も等価的に変化したようにみなされる。この働きを関数として設けたものが、磁石温度関数530である。
 磁石温度関数530は、当該磁石温度推定器500が出力する推定磁石温度(前回値)を入力として、第三の係数を出力する。推定磁石温度(前回値)によって定まる第三の係数は、第三の乗算器570へ入力され、推定磁石温度(前回値)と乗算した結果が、加算器590へと入力される。
 なお、磁石温度関数530(つまり、第三の係数)は、第一の実施形態におけるコイル温度関数410と冷却油温度関数420と同様の方法で決定することができる。
 また、電流がつくる磁束の高調波成分によって、磁石には、渦電流損失やヒステリシス損失などの鉄損が発生する。このため、磁石自身が発熱源ともなる。本第二の実施形態では、回転数演算部150から送信される回転数と上位制御装置(図示せず)から送信されるトルクによって定まる損失マップ540を設け、磁石の発熱量を得ている。損失マップ540で得られた磁石の発熱量は、損失と温度の変換係数580を乗算し、磁石温度に変換されて加算器590へと入力される。
 加算器590は、第一の乗算器550の出力(乗算値)と、第二の乗算器560の出力(乗算値)と、第三の乗算器570の出力(乗算値)と、変換係数580の出力の和を推定磁石温度として出力する。
 本実施形態は、第一の実施形態と同様に、コイル380と冷却油340の温度差によって熱流量が変化することを表現したものである。そのため、図10に示すように、コイル温度関数510Aと冷却油温度関数520Aへの入力は、コイル380と冷却油340の温度差としてもよい。また、磁石温度関数530Aへの入力は、コイル380の温度と推定磁石温度(前回値)の差あるいは冷却油340の温度と推定磁石温度(前回値)の差のうち少なくとも一方としてもよい。
 図10に示す磁石温度推定器500Aでは、コイル温度関数510Aおよび冷却油温度関数520Aは、コイル380と冷却油340の温度差を入力とし、それぞれ第一の係数および第二の係数を出力する。磁石温度関数530Aは、コイル380の温度と推定磁石温度(前回値)の差あるいは冷却油340の温度と推定磁石温度(前回値)の差のうち少なくとも一方を入力とし、第三の係数を出力する。第一の乗算器550Aは、第一の係数とコイル温度を乗算する。第二の乗算器560Aは、第二の係数と冷却油温度を乗算する。第三の乗算器570Aは、第三の係数と推定磁石温度(前回値)を乗算する。損失マップ540Aは、回転数とトルクを入力とし、磁石の発熱量を得、変換係数580Aは、得られた磁石の発熱量を磁石温度に変換する。加算器590Aでは、第一の乗算器550Aの出力(乗算値)と第二の乗算器560Aの出力(乗算値)と第三の乗算器570Aの出力(乗算値)と変換係数580Aの出力を加算し、推定磁石温度として出力する。
 なお、損失と温度の変換係数580、580Aは、固定値である必要はない。例えば、回転数に応じて変化する値であってもよい。
 以上で説明したように、本第二の実施形態のモータ制御装置900(の磁石温度推定器500)は、第一の実施形態に加え、前記磁石温度推定器500が出力する磁石温度推定値の前回値によって定まる第三の係数や回転数とトルクによって定まるモータ300の損失を使用して、前記モータ300の永久磁石の磁石温度を推定する。
 本実施形態によれば、第一の実施形態に加え、磁石(或いは固定子)の熱容量を加味した磁石温度関数530(すなわち、第三の係数)と、磁石の発熱を加味した損失マップ540を設けたことにより、より高い精度で磁石温度を推定することができる。
 また、図10に示す例のように、前記第一の係数および前記第二の係数は、前記コイル温度検出部360の検出値と前記冷却油温度検出部350の検出値の差(つまり、コイル380と冷却油340の温度差)から求め、前記第三の係数は、前記コイル温度検出部360の検出値と前記磁石温度推定値の前回値の差あるいは前記冷却油温度検出部350の検出値と前記磁石温度推定値の前回値の差のうち少なくとも一方から求めることによって、第一の実施形態と同様、図4、図5の動作、すなわち、コイル380と冷却油340の温度差を反映した動作をより精緻に反映できるようになるため、モータ300の磁石温度をより精度良く推定することができる。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
100…モータ駆動装置、110…電流制御部、120…電流検出部、130…インバータ、140…電流指令生成部、150…回転数演算部(第二の実施形態)、200…バッテリ、300…モータ、310…回転子、320…レゾルバ(回転角センサ)、330…固定子、340…冷却油、350…冷却油温度検出部、360…コイル温度検出部、370…冷却油ポンプ、380…コイル、400…磁石温度推定器(第一の実施形態)、410…コイル温度関数、420…冷却油温度関数、430…第一の乗算器、440…第二の乗算器、450…加算器、500…磁石温度推定器(第二の実施形態)、510…コイル温度関数、520…冷却油温度関数、530…磁石温度関数、540…損失マップ、550…第一の乗算器、560…第二の乗算器、570…第三の乗算器、580…変換係数、590…加算器、800…モータ制御装置(第一の実施形態)、900…モータ制御装置(第二の実施形態)

Claims (9)

  1.  永久磁石が取り付けられた回転子とコイルが巻回された固定子とを有するモータと、
     前記コイルの温度を検出するコイル温度検出部と、
     前記モータを冷却する冷却油の温度を検出する冷却油温度検出部と、
     前記コイル温度検出部の検出値と前記冷却油温度検出部の検出値とを用いて、前記モータの前記永久磁石の磁石温度を推定する磁石温度推定器と、を備えるモータ制御装置であって、
     前記磁石温度推定器は、前記コイル温度検出部の検出値に応じて変化する第一の係数と、前記冷却油温度検出部の検出値に応じて変化する第二の係数と、を用いて、前記磁石温度を推定することを特徴とするモータ制御装置。
  2.  請求項1に記載のモータ制御装置において、
     前記第一の係数および前記第二の係数は、前記コイル温度検出部の検出値と前記冷却油温度検出部の検出値の差から求めることを特徴とするモータ制御装置。
  3.  請求項1に記載のモータ制御装置において、
     前記磁石温度推定器は、前記磁石温度推定器が出力する磁石温度推定値の前回値によって定まる第三の係数を使用して、前記磁石温度を推定することを特徴とするモータ制御装置。
  4.  請求項1に記載のモータ制御装置において、
     前記磁石温度推定器は、前記モータの損失を使用して、前記磁石温度を推定することを特徴とするモータ制御装置。
  5.  請求項3に記載のモータ制御装置において、
     前記第一の係数および前記第二の係数は、前記コイル温度検出部の検出値と前記冷却油温度検出部の検出値の差から求め、
     前記第三の係数は、前記コイル温度検出部の検出値と前記磁石温度推定値の前回値の差あるいは前記冷却油温度検出部の検出値と前記磁石温度推定値の前回値の差のうち少なくとも一方から求めることを特徴とするモータ制御装置。
  6.  請求項1に記載のモータ制御装置において、
     前記磁石温度推定器は、前記第一の係数と前記コイル温度検出部の検出値の乗算値と前記第二の係数と前記冷却油温度検出部の検出値の乗算値を加算して、前記磁石温度を推定することを特徴とするモータ制御装置。
  7.  請求項1に記載のモータ制御装置において、
     前記磁石温度推定器が出力する磁石温度推定値が所定の温度より高い場合は、前記モータの機械出力を抑えるように前記モータを駆動制御することを特徴とするモータ制御装置。
  8.  モータの回転子に取り付けられる永久磁石の磁石温度を推定する磁石温度推定器であって、
     前記モータの固定子に巻回されるコイルの温度に応じて変化する第一の係数と、前記モータを冷却する冷却油の温度に応じて変化する第二の係数と、を用いて、前記磁石温度を推定することを特徴とする磁石温度推定器。
  9.  モータの回転子に取り付けられる永久磁石の磁石温度を推定する磁石温度推定方法であって、
     前記モータの固定子に巻回されるコイルの温度に応じて変化する第一の係数と、前記モータを冷却する冷却油の温度に応じて変化する第二の係数と、を用いて、前記磁石温度を推定することを特徴とする磁石温度推定方法。
PCT/JP2020/034407 2019-10-18 2020-09-11 モータ制御装置、磁石温度推定器、および磁石温度推定方法 WO2021075186A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019190887A JP7349879B2 (ja) 2019-10-18 2019-10-18 モータ制御装置、磁石温度推定器、および磁石温度推定方法
JP2019-190887 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075186A1 true WO2021075186A1 (ja) 2021-04-22

Family

ID=75537793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034407 WO2021075186A1 (ja) 2019-10-18 2020-09-11 モータ制御装置、磁石温度推定器、および磁石温度推定方法

Country Status (2)

Country Link
JP (1) JP7349879B2 (ja)
WO (1) WO2021075186A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4079564A1 (en) * 2021-04-23 2022-10-26 Toyota Jidosha Kabushiki Kaisha Control apparatus for electric motor and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072787A (ja) * 2006-09-12 2008-03-27 Mitsuba Corp サーボモータの制御装置及びサーボモータの制御方法
JP2013006509A (ja) * 2011-06-24 2013-01-10 Honda Motor Co Ltd 車両用回転電機制御装置
WO2015170747A1 (ja) * 2014-05-09 2015-11-12 本田技研工業株式会社 回転電機の磁石温度推定装置および回転電機の磁石温度推定方法
JP2018102102A (ja) * 2016-12-22 2018-06-28 トヨタ自動車株式会社 モータシステム
JP2019083656A (ja) * 2017-10-31 2019-05-30 本田技研工業株式会社 回転電機の冷却装置、および回転電機の冷却方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072787A (ja) * 2006-09-12 2008-03-27 Mitsuba Corp サーボモータの制御装置及びサーボモータの制御方法
JP2013006509A (ja) * 2011-06-24 2013-01-10 Honda Motor Co Ltd 車両用回転電機制御装置
WO2015170747A1 (ja) * 2014-05-09 2015-11-12 本田技研工業株式会社 回転電機の磁石温度推定装置および回転電機の磁石温度推定方法
JP2018102102A (ja) * 2016-12-22 2018-06-28 トヨタ自動車株式会社 モータシステム
JP2019083656A (ja) * 2017-10-31 2019-05-30 本田技研工業株式会社 回転電機の冷却装置、および回転電機の冷却方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4079564A1 (en) * 2021-04-23 2022-10-26 Toyota Jidosha Kabushiki Kaisha Control apparatus for electric motor and vehicle
US20220340147A1 (en) * 2021-04-23 2022-10-27 Toyota Jidosha Kabushiki Kaisha Control apparatus for electric motor and vehicle
US11807250B2 (en) 2021-04-23 2023-11-07 Toyota Jidosha Kabushiki Kaisha Control apparatus for electric motor and vehicle

Also Published As

Publication number Publication date
JP7349879B2 (ja) 2023-09-25
JP2021069146A (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
CN104160612B (zh) 用于控制电动机的系统
EP3002872B1 (en) Methods of estimating rotor magnet temperature and systems thereof
JP5924045B2 (ja) 電動機の制御装置及び電動機の制御方法
BR112016018514B1 (pt) Método e sistema para controlar uma máquina de corrente alternada
US9007014B2 (en) System and method for compensating for high frequency application of ripple correlation to minimize power losses in induction machines
RU2706025C1 (ru) Способ управления двигателем и устройство управления двигателем
KR20150000364A (ko) 영구자석 동기 전동기의 마찰 토크를 보상하는 방법 및 장치.
CN109874396A (zh) 逆变器控制装置以及电动机驱动系统
JP5447477B2 (ja) モータ制御装置及びモータ制御方法
JP5637155B2 (ja) モータ制御装置及びモータ制御方法
WO2021075186A1 (ja) モータ制御装置、磁石温度推定器、および磁石温度推定方法
JP2001268989A (ja) 同期電動機とそれを用いた電気車及びその制御方法
WO2019163341A1 (ja) 制御装置
GB2478361A (en) Electric motor torque control using temperature input signal
JP2015211569A (ja) 同期機制御装置
JPH10225158A (ja) 誘導電動機の制御装置
KR102387697B1 (ko) 모터 제어 장치, 그리고 브레이크 제어 장치
KR102030188B1 (ko) 모터 회전자 온도 추정 장치 및 방법
JP2019122188A (ja) モータ制御装置及び減磁判定回路
Pellegrino et al. Direct flux control of PM synchronous motor drives for traction applications
US11063542B2 (en) Motor drive apparatus and electric power steering apparatus
JP6129260B2 (ja) 通電装置、電動機制御装置、通電方法
JP6837259B2 (ja) 三相同期電動機の制御装置並びにそれを用いる電動パワーステアリング装置
CN112335170A (zh) 电动机控制装置、电动机控制方法以及电动机系统
JP7449204B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876733

Country of ref document: EP

Kind code of ref document: A1