WO2021074952A1 - 真空蒸着方法及び真空蒸着装置 - Google Patents

真空蒸着方法及び真空蒸着装置 Download PDF

Info

Publication number
WO2021074952A1
WO2021074952A1 PCT/JP2019/040456 JP2019040456W WO2021074952A1 WO 2021074952 A1 WO2021074952 A1 WO 2021074952A1 JP 2019040456 W JP2019040456 W JP 2019040456W WO 2021074952 A1 WO2021074952 A1 WO 2021074952A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
substrate
forming chamber
region
film
Prior art date
Application number
PCT/JP2019/040456
Other languages
English (en)
French (fr)
Inventor
裕志 室谷
充祐 宮内
芳幸 大瀧
友和 長谷川
学幸 松平
Original Assignee
学校法人東海大学
株式会社シンクロン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人東海大学, 株式会社シンクロン filed Critical 学校法人東海大学
Priority to PCT/JP2019/040456 priority Critical patent/WO2021074952A1/ja
Priority to JP2020529654A priority patent/JPWO2021074952A1/ja
Priority to JP2021515244A priority patent/JP7045044B2/ja
Priority to EP20876019.9A priority patent/EP4047108A4/en
Priority to PCT/JP2020/038355 priority patent/WO2021075384A1/ja
Priority to KR1020227015048A priority patent/KR20220074949A/ko
Priority to CN202080064516.6A priority patent/CN114402090A/zh
Priority to TW109135480A priority patent/TWI836151B/zh
Publication of WO2021074952A1 publication Critical patent/WO2021074952A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Definitions

  • the present invention relates to a vacuum vapor deposition method and a vacuum vapor deposition apparatus.
  • Non-Patent Document 1 Non-Patent Document 1
  • a surface layer is formed on glass having a refractive index of 1.5 by using a low-refractive material such as magnesium fluoride having a refractive index of 1.38.
  • a low-refractive material such as magnesium fluoride having a refractive index of 1.38.
  • a low index of refraction material of 1.38 1.4% reflection remains.
  • An object to be solved by the present invention is to provide a vacuum vapor deposition method and a vacuum vapor deposition apparatus capable of forming a film having a low refractive index.
  • At least a thin-film deposition material and a thin-film deposition material are installed inside the film-forming chamber, and the first region containing the thin-film deposition material inside the film-forming chamber is set to an atmospheric pressure of 0.5 to 100 Pa.
  • the second region containing the vapor deposition material inside the film forming chamber is set to an atmospheric pressure of 0.05 Pa or less, and the vapor deposition material is deposited on the vapor deposition object by the vacuum vapor deposition method in this state.
  • a vacuum vapor deposition apparatus provided with at least a thin-film deposition chamber provided with a vapor-deposited material and a film-deposited material
  • the atmospheric pressure of the first region containing the vapor-deposited material inside the film-forming chamber is 0.5 to 0.5 to
  • a vacuum vapor deposition apparatus including a means for setting 100 Pa and a means for setting the atmospheric pressure of the second region including the vapor deposition material inside the film forming chamber to 0.05 Pa or less.
  • the second region containing the vapor deposition material inside the film forming chamber is set to an atmospheric pressure of 0.05 Pa or less, vacuum deposition is possible, while the vapor deposition material inside the film forming chamber is included. Since the first region is set to an atmospheric pressure of 0.5 to 100 Pa, a film having a low refractive index can be formed.
  • FIG. 1 is a schematic vertical cross section showing a first embodiment of the vacuum vapor deposition apparatus 1 according to the present invention.
  • the vacuum vapor deposition apparatus 1 of the present embodiment includes a housing 2 constituting a film forming chamber 2a which is substantially a closed space, a first exhaust device 3 for reducing the pressure inside the entire inside of the film forming chamber 2a, and a substrate holder.
  • a nozzle 8 for introducing a predetermined gas into the first region A including the substrate S held by the substrate S and a gas supply source 9 are provided.
  • the vacuum vapor deposition apparatus 1 of the present embodiment has a box shape having an upper surface (ceiling surface), a lower surface (bottom surface) and a plurality of side surfaces, or a tubular shape having an upper surface (ceiling surface), a lower surface (bottom surface) and curved side surfaces. It has a configured housing 2, and the inside of the housing 2 constitutes a film forming chamber 2a as a substantially closed space.
  • the upper surface of the housing 2 is conveniently referred to as an upper surface
  • the lower surface is referred to as a lower surface
  • the lateral surface is referred to as a side surface.
  • This is a convenient definition for explaining the relative positional relationship between the first exhaust device 3, the substrate holder 5, and the vapor deposition mechanism 6 provided in the housing 2, and is the posture of the vacuum vapor deposition device 1 actually installed. Is not an absolute definition.
  • the substrate holder 5 and the vapor deposition mechanism 6 are arranged in the vertical direction (vertical direction), but the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention have this arrangement.
  • the substrate holder 5 and the vapor deposition mechanism 6 may be arranged in the left-right direction (horizontal direction) or in the oblique direction.
  • the first exhaust device 3 is mounted on the housing 2 due to the layout. Although it is arranged on the lower surface, the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention are not limited to this arrangement, and the first exhaust device 3 can be arranged at an appropriate position.
  • the first exhaust device 3 is provided on the lower surface of the housing 2, that is, in the vicinity of the vapor deposition mechanism 6 via a gate valve 3a.
  • the gate valve 3a is an airtight valve that opens and closes the first exhaust device 3 and the film forming chamber 2a.
  • the gate valve 3a is opened to open the substrate S which is an object to be deposited.
  • the gate valve 3a is closed in other cases, such as when the substrate S is put into the film forming chamber 2a or when the substrate S after film formation is taken out from the film forming chamber 2a.
  • a turbo molecular pump (TMP) or a constant pressure pump (CP) is used for the first exhaust device 3, and has a rated capacity capable of reducing the pressure inside the film forming chamber 2a to 0.01 Pa or less.
  • a plate-shaped substrate holder 5 is suspended by a rotating shaft 5b, and the rotating shaft 5b is rotatably supported on the upper surface of the housing 2.
  • the substrate holder 5 is rotatable about a rotation shaft 5b that is rotated by the drive unit 5c.
  • the substrate (material to be vapor-deposited) S to be vapor-deposited of the vapor-deposited material is held on the substrate-holding surface 5a of the substrate holder 5.
  • the number of substrates S held in the substrate holder 5 is not limited at all, and may be one or a plurality of substrates S.
  • the drive unit 5c may be omitted to form the non-rotating substrate holder 5.
  • a plurality of substrates S can be held on the substrate holding surface 5a of the substrate holder 5, and the substrate holder 5 is provided so that the plurality of substrates S are located directly above the vapor deposition mechanism 6. ing.
  • a thin-film deposition mechanism 6 is provided near the lower surface inside the film-forming chamber 2a.
  • the thin-film deposition mechanism 6 of the present embodiment includes an electron beam vapor deposition source, a crucible 6a for filling the vapor deposition material, and an electron gun 6b for irradiating the vapor deposition material filled with the thin-film deposition material with an electron beam. Further, above the crucible 6a, a shutter 6c for opening and closing the upper opening of the crucible 6a is movably provided.
  • the electron gun 6b is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to evaporate the vaporized vapor deposition.
  • Reference numeral 6d shown in FIG. 1 is a cooling tube coil of the Mysna trap, which efficiently removes the water released from the substrate S when the inside of the film forming chamber 2a is evacuated. ..
  • the vapor deposition material used in the vacuum vapor deposition apparatus 1 of the present embodiment is not particularly limited, but is SiO 2 , MgF 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5 , TiO 2 , Nb 2 O 5 or HfO 2 , etc. can be used.
  • the vacuum vapor deposition apparatus 1 of the present embodiment includes a nozzle 8 for introducing a predetermined gas and a gas supply source 9 in the first region A including the substrate S held by the substrate holder 5.
  • the gas supply source 9 is a supply source for supplying the atmospheric gas inside the film forming chamber 2a, for example, an inert gas.
  • FIG. 1 shows one nozzle 8 and a gas supply source 9, but a plurality of nozzles 8 are connected to one or a plurality of gas supply sources 9 and the plurality of nozzles 8 are directed toward the first region A. You may also blow a predetermined gas.
  • the substrate S is mounted on the substrate holding surface 5a of the substrate holder 5, the housing 2 is sealed, and then the gate valve 3a is opened to exhaust the first exhaust gas.
  • the device 3 is operated, and the set value of the first exhaust device 3 is set to, for example, 0.01 Pa to reduce the pressure inside the film forming chamber 2a as a whole.
  • the drive unit 5c may be driven to start rotating at a predetermined rotation speed of the substrate holder 5.
  • the inside of the film forming chamber 2a is depressurized from the normal pressure, but the atmospheric pressure of the second region B including the vapor deposition mechanism 6 provided in the vicinity of the first exhaust device 3 is the atmospheric pressure of the film forming chamber 2a.
  • the pressure is particularly low compared to the general area inside.
  • the gas from the gas supply source 9 is introduced into the first region A including the substrate S held by the substrate holder 5 via the nozzle 8, the atmospheric pressure in the first region A is set. The pressure is higher than that of the general region inside the film forming chamber 2a.
  • the atmospheric pressure in the second region B is preferably 0.05 Pa or less, and the atmospheric pressure in the first region A is 0.5 to 100 Pa. Then, the electron gun 6b of the vapor deposition mechanism 6 is operated to heat and evaporate the vaporized material filled in the pit 6a, and the shutter 6c is opened to attach the evaporated vaporized material to the substrate S.
  • FIG. 8 is a graph showing the atmospheric pressure in the first region A and the second region B and the set pressure of the first exhaust device 3, and the vertical axis shows the logarithm of the pressure.
  • the reason why the second region B including the vapor deposition mechanism 6 is set to 0.05 Pa or less is that the vaporized material does not evaporate when the atmospheric pressure is higher than this.
  • the reason why the first region A including the substrate S is 0.5 Pa or more is that a thin film having a low refractive index cannot be obtained if the atmospheric pressure is lower than this, and the reason why the first region A including the substrate S is 100 Pa or less is the atmosphere.
  • the second region B including the vapor deposition mechanism 6 may be 0.05 Pa or less, and the first region A including the substrate S may be 0.5 to 100 Pa.
  • the amount of gas supplied from the nozzle 8 and the gas supply source 9 is not particularly limited.
  • the atmospheric pressure of the second region B including the vapor deposition mechanism 6 can be vapor-deposited (preferably in a range close to the upper limit). Since the atmospheric pressure of the first region A including the substrate S is set to a relatively high pressure), a thin film having a low refractive index can be obtained by the vacuum vapor deposition method.
  • the substrate S corresponds to the object to be vapor-deposited of the present invention
  • the nozzle 8 and the gas supply source 9 correspond to the first atmospheric pressure setting means, the pressure increasing means, and the pressure adjusting means of the present invention
  • the exhaust device 3 corresponds to the second atmospheric pressure setting means of the present invention.
  • FIG. 2 is a schematic vertical cross section showing a second embodiment of the vacuum vapor deposition apparatus 1 according to the present invention.
  • the vacuum vapor deposition apparatus 1 of the present embodiment includes a housing 2 constituting a film forming chamber 2a which is substantially a closed space, a first exhaust device 3 for reducing the pressure inside the entire inside of the film forming chamber 2a, and a first.
  • a shielding member 7 for blocking a part of the exhaust gas of the film forming chamber 2a by the exhaust device 3 is provided.
  • the vacuum vapor deposition apparatus 1 of the present embodiment has a box shape having an upper surface (ceiling surface), a lower surface (bottom surface) and a plurality of side surfaces, or an upper surface (ceiling surface), a lower surface (bottom surface), as in the first embodiment described above. It has a tubular housing 2 having curved side surfaces, and the inside of the housing 2 constitutes a film forming chamber 2a as a substantially closed space.
  • the upper surface of the housing 2 is conveniently referred to as an upper surface
  • the lower surface is referred to as a lower surface
  • the lateral surface is referred to as a side surface.
  • This is a convenient definition for explaining the relative positional relationship between the first exhaust device 3, the substrate holder 5, and the vapor deposition mechanism 6 provided in the housing 2, and is the posture of the vacuum vapor deposition device 1 actually installed. Is not an absolute definition.
  • the substrate holder 5 and the vapor deposition mechanism 6 are arranged in the vertical direction (vertical direction), but the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention have this arrangement.
  • the substrate holder 5 and the vapor deposition mechanism 6 may be arranged in the left-right direction (horizontal direction) or in the oblique direction.
  • the first exhaust device 3 is mounted on the housing 2 due to the layout. Although it is arranged on the lower surface, the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention are not limited to this arrangement, and the first exhaust device 3 can be arranged at an appropriate position.
  • the first exhaust device 3 is provided on the lower surface of the housing 2, that is, in the vicinity of the vapor deposition mechanism 6 via a gate valve 3a.
  • the gate valve 3a is an airtight valve that opens and closes the first exhaust device 3 and the film forming chamber 2a.
  • the gate valve 3a is opened to open the substrate S which is an object to be deposited.
  • the gate valve 3a is closed in other cases, such as when the substrate S is put into the film forming chamber 2a or when the substrate S after film formation is taken out from the film forming chamber 2a.
  • a turbo molecular pump (TMP) or a constant pressure pump (CP) is used for the first exhaust device 3, and has a rated capacity capable of reducing the pressure inside the film forming chamber 2a to 0.01 Pa or less.
  • a plate-shaped substrate holder 5 is suspended by a rotating shaft 5b, and the rotating shaft 5b is rotatably supported on the upper surface of the housing 2.
  • the substrate holder 5 is rotatable about a rotation shaft 5b that is rotated by the drive unit 5c.
  • the substrate (material to be deposited) S to be vapor-deposited of the vapor-deposited material is held on the substrate-holding surface 5a of the substrate holder 5.
  • the number of substrates S held in the substrate holder 5 is not limited at all, and may be one or a plurality of substrates S.
  • the drive unit 5c may be omitted to form the non-rotating substrate holder 5.
  • a plurality of substrates S can be held on the substrate holding surface 5a of the substrate holder 5, and the substrate holder 5 is provided so that the plurality of substrates S are located directly above the vapor deposition mechanism 6. ing.
  • a thin-film deposition mechanism 6 is provided near the lower surface inside the film-forming chamber 2a.
  • the thin-film deposition mechanism 6 of the present embodiment includes an electron beam vapor deposition source, a crucible 6a for filling the vapor deposition material, and an electron gun 6b for irradiating the vapor deposition material filled with the thin-film deposition material with an electron beam. Further, above the crucible 6a, a shutter 6c for opening and closing the upper opening of the crucible 6a is movably provided.
  • the electron gun 6b is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to evaporate the vaporized vapor deposition.
  • Reference numeral 6d shown in FIG. 2 is a cooling tube coil of the Mysna trap, which efficiently removes the water released from the substrate S when the inside of the film forming chamber 2a is evacuated. ..
  • the vapor deposition material used in the vacuum vapor deposition apparatus 1 of the present embodiment is not particularly limited, but is SiO 2 , MgF 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5 , TiO 2 , Nb 2 O 5 or HfO 2 , etc. can be used.
  • the shielding member 7 is fixed between the first region A including the substrate S held by the substrate holder 5 and the second region B including the vapor deposition mechanism 6.
  • the shielding member 7 of the present embodiment is formed of a disk-shaped flat plate having a circular, elliptical, or rectangular opening in the center, and controls a function of shielding a part of the exhaust of the film forming chamber 2a by the first exhaust device 3. That is, as shown in FIG. 2, when the region including the substrate S held by the substrate holder 5 is defined as the first region A, the gas inside the film forming chamber 2a is exhausted by the first exhaust device 3. By partially shielding the exhaust gas of the gas in the first region A, the decompression effect of the first region A is reduced.
  • the substrate S is mounted on the substrate holding surface 5a of the substrate holder 5, the housing 2 is sealed, and then the gate valve 3a is opened to exhaust the first exhaust gas.
  • the device 3 is operated, and the set value of the first exhaust device 3 is set to, for example, 0.01 Pa to reduce the pressure inside the film forming chamber 2a as a whole.
  • the drive unit 5c may be driven to start rotating at a predetermined rotation speed of the substrate holder 5.
  • the inside of the film forming chamber 2a is depressurized from the normal pressure, but the atmospheric pressure of the second region B including the vapor deposition mechanism 6 provided in the vicinity of the first exhaust device 3 is the atmospheric pressure of the film forming chamber 2a.
  • the pressure is particularly low compared to the general area inside.
  • the first region A including the substrate S held by the substrate holder 5 is held by the substrate holder 5 because a part of the entire exhaust gas by the first exhaust device 3 is blocked by the shielding member 7.
  • the atmospheric pressure of the first region A including the substrate S is higher than that of the general region inside the film forming chamber 2a.
  • the vapor deposition mechanism By the action of the first exhaust device 3 and the shielding member 7, preferably, when the atmospheric pressure in the second region B becomes 0.05 Pa or less and the atmospheric pressure in the first region A becomes 0.5 to 100 Pa, the vapor deposition mechanism
  • the electron gun 6b of No. 6 is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to attach the evaporated vaporized material to the substrate S.
  • FIG. 8 is a graph showing the atmospheric pressure in the first region A and the second region B and the set pressure of the first exhaust device 3, and the vertical axis shows the logarithm of the pressure.
  • the reason why the second region B including the vapor deposition mechanism 6 is set to 0.05 Pa or less is that the vaporized material does not evaporate when the atmospheric pressure is higher than this.
  • the reason why the first region A including the substrate S is 0.5 Pa or more is that a thin film having a low refractive index cannot be obtained if the atmospheric pressure is lower than this, and the reason why the first region A including the substrate S is 100 Pa or less is the atmosphere.
  • the second region B including the vapor deposition mechanism 6 may be 0.05 Pa or less, and the first region A including the substrate S may be 0.5 to 100 Pa.
  • the structure of the shielding member 7 (for example, the shape and area of the opening) is not particularly limited.
  • the atmospheric pressure of the second region B including the vapor deposition mechanism 6 can be vapor-deposited (preferably in a range close to the upper limit). Since the atmospheric pressure of the first region A including the substrate S is set to a relatively high pressure), a thin film having a low refractive index can be obtained by the vacuum vapor deposition method.
  • the substrate S corresponds to the object to be vapor-deposited of the present invention
  • the shielding member 7 corresponds to the first atmospheric pressure setting means, the pressure increasing means, and the pressure adjusting means of the present invention
  • the first exhaust device 3 corresponds to the first exhaust device 3.
  • FIG. 3 is a schematic vertical cross section showing a third embodiment of the vacuum vapor deposition apparatus 1 according to the present invention.
  • the vacuum vapor deposition apparatus 1 of the present embodiment is an embodiment in which the above-described first embodiment and the second embodiment are combined, and is composed of a housing 2 constituting a film forming chamber 2a which is substantially a closed space.
  • a first exhaust device 3 for depressurizing the entire inside of the membrane chamber 2a, a nozzle 8 for introducing a predetermined gas into a first region A including a substrate S held in a substrate holder 5, a gas supply source 9, and a second.
  • a shielding member 7 for blocking a part of the exhaust gas of the film forming chamber 2a by the exhaust device 3 is provided.
  • the vacuum vapor deposition apparatus 1 of the present embodiment has a box shape having an upper surface (ceiling surface), a lower surface (bottom surface) and a plurality of side surfaces, or an upper surface (ceiling surface). It has a cylindrical housing 2 having a lower surface (bottom surface) and curved side surfaces, and the inside of the housing 2 constitutes a film forming chamber 2a as a substantially closed space.
  • the upper surface of the housing 2 is conveniently referred to as an upper surface
  • the lower surface is referred to as a lower surface
  • the lateral surface is referred to as a side surface.
  • This is a convenient definition for explaining the relative positional relationship between the first exhaust device 3, the substrate holder 5, and the vapor deposition mechanism 6 provided in the housing 2, and is the posture of the vacuum vapor deposition device 1 actually installed. Is not an absolute definition.
  • the substrate holder 5 and the vapor deposition mechanism 6 are arranged in the vertical direction (vertical direction), but the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention have this arrangement.
  • the substrate holder 5 and the vapor deposition mechanism 6 may be arranged in the left-right direction (horizontal direction) or in the oblique direction.
  • the first exhaust device 3 is mounted on the housing 2 due to the layout. Although it is arranged on the lower surface, the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention are not limited to this arrangement, and the first exhaust device 3 can be arranged at an appropriate position.
  • the first exhaust device 3 is provided on the lower surface of the housing 2, that is, in the vicinity of the vapor deposition mechanism 6 via the gate valve 3a.
  • the gate valve 3a is an airtight valve that opens and closes the first exhaust device 3 and the film forming chamber 2a.
  • the gate valve 3a is opened to open the substrate S which is an object to be deposited.
  • the gate valve 3a is closed in other cases, such as when the substrate S is put into the film forming chamber 2a or when the substrate S after film formation is taken out from the film forming chamber 2a.
  • a turbo molecular pump (TMP) or a constant pressure pump (CP) is used for the first exhaust device 3, and has a rated capacity capable of reducing the pressure inside the film forming chamber 2a to 0.01 Pa or less.
  • a plate-shaped substrate holder 5 is suspended by a rotating shaft 5b, and the rotating shaft 5b is rotatably supported on the upper surface of the housing 2.
  • the substrate holder 5 is rotatable about a rotation shaft 5b that is rotated by the drive unit 5c.
  • the substrate (material to be vapor-deposited) S to be vapor-deposited of the vapor-deposited material is held on the substrate-holding surface 5a of the substrate holder 5.
  • the number of substrates S held in the substrate holder 5 is not limited at all, and may be one or a plurality of substrates S.
  • the drive unit 5c may be omitted to form the non-rotating substrate holder 5.
  • a plurality of substrates S can be held on the substrate holding surface 5a of the substrate holder 5, and the substrate holder 5 is provided so that the plurality of substrates S are located directly above the vapor deposition mechanism 6. ing.
  • a thin-film deposition mechanism 6 is provided near the lower surface inside the film-forming chamber 2a.
  • the thin-film deposition mechanism 6 of the present embodiment includes an electron beam vapor deposition source, a crucible 6a for filling the vapor deposition material, and an electron gun 6b for irradiating the vapor deposition material filled with the thin-film deposition material with an electron beam. Further, above the crucible 6a, a shutter 6c for opening and closing the upper opening of the crucible 6a is movably provided.
  • the electron gun 6b is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to evaporate the vaporized vapor deposition.
  • Reference numeral 6d shown in FIG. 3 is a cooling tube coil of the Mysna trap, which efficiently removes the water released from the substrate S when the inside of the film forming chamber 2a is evacuated. ..
  • the vapor deposition material used in the vacuum vapor deposition apparatus 1 of the present embodiment is not particularly limited, but is SiO 2 , MgF 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5 , TiO 2 , Nb 2 O 5 or HfO 2 , etc. can be used.
  • the vacuum vapor deposition apparatus 1 of the present embodiment includes a nozzle 8 for introducing a predetermined gas and a gas supply source 9 in the first region A including the substrate S held by the substrate holder 5.
  • the gas supply source 9 is a supply source for supplying the atmospheric gas inside the film forming chamber 2a, for example, an inert gas.
  • a plurality of nozzles 8 are connected to one or a plurality of gas supply sources 9, and the plurality of nozzles 8 are directed toward the first region A. You may also blow a predetermined gas.
  • the shielding member 7 is fixed between the first region A including the substrate S held by the substrate holder 5 and the second region B including the vapor deposition mechanism 6. ..
  • the shielding member 7 of the present embodiment is formed of a disk-shaped flat plate having a circular, elliptical, or rectangular opening in the center, and controls a function of shielding a part of the exhaust of the film forming chamber 2a by the first exhaust device 3. That is, as shown in FIG. 3, when the region including the substrate S held by the substrate holder 5 is set as the first region A, the gas inside the film forming chamber 2a is exhausted by the first exhaust device 3. By partially shielding the exhaust gas of the gas in the first region A, the decompression effect of the first region A is reduced.
  • the substrate S is mounted on the substrate holding surface 5a of the substrate holder 5, the housing 2 is sealed, and then the gate valve 3a is opened to exhaust the first exhaust gas.
  • the device 3 is operated, and the set value of the first exhaust device 3 is set to, for example, 0.01 Pa to reduce the pressure inside the film forming chamber 2a as a whole.
  • the drive unit 5c may be driven to start rotating at a predetermined rotation speed of the substrate holder 5.
  • the inside of the film forming chamber 2a is depressurized from the normal pressure, but the atmospheric pressure of the second region B including the vapor deposition mechanism 6 provided in the vicinity of the first exhaust device 3 is the atmospheric pressure of the film forming chamber 2a.
  • the pressure is particularly low compared to the general area inside.
  • the gas supply source 9 is used in the first region A including the substrate S held by the substrate holder 5, a part of the entire exhaust gas by the first exhaust device 3 is blocked by the shielding member 7, and at the same time. Since the gas from the above is introduced through the nozzle 8, the atmospheric pressure of the first region A including the substrate S held by the substrate holder 5 becomes higher than that of the general region inside the film forming chamber 2a.
  • the vapor deposition mechanism By the action of the first exhaust device 3 and the shielding member 7, preferably, when the atmospheric pressure in the second region B becomes 0.05 Pa or less and the atmospheric pressure in the first region A becomes 0.5 to 100 Pa, the vapor deposition mechanism
  • the electron gun 6b of No. 6 is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to attach the evaporated vaporized material to the substrate S.
  • FIG. 8 is a graph showing the atmospheric pressure in the first region A and the second region B and the set pressure of the first exhaust device 3, and the vertical axis shows the logarithm of the pressure.
  • the reason why the second region B including the vapor deposition mechanism 6 is set to 0.05 Pa or less is that the vaporized material does not evaporate when the atmospheric pressure is higher than this.
  • the reason why the first region A including the substrate S is 0.5 Pa or more is that a thin film having a low refractive index cannot be obtained if the atmospheric pressure is lower than this, and the reason why the first region A including the substrate S is 100 Pa or less is the atmosphere.
  • the second region B including the vapor deposition mechanism 6 may be 0.05 Pa or less, and the first region A including the substrate S may be 0.5 to 100 Pa.
  • the amount of gas supplied from the nozzle 8 and the gas supply source 9 and the structure of the shielding member 7 are not particularly limited.
  • the atmospheric pressure of the second region B including the vapor deposition mechanism 6 can be vapor-deposited (preferably in a range close to the upper limit). Since the atmospheric pressure of the first region A including the substrate S is set to a relatively high pressure), a thin film having a low refractive index can be obtained by the vacuum vapor deposition method.
  • the substrate S corresponds to the object to be vapor-deposited of the present invention
  • the shielding member 7, the nozzle 8, and the gas supply source 9 correspond to the first atmospheric pressure setting means, the pressure increasing means, and the pressure adjusting means of the present invention
  • the first exhaust device 3 corresponds to the second atmospheric pressure setting means of the present invention.
  • FIG. 4 is a schematic vertical cross section showing a fourth embodiment of the vacuum vapor deposition apparatus 1 according to the present invention.
  • the vacuum vapor deposition apparatus 1 of the present embodiment includes a housing 2 constituting a film forming chamber 2a which is substantially a closed space, a first exhaust device 3 for reducing the pressure inside the entire inside of the film forming chamber 2a, and a substrate holder.
  • a nozzle 8 for introducing a predetermined gas into the first region A including the substrate S held by the substrate S and a gas supply source 9 are provided.
  • the difference from the first embodiment described above is that the first exhaust device 3 is provided on the side surface of the housing 2, and the other configurations are almost the same.
  • the vacuum vapor deposition apparatus 1 of the present embodiment has a box shape having an upper surface (ceiling surface), a lower surface (bottom surface) and a plurality of side surfaces, or a tubular shape having an upper surface (ceiling surface), a lower surface (bottom surface) and curved side surfaces. It has a configured housing 2, and the inside of the housing 2 constitutes a film forming chamber 2a as a substantially closed space.
  • the upper surface of the housing 2 is conveniently referred to as an upper surface
  • the lower surface is referred to as a lower surface
  • the lateral surface is referred to as a side surface.
  • This is a convenient definition for explaining the relative positional relationship between the first exhaust device 3, the substrate holder 5, and the vapor deposition mechanism 6 provided in the housing 2, and is the posture of the vacuum vapor deposition device 1 actually installed. Is not an absolute definition.
  • the substrate holder 5 and the vapor deposition mechanism 6 are arranged in the vertical direction (vertical direction), but the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention have this arrangement.
  • the substrate holder 5 and the vapor deposition mechanism 6 may be arranged in the left-right direction (horizontal direction) or in the oblique direction.
  • the first exhaust device 3 is mounted on the housing 2 due to the layout.
  • the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention are not limited to this arrangement, and the first exhaust device 3 can be arranged at an appropriate position.
  • the first exhaust device 3 is provided on the relatively lower side of the side surface of the housing 2, that is, in the vicinity of the vapor deposition mechanism 6 via the gate valve 3a.
  • the gate valve 3a is an airtight valve that opens and closes the first exhaust device 3 and the film forming chamber 2a.
  • the gate valve 3a is opened to open the substrate S which is an object to be deposited.
  • the gate valve 3a is closed in other cases, such as when the substrate S is put into the film forming chamber 2a or when the substrate S after film formation is taken out from the film forming chamber 2a.
  • a turbo molecular pump (TMP) or a constant pressure pump (CP) is used for the first exhaust device 3, and has a rated capacity capable of reducing the pressure inside the film forming chamber 2a to 0.01 Pa or less.
  • a plate-shaped substrate holder 5 is suspended by a rotating shaft 5b, and the rotating shaft 5b is rotatably supported on the upper surface of the housing 2.
  • the substrate holder 5 is rotatable about a rotation shaft 5b that is rotated by the drive unit 5c.
  • the substrate (material to be vapor-deposited) S to be vapor-deposited of the vapor-deposited material is held on the substrate-holding surface 5a of the substrate holder 5.
  • the number of substrates S held in the substrate holder 5 is not limited at all, and may be one or a plurality of substrates S.
  • the drive unit 5c may be omitted to form the non-rotating substrate holder 5.
  • a plurality of substrates S can be held on the substrate holding surface 5a of the substrate holder 5, and the substrate holder 5 is provided so that the plurality of substrates S are located directly above the vapor deposition mechanism 6. ing.
  • a thin-film deposition mechanism 6 is provided near the lower surface inside the film-forming chamber 2a.
  • the thin-film deposition mechanism 6 of the present embodiment includes an electron beam vapor deposition source, a crucible 6a for filling the vapor deposition material, and an electron gun 6b for irradiating the vapor deposition material filled with the thin-film deposition material with an electron beam. Further, above the crucible 6a, a shutter 6c for opening and closing the upper opening of the crucible 6a is movably provided.
  • the electron gun 6b is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to evaporate the vaporized vapor deposition.
  • Reference numeral 6d shown in FIG. 4 is a cooling tube coil of the Mysna trap, which efficiently removes the water released from the substrate S when the inside of the film forming chamber 2a is evacuated. ..
  • the vapor deposition material used in the vacuum vapor deposition apparatus 1 of the present embodiment is not particularly limited, but is SiO 2 , MgF 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5 , TiO 2 , Nb 2 O 5 or HfO 2 , etc. can be used.
  • the vacuum vapor deposition apparatus 1 of the present embodiment includes a nozzle 8 for introducing a predetermined gas and a gas supply source 9 in the first region A including the substrate S held by the substrate holder 5.
  • the gas supply source 9 is a supply source for supplying the atmospheric gas inside the film forming chamber 2a, for example, an inert gas.
  • FIG. 4 shows one nozzle 8 and a gas supply source 9, but a plurality of nozzles 8 are connected to one or a plurality of gas supply sources 9 and the plurality of nozzles 8 are directed toward the first region A. You may also blow a predetermined gas.
  • the substrate S is mounted on the substrate holding surface 5a of the substrate holder 5, the housing 2 is sealed, and then the gate valve 3a is opened to exhaust the first exhaust gas.
  • the device 3 is operated, and the set value of the first exhaust device 3 is set to, for example, 0.01 Pa to reduce the pressure inside the film forming chamber 2a as a whole.
  • the drive unit 5c may be driven to start rotating at a predetermined rotation speed of the substrate holder 5.
  • the inside of the film forming chamber 2a is depressurized from the normal pressure, but the atmospheric pressure of the second region B including the vapor deposition mechanism 6 provided in the vicinity of the first exhaust device 3 is the atmospheric pressure of the film forming chamber 2a.
  • the pressure is particularly low compared to the general area inside.
  • the gas from the gas supply source 9 is introduced into the first region A including the substrate S held by the substrate holder 5 via the nozzle 8, the atmospheric pressure in the first region A is set. The pressure is higher than that of the general region inside the film forming chamber 2a.
  • the atmospheric pressure in the second region B is preferably 0.05 Pa or less, and the atmospheric pressure in the first region A is 0.5 to 100 Pa. Then, the electron gun 6b of the vapor deposition mechanism 6 is operated to heat and evaporate the vaporized material filled in the pit 6a, and the shutter 6c is opened to attach the evaporated vaporized material to the substrate S.
  • FIG. 8 is a graph showing the atmospheric pressure in the first region A and the second region B and the set pressure of the first exhaust device 3, and the vertical axis shows the logarithm of the pressure.
  • the reason why the second region B including the vapor deposition mechanism 6 is set to 0.05 Pa or less is that the vaporized material does not evaporate when the atmospheric pressure is higher than this.
  • the reason why the first region A including the substrate S is 0.5 Pa or more is that a thin film having a low refractive index cannot be obtained if the atmospheric pressure is lower than this, and the reason why the first region A including the substrate S is 100 Pa or less is the atmosphere.
  • the second region B including the vapor deposition mechanism 6 may be 0.05 Pa or less, and the first region A including the substrate S may be 0.5 to 100 Pa.
  • the amount of gas supplied from the nozzle 8 and the gas supply source 9 is not particularly limited.
  • the atmospheric pressure of the second region B including the vapor deposition mechanism 6 can be vapor-deposited (preferably in a range close to the upper limit). Since the atmospheric pressure of the first region A including the substrate S is set to a relatively high pressure), a thin film having a low refractive index can be obtained by the vacuum vapor deposition method.
  • the substrate S corresponds to the object to be vapor-deposited of the present invention
  • the nozzle 8 and the gas supply source 9 correspond to the first atmospheric pressure setting means, the pressure increasing means, and the pressure adjusting means of the present invention
  • the exhaust device 3 corresponds to the second atmospheric pressure setting means of the present invention.
  • FIG. 5 is a schematic vertical cross section showing a fifth embodiment of the vacuum vapor deposition apparatus 1 according to the present invention.
  • the vacuum vapor deposition apparatus 1 of the present embodiment includes a housing 2 constituting a film forming chamber 2a which is substantially a closed space, a first exhaust device 3 for reducing the pressure inside the entire inside of the film forming chamber 2a, and a first.
  • a shielding member 7 for blocking a part of the exhaust gas of the film forming chamber 2a by the exhaust device 3 is provided.
  • the difference from the second embodiment described above is that the first exhaust device 3 is provided on the side surface of the housing 2 and the shape of the shielding member 7 is substantially the same.
  • the vacuum vapor deposition apparatus 1 of the present embodiment has a box shape having an upper surface (ceiling surface), a lower surface (bottom surface) and a plurality of side surfaces, or an upper surface (ceiling surface), a lower surface (bottom surface), as in the second embodiment described above. It has a tubular housing 2 having curved side surfaces, and the inside of the housing 2 constitutes a film forming chamber 2a as a substantially closed space.
  • the upper surface of the housing 2 is conveniently referred to as an upper surface
  • the lower surface is referred to as a lower surface
  • the lateral surface is referred to as a side surface.
  • This is a convenient definition for explaining the relative positional relationship between the first exhaust device 3, the substrate holder 5, and the vapor deposition mechanism 6 provided in the housing 2, and is the posture of the vacuum vapor deposition device 1 actually installed. Is not an absolute definition.
  • the substrate holder 5 and the vapor deposition mechanism 6 are arranged in the vertical direction (vertical direction), but the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention have this arrangement.
  • the substrate holder 5 and the vapor deposition mechanism 6 may be arranged in the left-right direction (horizontal direction) or in the oblique direction.
  • the first exhaust device 3 is mounted on the housing 2 due to the layout. Although it is arranged on the lower surface, the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention are not limited to this arrangement, and the first exhaust device 3 can be arranged at an appropriate position.
  • the first exhaust device 3 is provided at substantially the center of the side surface of the housing 2 via a gate valve 3a.
  • the gate valve 3a is an airtight valve that opens and closes the first exhaust device 3 and the film forming chamber 2a.
  • the gate valve 3a is opened to open the substrate S which is an object to be deposited.
  • the gate valve 3a is closed in other cases, such as when the substrate S is put into the film forming chamber 2a or when the substrate S after film formation is taken out from the film forming chamber 2a.
  • a turbo molecular pump (TMP) or a constant pressure pump (CP) is used for the first exhaust device 3, and has a rated capacity capable of reducing the pressure inside the film forming chamber 2a to 0.01 Pa or less.
  • a plate-shaped substrate holder 5 is suspended by a rotating shaft 5b, and the rotating shaft 5b is rotatably supported on the upper surface of the housing 2.
  • the substrate holder 5 is rotatable about a rotation shaft 5b that is rotated by the drive unit 5c.
  • the substrate (material to be deposited) S to be vapor-deposited of the vapor-deposited material is held on the substrate-holding surface 5a of the substrate holder 5.
  • the number of substrates S held in the substrate holder 5 is not limited at all, and may be one or a plurality of substrates S.
  • the drive unit 5c may be omitted to form the non-rotating substrate holder 5.
  • a plurality of substrates S can be held on the substrate holding surface 5a of the substrate holder 5, and the substrate holder 5 is provided so that the plurality of substrates S are located directly above the vapor deposition mechanism 6. ing.
  • a thin-film deposition mechanism 6 is provided near the lower surface inside the film-forming chamber 2a.
  • the thin-film deposition mechanism 6 of the present embodiment includes an electron beam vapor deposition source, a crucible 6a for filling the vapor deposition material, and an electron gun 6b for irradiating the vapor deposition material filled with the thin-film deposition material with an electron beam. Further, above the crucible 6a, a shutter 6c for opening and closing the upper opening of the crucible 6a is movably provided.
  • the electron gun 6b is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to evaporate the vaporized vapor deposition.
  • Reference numeral 6d shown in FIG. 5 is a cooling tube coil of the Mysna trap, which efficiently removes the water released from the substrate S when the inside of the film forming chamber 2a is evacuated. ..
  • the vapor deposition material used in the vacuum vapor deposition apparatus 1 of the present embodiment is not particularly limited, but is SiO 2 , MgF 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5 , TiO 2 , Nb 2 O 5 or HfO 2 , etc. can be used.
  • the shielding member 7 is fixed at a position surrounding the substrate S held by the substrate holder 5 including the substrate holder 5.
  • the shielding member 7 of the present embodiment is formed in a tubular shape having an open upper surface and a lower surface (the cross section may be circular, elliptical, or rectangular, and may be set according to the shape of the substrate holder 5). , It controls the function of blocking the exhaust of a part of the film forming chamber 2a by the first exhaust device 3. That is, as shown in FIG. 5, when the region including the substrate S held by the substrate holder 5 is set as the first region A, the gas inside the film forming chamber 2a is exhausted by the first exhaust device 3. By partially shielding the exhaust gas of the gas in the first region A, the decompression effect of the first region A is reduced.
  • the substrate S is mounted on the substrate holding surface 5a of the substrate holder 5, the housing 2 is sealed, and then the gate valve 3a is opened to exhaust the first exhaust gas.
  • the device 3 is operated, and the set value of the first exhaust device 3 is set to, for example, 0.01 Pa to reduce the pressure inside the film forming chamber 2a as a whole.
  • the drive unit 5c may be driven to start rotating at a predetermined rotation speed of the substrate holder 5.
  • the inside of the film forming chamber 2a is depressurized from the normal pressure, but the first region A including the substrate S held by the substrate holder 5 is entirely formed by the first exhaust device 3 by the shielding member 7. Since a part of the exhaust is blocked, the atmospheric pressure of the first region A including the substrate S held by the substrate holder 5 becomes higher than that of the general region inside the film forming chamber 2a.
  • the atmospheric pressure of the second region B including the vapor deposition mechanism 6 which the shielding member 7 does not exert the decompression suppressing effect is substantially the same as the general region inside the film forming chamber 2a.
  • the vapor deposition mechanism By the action of the first exhaust device 3 and the shielding member 7, preferably, when the atmospheric pressure in the second region B becomes 0.05 Pa or less and the atmospheric pressure in the first region A becomes 0.5 to 100 Pa, the vapor deposition mechanism
  • the electron gun 6b of No. 6 is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to attach the evaporated vaporized material to the substrate S.
  • FIG. 8 is a graph showing the atmospheric pressure in the first region A and the second region B and the set pressure of the first exhaust device 3, and the vertical axis shows the logarithm of the pressure.
  • the reason why the second region B including the vapor deposition mechanism 6 is set to 0.05 Pa or less is that the vaporized material does not evaporate when the atmospheric pressure is higher than this.
  • the reason why the first region A including the substrate S is 0.5 Pa or more is that a thin film having a low refractive index cannot be obtained if the atmospheric pressure is lower than this, and the reason why the first region A including the substrate S is 100 Pa or less is the atmosphere.
  • the second region B including the vapor deposition mechanism 6 may be 0.05 Pa or less, and the first region A including the substrate S may be 0.5 to 100 Pa.
  • the structure of the shielding member 7 (for example, the shape and area of the opening and the length of the shielding member 7 in the vertical direction) is not particularly limited.
  • the atmospheric pressure of the second region B including the vapor deposition mechanism 6 can be vapor-deposited (preferably in a range close to the upper limit). Since the atmospheric pressure of the first region A including the substrate S is set to a relatively high pressure), a thin film having a low refractive index can be obtained by the vacuum vapor deposition method.
  • the substrate S corresponds to the object to be vapor-deposited of the present invention
  • the shielding member 7 corresponds to the first atmospheric pressure setting means, the pressure increasing means, and the pressure adjusting means of the present invention
  • the first exhaust device 3 corresponds to the first exhaust device 3.
  • FIG. 6 is a schematic vertical cross section showing a sixth embodiment of the vacuum vapor deposition apparatus 1 according to the present invention.
  • the vacuum vapor deposition apparatus 1 of the present embodiment is an embodiment in which the above-described fourth embodiment and the fifth embodiment are combined, and is composed of a housing 2 constituting a film forming chamber 2a which is substantially a closed space.
  • a first exhaust device 3 for depressurizing the entire inside of the membrane chamber 2a, a nozzle 8 for introducing a predetermined gas into a first region A including a substrate S held in a substrate holder 5, a gas supply source 9, and a second.
  • a shielding member 7 for blocking a part of the exhaust gas of the film forming chamber 2a by the exhaust device 3 is provided.
  • the vacuum vapor deposition apparatus 1 of the present embodiment has a box shape having an upper surface (ceiling surface), a lower surface (bottom surface) and a plurality of side surfaces, or an upper surface (ceiling surface). It has a cylindrical housing 2 having a lower surface (bottom surface) and curved side surfaces, and the inside of the housing 2 constitutes a film forming chamber 2a as a substantially closed space.
  • the upper surface of the housing 2 is conveniently referred to as an upper surface
  • the lower surface is referred to as a lower surface
  • the lateral surface is referred to as a side surface.
  • This is a convenient definition for explaining the relative positional relationship between the first exhaust device 3, the substrate holder 5, and the vapor deposition mechanism 6 provided in the housing 2, and is the posture of the vacuum vapor deposition device 1 actually installed. Is not an absolute definition.
  • the substrate holder 5 and the vapor deposition mechanism 6 are arranged in the vertical direction (vertical direction), but the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention have this arrangement.
  • the substrate holder 5 and the vapor deposition mechanism 6 may be arranged in the left-right direction (horizontal direction) or in the oblique direction.
  • the first exhaust device 3 is mounted on the housing 2 due to the layout. Although it is arranged on the lower surface, the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention are not limited to this arrangement, and the first exhaust device 3 can be arranged at an appropriate position.
  • the first exhaust device 3 is provided at substantially the center of the side surface of the housing 2 via a gate valve 3a.
  • the gate valve 3a is an airtight valve that opens and closes the first exhaust device 3 and the film forming chamber 2a.
  • the gate valve 3a is opened to open the substrate S which is an object to be deposited.
  • the gate valve 3a is closed in other cases, such as when the substrate S is put into the film forming chamber 2a or when the substrate S after film formation is taken out from the film forming chamber 2a.
  • a turbo molecular pump (TMP) or a constant pressure pump (CP) is used for the first exhaust device 3, and has a rated capacity capable of reducing the pressure inside the film forming chamber 2a to 0.01 Pa or less.
  • a plate-shaped substrate holder 5 is suspended by a rotating shaft 5b, and the rotating shaft 5b is rotatably supported on the upper surface of the housing 2.
  • the substrate holder 5 is rotatable about a rotation shaft 5b that is rotated by the drive unit 5c.
  • the substrate (material to be deposited) S to be vapor-deposited of the vapor-deposited material is held on the substrate-holding surface 5a of the substrate holder 5.
  • the number of substrates S held in the substrate holder 5 is not limited at all, and may be one or a plurality of substrates S.
  • the drive unit 5c may be omitted to form the non-rotating substrate holder 5.
  • a plurality of substrates S can be held on the substrate holding surface 5a of the substrate holder 5, and the substrate holder 5 is provided so that the plurality of substrates S are located directly above the vapor deposition mechanism 6. ing.
  • a thin-film deposition mechanism 6 is provided near the lower surface inside the film-forming chamber 2a.
  • the thin-film deposition mechanism 6 of the present embodiment includes an electron beam vapor deposition source, a crucible 6a for filling the vapor deposition material, and an electron gun 6b for irradiating the vapor deposition material filled with the thin-film deposition material with an electron beam. Further, above the crucible 6a, a shutter 6c for opening and closing the upper opening of the crucible 6a is movably provided.
  • the electron gun 6b is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to evaporate the vaporized vapor deposition.
  • Reference numeral 6d shown in FIG. 6 is a cooling tube coil of the Mysna trap, which efficiently removes the water released from the substrate S when the inside of the film forming chamber 2a is evacuated. ..
  • the vapor deposition material used in the vacuum vapor deposition apparatus 1 of the present embodiment is not particularly limited, but is SiO 2 , MgF 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5 , TiO 2 , Nb 2 O 5 or HfO 2 , etc. can be used.
  • the shielding member 7 is fixed at a position surrounding the substrate S held by the substrate holder 5 including the substrate holder 5.
  • the shielding member 7 of the present embodiment is formed in a tubular shape having an open upper surface and a lower surface (the cross section may be circular, elliptical, or rectangular, and may be set according to the shape of the substrate holder 5). , It controls the function of blocking the exhaust of a part of the film forming chamber 2a by the first exhaust device 3. That is, as shown in FIG. 6, when the region including the substrate S held by the substrate holder 5 is set as the first region A, the gas inside the film forming chamber 2a is exhausted by the first exhaust device 3. By partially shielding the exhaust gas of the gas in the first region A, the decompression effect of the first region A is reduced.
  • the nozzle 8 for introducing a predetermined gas and the gas supply source 9 are provided in the first region A including the substrate S held by the substrate holder 5.
  • the nozzle 8 may be fixed by penetrating, for example, the shielding member 7.
  • the gas supply source 9 is a supply source for supplying the atmospheric gas inside the film forming chamber 2a, for example, an inert gas.
  • FIG. 6 shows one nozzle 8 and a gas supply source 9, but a plurality of nozzles 8 are connected to one or a plurality of gas supply sources 9 and the plurality of nozzles 8 are directed toward the first region A. You may also blow a predetermined gas.
  • the substrate S is mounted on the substrate holding surface 5a of the substrate holder 5, the housing 2 is sealed, and then the gate valve 3a is opened to exhaust the first exhaust gas.
  • the device 3 is operated, and the set value of the first exhaust device 3 is set to, for example, 0.01 Pa to reduce the pressure inside the film forming chamber 2a as a whole.
  • the drive unit 5c may be driven to start rotating at a predetermined rotation speed of the substrate holder 5.
  • the inside of the film forming chamber 2a is depressurized from the normal pressure, but the first region A including the substrate S held by the substrate holder 5 is entirely formed by the first exhaust device 3 by the shielding member 7.
  • the gas from the gas supply source 9 is introduced into the first region A including the substrate S held by the substrate holder 5 through the nozzle 8, so that the gas from the gas supply source 9 is introduced into the substrate holder 5.
  • the atmospheric pressure of the first region A including the retained substrate S is higher than that of the general region inside the film forming chamber 2a.
  • the atmospheric pressure of the second region B including the vapor deposition mechanism 6 which the shielding member 7 does not exert the decompression suppressing effect is substantially the same as the general region inside the film forming chamber 2a.
  • the atmospheric pressure in the second region B is preferably 0.05 Pa or less, and the atmospheric pressure in the first region A is 0.5.
  • the electron gun 6b of the vapor deposition mechanism 6 is operated to heat and evaporate the vaporized material filled in the pit 6a, and the shutter 6c is opened to attach the evaporated vaporized material to the substrate S.
  • FIG. 8 is a graph showing the atmospheric pressure in the first region A and the second region B and the set pressure of the first exhaust device 3, and the vertical axis shows the logarithm of the pressure.
  • the reason why the second region B including the vapor deposition mechanism 6 is set to 0.05 Pa or less is that the vaporized material does not evaporate when the atmospheric pressure is higher than this.
  • the reason why the first region A including the substrate S is 0.5 Pa or more is that a thin film having a low refractive index cannot be obtained if the atmospheric pressure is lower than this, and the reason why the first region A including the substrate S is 100 Pa or less is the atmosphere.
  • the second region B including the vapor deposition mechanism 6 may be 0.05 Pa or less, and the first region A including the substrate S may be 0.5 to 100 Pa.
  • the amount of gas supplied from the nozzle 8 and the gas supply source 9 and the structure of the shielding member 7 are not particularly limited.
  • the atmospheric pressure of the second region B including the vapor deposition mechanism 6 can be vapor-deposited (preferably in a range close to the upper limit). Since the atmospheric pressure of the first region A including the substrate S is set to a relatively high pressure), a thin film having a low refractive index can be obtained by the vacuum vapor deposition method.
  • the substrate S corresponds to the object to be vapor-deposited of the present invention
  • the shielding member 7, the nozzle 8, and the gas supply source 9 correspond to the first atmospheric pressure setting means, the pressure increasing means, and the pressure adjusting means of the present invention
  • the first exhaust device 3 corresponds to the second atmospheric pressure setting means of the present invention.
  • FIG. 7 is a schematic vertical cross section showing a seventh embodiment of the vacuum vapor deposition apparatus 1 according to the present invention.
  • the vacuum vapor deposition apparatus 1 of the present embodiment is an embodiment in which the second exhaust device 4 and the gate valve 4a are added to the sixth embodiment described above, and is a housing constituting the film forming chamber 2a which is substantially a closed space. 2, a first exhaust device 3 for depressurizing the entire inside of the film forming chamber 2a, a nozzle 8 for introducing a predetermined gas into a first region A including a substrate S held by a substrate holder 5, and a gas supply source. 9, a shielding member 7 that blocks a part of the exhaust of the film forming chamber 2a by the first exhaust device 3, a second exhaust device 4, and a gate valve 4a.
  • the vacuum vapor deposition apparatus 1 of the present embodiment has a box shape having an upper surface (ceiling surface), a lower surface (bottom surface) and a plurality of side surfaces, or an upper surface (ceiling surface) and a lower surface (ceiling surface).
  • the bottom surface) has a tubular housing 2 having curved side surfaces, and the inside of the housing 2 constitutes a film forming chamber 2a as a substantially closed space.
  • the upper surface of the housing 2 is conveniently referred to as an upper surface
  • the lower surface is referred to as a lower surface
  • the lateral surface is referred to as a side surface.
  • This is a convenient definition for explaining the relative positional relationship between the first exhaust device 3, the substrate holder 5, and the vapor deposition mechanism 6 provided in the housing 2, and is the posture of the vacuum vapor deposition device 1 actually installed. Is not an absolute definition.
  • the substrate holder 5 and the vapor deposition mechanism 6 are arranged in the vertical direction (vertical direction), but the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention have this arrangement.
  • the substrate holder 5 and the vapor deposition mechanism 6 may be arranged in the left-right direction (horizontal direction) or in the oblique direction.
  • the first exhaust device 3 is mounted on the housing 2 due to the layout. Although it is arranged on the lower surface, the vacuum vapor deposition method and the vacuum vapor deposition apparatus of the present invention are not limited to this arrangement, and the first exhaust device 3 can be arranged at an appropriate position.
  • the first exhaust device 3 is provided at substantially the center of the side surface of the housing 2 via a gate valve 3a.
  • the gate valve 3a is an airtight valve that opens and closes the first exhaust device 3 and the film forming chamber 2a.
  • the gate valve 3a is opened to open the substrate S which is an object to be deposited.
  • the gate valve 3a is closed in other cases, such as when the substrate S is put into the film forming chamber 2a or when the substrate S after film formation is taken out from the film forming chamber 2a.
  • a turbo molecular pump (TMP) or a constant pressure pump (CP) is used for the first exhaust device 3, and has a rated capacity capable of reducing the pressure inside the film forming chamber 2a to 0.01 Pa or less. It has a rated capacity that can reduce the pressure to 1 Pa or less.
  • the second exhaust device 4 is provided on the lower surface of the housing 2 directly below the vapor deposition mechanism 6 via a gate valve 4a.
  • the gate valve 4a is an airtight valve that opens and closes the second exhaust device 4 and the film forming chamber 2a.
  • the gate valve 4a is opened to open the substrate S which is an object to be deposited.
  • the gate valve 4a is closed in other cases, such as when the substrate S is put into the film forming chamber 2a or when the substrate S after forming the film is taken out from the film forming chamber 2a.
  • a turbo molecular pump (TMP) or a constant pressure pump (CP) is used for the second exhaust device 4, and the rating is such that the second region B including the vapor deposition mechanism 6 inside the film forming chamber 2a can be depressurized to 0.01 Pa or less. Have the ability.
  • a plate-shaped substrate holder 5 is suspended by a rotating shaft 5b, and the rotating shaft 5b is rotatably supported on the upper surface of the housing 2.
  • the substrate holder 5 is rotatable about a rotation shaft 5b that is rotated by the drive unit 5c.
  • the substrate (material to be vapor-deposited) S to be vapor-deposited of the vapor-deposited material is held on the substrate-holding surface 5a of the substrate holder 5.
  • the number of substrates S held in the substrate holder 5 is not limited at all, and may be one or a plurality of substrates S.
  • the drive unit 5c may be omitted to form the non-rotating substrate holder 5.
  • a plurality of substrates S can be held on the substrate holding surface 5a of the substrate holder 5, and the substrate holder 5 is provided so that the plurality of substrates S are located directly above the vapor deposition mechanism 6. ing.
  • a thin-film deposition mechanism 6 is provided near the lower surface inside the film-forming chamber 2a.
  • the thin-film deposition mechanism 6 of the present embodiment includes an electron beam vapor deposition source, a crucible 6a for filling the vapor deposition material, and an electron gun 6b for irradiating the vapor deposition material filled with the thin-film deposition material with an electron beam. Further, above the crucible 6a, a shutter 6c for opening and closing the upper opening of the crucible 6a is movably provided.
  • the electron gun 6b is operated to heat and evaporate the vaporized material filled in the crucible 6a, and the shutter 6c is opened to evaporate the vaporized vapor deposition.
  • the material is attached to the substrate S.
  • Reference numeral 6d shown in FIG. 7 is a cooling tube coil of the Mysna trap, which efficiently removes the water released from the substrate S when the inside of the film forming chamber 2a is evacuated. ..
  • the vapor deposition material used in the vacuum vapor deposition apparatus 1 of the present embodiment is not particularly limited, but is SiO 2 , MgF 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5 , TiO 2 , Nb 2 O 5 or HfO 2 , etc. can be used.
  • the shielding member 7 is fixed at a position surrounding the substrate S held by the substrate holder 5 including the substrate holder 5.
  • the shielding member 7 of the present embodiment is formed in a tubular shape having an open upper surface and a lower surface (the cross section may be circular, elliptical, or rectangular, and may be set according to the shape of the substrate holder 5). , It controls the function of blocking the exhaust of a part of the film forming chamber 2a by the first exhaust device 3. That is, as shown in FIG. 7, when the region including the substrate S held by the substrate holder 5 is defined as the first region A, the gas inside the film forming chamber 2a is exhausted by the first exhaust device 3. By partially shielding the exhaust gas of the gas in the first region A, the decompression effect of the first region A is reduced.
  • the nozzle 8 for introducing a predetermined gas and the gas supply source 9 are provided in the first region A including the substrate S held by the substrate holder 5.
  • the nozzle 8 may be fixed by penetrating, for example, the shielding member 7.
  • the gas supply source 9 is a supply source for supplying the atmospheric gas inside the film forming chamber 2a, for example, an inert gas.
  • FIG. 7 shows one nozzle 8 and a gas supply source 9, but a plurality of nozzles 8 are connected to one or a plurality of gas supply sources 9 and the plurality of nozzles 8 are directed toward the first region A. You may also blow a predetermined gas.
  • the substrate S is mounted on the substrate holding surface 5a of the substrate holder 5, the housing 2 is sealed, and then the gate valve 3a is opened to exhaust the first exhaust gas.
  • the device 3 is operated, and the set value of the first exhaust device 3 is set to, for example, 0.01 Pa to reduce the pressure inside the film forming chamber 2a as a whole.
  • the gate valve 4a is opened to operate the second exhaust device 4, the set value of the second exhaust device 4 is set to, for example, 0.01 Pa, and the second region B including the vapor deposition mechanism 6 is locally localized. Depressurize.
  • the drive unit 5c may be driven to start rotating at a predetermined rotation speed of the substrate holder 5.
  • the inside of the film forming chamber 2a is depressurized from the normal pressure, but the first region A including the substrate S held by the substrate holder 5 is entirely formed by the first exhaust device 3 by the shielding member 7.
  • the gas from the gas supply source 9 is introduced into the first region A including the substrate S held by the substrate holder 5 through the nozzle 8, so that the gas from the gas supply source 9 is introduced into the substrate holder 5.
  • the atmospheric pressure of the first region A including the retained substrate S is higher than that of the general region inside the film forming chamber 2a.
  • the atmospheric pressure in the second region B including the vapor deposition mechanism 6 which is not affected by the decompression suppressing effect of the shielding member 7 is locally exhausted by the second exhaust device 4, so that the inside of the film forming chamber 2a is exhausted.
  • the pressure is lower than the general area of.
  • the atmospheric pressure in the second region B is preferably 0.05 Pa or less, and the atmosphere pressure in the first region A is 0.05 Pa or less.
  • the electron gun 6b of the vapor deposition mechanism 6 is operated to heat and evaporate the vaporized material filled in the pit 6a, and the shutter 6c is opened to transfer the evaporated vaporized material to the substrate S. Attach.
  • FIG. 8 is a graph showing the atmospheric pressures of the first region A and the second region B and the set pressures of the first exhaust device 3 and the second exhaust device 4, and the vertical axis shows the logarithm of the pressure.
  • the reason why the second region B including the vapor deposition mechanism 6 is set to 0.05 Pa or less is that the vaporized material does not evaporate when the atmospheric pressure is higher than this.
  • the reason why the first region A including the substrate S is 0.5 Pa or more is that a thin film having a low refractive index cannot be obtained if the atmospheric pressure is lower than this, and the reason why the first region A including the substrate S is 100 Pa or less is the atmosphere.
  • the second region B including the vapor deposition mechanism 6 may be 0.05 Pa or less, and the first region A including the substrate S may be 0.5 to 100 Pa. Therefore, the first exhaust device 3 and the second exhaust
  • the set pressure of the device, the amount of gas supplied from the nozzle 8 and the gas supply source 9, and the structure of the shielding member 7 are not particularly limited.
  • the atmospheric pressure of the second region B including the vapor deposition mechanism 6 can be vapor-deposited (preferably in a range close to the upper limit). Since the atmospheric pressure of the first region A including the substrate S is set to a relatively high pressure), a thin film having a low refractive index can be obtained by the vacuum vapor deposition method.
  • the substrate S corresponds to the object to be vapor-deposited of the present invention
  • the shielding member 7, the nozzle 8, and the gas supply source 9 correspond to the first atmospheric pressure setting means, the pressure increasing means, and the pressure adjusting means of the present invention
  • the first exhaust device 3 and the second exhaust device 4 correspond to the second atmospheric pressure setting means of the present invention.
  • Vacuum vapor deposition device 2 ... Housing 2a ... Film formation chamber 3 ... First exhaust device 3a ... Gate valve 4 ... Second exhaust device 5 ... Board holder 5a ... Board holding surface 5b ... Rotating shaft 5c ... Drive unit 6 ... Deposition Mechanism 6a ... Valve 6b ... Electron gun 6c ... Shutter 6d ... Mysna trap 7 ... Shielding member 8 ... Nozzle 9 ... Gas supply source A ... First area B ... Second area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

成膜室(2a)の内部に少なくとも蒸着材料と基板(S)を設置し、前記成膜室(2a)の内部の前記基板(S)を含む第1領域(A)を0.5~100Paの雰囲気に設定し、前記成膜室(2a)の内部の前記蒸着材料を含む第2領域(B)を0.05Pa以下の雰囲気に設定し、この状態で真空蒸着法により前記基板(S)に前記蒸着材料を成膜する。

Description

真空蒸着方法及び真空蒸着装置
 本発明は、真空蒸着方法及び真空蒸着装置に関するものである。
 撮像素子として用いられるCCDやCMOSは、銀塩写真フィルムに比べて表面での光反射が強いため、フレアやゴーストが発生し易い。また曲率半径の小さいレンズでは、光線の入射角度が位置によって大きく異なるため、レンズ表面の傾斜が大きな部分では低い反射率を保てない。さらに、LCDのような平面ディスプレイにおいては、ディスプレイ表面の光反射による外光の映り込みが問題になるので、アンチグレア処理が施されているが、ディスプレイの高密度化が進むと、液晶を透過した光がアンチグレア処理された表面で乱反射し、画像の高解像度化の妨げになる。このような基板表面の反射を低減するためには、低屈折率の表面層を成膜することが必要とされる(非特許文献1)。
反射低減技術の新展開(菊田久雄著,日本光学会会誌「光学」第40巻第1号,2011年1月)
 屈折率が1.5のガラスに、屈折率が1.38のフッ化マグネシウムのような低屈折材料を用いて表面層を形成することは知られている。しかしながら、1.38の低屈折率材料を用いても、1.4%の反射が残る。現在のところ、1.1~1.2といった低屈折率の薄膜材料は存在しない。
 本発明が解決しようとする課題は、低屈折率の膜を形成できる真空蒸着方法及び真空蒸着装置を提供することである。
 本発明は、成膜室の内部に少なくとも蒸着材料と被蒸着物を設置し、前記成膜室の内部の前記被蒸着物を含む第1領域を0.5~100Paの雰囲気圧力に設定し、前記成膜室の内部の前記蒸着材料を含む第2領域を0.05Pa以下の雰囲気圧力に設定し、この状態で真空蒸着法により前記被蒸着物に前記蒸着材料を成膜する真空蒸着方法によって上記課題を解決する。
 また本発明は、少なくとも蒸着材料と被蒸着物とが設けられる成膜室を備える真空蒸着装置において、前記成膜室の内部の前記被蒸着物を含む第1領域の雰囲気圧力を0.5~100Paに設定する手段と、前記成膜室の内部の前記蒸着材料を含む第2領域の雰囲気圧力を0.05Pa以下に設定する手段と、を備える真空蒸着装置によって上記課題を解決する。
 本発明によれば、成膜室の内部の蒸着材料を含む第2領域を0.05Pa以下の雰囲気圧力に設定するので真空蒸着が可能となる一方、成膜室の内部の被蒸着物を含む第1領域を0.5~100Paの雰囲気圧力に設定するので、低屈折率の膜を形成することができる。
本発明に係る真空蒸着装置の第1実施形態を示す概略縦断面である。 本発明に係る真空蒸着装置の第2実施形態を示す概略縦断面である。 本発明に係る真空蒸着装置の第3実施形態を示す概略縦断面である。 本発明に係る真空蒸着装置の第4実施形態を示す概略縦断面である。 本発明に係る真空蒸着装置の第5実施形態を示す概略縦断面である。 本発明に係る真空蒸着装置の第6実施形態を示す概略縦断面である。 本発明に係る真空蒸着装置の第7実施形態を示す概略縦断面である。 図1~図7に示す第1領域A及び第2領域Bの雰囲気圧並びに第1排気装置及び第2排気装置の設定圧力を示すグラフ(縦軸は圧力の対数)である。
《第1実施形態》
 以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る真空蒸着装置1の第1実施形態を示す概略縦断面である。本実施形態の真空蒸着装置1は、実質的に密閉空間となる成膜室2aを構成する筐体2と、成膜室2aの内部全体を減圧するための第1排気装置3と、基板ホルダ5に保持された基板Sを含む第1領域Aに所定のガスを導入するノズル8及びガス供給源9と、を備える。
 本実施形態の真空蒸着装置1は、上面(天井面)、下面(底面)及び複数の側面を有する箱形、又は上面(天井面)、下面(底面)、曲面状の側面を有する筒形で構成された筐体2を有し、当該筐体2の内部が、実質的に密閉空間としての成膜室2aを構成する。図1に示す真空蒸着装置1の姿勢において、筐体2の上側の面を上面、下側の面を下面、横側の面を側面と便宜的に称するが、これは単に筐体2と、当該筐体2に設けられる第1排気装置3、基板ホルダ5及び蒸着機構6との相対的な位置関係を説明するための便宜的な定義であり、実際に設置された真空蒸着装置1の姿勢を絶対的に定義するものではない。
 たとえば、図1に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置しているが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、基板ホルダ5と蒸着機構6とを左右方向(水平方向)や斜め方向に配置してもよい。また、図1に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置したため、そのレイアウトの関係で、第1排気装置3を筐体2の下面に配置したが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、第1排気装置3は適宜箇所に配置することができる。
 第1排気装置3は、図1に示すように、筐体2の下面に、すなわち蒸着機構6の近傍に、ゲートバルブ3aを介して設けられている。ゲートバルブ3aは、第1排気装置3と成膜室2aとを開閉する気密バルブであり、成膜室2aの内部を減圧する場合にはゲートバルブ3aを開き、被蒸着物である基板Sを成膜室2aに投入する場合や、成膜を終えた基板Sを成膜室2aから取り出する場合など、それ以外の場合はゲートバルブ3aを閉じる。第1排気装置3には、ターボ分子ポンプ(TMP)や定圧ポンプ(CP)が用いられ、成膜室2aの内部を0.01Pa以下まで減圧できる定格能力を有する。
 成膜室2aの内部には、板状の基板ホルダ5が回転軸5bにより懸架され、回転軸5bは筐体2の上面に回転可能に支持されている。そして、基板ホルダ5は、駆動部5cにより回転する回転軸5bを中心に回転可能とされている。基板ホルダ5の基板保持面5aには、蒸着材料の蒸着対象となる基板(被蒸着物)Sが保持される。なお、基板ホルダ5に保持する基板Sの数量は何ら限定されず、1枚であっても複数枚であってもよい。また、駆動部5cを省略して非回転の基板ホルダ5としてもよい。図1に示す第1実施形態では、基板ホルダ5の基板保持面5aに複数の基板Sが保持可能とされ、蒸着機構6の直上に複数の基板Sが位置するように基板ホルダ5が設けられている。
 成膜室2aの内部の下面近傍には、蒸着機構6が設けられている。本実施形態の蒸着機構6は、電子ビーム蒸着源からなり、蒸着材料を充填する坩堝6aと、坩堝6aに充填された蒸着材料に電子ビームを照射する電子銃6bとを備える。また、坩堝6aの上方には、当該坩堝6aの上部開口を開閉するシャッタ6cが移動可能に設けられている。基板ホルダ5に保持された基板Sに対して成膜処理を行う場合には、電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。なお、図1に示す符号6dは、マイスナトラップの冷却管コイルであって、成膜室2aの内部を真空排気したときに、基板Sから放出される水分を効率的に除去するものである。本実施形態の真空蒸着装置1にて用いられる蒸着材料としては、特に限定はされないが、SiO,MgF,Al,ZrO,Ta,TiO,Nb又はHfO、などを用いることができる。
 本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを含む第1領域Aに、所定のガスを導入するノズル8及びガス供給源9を備える。ガス供給源9は、成膜室2aの内部の雰囲気ガス、たとえば不活性ガスなどを供給するための供給源である。図1には、1つのノズル8及びガス供給源9を示しているが、1つ又は複数のガス供給源9に複数のノズル8を接続し、当該複数のノズル8から第1領域Aに向かって所定のガスを吹き付けるようにしてもよい。
 次に作用を説明する。
 本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法は、基板ホルダ5の基板保持面5aに基板Sを装着し、筐体2を密閉したのち、ゲートバルブ3aを開いて第1排気装置3を作動し、当該第1排気装置3の設定値をたとえば0.01Paに設定して成膜室2aの内部を全体的に減圧する。なお、この時点で駆動部5cを駆動して基板ホルダ5の所定の回転速度で回転し始めてもよい。
 時間の経過とともに成膜室2aの内部は、常圧から減圧されるが、第1排気装置3の近傍に設けられた蒸着機構6を含む第2領域Bの雰囲気圧力は、成膜室2aの内部の一般領域に比べて特に低圧となる。これに対して、基板ホルダ5に保持された基板Sを含む第1領域Aには、ガス供給源9からのガスがノズル8を介して導入されるので、第1領域Aの雰囲気圧力は、成膜室2aの内部の一般領域に比べて高圧となる。
 これら第1排気装置3と、ノズル8及びガス供給源9との作用により、好ましくは、第2領域Bの雰囲気圧力が0.05Pa以下、第1領域Aの雰囲気圧力が0.5~100Paになったら、蒸着機構6の電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。
 図8は、第1領域A及び第2領域Bの雰囲気圧並びに第1排気装置3の設定圧力を示すグラフであり、縦軸は圧力の対数を示す。同図に示すように、蒸着機構6を含む第2領域Bを0.05Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が蒸発しないからである。一方、基板Sを含む第1領域Aを0.5Pa以上にするのは、これより雰囲気圧力が低いと低屈折率の薄膜が得られないからであり、100Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が基板Sに届かず成膜できないからである。本実施形態では、蒸着機構6を含む第2領域Bが0.05Pa以下、基板Sを含む第1領域Aが、0.5~100Paになればよいので、第1排気装置3の設定圧力と、ノズル8及びガス供給源9からのガス供給量は特に限定されない。
 以上のとおり、本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法によれば、蒸着機構6を含む第2領域Bの雰囲気圧力を蒸着が可能な圧力(好ましくは上限に近い範囲の圧力)に設定する一方で、基板Sを含む第1領域Aの雰囲気圧力は相対的に高圧にするので、真空蒸着法により低屈折率の薄膜を得ることができる。
 なお、上記基板Sが、本発明の被蒸着物に相当し、ノズル8及びガス供給源9が、本発明の第1雰囲気圧力設定手段、増圧手段、圧力調整手段に相当し、上記第1排気装置3が、本発明の第2雰囲気圧力設定手段に相当する。
《第2実施形態》
 図2は、本発明に係る真空蒸着装置1の第2実施形態を示す概略縦断面である。本実施形態の真空蒸着装置1は、実質的に密閉空間となる成膜室2aを構成する筐体2と、成膜室2aの内部全体を減圧するための第1排気装置3と、第1排気装置3による成膜室2aの一部の排気を遮る遮蔽部材7と、を備える。
 本実施形態の真空蒸着装置1は、上述した第1実施形態と同様、上面(天井面)、下面(底面)及び複数の側面を有する箱形、又は上面(天井面)、下面(底面)、曲面状の側面を有する筒形で構成された筐体2を有し、当該筐体2の内部が、実質的に密閉空間としての成膜室2aを構成する。図2に示す真空蒸着装置1の姿勢において、筐体2の上側の面を上面、下側の面を下面、横側の面を側面と便宜的に称するが、これは単に筐体2と、当該筐体2に設けられる第1排気装置3、基板ホルダ5及び蒸着機構6との相対的な位置関係を説明するための便宜的な定義であり、実際に設置された真空蒸着装置1の姿勢を絶対的に定義するものではない。
 たとえば、図2に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置しているが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、基板ホルダ5と蒸着機構6とを左右方向(水平方向)や斜め方向に配置してもよい。また、図2に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置したため、そのレイアウトの関係で、第1排気装置3を筐体2の下面に配置したが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、第1排気装置3は適宜箇所に配置することができる。
 第1排気装置3は、図2に示すように、筐体2の下面に、すなわち蒸着機構6の近傍に、ゲートバルブ3aを介して設けられている。ゲートバルブ3aは、第1排気装置3と成膜室2aとを開閉する気密バルブであり、成膜室2aの内部を減圧する場合にはゲートバルブ3aを開き、被蒸着物である基板Sを成膜室2aに投入する場合や、成膜を終えた基板Sを成膜室2aから取り出する場合など、それ以外の場合はゲートバルブ3aを閉じる。第1排気装置3には、ターボ分子ポンプ(TMP)や定圧ポンプ(CP)が用いられ、成膜室2aの内部を0.01Pa以下まで減圧できる定格能力を有する。
 成膜室2aの内部には、板状の基板ホルダ5が回転軸5bにより懸架され、回転軸5bは筐体2の上面に回転可能に支持されている。そして、基板ホルダ5は、駆動部5cにより回転する回転軸5bを中心に回転可能とされている。基板ホルダ5の基板保持面5aには、蒸着材料の蒸着対象となる基板(被蒸着物)Sが保持される。なお、基板ホルダ5に保持する基板Sの数量は何ら限定されず、1枚であっても複数枚であってもよい。また、駆動部5cを省略して非回転の基板ホルダ5としてもよい。図2に示す第2実施形態では、基板ホルダ5の基板保持面5aに複数の基板Sが保持可能とされ、蒸着機構6の直上に複数の基板Sが位置するように基板ホルダ5が設けられている。
 成膜室2aの内部の下面近傍には、蒸着機構6が設けられている。本実施形態の蒸着機構6は、電子ビーム蒸着源からなり、蒸着材料を充填する坩堝6aと、坩堝6aに充填された蒸着材料に電子ビームを照射する電子銃6bとを備える。また、坩堝6aの上方には、当該坩堝6aの上部開口を開閉するシャッタ6cが移動可能に設けられている。基板ホルダ5に保持された基板Sに対して成膜処理を行う場合には、電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。なお、図2に示す符号6dは、マイスナトラップの冷却管コイルであって、成膜室2aの内部を真空排気したときに、基板Sから放出される水分を効率的に除去するものである。本実施形態の真空蒸着装置1にて用いられる蒸着材料としては、特に限定はされないが、SiO,MgF,Al,ZrO,Ta,TiO,Nb又はHfO、などを用いることができる。
 本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを含む第1領域Aと、蒸着機構6を含む第2領域Bとの間に、遮蔽部材7が固定されている。本実施形態の遮蔽部材7は、中央が円形、楕円形又は矩形などに開口した円盤状平板で構成され、第1排気装置3による成膜室2aの一部の排気を遮る機能を司る。すなわち、図2に示すように、基板ホルダ5に保持された基板Sを含む領域を第1領域Aとしたときに、第1排気装置3により成膜室2aの内部の気体が排気される際に当該第1領域Aのガスの排気を部分的に遮蔽することで、第1領域Aの減圧効果を低減する。
 次に作用を説明する。
 本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法は、基板ホルダ5の基板保持面5aに基板Sを装着し、筐体2を密閉したのち、ゲートバルブ3aを開いて第1排気装置3を作動し、当該第1排気装置3の設定値をたとえば0.01Paに設定して成膜室2aの内部を全体的に減圧する。なお、この時点で駆動部5cを駆動して基板ホルダ5の所定の回転速度で回転し始めてもよい。
 時間の経過とともに成膜室2aの内部は、常圧から減圧されるが、第1排気装置3の近傍に設けられた蒸着機構6を含む第2領域Bの雰囲気圧力は、成膜室2aの内部の一般領域に比べて特に低圧となる。これに対して、基板ホルダ5に保持された基板Sを含む第1領域Aは、遮蔽部材7により第1排気装置3による全体的な排気の一部が遮られるので、基板ホルダ5に保持された基板Sを含む第1領域Aの雰囲気圧力は、成膜室2aの内部の一般領域に比べて高圧となる。
 これら第1排気装置3と遮蔽部材7との作用により、好ましくは、第2領域Bの雰囲気圧力が0.05Pa以下、第1領域Aの雰囲気圧力が0.5~100Paになったら、蒸着機構6の電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。
 図8は、第1領域A及び第2領域Bの雰囲気圧並びに第1排気装置3の設定圧力を示すグラフであり、縦軸は圧力の対数を示す。同図に示すように、蒸着機構6を含む第2領域Bを0.05Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が蒸発しないからである。一方、基板Sを含む第1領域Aを0.5Pa以上にするのは、これより雰囲気圧力が低いと低屈折率の薄膜が得られないからであり、100Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が基板Sに届かず成膜できないからである。本実施形態では、蒸着機構6を含む第2領域Bが0.05Pa以下、基板Sを含む第1領域Aが、0.5~100Paになればよいので、第1排気装置3の設定圧力と、遮蔽部材7の構造(たとえば開口の形状や面積)は特に限定されない。
 以上のとおり、本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法によれば、蒸着機構6を含む第2領域Bの雰囲気圧力を蒸着が可能な圧力(好ましくは上限に近い範囲の圧力)に設定する一方で、基板Sを含む第1領域Aの雰囲気圧力は相対的に高圧にするので、真空蒸着法により低屈折率の薄膜を得ることができる。
 なお、上記基板Sが、本発明の被蒸着物に相当し、遮蔽部材7が、本発明の第1雰囲気圧力設定手段、増圧手段、圧力調整手段に相当し、上記第1排気装置3が、本発明の第2雰囲気圧力設定手段に相当する。
《第3実施形態》
 図3は、本発明に係る真空蒸着装置1の第3実施形態を示す概略縦断面である。本実施形態の真空蒸着装置1は、上述した第1実施形態と第2実施形態とを組み合わせた実施形態であり、実質的に密閉空間となる成膜室2aを構成する筐体2と、成膜室2aの内部全体を減圧するための第1排気装置3と、基板ホルダ5に保持された基板Sを含む第1領域Aに所定のガスを導入するノズル8及びガス供給源9と、第1排気装置3による成膜室2aの一部の排気を遮る遮蔽部材7と、を備える。
 本実施形態の真空蒸着装置1は、上述した第1実施形態及び第2実施形態と同様、上面(天井面)、下面(底面)及び複数の側面を有する箱形、又は上面(天井面)、下面(底面)、曲面状の側面を有する筒形で構成された筐体2を有し、当該筐体2の内部が、実質的に密閉空間としての成膜室2aを構成する。図3に示す真空蒸着装置1の姿勢において、筐体2の上側の面を上面、下側の面を下面、横側の面を側面と便宜的に称するが、これは単に筐体2と、当該筐体2に設けられる第1排気装置3、基板ホルダ5及び蒸着機構6との相対的な位置関係を説明するための便宜的な定義であり、実際に設置された真空蒸着装置1の姿勢を絶対的に定義するものではない。
 たとえば、図3に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置しているが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、基板ホルダ5と蒸着機構6とを左右方向(水平方向)や斜め方向に配置してもよい。また、図3に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置したため、そのレイアウトの関係で、第1排気装置3を筐体2の下面に配置したが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、第1排気装置3は適宜箇所に配置することができる。
 第1排気装置3は、図3に示すように、筐体2の下面に、すなわち蒸着機構6の近傍に、ゲートバルブ3aを介して設けられている。ゲートバルブ3aは、第1排気装置3と成膜室2aとを開閉する気密バルブであり、成膜室2aの内部を減圧する場合にはゲートバルブ3aを開き、被蒸着物である基板Sを成膜室2aに投入する場合や、成膜を終えた基板Sを成膜室2aから取り出する場合など、それ以外の場合はゲートバルブ3aを閉じる。第1排気装置3には、ターボ分子ポンプ(TMP)や定圧ポンプ(CP)が用いられ、成膜室2aの内部を0.01Pa以下まで減圧できる定格能力を有する。
 成膜室2aの内部には、板状の基板ホルダ5が回転軸5bにより懸架され、回転軸5bは筐体2の上面に回転可能に支持されている。そして、基板ホルダ5は、駆動部5cにより回転する回転軸5bを中心に回転可能とされている。基板ホルダ5の基板保持面5aには、蒸着材料の蒸着対象となる基板(被蒸着物)Sが保持される。なお、基板ホルダ5に保持する基板Sの数量は何ら限定されず、1枚であっても複数枚であってもよい。また、駆動部5cを省略して非回転の基板ホルダ5としてもよい。図3に示す第3実施形態では、基板ホルダ5の基板保持面5aに複数の基板Sが保持可能とされ、蒸着機構6の直上に複数の基板Sが位置するように基板ホルダ5が設けられている。
 成膜室2aの内部の下面近傍には、蒸着機構6が設けられている。本実施形態の蒸着機構6は、電子ビーム蒸着源からなり、蒸着材料を充填する坩堝6aと、坩堝6aに充填された蒸着材料に電子ビームを照射する電子銃6bとを備える。また、坩堝6aの上方には、当該坩堝6aの上部開口を開閉するシャッタ6cが移動可能に設けられている。基板ホルダ5に保持された基板Sに対して成膜処理を行う場合には、電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。なお、図3に示す符号6dは、マイスナトラップの冷却管コイルであって、成膜室2aの内部を真空排気したときに、基板Sから放出される水分を効率的に除去するものである。本実施形態の真空蒸着装置1にて用いられる蒸着材料としては、特に限定はされないが、SiO,MgF,Al,ZrO,Ta,TiO,Nb又はHfO、などを用いることができる。
 本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを含む第1領域Aに、所定のガスを導入するノズル8及びガス供給源9を備える。ガス供給源9は、成膜室2aの内部の雰囲気ガス、たとえば不活性ガスなどを供給するための供給源である。図3には、1つのノズル8及びガス供給源9を示しているが、1つ又は複数のガス供給源9に複数のノズル8を接続し、当該複数のノズル8から第1領域Aに向かって所定のガスを吹き付けるようにしてもよい。
 また本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを含む第1領域Aと、蒸着機構6を含む第2領域Bとの間に、遮蔽部材7が固定されている。本実施形態の遮蔽部材7は、中央が円形、楕円形又は矩形などに開口した円盤状平板で構成され、第1排気装置3による成膜室2aの一部の排気を遮る機能を司る。すなわち、図3に示すように、基板ホルダ5に保持された基板Sを含む領域を第1領域Aとしたときに、第1排気装置3により成膜室2aの内部の気体が排気される際に当該第1領域Aのガスの排気を部分的に遮蔽することで、第1領域Aの減圧効果を低減する。
 次に作用を説明する。
 本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法は、基板ホルダ5の基板保持面5aに基板Sを装着し、筐体2を密閉したのち、ゲートバルブ3aを開いて第1排気装置3を作動し、当該第1排気装置3の設定値をたとえば0.01Paに設定して成膜室2aの内部を全体的に減圧する。なお、この時点で駆動部5cを駆動して基板ホルダ5の所定の回転速度で回転し始めてもよい。
 時間の経過とともに成膜室2aの内部は、常圧から減圧されるが、第1排気装置3の近傍に設けられた蒸着機構6を含む第2領域Bの雰囲気圧力は、成膜室2aの内部の一般領域に比べて特に低圧となる。これに対して、基板ホルダ5に保持された基板Sを含む第1領域Aは、遮蔽部材7により第1排気装置3による全体的な排気の一部が遮られるのと同時に、ガス供給源9からのガスがノズル8を介して導入されるので、基板ホルダ5に保持された基板Sを含む第1領域Aの雰囲気圧力は、成膜室2aの内部の一般領域に比べて高圧となる。
 これら第1排気装置3と遮蔽部材7との作用により、好ましくは、第2領域Bの雰囲気圧力が0.05Pa以下、第1領域Aの雰囲気圧力が0.5~100Paになったら、蒸着機構6の電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。
 図8は、第1領域A及び第2領域Bの雰囲気圧並びに第1排気装置3の設定圧力を示すグラフであり、縦軸は圧力の対数を示す。同図に示すように、蒸着機構6を含む第2領域Bを0.05Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が蒸発しないからである。一方、基板Sを含む第1領域Aを0.5Pa以上にするのは、これより雰囲気圧力が低いと低屈折率の薄膜が得られないからであり、100Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が基板Sに届かず成膜できないからである。本実施形態では、蒸着機構6を含む第2領域Bが0.05Pa以下、基板Sを含む第1領域Aが、0.5~100Paになればよいので、第1排気装置3の設定圧力と、ノズル8及びガス供給源9からのガス供給量と、遮蔽部材7の構造(たとえば開口の形状や面積)は特に限定されない。
 以上のとおり、本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法によれば、蒸着機構6を含む第2領域Bの雰囲気圧力を蒸着が可能な圧力(好ましくは上限に近い範囲の圧力)に設定する一方で、基板Sを含む第1領域Aの雰囲気圧力は相対的に高圧にするので、真空蒸着法により低屈折率の薄膜を得ることができる。
 なお、上記基板Sが、本発明の被蒸着物に相当し、遮蔽部材7並びにノズル8及びガス供給源9が、本発明の第1雰囲気圧力設定手段、増圧手段、圧力調整手段に相当し、上記第1排気装置3が、本発明の第2雰囲気圧力設定手段に相当する。
《第4実施形態》
 図4は、本発明に係る真空蒸着装置1の第4実施形態を示す概略縦断面である。本実施形態の真空蒸着装置1は、実質的に密閉空間となる成膜室2aを構成する筐体2と、成膜室2aの内部全体を減圧するための第1排気装置3と、基板ホルダ5に保持された基板Sを含む第1領域Aに所定のガスを導入するノズル8及びガス供給源9と、を備える。上述した第1実施形態と異なる点は、第1排気装置3を筐体2の側面に設けたことにあり、その他の構成はほぼ同じである。
 本実施形態の真空蒸着装置1は、上面(天井面)、下面(底面)及び複数の側面を有する箱形、又は上面(天井面)、下面(底面)、曲面状の側面を有する筒形で構成された筐体2を有し、当該筐体2の内部が、実質的に密閉空間としての成膜室2aを構成する。図4に示す真空蒸着装置1の姿勢において、筐体2の上側の面を上面、下側の面を下面、横側の面を側面と便宜的に称するが、これは単に筐体2と、当該筐体2に設けられる第1排気装置3、基板ホルダ5及び蒸着機構6との相対的な位置関係を説明するための便宜的な定義であり、実際に設置された真空蒸着装置1の姿勢を絶対的に定義するものではない。
 たとえば、図4に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置しているが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、基板ホルダ5と蒸着機構6とを左右方向(水平方向)や斜め方向に配置してもよい。また、図4に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置したため、そのレイアウトの関係で、第1排気装置3を筐体2の側面に配置したが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、第1排気装置3は適宜箇所に配置することができる。
 第1排気装置3は、図4に示すように、筐体2の側面の比較的下側に、すなわち蒸着機構6の近傍に、ゲートバルブ3aを介して設けられている。ゲートバルブ3aは、第1排気装置3と成膜室2aとを開閉する気密バルブであり、成膜室2aの内部を減圧する場合にはゲートバルブ3aを開き、被蒸着物である基板Sを成膜室2aに投入する場合や、成膜を終えた基板Sを成膜室2aから取り出する場合など、それ以外の場合はゲートバルブ3aを閉じる。第1排気装置3には、ターボ分子ポンプ(TMP)や定圧ポンプ(CP)が用いられ、成膜室2aの内部を0.01Pa以下まで減圧できる定格能力を有する。
 成膜室2aの内部には、板状の基板ホルダ5が回転軸5bにより懸架され、回転軸5bは筐体2の上面に回転可能に支持されている。そして、基板ホルダ5は、駆動部5cにより回転する回転軸5bを中心に回転可能とされている。基板ホルダ5の基板保持面5aには、蒸着材料の蒸着対象となる基板(被蒸着物)Sが保持される。なお、基板ホルダ5に保持する基板Sの数量は何ら限定されず、1枚であっても複数枚であってもよい。また、駆動部5cを省略して非回転の基板ホルダ5としてもよい。図4に示す第1実施形態では、基板ホルダ5の基板保持面5aに複数の基板Sが保持可能とされ、蒸着機構6の直上に複数の基板Sが位置するように基板ホルダ5が設けられている。
 成膜室2aの内部の下面近傍には、蒸着機構6が設けられている。本実施形態の蒸着機構6は、電子ビーム蒸着源からなり、蒸着材料を充填する坩堝6aと、坩堝6aに充填された蒸着材料に電子ビームを照射する電子銃6bとを備える。また、坩堝6aの上方には、当該坩堝6aの上部開口を開閉するシャッタ6cが移動可能に設けられている。基板ホルダ5に保持された基板Sに対して成膜処理を行う場合には、電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。なお、図4に示す符号6dは、マイスナトラップの冷却管コイルであって、成膜室2aの内部を真空排気したときに、基板Sから放出される水分を効率的に除去するものである。本実施形態の真空蒸着装置1にて用いられる蒸着材料としては、特に限定はされないが、SiO,MgF,Al,ZrO,Ta,TiO,Nb又はHfO、などを用いることができる。
 本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを含む第1領域Aに、所定のガスを導入するノズル8及びガス供給源9を備える。ガス供給源9は、成膜室2aの内部の雰囲気ガス、たとえば不活性ガスなどを供給するための供給源である。図4には、1つのノズル8及びガス供給源9を示しているが、1つ又は複数のガス供給源9に複数のノズル8を接続し、当該複数のノズル8から第1領域Aに向かって所定のガスを吹き付けるようにしてもよい。
 次に作用を説明する。
 本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法は、基板ホルダ5の基板保持面5aに基板Sを装着し、筐体2を密閉したのち、ゲートバルブ3aを開いて第1排気装置3を作動し、当該第1排気装置3の設定値をたとえば0.01Paに設定して成膜室2aの内部を全体的に減圧する。なお、この時点で駆動部5cを駆動して基板ホルダ5の所定の回転速度で回転し始めてもよい。
 時間の経過とともに成膜室2aの内部は、常圧から減圧されるが、第1排気装置3の近傍に設けられた蒸着機構6を含む第2領域Bの雰囲気圧力は、成膜室2aの内部の一般領域に比べて特に低圧となる。これに対して、基板ホルダ5に保持された基板Sを含む第1領域Aには、ガス供給源9からのガスがノズル8を介して導入されるので、第1領域Aの雰囲気圧力は、成膜室2aの内部の一般領域に比べて高圧となる。
 これら第1排気装置3と、ノズル8及びガス供給源9との作用により、好ましくは、第2領域Bの雰囲気圧力が0.05Pa以下、第1領域Aの雰囲気圧力が0.5~100Paになったら、蒸着機構6の電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。
 図8は、第1領域A及び第2領域Bの雰囲気圧並びに第1排気装置3の設定圧力を示すグラフであり、縦軸は圧力の対数を示す。同図に示すように、蒸着機構6を含む第2領域Bを0.05Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が蒸発しないからである。一方、基板Sを含む第1領域Aを0.5Pa以上にするのは、これより雰囲気圧力が低いと低屈折率の薄膜が得られないからであり、100Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が基板Sに届かず成膜できないからである。本実施形態では、蒸着機構6を含む第2領域Bが0.05Pa以下、基板Sを含む第1領域Aが、0.5~100Paになればよいので、第1排気装置3の設定圧力と、ノズル8及びガス供給源9からのガス供給量は特に限定されない。
 以上のとおり、本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法によれば、蒸着機構6を含む第2領域Bの雰囲気圧力を蒸着が可能な圧力(好ましくは上限に近い範囲の圧力)に設定する一方で、基板Sを含む第1領域Aの雰囲気圧力は相対的に高圧にするので、真空蒸着法により低屈折率の薄膜を得ることができる。
 なお、上記基板Sが、本発明の被蒸着物に相当し、ノズル8及びガス供給源9が、本発明の第1雰囲気圧力設定手段、増圧手段、圧力調整手段に相当し、上記第1排気装置3が、本発明の第2雰囲気圧力設定手段に相当する。
《第5実施形態》
 図5は、本発明に係る真空蒸着装置1の第5実施形態を示す概略縦断面である。本実施形態の真空蒸着装置1は、実質的に密閉空間となる成膜室2aを構成する筐体2と、成膜室2aの内部全体を減圧するための第1排気装置3と、第1排気装置3による成膜室2aの一部の排気を遮る遮蔽部材7と、を備える。上述した第2実施形態と異なる点は、第1排気装置3を筐体2の側面に設けたことと、遮蔽部材7の形状にあり、その他の構成はほぼ同じである。
 本実施形態の真空蒸着装置1は、上述した第2実施形態と同様、上面(天井面)、下面(底面)及び複数の側面を有する箱形、又は上面(天井面)、下面(底面)、曲面状の側面を有する筒形で構成された筐体2を有し、当該筐体2の内部が、実質的に密閉空間としての成膜室2aを構成する。図5に示す真空蒸着装置1の姿勢において、筐体2の上側の面を上面、下側の面を下面、横側の面を側面と便宜的に称するが、これは単に筐体2と、当該筐体2に設けられる第1排気装置3、基板ホルダ5及び蒸着機構6との相対的な位置関係を説明するための便宜的な定義であり、実際に設置された真空蒸着装置1の姿勢を絶対的に定義するものではない。
 たとえば、図5に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置しているが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、基板ホルダ5と蒸着機構6とを左右方向(水平方向)や斜め方向に配置してもよい。また、図5に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置したため、そのレイアウトの関係で、第1排気装置3を筐体2の下面に配置したが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、第1排気装置3は適宜箇所に配置することができる。
 第1排気装置3は、図5に示すように、筐体2の側面のほぼ中央に、ゲートバルブ3aを介して設けられている。ゲートバルブ3aは、第1排気装置3と成膜室2aとを開閉する気密バルブであり、成膜室2aの内部を減圧する場合にはゲートバルブ3aを開き、被蒸着物である基板Sを成膜室2aに投入する場合や、成膜を終えた基板Sを成膜室2aから取り出する場合など、それ以外の場合はゲートバルブ3aを閉じる。第1排気装置3には、ターボ分子ポンプ(TMP)や定圧ポンプ(CP)が用いられ、成膜室2aの内部を0.01Pa以下まで減圧できる定格能力を有する。
 成膜室2aの内部には、板状の基板ホルダ5が回転軸5bにより懸架され、回転軸5bは筐体2の上面に回転可能に支持されている。そして、基板ホルダ5は、駆動部5cにより回転する回転軸5bを中心に回転可能とされている。基板ホルダ5の基板保持面5aには、蒸着材料の蒸着対象となる基板(被蒸着物)Sが保持される。なお、基板ホルダ5に保持する基板Sの数量は何ら限定されず、1枚であっても複数枚であってもよい。また、駆動部5cを省略して非回転の基板ホルダ5としてもよい。図5に示す第5実施形態では、基板ホルダ5の基板保持面5aに複数の基板Sが保持可能とされ、蒸着機構6の直上に複数の基板Sが位置するように基板ホルダ5が設けられている。
 成膜室2aの内部の下面近傍には、蒸着機構6が設けられている。本実施形態の蒸着機構6は、電子ビーム蒸着源からなり、蒸着材料を充填する坩堝6aと、坩堝6aに充填された蒸着材料に電子ビームを照射する電子銃6bとを備える。また、坩堝6aの上方には、当該坩堝6aの上部開口を開閉するシャッタ6cが移動可能に設けられている。基板ホルダ5に保持された基板Sに対して成膜処理を行う場合には、電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。なお、図5に示す符号6dは、マイスナトラップの冷却管コイルであって、成膜室2aの内部を真空排気したときに、基板Sから放出される水分を効率的に除去するものである。本実施形態の真空蒸着装置1にて用いられる蒸着材料としては、特に限定はされないが、SiO,MgF,Al,ZrO,Ta,TiO,Nb又はHfO、などを用いることができる。
 本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを、当該基板ホルダ5を含めて囲む位置に、遮蔽部材7が固定されている。本実施形態の遮蔽部材7は、上面及び下面が開口した筒状(断面は、円形、楕円形、矩形のいずれでもよく、基板ホルダ5の形状に応じて設定してもよい。)に形成され、第1排気装置3による成膜室2aの一部の排気を遮る機能を司る。すなわち、図5に示すように、基板ホルダ5に保持された基板Sを含む領域を第1領域Aとしたときに、第1排気装置3により成膜室2aの内部の気体が排気される際に当該第1領域Aのガスの排気を部分的に遮蔽することで、第1領域Aの減圧効果を低減する。
 次に作用を説明する。
 本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法は、基板ホルダ5の基板保持面5aに基板Sを装着し、筐体2を密閉したのち、ゲートバルブ3aを開いて第1排気装置3を作動し、当該第1排気装置3の設定値をたとえば0.01Paに設定して成膜室2aの内部を全体的に減圧する。なお、この時点で駆動部5cを駆動して基板ホルダ5の所定の回転速度で回転し始めてもよい。
 時間の経過とともに成膜室2aの内部は、常圧から減圧されるが、基板ホルダ5に保持された基板Sを含む第1領域Aは、遮蔽部材7により第1排気装置3による全体的な排気の一部が遮られるので、基板ホルダ5に保持された基板Sを含む第1領域Aの雰囲気圧力は、成膜室2aの内部の一般領域に比べて高圧となる。これに対して、遮蔽部材7による減圧抑制効果が及ばない蒸着機構6を含む第2領域Bの雰囲気圧力は、成膜室2aの内部の一般領域とほぼ同圧となる。
 これら第1排気装置3と遮蔽部材7との作用により、好ましくは、第2領域Bの雰囲気圧力が0.05Pa以下、第1領域Aの雰囲気圧力が0.5~100Paになったら、蒸着機構6の電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。
 図8は、第1領域A及び第2領域Bの雰囲気圧並びに第1排気装置3の設定圧力を示すグラフであり、縦軸は圧力の対数を示す。同図に示すように、蒸着機構6を含む第2領域Bを0.05Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が蒸発しないからである。一方、基板Sを含む第1領域Aを0.5Pa以上にするのは、これより雰囲気圧力が低いと低屈折率の薄膜が得られないからであり、100Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が基板Sに届かず成膜できないからである。本実施形態では、蒸着機構6を含む第2領域Bが0.05Pa以下、基板Sを含む第1領域Aが、0.5~100Paになればよいので、第1排気装置3の設定圧力と、遮蔽部材7の構造(たとえば開口の形状、面積、遮蔽部材7の縦方向の長さ)は特に限定されない。
 以上のとおり、本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法によれば、蒸着機構6を含む第2領域Bの雰囲気圧力を蒸着が可能な圧力(好ましくは上限に近い範囲の圧力)に設定する一方で、基板Sを含む第1領域Aの雰囲気圧力は相対的に高圧にするので、真空蒸着法により低屈折率の薄膜を得ることができる。
 なお、上記基板Sが、本発明の被蒸着物に相当し、遮蔽部材7が、本発明の第1雰囲気圧力設定手段、増圧手段、圧力調整手段に相当し、上記第1排気装置3が、本発明の第2雰囲気圧力設定手段に相当する。
《第6実施形態》
 図6は、本発明に係る真空蒸着装置1の第6実施形態を示す概略縦断面である。本実施形態の真空蒸着装置1は、上述した第4実施形態と第5実施形態とを組み合わせた実施形態であり、実質的に密閉空間となる成膜室2aを構成する筐体2と、成膜室2aの内部全体を減圧するための第1排気装置3と、基板ホルダ5に保持された基板Sを含む第1領域Aに所定のガスを導入するノズル8及びガス供給源9と、第1排気装置3による成膜室2aの一部の排気を遮る遮蔽部材7と、を備える。
 本実施形態の真空蒸着装置1は、上述した第1実施形態及び第2実施形態と同様、上面(天井面)、下面(底面)及び複数の側面を有する箱形、又は上面(天井面)、下面(底面)、曲面状の側面を有する筒形で構成された筐体2を有し、当該筐体2の内部が、実質的に密閉空間としての成膜室2aを構成する。図6に示す真空蒸着装置1の姿勢において、筐体2の上側の面を上面、下側の面を下面、横側の面を側面と便宜的に称するが、これは単に筐体2と、当該筐体2に設けられる第1排気装置3、基板ホルダ5及び蒸着機構6との相対的な位置関係を説明するための便宜的な定義であり、実際に設置された真空蒸着装置1の姿勢を絶対的に定義するものではない。
 たとえば、図6に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置しているが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、基板ホルダ5と蒸着機構6とを左右方向(水平方向)や斜め方向に配置してもよい。また、図6に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置したため、そのレイアウトの関係で、第1排気装置3を筐体2の下面に配置したが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、第1排気装置3は適宜箇所に配置することができる。
 第1排気装置3は、図6に示すように、筐体2の側面のほぼ中央に、ゲートバルブ3aを介して設けられている。ゲートバルブ3aは、第1排気装置3と成膜室2aとを開閉する気密バルブであり、成膜室2aの内部を減圧する場合にはゲートバルブ3aを開き、被蒸着物である基板Sを成膜室2aに投入する場合や、成膜を終えた基板Sを成膜室2aから取り出する場合など、それ以外の場合はゲートバルブ3aを閉じる。第1排気装置3には、ターボ分子ポンプ(TMP)や定圧ポンプ(CP)が用いられ、成膜室2aの内部を0.01Pa以下まで減圧できる定格能力を有する。
 成膜室2aの内部には、板状の基板ホルダ5が回転軸5bにより懸架され、回転軸5bは筐体2の上面に回転可能に支持されている。そして、基板ホルダ5は、駆動部5cにより回転する回転軸5bを中心に回転可能とされている。基板ホルダ5の基板保持面5aには、蒸着材料の蒸着対象となる基板(被蒸着物)Sが保持される。なお、基板ホルダ5に保持する基板Sの数量は何ら限定されず、1枚であっても複数枚であってもよい。また、駆動部5cを省略して非回転の基板ホルダ5としてもよい。図6に示す第6実施形態では、基板ホルダ5の基板保持面5aに複数の基板Sが保持可能とされ、蒸着機構6の直上に複数の基板Sが位置するように基板ホルダ5が設けられている。
 成膜室2aの内部の下面近傍には、蒸着機構6が設けられている。本実施形態の蒸着機構6は、電子ビーム蒸着源からなり、蒸着材料を充填する坩堝6aと、坩堝6aに充填された蒸着材料に電子ビームを照射する電子銃6bとを備える。また、坩堝6aの上方には、当該坩堝6aの上部開口を開閉するシャッタ6cが移動可能に設けられている。基板ホルダ5に保持された基板Sに対して成膜処理を行う場合には、電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。なお、図6に示す符号6dは、マイスナトラップの冷却管コイルであって、成膜室2aの内部を真空排気したときに、基板Sから放出される水分を効率的に除去するものである。本実施形態の真空蒸着装置1にて用いられる蒸着材料としては、特に限定はされないが、SiO,MgF,Al,ZrO,Ta,TiO,Nb又はHfO、などを用いることができる。
 本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを、当該基板ホルダ5を含めて囲む位置に、遮蔽部材7が固定されている。本実施形態の遮蔽部材7は、上面及び下面が開口した筒状(断面は、円形、楕円形、矩形のいずれでもよく、基板ホルダ5の形状に応じて設定してもよい。)に形成され、第1排気装置3による成膜室2aの一部の排気を遮る機能を司る。すなわち、図6に示すように、基板ホルダ5に保持された基板Sを含む領域を第1領域Aとしたときに、第1排気装置3により成膜室2aの内部の気体が排気される際に当該第1領域Aのガスの排気を部分的に遮蔽することで、第1領域Aの減圧効果を低減する。
 また本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを含む第1領域Aに、所定のガスを導入するノズル8及びガス供給源9を備える。ノズル8は、図6に示すように、たとえば遮蔽部材7を貫通して固定してもよい。ガス供給源9は、成膜室2aの内部の雰囲気ガス、たとえば不活性ガスなどを供給するための供給源である。図6には、1つのノズル8及びガス供給源9を示しているが、1つ又は複数のガス供給源9に複数のノズル8を接続し、当該複数のノズル8から第1領域Aに向かって所定のガスを吹き付けるようにしてもよい。
 次に作用を説明する。
 本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法は、基板ホルダ5の基板保持面5aに基板Sを装着し、筐体2を密閉したのち、ゲートバルブ3aを開いて第1排気装置3を作動し、当該第1排気装置3の設定値をたとえば0.01Paに設定して成膜室2aの内部を全体的に減圧する。なお、この時点で駆動部5cを駆動して基板ホルダ5の所定の回転速度で回転し始めてもよい。
 時間の経過とともに成膜室2aの内部は、常圧から減圧されるが、基板ホルダ5に保持された基板Sを含む第1領域Aは、遮蔽部材7により第1排気装置3による全体的な排気の一部が遮られると同時に、基板ホルダ5に保持された基板Sを含む第1領域Aには、ガス供給源9からのガスがノズル8を介して導入されるので、基板ホルダ5に保持された基板Sを含む第1領域Aの雰囲気圧力は、成膜室2aの内部の一般領域に比べて高圧となる。これに対して、遮蔽部材7による減圧抑制効果が及ばない蒸着機構6を含む第2領域Bの雰囲気圧力は、成膜室2aの内部の一般領域とほぼ同圧となる。
 これら第1排気装置3と遮蔽部材7とノズル8及びガス供給源9との作用により、好ましくは、第2領域Bの雰囲気圧力が0.05Pa以下、第1領域Aの雰囲気圧力が0.5~100Paになったら、蒸着機構6の電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。
 図8は、第1領域A及び第2領域Bの雰囲気圧並びに第1排気装置3の設定圧力を示すグラフであり、縦軸は圧力の対数を示す。同図に示すように、蒸着機構6を含む第2領域Bを0.05Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が蒸発しないからである。一方、基板Sを含む第1領域Aを0.5Pa以上にするのは、これより雰囲気圧力が低いと低屈折率の薄膜が得られないからであり、100Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が基板Sに届かず成膜できないからである。本実施形態では、蒸着機構6を含む第2領域Bが0.05Pa以下、基板Sを含む第1領域Aが、0.5~100Paになればよいので、第1排気装置3の設定圧力と、ノズル8及びガス供給源9からのガス供給量と、遮蔽部材7の構造(たとえば開口の形状や面積)は特に限定されない。
 以上のとおり、本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法によれば、蒸着機構6を含む第2領域Bの雰囲気圧力を蒸着が可能な圧力(好ましくは上限に近い範囲の圧力)に設定する一方で、基板Sを含む第1領域Aの雰囲気圧力は相対的に高圧にするので、真空蒸着法により低屈折率の薄膜を得ることができる。
 なお、上記基板Sが、本発明の被蒸着物に相当し、遮蔽部材7並びにノズル8及びガス供給源9が、本発明の第1雰囲気圧力設定手段、増圧手段、圧力調整手段に相当し、上記第1排気装置3が、本発明の第2雰囲気圧力設定手段に相当する。
《第7実施形態》
 図7は、本発明に係る真空蒸着装置1の第7実施形態を示す概略縦断面である。本実施形態の真空蒸着装置1は、上述した第6実施形態に第2排気装置4及びゲートバルブ4aを付加した実施形態であり、実質的に密閉空間となる成膜室2aを構成する筐体2と、成膜室2aの内部全体を減圧するための第1排気装置3と、基板ホルダ5に保持された基板Sを含む第1領域Aに所定のガスを導入するノズル8及びガス供給源9と、第1排気装置3による成膜室2aの一部の排気を遮る遮蔽部材7と、第2排気装置4及びゲートバルブ4aと、を備える。
 本実施形態の真空蒸着装置1は、上述した第1~第6実施形態と同様、上面(天井面)、下面(底面)及び複数の側面を有する箱形、又は上面(天井面)、下面(底面)、曲面状の側面を有する筒形で構成された筐体2を有し、当該筐体2の内部が、実質的に密閉空間としての成膜室2aを構成する。図7に示す真空蒸着装置1の姿勢において、筐体2の上側の面を上面、下側の面を下面、横側の面を側面と便宜的に称するが、これは単に筐体2と、当該筐体2に設けられる第1排気装置3、基板ホルダ5及び蒸着機構6との相対的な位置関係を説明するための便宜的な定義であり、実際に設置された真空蒸着装置1の姿勢を絶対的に定義するものではない。
 たとえば、図7に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置しているが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、基板ホルダ5と蒸着機構6とを左右方向(水平方向)や斜め方向に配置してもよい。また、図7に示す実施形態の真空蒸着装置1は、基板ホルダ5と蒸着機構6とを上下方向(鉛直方向)に配置したため、そのレイアウトの関係で、第1排気装置3を筐体2の下面に配置したが、本発明の真空蒸着方法及び真空蒸着装置はこの配置に何ら限定されず、第1排気装置3は適宜箇所に配置することができる。
 第1排気装置3は、図7に示すように、筐体2の側面のほぼ中央に、ゲートバルブ3aを介して設けられている。ゲートバルブ3aは、第1排気装置3と成膜室2aとを開閉する気密バルブであり、成膜室2aの内部を減圧する場合にはゲートバルブ3aを開き、被蒸着物である基板Sを成膜室2aに投入する場合や、成膜を終えた基板Sを成膜室2aから取り出する場合など、それ以外の場合はゲートバルブ3aを閉じる。第1排気装置3には、ターボ分子ポンプ(TMP)や定圧ポンプ(CP)が用いられ、成膜室2aの内部を0.01Pa以下まで減圧できる定格能力を有する。
1Pa以下まで減圧できる定格能力を有する。
 第2排気装置4は、図7に示すように、筐体2の下面であって蒸着機構6の直下に、ゲートバルブ4aを介して設けられている。ゲートバルブ4aは、第2排気装置4と成膜室2aとを開閉する気密バルブであり、成膜室2aの内部を減圧する場合にはゲートバルブ4aを開き、被蒸着物である基板Sを成膜室2aに投入する場合や、成膜を終えた基板Sを成膜室2aから取り出する場合など、それ以外の場合はゲートバルブ4aを閉じる。第2排気装置4には、ターボ分子ポンプ(TMP)や定圧ポンプ(CP)が用いられ、成膜室2aの内部のうち蒸着機構6を含む第2領域Bを0.01Pa以下まで減圧できる定格能力を有する。
 成膜室2aの内部には、板状の基板ホルダ5が回転軸5bにより懸架され、回転軸5bは筐体2の上面に回転可能に支持されている。そして、基板ホルダ5は、駆動部5cにより回転する回転軸5bを中心に回転可能とされている。基板ホルダ5の基板保持面5aには、蒸着材料の蒸着対象となる基板(被蒸着物)Sが保持される。なお、基板ホルダ5に保持する基板Sの数量は何ら限定されず、1枚であっても複数枚であってもよい。また、駆動部5cを省略して非回転の基板ホルダ5としてもよい。図7に示す第7実施形態では、基板ホルダ5の基板保持面5aに複数の基板Sが保持可能とされ、蒸着機構6の直上に複数の基板Sが位置するように基板ホルダ5が設けられている。
 成膜室2aの内部の下面近傍には、蒸着機構6が設けられている。本実施形態の蒸着機構6は、電子ビーム蒸着源からなり、蒸着材料を充填する坩堝6aと、坩堝6aに充填された蒸着材料に電子ビームを照射する電子銃6bとを備える。また、坩堝6aの上方には、当該坩堝6aの上部開口を開閉するシャッタ6cが移動可能に設けられている。基板ホルダ5に保持された基板Sに対して成膜処理を行う場合には、電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。なお、図7に示す符号6dは、マイスナトラップの冷却管コイルであって、成膜室2aの内部を真空排気したときに、基板Sから放出される水分を効率的に除去するものである。本実施形態の真空蒸着装置1にて用いられる蒸着材料としては、特に限定はされないが、SiO,MgF,Al,ZrO,Ta,TiO,Nb又はHfO、などを用いることができる。
 本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを、当該基板ホルダ5を含めて囲む位置に、遮蔽部材7が固定されている。本実施形態の遮蔽部材7は、上面及び下面が開口した筒状(断面は、円形、楕円形、矩形のいずれでもよく、基板ホルダ5の形状に応じて設定してもよい。)に形成され、第1排気装置3による成膜室2aの一部の排気を遮る機能を司る。すなわち、図7に示すように、基板ホルダ5に保持された基板Sを含む領域を第1領域Aとしたときに、第1排気装置3により成膜室2aの内部の気体が排気される際に当該第1領域Aのガスの排気を部分的に遮蔽することで、第1領域Aの減圧効果を低減する。
 また本実施形態の真空蒸着装置1では、基板ホルダ5に保持された基板Sを含む第1領域Aに、所定のガスを導入するノズル8及びガス供給源9を備える。ノズル8は、図7に示すように、たとえば遮蔽部材7を貫通して固定してもよい。ガス供給源9は、成膜室2aの内部の雰囲気ガス、たとえば不活性ガスなどを供給するための供給源である。図7には、1つのノズル8及びガス供給源9を示しているが、1つ又は複数のガス供給源9に複数のノズル8を接続し、当該複数のノズル8から第1領域Aに向かって所定のガスを吹き付けるようにしてもよい。
 次に作用を説明する。
 本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法は、基板ホルダ5の基板保持面5aに基板Sを装着し、筐体2を密閉したのち、ゲートバルブ3aを開いて第1排気装置3を作動し、当該第1排気装置3の設定値をたとえば0.01Paに設定して成膜室2aの内部を全体的に減圧する。これと相前後してゲートバルブ4aを開いて第2排気装置4を作動し、当該第2排気装置4の設定値をたとえば0.01Paに設定して蒸着機構6を含む第2領域Bを局所的に減圧する。なお、この時点で駆動部5cを駆動して基板ホルダ5の所定の回転速度で回転し始めてもよい。
 時間の経過とともに成膜室2aの内部は、常圧から減圧されるが、基板ホルダ5に保持された基板Sを含む第1領域Aは、遮蔽部材7により第1排気装置3による全体的な排気の一部が遮られると同時に、基板ホルダ5に保持された基板Sを含む第1領域Aには、ガス供給源9からのガスがノズル8を介して導入されるので、基板ホルダ5に保持された基板Sを含む第1領域Aの雰囲気圧力は、成膜室2aの内部の一般領域に比べて高圧となる。これに対して、遮蔽部材7による減圧抑制効果が及ばない蒸着機構6を含む第2領域Bの雰囲気圧力は、第2排気装置4により局所的な排気が行われるため、成膜室2aの内部の一般領域よりも低圧となる。
 これら第1排気装置3と第2排気装置4と遮蔽部材7とノズル8及びガス供給源9との作用により、好ましくは、第2領域Bの雰囲気圧力が0.05Pa以下、第1領域Aの雰囲気圧力が0.5~100Paになったら、蒸着機構6の電子銃6bを作動して坩堝6aに充填された蒸着材料を加熱蒸発させるとともにシャッタ6cを開いて、蒸発した蒸着材料を基板Sに付着させる。
 図8は、第1領域A及び第2領域Bの雰囲気圧並びに第1排気装置3及び第2排気装置4の設定圧力を示すグラフであり、縦軸は圧力の対数を示す。同図に示すように、蒸着機構6を含む第2領域Bを0.05Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が蒸発しないからである。一方、基板Sを含む第1領域Aを0.5Pa以上にするのは、これより雰囲気圧力が低いと低屈折率の薄膜が得られないからであり、100Pa以下にするのは、これより雰囲気圧力が高いと蒸着材料が基板Sに届かず成膜できないからである。本実施形態では、蒸着機構6を含む第2領域Bが0.05Pa以下、基板Sを含む第1領域Aが、0.5~100Paになればよいので、第1排気装置3及び第2排気装置の設定圧力と、ノズル8及びガス供給源9からのガス供給量と、遮蔽部材7の構造(たとえば開口の形状や面積)は特に限定されない。
 以上のとおり、本実施形態の真空蒸着装置1及びこれを用いた真空蒸着方法によれば、蒸着機構6を含む第2領域Bの雰囲気圧力を蒸着が可能な圧力(好ましくは上限に近い範囲の圧力)に設定する一方で、基板Sを含む第1領域Aの雰囲気圧力は相対的に高圧にするので、真空蒸着法により低屈折率の薄膜を得ることができる。
 なお、上記基板Sが、本発明の被蒸着物に相当し、遮蔽部材7並びにノズル8及びガス供給源9が、本発明の第1雰囲気圧力設定手段、増圧手段、圧力調整手段に相当し、上記第1排気装置3及び第2排気装置4が、本発明の第2雰囲気圧力設定手段に相当する。
1…真空蒸着装置
2…筐体
 2a…成膜室
3…第1排気装置
 3a…ゲートバルブ
4…第2排気装置
5…基板ホルダ
 5a…基板保持面
 5b…回転軸
 5c…駆動部
6…蒸着機構
 6a…坩堝
 6b…電子銃
 6c…シャッタ
 6d…マイスナトラップ
7…遮蔽部材
8…ノズル
9…ガス供給源
A…第1領域
B…第2領域

Claims (7)

  1.  成膜室の内部に少なくとも蒸着材料と被蒸着物を設置し、
     前記成膜室の内部の前記被蒸着物を含む第1領域を0.5~100Paの雰囲気に設定し、
     前記成膜室の内部の前記蒸着材料を含む第2領域を0.05Pa以下の雰囲気に設定し、
     この状態で真空蒸着法により前記被蒸着物に前記蒸着材料を成膜する真空蒸着方法。
  2.  少なくとも蒸着材料と被蒸着物とが設けられる成膜室を備える真空蒸着装置において、
     前記成膜室の内部の前記被蒸着物を含む第1領域の雰囲気圧力を0.5~100Paに設定する第1雰囲気圧力設定手段と、
     前記成膜室の内部の前記蒸着材料を含む第2領域の雰囲気圧力を0.05Pa以下に設定する第2雰囲気圧力設定手段と、を備える真空蒸着装置。
  3.  少なくとも蒸着材料と被蒸着物とが設けられる成膜室を構成する筐体と、
     前記成膜室の内部の全体を蒸着可能な雰囲気圧力に減圧する第1排気装置と、
     前記成膜室の内部の前記被蒸着物を含む第1領域の雰囲気圧力を、前記成膜室の内部の雰囲気圧力に対して局所的に増圧する増圧手段と、を備える真空蒸着装置。
  4.  前記増圧手段は、
     前記成膜室の内部の前記第1領域にガスを導入する圧力調整手段を含む請求項3に記載の真空蒸着装置。
  5.  前記増圧手段は、
     前記第1排気装置による前記第1領域の減圧の一部を遮る遮蔽部材を含む請求項3又は4に記載の真空蒸着装置。
  6.  少なくとも蒸着材料と被蒸着物とが設けられる成膜室を構成する筐体と、
     前記成膜室の内部の全体を蒸着可能な雰囲気圧力より高い圧力に減圧する第1排気装置と、
     前記成膜室の内部の前記蒸着材料を含む第2領域を蒸着可能な圧力に局所的に減圧する第2排気装置と、を備える真空蒸着装置。
  7.  前記成膜室の内部の前記被蒸着物を含む第1領域を0.5~100Paの雰囲気に設定し、
     前記成膜室の内部の前記蒸着材料を含む第2領域を0.05Pa以下の雰囲気に設定する請求項3~6のいずれか一項に記載の真空蒸着装置。
PCT/JP2019/040456 2019-10-15 2019-10-15 真空蒸着方法及び真空蒸着装置 WO2021074952A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2019/040456 WO2021074952A1 (ja) 2019-10-15 2019-10-15 真空蒸着方法及び真空蒸着装置
JP2020529654A JPWO2021074952A1 (ja) 2019-10-15 2019-10-15 真空蒸着方法及び真空蒸着装置
JP2021515244A JP7045044B2 (ja) 2019-10-15 2020-10-09 成膜方法及び成膜装置
EP20876019.9A EP4047108A4 (en) 2019-10-15 2020-10-09 FILM FORMATION METHOD AND FILM FORMATION APPARATUS
PCT/JP2020/038355 WO2021075384A1 (ja) 2019-10-15 2020-10-09 成膜方法及び成膜装置
KR1020227015048A KR20220074949A (ko) 2019-10-15 2020-10-09 성막 방법 및 성막 장치
CN202080064516.6A CN114402090A (zh) 2019-10-15 2020-10-09 成膜方法和成膜装置
TW109135480A TWI836151B (zh) 2019-10-15 2020-10-14 成膜方法及成膜裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040456 WO2021074952A1 (ja) 2019-10-15 2019-10-15 真空蒸着方法及び真空蒸着装置

Publications (1)

Publication Number Publication Date
WO2021074952A1 true WO2021074952A1 (ja) 2021-04-22

Family

ID=75538489

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/040456 WO2021074952A1 (ja) 2019-10-15 2019-10-15 真空蒸着方法及び真空蒸着装置
PCT/JP2020/038355 WO2021075384A1 (ja) 2019-10-15 2020-10-09 成膜方法及び成膜装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038355 WO2021075384A1 (ja) 2019-10-15 2020-10-09 成膜方法及び成膜装置

Country Status (5)

Country Link
EP (1) EP4047108A4 (ja)
JP (2) JPWO2021074952A1 (ja)
KR (1) KR20220074949A (ja)
CN (1) CN114402090A (ja)
WO (2) WO2021074952A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001771A (ja) * 1998-06-18 2000-01-07 Hitachi Ltd 誘電体保護層の製造方法とその製造装置、並びにそれを用いたプラズマディスプレイパネルと画像表示装置
JP2010007125A (ja) * 2008-06-26 2010-01-14 Shincron:Kk 成膜方法及び成膜装置
JP2018123365A (ja) * 2017-01-31 2018-08-09 学校法人東海大学 成膜方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171607A (en) * 1990-01-29 1992-12-15 Bausch & Lomb Incorporated Method of depositing diamond-like carbon film onto a substrate having a low melting temperature
JPH04210466A (ja) * 1990-11-30 1992-07-31 Ulvac Japan Ltd 真空成膜装置
JP4596803B2 (ja) * 2004-03-25 2010-12-15 キヤノン株式会社 減圧蒸着装置
JP4747802B2 (ja) * 2005-11-25 2011-08-17 大日本印刷株式会社 真空成膜方法、及び真空成膜装置
JP4968318B2 (ja) * 2009-12-22 2012-07-04 住友金属鉱山株式会社 酸化物蒸着材
CN102762762B (zh) * 2010-02-22 2014-06-25 株式会社爱发科 真空处理装置
CN102482762B (zh) * 2010-06-16 2015-01-21 松下电器产业株式会社 薄膜的制造方法
WO2011158453A1 (ja) * 2010-06-16 2011-12-22 パナソニック株式会社 薄膜の製造方法
JP2012246516A (ja) * 2011-05-26 2012-12-13 Konica Minolta Holdings Inc 蒸着膜形成体の製造方法
JP2014189890A (ja) * 2013-03-28 2014-10-06 Kobe Steel Ltd 成膜装置及び成膜方法
WO2015097898A1 (ja) * 2013-12-27 2015-07-02 株式会社シンクロン 多層反射防止膜の成膜方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001771A (ja) * 1998-06-18 2000-01-07 Hitachi Ltd 誘電体保護層の製造方法とその製造装置、並びにそれを用いたプラズマディスプレイパネルと画像表示装置
JP2010007125A (ja) * 2008-06-26 2010-01-14 Shincron:Kk 成膜方法及び成膜装置
JP2018123365A (ja) * 2017-01-31 2018-08-09 学校法人東海大学 成膜方法

Also Published As

Publication number Publication date
JPWO2021075384A1 (ja) 2021-11-11
TW202120718A (zh) 2021-06-01
JPWO2021074952A1 (ja) 2021-11-04
KR20220074949A (ko) 2022-06-03
CN114402090A (zh) 2022-04-26
EP4047108A1 (en) 2022-08-24
JP7045044B2 (ja) 2022-03-31
EP4047108A4 (en) 2024-02-14
WO2021075384A1 (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
KR102298580B1 (ko) 성막 방법
JP5265547B2 (ja) 滑らかで緻密な光学膜を製造する方法
JP5800893B2 (ja) Mo/Si多層プラズマアシスト蒸着
JP5270820B2 (ja) 長寿命エキシマーレーザ光学素子
JP2006251760A (ja) 光学部品およびその製造方法
JP6209190B2 (ja) 無反射ナノコーティング構造及びその製造方法
CN101750639A (zh) 光学镀膜装置
JP7041933B2 (ja) 成膜方法及び成膜装置
JP2007531825A (ja) 基質の両面を疎水性層で被覆するための装置
WO2021074952A1 (ja) 真空蒸着方法及び真空蒸着装置
JP2008304497A (ja) 光学薄膜成膜方法、光学基板及び光学薄膜成膜装置
JP2009139497A (ja) 配向膜の製造方法および製造装置
TWI836151B (zh) 成膜方法及成膜裝置
TWI836150B (zh) 成膜方法及成膜裝置
WO2022220015A1 (ja) 成膜装置及びこれを用いた成膜方法
JP2004346354A (ja) 真空蒸着装置及び真空蒸着方法
JP2005308968A (ja) 光学多層膜及び光学素子
JP2011006746A (ja) 多層膜成膜方法
JP2009001889A (ja) 減光フィルタの成膜方法及びこれを用いた減光フィルタ並びに撮像光量絞り装置
JP2583295Y2 (ja) 真空蒸着装置
JPH1068065A (ja) 光学基体上に反射防止膜を蒸着する方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020529654

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949006

Country of ref document: EP

Kind code of ref document: A1