WO2021070919A1 - 複素環化合物を含むレジスト下層膜形成組成物 - Google Patents

複素環化合物を含むレジスト下層膜形成組成物 Download PDF

Info

Publication number
WO2021070919A1
WO2021070919A1 PCT/JP2020/038222 JP2020038222W WO2021070919A1 WO 2021070919 A1 WO2021070919 A1 WO 2021070919A1 JP 2020038222 W JP2020038222 W JP 2020038222W WO 2021070919 A1 WO2021070919 A1 WO 2021070919A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
underlayer film
resist underlayer
carbon atoms
resist
Prior art date
Application number
PCT/JP2020/038222
Other languages
English (en)
French (fr)
Inventor
哲 上林
勇樹 遠藤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to US17/763,253 priority Critical patent/US20220356297A1/en
Priority to KR1020227005653A priority patent/KR20220079813A/ko
Priority to CN202080065831.0A priority patent/CN114424121A/zh
Priority to JP2021551710A priority patent/JPWO2021070919A1/ja
Publication of WO2021070919A1 publication Critical patent/WO2021070919A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/027Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1477Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1483Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3236Heterocylic compounds
    • C08G59/3245Heterocylic compounds containing only nitrogen as a heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0277Electrolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Definitions

  • the present invention relates to a resist underlayer film forming composition having a particularly high dry etching rate, a resist underlayer film and a method for producing the resist underlayer film using the resist underlayer film forming composition, a method for forming a resist pattern, and a method for producing a semiconductor device.
  • the resist underlayer film formed for the purpose of suppressing this is also called an antireflection film.
  • the resist underlayer film is required to be easily formed by applying a solution composition for forming a resist underlayer film and curing it. Therefore, it is necessary that the composition is easily cured by heating or the like and contains a compound (polymer) having high solubility in a predetermined solvent.
  • the resist pattern formed on the resist underlayer film has a rectangular cross-sectional shape in the direction perpendicular to the substrate (a straight hem shape without so-called undercut, hem pulling, etc.).
  • the resist pattern has an undercut shape or a hemming shape, problems such as collapse of the resist pattern and the inability to process the workpiece (substrate, insulating film, etc.) into a desired shape or size during the lithography process occur. ..
  • the resist lower layer film is required to have a higher dry etching rate than the upper layer resist film, that is, a higher selection ratio of the dry etching rate.
  • Patent Document 1 discloses a resist underlayer film forming composition using a polymer having a disulfide bond in the main chain.
  • Patent Document 2 discloses an epoxy compound having a glycidyl ester group.
  • Patent Document 3 discloses an antireflection film-forming composition containing a triazine trione compound, an oligomer compound or a polymer compound having a hydroxyalkyl structure as a substituent on a nitrogen atom.
  • an epoxy group-containing compound preferably a glycidyl ester group-containing compound, preferably a nitrogen-containing heterocyclic compound having a glycidyl ester group (isocyanuric acid, etc.) and a site having reactivity with an epoxy group. It has been found that when a reaction product with a heterocyclic compound containing one of the above is applied to a resist underlayer film forming composition, a higher etching rate than in the prior art can be achieved.
  • the present invention has been made for the purpose of providing a resist underlayer film forming composition having a particularly high dry etching rate.
  • Another object of the present invention is to provide a resist underlayer film and a method for producing the resist underlayer film, a method for forming a resist pattern, and a method for producing a semiconductor device using the resist underlayer film forming composition.
  • the present invention includes the following.
  • a resist underlayer film forming composition containing a reaction product of an epoxy group-containing compound and a heterocyclic compound containing one site reactive with the epoxy group, and a solvent.
  • the heterocycles contained in the above heterocyclic compounds are furan, pyrrol, pyran, imidazole, pyrazole, oxazole, thiophene, thiazole, thiazazole, imidazolidine, thiazolidine, imidazoline, dioxane, morpholine, diazine, thiazine, triazole, tetrazole, dioxolane,
  • the resist underlayer membrane according to [1] which is selected from pyridazine, pyrimidine, pyrazine, piperazine, piperazine, indole, purine, quinoline, isoquinoline, quinuclidine, chromene, thiantolen, phenothiazine, phenoxazine, xanthene, aclysine, phenazine and carbazole.
  • Forming composition is selected from pyridazine, pyrimidine, pyra
  • X is a divalent organic group represented by the following formula (2), formula (3) or formula (4), and n 1 and n 2 are independently 1 to 10 respectively. Represents an integer.
  • R 1 and R 2 may be independently interrupted by an alkyl group having 1 to 10 carbon atoms, which may be interrupted by a hydrogen atom, an oxygen atom or a sulfur atom, and may be interrupted by an oxygen atom or a sulfur atom.
  • R 3 is an alkyl group having 1 to 10 carbon atoms which may be interrupted by a hydrogen atom, an oxygen atom or a sulfur atom, and an alkoxy group having 3 to 10 carbon atoms which may be interrupted by an oxygen atom or a sulfur atom.
  • At least one monovalent functional group selected from the group consisting of an alkoxy group having 1 to 10 atoms, a nitro group, a cyano group, an alkylthio group having 1 to 6 carbon atoms and an organic group represented by the following formula (5). It may be replaced with. ) (In equation (5), n3 represents an integer of 1 to 10.)
  • the resist underlayer film forming composition according to any one of [1] to [4], further comprising at least one selected from the group consisting of a cross-linking agent, a cross-linking catalyst and a surfactant.
  • a resist underlayer film which is a fired product of a coating film comprising the resist underlayer film forming composition according to any one of [1] to [5].
  • a method for producing a patterned substrate which comprises a step of forming a resist film, a step of exposing the resist underlayer film and a semiconductor substrate coated with the resist, and a step of developing and patterning the resist film after exposure. ..
  • X is a divalent organic group represented by the following formula (2), formula (3) or formula (4), and n 1 and n 2 are independently 1 to 10 respectively. Represents an integer.
  • R 1 and R 2 may be independently interrupted by an alkyl group having 1 to 10 carbon atoms, which may be interrupted by a hydrogen atom, an oxygen atom or a sulfur atom, and may be interrupted by an oxygen atom or a sulfur atom.
  • R 3 is an alkyl group having 1 to 10 carbon atoms which may be interrupted by a hydrogen atom, an oxygen atom or a sulfur atom, and an alkoxy group having 3 to 10 carbon atoms which may be interrupted by an oxygen atom or a sulfur atom.
  • At least one monovalent functional group selected from the group consisting of an alkoxy group having 1 to 10 atoms, a nitro group, a cyano group, an alkylthio group having 1 to 6 carbon atoms and an organic group represented by the following formula (5). It may be replaced with. ) (In equation (5), n3 represents an integer of 1 to 10.)
  • the resist underlayer film forming composition of the present invention has a high dry etching rate, can solve various problems due to thinning of the resist film thickness, and achieves fine processing of a finer semiconductor substrate.
  • the resist underlayer film forming composition of the present application contains a reaction product of an epoxy group-containing compound and a heterocyclic compound containing one site reactive with the epoxy group, and a solvent.
  • the epoxy group-containing compound is not limited as long as it can achieve the above object, but is preferably a glycidyl ester group-containing compound, preferably a nitrogen-containing heterocyclic compound having a glycidyl ester group (isocyanuric acid or the like).
  • the epoxy group-containing compound may be, for example, a compound having an aromatic ring structure having 6 to 40 carbon atoms, a compound containing triazineone, a compound containing triazinedione, or a compound containing triazinetrione, but a compound containing triazinetrione. Is preferable.
  • the epoxy group-containing compound is preferably a compound represented by the following formula (1).
  • X is a divalent organic group represented by the following formula (2), formula (3) or formula (4), and n 1 and n 2 are independently 1 to 10 respectively. Represents an integer.
  • R 1 and R 2 may be independently interrupted by an alkyl group having 1 to 10 carbon atoms, which may be interrupted by a hydrogen atom, an oxygen atom or a sulfur atom, and may be interrupted by an oxygen atom or a sulfur atom.
  • R 3 is an alkyl group having 1 to 10 carbon atoms which may be interrupted by a hydrogen atom, an oxygen atom or a sulfur atom, and an alkoxy group having 3 to 10 carbon atoms which may be interrupted by an oxygen atom or a sulfur atom.
  • At least one monovalent functional group selected from the group consisting of an alkoxy group having 1 to 10 atoms, a nitro group, a cyano group, an alkylthio group having 1 to 6 carbon atoms and an organic group represented by the following formula (5). It may be replaced with. ) (In equation (5), n3 represents an integer of 1 to 10.)
  • alkyl groups having 1 to 10 carbon atoms methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl Group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n- Butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1- Methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group,
  • alkenyl group having 2 to 10 carbon atoms examples include an ethenyl group, a 1-propenyl group, a 2-propenyl group, a 1-methyl-1-ethenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, and 2 -Methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-Pentenyl group, 4-Pentenyl group, 1-n-propylethenyl group, 1-methyl-1-butenyl group, 1-methyl-2-butenyl group, 1-methyl-3-butenyl group, 2-ethyl- 2-propenyl group, 2-methyl-1-butenyl group, 2-methyl-2-butenyl group, 2-methyl-3-butenyl group, 3-
  • alkynyl group having 2 to 10 carbon atoms examples include an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 1-butynyl group, a 2-butynyl group, a 3-butynyl group, a 4-methyl-1-pentynyl group, and 3 -Methyl-1-pentynyl group can be mentioned.
  • It may be interrupted by an oxygen atom or a sulfur atom, for example, it means that the carbon atom contained in the alkyl group, the alkenyl group and the alkynyl group is replaced by the oxygen atom or the sulfur atom.
  • an oxygen atom or a sulfur atom for example, it means that the carbon atom contained in the alkyl group, the alkenyl group and the alkynyl group is replaced by the oxygen atom or the sulfur atom.
  • an ether bond for example, some carbon atoms in the alkyl group, alkenyl group and alkynyl group.
  • a sulfur atom it will contain a thioether bond.
  • the alkyl group having 1 to 6 carbon atoms is an alkyl group having 1 to 6 carbon atoms among the above alkyl groups having 1 to 10 carbon atoms.
  • Pentoxy group 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1-dimethyl-n-propoxy group, 1,2-dimethyl-n-propoxy Group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group, n-hexyloxy group, 1-methyl-n-pentyloxy group, 2-methyl-n-pentyloxy group, 3- Methyl-n-pentyloxy group, 4-methyl-n-pentyloxy group, 1,1-dimethyl-n-butoxy group, 1,2-dimethyl-n-butoxy group, 1,3-dimethyl-n-butoxy group , 2,2-Dimethyl-n-butoxy group, 2,3-dimethyl-n-butoxy group, 3,3-dimethyl-n-butoxy group, 1-ethyl-n-butoxy group, 2-ethyl-n-butoxy group Group, 1,1,2-trimethyl-n-propoxy group
  • alkylthio group having 1 to 6 carbon atoms examples include an ethylthio group, a butylthio group, and a hexylthio group.
  • X is represented by the formula (4).
  • X is represented by the formula (4), n1 and n2 are 1, and R 3 is an alkyl group having 1 to 5 carbon atoms which may be interrupted by an oxygen atom. preferable.
  • R 3 is an alkyl group having 1 to 5 carbon atoms which may be interrupted by an oxygen atom. preferable.
  • the alkyl group having 1 to 5 carbon atoms among the above-mentioned alkyl groups having 1 to 10 carbon atoms, the alkyl group having 1 to 5 carbon atoms is used.
  • X is represented by Formula (4), n1 and n2 are 1, R 3 is represented by a methyl group, a methoxymethyl group or formula (5), n3 is 1, less It is preferably a compound represented by the formula (A-1), the formula (A-7) or the formula (A-19).
  • the compound represented by the formula (1) of the present application can be exemplified by the following formulas (A-1) to (A-21), but is not limited thereto.
  • the epoxy group-containing compound may be selected from the following compounds (a) to (s).
  • R 0 represents an alkylene group having 1 to 10 carbon atoms.
  • the epoxy group-containing compound may be a compound containing three or more epoxy groups shown below. Specific examples include a glycidyl ether compound, a glycidyl ester compound, a glycidyl amine compound, and a glycidyl group-containing isocyanate.
  • the following formulas (A0-1) to (A0-13) can be exemplified as the epoxy group-containing compound used in the present invention.
  • the formula (A0-1) is manufactured by Nissan Chemical Co., Ltd., and the trade names are TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, and TEPIC-L (all 1,3,5-Tris (2,3-). It can be obtained as (epoxypropyl) isocyanuric acid).
  • Formula (A0-2) is available from Nissan Chemical Industries, Ltd. under the trade name TEPIC-VL.
  • Formula (A0-3) is available from Nissan Chemical Industries, Ltd. under the trade name TEPIC-FL.
  • Formula (A0-4) is available from Nissan Chemical Industries, Ltd. under the trade name TEPIC-UC.
  • Formula (A0-5) is available from Nagase Chemtech Co., Ltd. under the trade name Denacol EX-411.
  • Formula (A0-6) is available from Nagase Chemtech Co., Ltd. under the trade name Denacol EX-521.
  • Formula (A0-7) is available from Mitsubishi Gas Chemical Company, Ltd. under the trade name TETRAD-X.
  • the formula (A0-8) is manufactured by Showa Denko KK and can be obtained under the trade name BATG.
  • Formula (A0-9) is available from Nippon Steel & Sumikin Chemical Co., Ltd. under the trade name YH-434L.
  • Formula (A0-10) is available from Asahi Organic Materials Industry Co., Ltd. under the trade name TEP-G.
  • the formula (A0-11) is available from DIC Corporation under the trade name EPICLON HP-4700.
  • epoxy compounds may be used.
  • the reaction between the epoxy group-containing compound and the heterocyclic compound containing one site having reactivity with the epoxy group can be carried out by a method known per se.
  • the above heterocyclic compound is a compound containing the heterocycle described below.
  • the heterocycles are furan, pyrrol, pyran, imidazole, pyrazole, oxazole, thiophene, thiazole, thiaziazole, imidazolidine, thiazolidine, imidazoline, dioxane, morpholine, diazine, thiazine, triazole, tetrazole, dioxolane, pyridazine, pyrimidine, pyrazine, It is preferably selected from piperazine, piperazine, indole, purine, quinoline, isoquinoline, quinuclidine, chromene, thiantrene, phenothiazine, phenoxazine, xanthene, aclysine, phenazine and carbazole.
  • heterocycle may be substituted with a substituent such as an alkyl group having 1 to 5 carbon atoms or a methylthio group.
  • the site having reactivity with the epoxy group is preferably selected from a hydroxy group, a thiol group, an amino group, an imide group and a carboxy group.
  • carboxy groups and thiol groups which increase the dry etching rate of the resist underlayer film, are particularly preferable.
  • heterocyclic compound containing one site having reactivity with the epoxy group include the compounds described below.
  • the ratio of the number of moles at the time of reaction between the epoxy group of the compound represented by the above formula (1) and the heterocyclic compound containing one site having reactivity with the epoxy group is, for example, ( 0.1 to 1): 1. It is preferably (0.5 to 1): 1.
  • the (remaining) epoxy group other than the reaction equal amount is a compound other than the heterocyclic compound containing one site reactive with the epoxy group (for example, an aromatic and / or a fat containing a site reactive with the epoxy group). It may react with a group (aromatic carboxylic acid, aromatic thiol, aliphatic carboxylic acid, aromatic thiol, heterocyclic compound containing two or more sites having a reactivity with an epoxy group, etc.).
  • the compounds containing a site having reactivity with the epoxy group can be exemplified by the following formulas (B-1) to (B-62), but are not limited thereto.
  • the weight average molecular weight (Mw) of the reaction product of the present application is, for example, 300 to 4,000, 400 to 3,000, or 500 to 2,000.
  • the resist underlayer film forming composition of the present invention can be produced by dissolving each of the above components in an organic solvent, and is used in a uniform solution state.
  • the solvent of the resist underlayer film forming composition according to the present invention can be used without particular limitation as long as it is a solvent capable of dissolving the above compound or its reaction product.
  • the resist underlayer film forming composition according to the present invention is used in a uniform solution state, it is recommended to use a solvent generally used in the lithography process in combination in consideration of its coating performance. ..
  • organic solvent examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, and propylene glycol monoethyl ether.
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, cyclohexanone and the like are preferable.
  • propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate are preferable.
  • the resist underlayer film forming composition of the present invention may contain a cross-linking catalyst as an optional component in order to promote the cross-linking reaction.
  • a cross-linking catalyst in addition to acidic compounds and basic compounds, compounds that generate acids or bases by heat can be used.
  • the acidic compound a sulfonic acid compound or a carboxylic acid compound can be used, and as a compound that generates an acid by heat, a thermoacid generator can be used.
  • sulfonic acid compound or carboxylic acid compound examples include phenol sulfonic acid, p-toluene sulfonic acid, trifluoromethane sulfonic acid, pyridinium trifluoromethane sulfonate, pyridinium-p-toluene sulfonate (pyridinium-p-phenol sulfonic acid), salicyl acid, and the like.
  • Camper sulfonic acid 5-sulfosalicylic acid, 4-chlorobenzene sulfonic acid, 4-hydroxybenzene sulfonic acid, pyridinium-4-hydroxybenzene sulfonic acid, benzene disulfonic acid, 1-naphthalene sulfonic acid, 4-nitrobenzene sulfonic acid, citric acid, Examples thereof include benzoic acid and hydroxybenzoic acid.
  • thermoacid generator examples include K-PURE® CXC-1612, CXC-1614, TAG-2172, TAG-2179, TAG-2678, and TAG2689 (all manufactured by King Industries). And SI-45, SI-60, SI-80, SI-100, SI-110, SI-150 (all manufactured by Sanshin Chemical Industry Co., Ltd.).
  • cross-linking catalysts can be used alone or in combination of two or more.
  • an amine compound or an ammonium hydroxide compound can be used, and as a compound in which a base is generated by heat, urea can be used.
  • amine compounds include triethanolamine, tributanolamine, trimethylamine, triethylamine, trinormalpropylamine, triisopropylamine, trinormalbutylamine, tri-tert-butylamine, trinormaloctylamine, triisopropanolamine, phenyldiethanolamine and stearyl.
  • examples thereof include diethanolamine, tertiary amines such as diazabicyclooctane, and aromatic amines such as pyridine and 4-dimethylaminopyridine.
  • primary amines such as benzylamine and normal butylamine, and secondary amines such as diethylamine and dinormal butylamine are also mentioned as amine compounds. These amine compounds can be used alone or in combination of two or more.
  • ammonium hydroxide compound examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, benzyltriethylammonium hydroxide, and cetyltrimethylammonium hydroxide. Examples thereof include phenyltrimethylammonium hydroxide and phenyltriethylammonium hydroxide.
  • the compound for which a base is generated by heat for example, a compound having a heat instability group such as an amide group, a urethane group or an aziridine group and producing an amine by heating can be used.
  • a compound having a heat instability group such as an amide group, a urethane group or an aziridine group and producing an amine by heating
  • urea benzyltrimethylammonium chloride, benzyltriethylammonium chloride, benzyldimethylphenylammonium chloride, benzyldodecyldimethylammonium chloride, benzyltributylammonium chloride, and choline chloride are also mentioned as compounds that generate a base by heat.
  • the content thereof is 0.0001 to 20% by mass, preferably 0.01 to 15% by mass, based on the total solid content of the resist underlayer film forming composition. , More preferably 0.1 to 10% by mass.
  • acidic compounds and / or compounds that generate acid by heat are preferable.
  • the resist underlayer film forming composition of the present invention may contain a cross-linking agent component.
  • the cross-linking agent include melamine-based, substituted urea-based, and polymers thereof.
  • it is a cross-linking agent having at least two cross-linking substituents, such as methoxymethylated glycol uryl (eg, tetramethoxymethyl glycol uryl), butoxymethylated glycol uryl, methoxymethylated melamine, butoxymethylated melamine, methoxy.
  • methoxymethylated glycol uryl for example, tetramethoxymethyl glycol uryl is preferable.
  • a cross-linking agent having high heat resistance can be used.
  • a compound containing a cross-linking substituent having an aromatic ring for example, a benzene ring or a naphthalene ring
  • an aromatic ring for example, a benzene ring or a naphthalene ring
  • this compound examples include a compound having a partial structure of the following formula (5-1) and a polymer or oligomer having a repeating unit of the following formula (5-2).
  • R 11 , R 12 , R 13 and R 14 are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms.
  • m1, m2, m3 and m4 each represent an integer of 0 to 3.
  • alkyl groups having 1 to 10 carbon atoms methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl Group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl-n- Butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propy
  • M1 satisfies 1 ⁇ m1 ⁇ 6-m2, m2 satisfies 1 ⁇ m2 ⁇ 5, m3 satisfies 1 ⁇ m3 ⁇ 4-m2, and m4 satisfies 1 ⁇ m4 ⁇ 3.
  • the above compounds can be obtained as products of Asahi Organic Materials Industry Co., Ltd. and Honshu Chemical Industry Co., Ltd.
  • the compound of the formula (6-22) can be obtained under the trade name TMOM-BP of Asahi Organic Materials Industry Co., Ltd.
  • the amount of the cross-linking agent added varies depending on the coating solvent used, the substrate used, the required solution viscosity, the required film shape, etc., but is 0.001 with respect to the total solid content of the resist underlayer film forming composition. It is -80% by mass, preferably 0.01 to 50% by mass, and more preferably 0.1 to 40% by mass.
  • These cross-linking agents may cause a cross-linking reaction by self-condensation, but if cross-linking substituents are present in the above-mentioned polymer of the present invention, they can cause a cross-linking reaction with those cross-linking substituents.
  • the resist underlayer film forming composition of the present invention may contain a surfactant as an optional component in order to improve the coatability on the semiconductor substrate.
  • a surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether, polyoxyethylene octylphenyl ether, and polyoxyethylene.
  • Polyoxyethylene alkylaryl ethers such as nonylphenyl ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitantri Polysorbate such as sorbitan fatty acid esters such as stearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • Nonionic surfactants such as oxyethylene sorbitan fatty acid esters, Ftop [registered trademarks] EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronics Co., Ltd.), Megafuck [registered trademarks] F171, F173, R -30, R-30N, R-40, R-40-LM (manufactured by DIC Co., Ltd.), Florard FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.), Asahi Guard (registered trademark) AG710, Surflon [registered] Trademarks] Fluorophilic surfactants such as S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.), and organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Industry Co., Ltd.).
  • surfactants can be used alone or in combination of two or more.
  • the content thereof is 0.0001 to 10% by mass, preferably 0.01 to 5% by mass, based on the total solid content of the resist underlayer film forming composition. %.
  • the solid content of the resist underlayer film forming composition according to the present invention is usually 0.1 to 70% by mass, preferably 0.1 to 60% by mass.
  • the solid content is the content ratio of all the components excluding the solvent from the resist underlayer film forming composition.
  • the proportion of the compound or reaction product of the present application in the solid content is in the order of 1 to 100% by mass, 1 to 99.9% by mass, 50 to 99.9% by mass, 50 to 95% by mass, and 50 to 90% by mass. Is preferable.
  • a light absorbing agent, a rheology adjusting agent, an adhesion auxiliary agent, or the like can be added to the resist underlayer film forming composition of the present invention.
  • the rheology modifier is effective in improving the fluidity of the resist underlayer film forming composition.
  • Adhesive aids are effective in improving the adhesion between the semiconductor substrate or resist and the underlayer film.
  • Examples of the light-absorbing agent include commercially available light-absorbing agents described in "Technology and Market of Industrial Dyes” (CMC Publishing) and “Dye Handbook” (edited by Synthetic Organic Chemistry Association), for example, C.I. I. Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114 and 124; C.I. I. D isperse Orange 1,5,13,25,29,30,31,44,57,72 and 73; C.I. I.
  • the above-mentioned absorbent is usually blended in a proportion of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the resist underlayer film forming composition.
  • the rheology adjuster mainly improves the fluidity of the resist underlayer film forming composition, and particularly improves the film thickness uniformity of the resist underlayer film and the filling property of the resist underlayer film forming composition into the hole in the baking step. It is added for the purpose of enhancing.
  • Specific examples include phthalic acid derivatives such as dimethylphthalate, diethylphthalate, diisobutylphthalate, dihexylphthalate and butylisodecylphthalate, adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate and octyldecyl adipate, and didi.
  • Examples include maleic acid derivatives such as normal butylmalate, diethylmalate, and dinonylmalate, oleic acid derivatives such as methyloleate, butyloleate, and tetrahydrofurfuryloleate, and stearic acid derivatives such as normalbutylstearate and glyceryl stearate. It can.
  • These rheology adjusters are usually blended in a proportion of less than 30% by mass with respect to the total solid content of the resist underlayer film forming composition.
  • Adhesive aids are added mainly for the purpose of improving the adhesion between the substrate or resist and the resist underlayer film forming composition, and particularly preventing the resist from peeling off during development.
  • Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylmethylolchlorosilane, methyldiphenylchlorosilane, and chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylmethylolethoxysilane, diphenyldimethoxysilane, and fluorine.
  • Alkoxysilanes such as enyltriethoxysilane, hexamethyldisilazane, N, N'-bis (trimethylsilyl) urea, dimethyltrimethylsilylamine, cilazanes such as trimethylsilylimidazole, methyloltrichlorosilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -Silanes such as aminopropyltriethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane, benzotriazole, benzimidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urasol , Heterocyclic compounds such as thiouracil, mercaptoimidazole, mercaptopyrimidine, urea such as 1,1-dimethylurea and 1,3-dimethyl
  • the resist underlayer film according to the present invention can be produced by applying the above-mentioned resist underlayer film forming composition on a semiconductor substrate and firing it.
  • Examples of the semiconductor substrate to which the resist underlayer film forming composition of the present invention is applied include silicon wafers, germanium wafers, and compound semiconductor wafers such as gallium arsenide, indium phosphate, gallium nitride, indium nitride, and aluminum nitride. Be done.
  • the inorganic film can be, for example, ALD (atomic layer deposition) method, CVD (chemical vapor deposition) method, reactive sputtering method, ion plating method, vacuum deposition. It is formed by a method, a spin coating method (spin-on-glass: SOG).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • reactive sputtering method reactive sputtering method
  • ion plating method vacuum deposition. It is formed by a method, a spin coating method (spin-on-glass: SOG).
  • spin-on-glass: SOG spin-on-glass
  • the inorganic film include a polysilicon film, a silicon oxide film, a silicon nitride film, a BPSG (Boro-Phospho Silicone Glass) film, a titanium nitride film, a titanium nitride film, a tungsten film, a gallium nitride film, and a gallium ar
  • the resist underlayer film forming composition of the present invention is applied onto such a semiconductor substrate by an appropriate coating method such as a spinner or a coater. Then, the resist underlayer film is formed by baking using a heating means such as a hot plate.
  • the baking conditions are appropriately selected from a baking temperature of 100 ° C. to 400 ° C. and a baking time of 0.3 minutes to 60 minutes.
  • the baking temperature is preferably 120 ° C. to 350 ° C. and the baking time is 0.5 minutes to 30 minutes, and more preferably the baking temperature is 150 ° C. to 300 ° C. and the baking time is 0.8 minutes to 10 minutes.
  • the film thickness of the resist underlayer film to be formed is, for example, 0.001 ⁇ m (1 nm) to 10 ⁇ m, preferably 0.002 ⁇ m (2 nm) to 1 ⁇ m, and more preferably 0.005 ⁇ m (5 nm) to 0.5 ⁇ m (500 nm). is there. If the baking temperature is lower than the above range, the cross-linking becomes insufficient. On the other hand, if the temperature at the time of baking is higher than the above range, the resist underlayer film may be decomposed by heat.
  • the method for manufacturing the patterned substrate goes through the following steps. Usually, it is produced by forming a photoresist layer on a resist underlayer film.
  • the photoresist formed by coating and firing on the resist underlayer film by a method known per se is not particularly limited as long as it is sensitive to light used for exposure. Both negative photoresists and positive photoresists can be used.
  • a chemically amplified photoresist composed of a low molecular weight compound that decomposes to increase the alkali dissolution rate of the photoresist, an alkali-soluble binder, and a photoacid generator, and a binder having a group that decomposes with an acid to increase the alkali dissolution rate.
  • JSR Corporation's product name V146G Shipley's product name APEX-E, Sumitomo Chemical Co., Ltd.'s product name PAR710, and Shin-Etsu Chemical's product name AR2772, SEPR430, and the like can be mentioned.
  • Proc. SPIE, Vol. 3999, 330-334 (2000) Proc. SPIE, Vol. 3999,357-364 (2000)
  • Proc. SPIE, Vol. Fluorine-containing atomic polymer-based photoresists as described in 3999,365-374 (2000) can be mentioned.
  • the exposure is performed through a mask (reticle) for forming a predetermined pattern, and for example, i-ray, KrF excimer laser, ArF excimer laser, EUV (extreme ultraviolet) or EB (electron beam) is used.
  • An alkaline developer is used for development, and the development temperature is appropriately selected from 5 ° C. to 50 ° C. and the development time is 10 seconds to 300 seconds.
  • Examples of the alkaline developing solution include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate and aqueous ammonia, primary amines such as ethylamine and n-propylamine, diethylamine, and the like.
  • Secondary amines such as gyn-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, and the first such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline.
  • An aqueous solution of an alkali such as a quaternary ammonium salt, cyclic amines such as pyrrole and piperidine can be used.
  • an appropriate amount of an alcohol such as isopropyl alcohol or a nonionic surfactant may be added to the aqueous solution of the alkalis for use.
  • the preferred developer is a quaternary ammonium salt, more preferably tetramethylammonium hydroxide and choline.
  • a surfactant or the like can be added to these developers.
  • a method of developing with an organic solvent such as butyl acetate to develop a portion of the photoresist in which the alkali dissolution rate has not been improved can also be used. Through the above steps, a substrate in which the above resist is patterned can be produced.
  • the resist underlayer film is dry-etched using the formed resist pattern as a mask.
  • the inorganic film is formed on the surface of the semiconductor substrate used, the surface of the inorganic film is exposed, and if the inorganic film is not formed on the surface of the semiconductor substrate used, the semiconductor substrate is exposed. Expose the surface.
  • the semiconductor device can be manufactured through a step of processing the substrate by a method known per se (dry etching method or the like).
  • the weight average molecular weight (Mw) of the polymer shown in the following synthetic example of the present specification is a measurement result by gel permeation chromatography (hereinafter, abbreviated as GPC).
  • GPC gel permeation chromatography
  • the liquid was separated, and 205.10 g of 10 wt% sodium sulfite (manufactured by Kanto Chemical Co., Inc.) was charged into the obtained organic layer. Again, 410.20 g of 5 wt% sodium hydrogen carbonate (manufactured by Kanto Chemical Co., Ltd.) was charged into the obtained organic layer after liquid separation. Then, the liquid was separated, 205.10 g of water was added to the obtained organic layer, and the mixture was washed twice. After the organic layer was concentrated and dried, column purification was performed to obtain 10.46 g of the desired product (methyldiglycidyl acetate isocyanuric acid: Me-DAGICA) represented by the formula (B1-2) in a yield of 46.6%. It was.
  • Me-DAGICA methyldiglycidyl acetate isocyanuric acid
  • composition preparation [Example 1]
  • the solution containing 0.23 g of the reaction product obtained in Synthesis Example 3 29.70 g of propylene glycol monomethyl ether and tetramethoxymethyl glycol uryl (Nippon Cytec Industries Co., Ltd., trade name: POWDERLINK®) 1174) 0.06 g, phenol sulfonic acid (Tokyo Chemical Industry Co., Ltd.) 0.01 g, and surfactant (Dainippon Ink and Chemical Industry Co., Ltd., trade name: R-40) 0.001 g were added to the solution. did. Then, it was filtered using a polyethylene microfilter having a pore size of 0.02 ⁇ m to prepare a composition for forming a resist underlayer film.
  • Example 2 In addition to 1.23 g of the solution containing 0.23 g of the reaction product obtained in Synthesis Example 4, 29.70 g of propylene glycol monomethyl ether and tetramethoxymethyl glycol uryl (Nippon Cytec Industries Co., Ltd., trade name: POWDERLINK®) 1174) 0.06 g, phenol sulfonic acid (Tokyo Chemical Industry Co., Ltd.) 0.01 g, and surfactant (Dainippon Ink and Chemical Industry Co., Ltd., trade name: R-40) 0.001 g were added to the solution. did. Then, it was filtered using a polyethylene microfilter having a pore size of 0.02 ⁇ m to prepare a composition for forming a resist underlayer film.
  • Example 3 In addition to 1.23 g of the solution containing 0.23 g of the reaction product obtained in Synthesis Example 5, 29.70 g of propylene glycol monomethyl ether and tetramethoxymethyl glycol uryl (Nippon Cytec Industries Co., Ltd., trade name: POWDERLINK®) 1174) 0.06 g, phenol sulfonic acid (Tokyo Chemical Industry Co., Ltd.) 0.01 g, and surfactant (Dainippon Ink and Chemical Industry Co., Ltd., trade name: R-40) 0.001 g were added to the solution. did. Then, it was filtered using a polyethylene microfilter having a pore size of 0.02 ⁇ m to prepare a composition for forming a resist underlayer film.
  • Example 4 In addition to 1.23 g of the solution containing 0.23 g of the reaction product obtained in Synthesis Example 6, 29.70 g of propylene glycol monomethyl ether and tetramethoxymethyl glycol uryl (Nippon Cytec Industries Co., Ltd., trade name: POWDERLINK®) 1174) 0.06 g, phenol sulfonic acid (Tokyo Chemical Industry Co., Ltd.) 0.01 g, and surfactant (Dainippon Ink and Chemical Industry Co., Ltd., trade name: R-40) 0.001 g were added to the solution. did. Then, it was filtered using a polyethylene microfilter having a pore size of 0.02 ⁇ m to prepare a composition for forming a resist underlayer film.
  • Example 5 In addition to 1.23 g of the solution containing 0.23 g of the reaction product obtained in Synthesis Example 7, 29.70 g of propylene glycol monomethyl ether and tetramethoxymethyl glycol uryl (Nippon Cytec Industries Co., Ltd., trade name: POWDERLINK®) 1174) 0.06 g, phenol sulfonic acid (Tokyo Chemical Industry Co., Ltd.) 0.01 g, and surfactant (Dainippon Ink and Chemical Industry Co., Ltd., trade name: R-40) 0.001 g were added to the solution. did. Then, it was filtered using a polyethylene microfilter having a pore size of 0.02 ⁇ m to prepare a composition for forming a resist underlayer film.
  • POWDERLINK® propylene glycol monomethyl ether and tetramethoxymethyl glycol uryl
  • Example 6 In addition to 1.23 g of the solution containing 0.23 g of the reaction product obtained in Synthesis Example 10, 29.70 g of propylene glycol monomethyl ether and tetramethoxymethyl glycol uryl (Nippon Cytec Industries Co., Ltd., trade name: POWDERLINK®) 1174) 0.06 g, phenol sulfonic acid (Tokyo Chemical Industry Co., Ltd.) 0.01 g, and surfactant (Dainippon Ink and Chemical Industry Co., Ltd., trade name: R-40) 0.001 g were added to the solution. did. Then, it was filtered using a polyethylene microfilter having a pore size of 0.02 ⁇ m to prepare a composition for forming a resist underlayer film.
  • Example 7 In addition to 1.23 g of the solution containing 0.23 g of the reaction product obtained in Synthesis Example 11, 29.70 g of propylene glycol monomethyl ether and tetramethoxymethyl glycol uryl (Nippon Cytec Industries Co., Ltd., trade name: POWDERLINK®) 1174) 0.06 g, phenol sulfonic acid (Tokyo Chemical Industry Co., Ltd.) 0.01 g, and surfactant (Dainippon Ink and Chemical Industry Co., Ltd., trade name: R-40) 0.001 g were added to the solution. did. Then, it was filtered using a polyethylene microfilter having a pore size of 0.02 ⁇ m to prepare a composition for forming a resist underlayer film.
  • Example 8 In addition to 1.23 g of the solution containing 0.23 g of the reaction product obtained in Synthesis Example 12, 29.70 g of propylene glycol monomethyl ether and tetramethoxymethyl glycol uryl (Nippon Cytec Industries Co., Ltd., trade name: POWDERLINK®) 1174) 0.06 g, phenol sulfonic acid (Tokyo Chemical Industry Co., Ltd.) 0.01 g, and surfactant (Dainippon Ink and Chemical Industry Co., Ltd., trade name: R-40) 0.001 g were added to the solution. did. Then, it was filtered using a polyethylene microfilter having a pore size of 0.02 ⁇ m to prepare a composition for forming a resist underlayer film.
  • Uril Nippon Cytec Industries Co., Ltd., trade name: POWDERLINK (registered trademark) 1174) 0.18 g, phenol sulfonic acid (Tokyo Chemical Industry Co., Ltd.) 0.01 g, and surfactant (Dainippon Ink and Chemicals Co., Ltd.) ), Trade name: R-40) 0.01 g was added to prepare a solution. Then, it was filtered using a polyethylene microfilter having a pore size of 0.02 ⁇ m to prepare a composition for forming a resist underlayer film.
  • Examples 1 to 8 have sufficiently higher etching selectivity than Comparative Example 1.
  • the resist underlayer film forming composition obtained by the present invention can shorten the etching time during dry etching of the resist underlayer film, and the resist film thickness is reduced when the resist underlayer film is removed by dry etching. It is possible to suppress an unfavorable phenomenon. Further, being able to shorten the dry etching time is particularly useful as a resist underlayer film because it can suppress undesired etching damage to the underlying substrate of the resist underlayer film.
  • the resist underlayer film forming composition according to the present invention provides a resist underlayer film having a particularly high dry etching rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)

Abstract

特に高ドライエッチング速度を有するレジスト下層膜、該レジスト下層膜形成組成物、レジストパターン形成方法及び半導体装置の製造方法を提供する。エポキシ基含有化合物と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応生成物、及び溶剤を含むレジスト下層膜形成組成物である。上記複素環化合物に含まれる複素環が、フラン、ピロール、ピラン、イミダゾール、ピラゾール、オキサゾール、チオフェン、チアゾール、チアジアゾール、イミダゾリジン、チアゾリジン、イミダゾリン 、ジオキサン、モルホリン、ジアジン、チアジン、トリアゾール、テトラゾール、ジオキソラン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、インドール、プリン、キノリン、イソキノリン、キヌクリジン、クロメン、チアントレン、フェノチアジン、フェノキサジン、キサンテン、アクリジン、フェナジン及びカルバゾールから選択されることが好ましい。

Description

複素環化合物を含むレジスト下層膜形成組成物
 本発明は、特に高いドライエッチング速度を有するレジスト下層膜形成組成物、当該レジスト下層膜形成組成物を用いたレジスト下層膜及びその製造方法、レジストパターンの形成方法、及び半導体装置の製造方法に関する。
 レジスト膜を露光する際、反射波がそのレジスト膜へ悪影響を及ぼす場合がある。これを抑制する目的で形成されるレジスト下層膜は、反射防止膜とも呼ばれている。
 レジスト下層膜は、溶液状のレジスト下層膜形成用組成物を塗布し、硬化させることにより、容易に成膜できることが求められる。したがって、当該組成物は、加熱等によって容易に硬化すると共に、所定の溶剤に対する溶解性が高い化合物(ポリマー)を含むことが必要である。
 レジスト下層膜上に形成されるレジストパターンは、基板に垂直な方向の断面形状が矩形状(いわゆるアンダーカット、裾引き等のないストレートな裾形状)であることが望ましい。例えば、レジストパターンがアンダーカット形状又は裾引き形状になると、レジストパターンの倒壊、リソグラフィー工程の際に被加工物(基板、絶縁膜等)を所望の形状又はサイズに加工できない、という問題が発生する。
 また、レジスト下層膜には、上層のレジスト膜よりもドライエッチング速度が大きい、すなわちドライエッチング速度の選択比が大きいことが求められる。
 特許文献1には、ジスルフィド結合を主鎖に有するポリマーを用いたレジスト下層膜形成組成物が開示されている。特許文献2には、グリシジルエステル基を有するエポキシ化合物が開示されている。特許文献3には窒素原子上の置換基としてヒドロキシアルキル構造を有するトリアジントリオン化合物、オリゴマー化合物又は高分子化合物を含むことを特徴とする反射防止膜形成組成物が開示されている。
再表2009-096340号公報 特開平8-81461号公報 再表2004-034148号公報
 半導体素子の製造において、高いドライエッチング速度を有するレジスト下層膜が依然として求められている。高いドライエッチング速度を有するレジスト下層膜とするためには、組成物のポリマーにヘテロ原子を含むものを適用することが知られている。
 本願の発明者が鋭意検討した結果、エポキシ基含有化合物、好ましくはグリシジルエステル基含有化合物、好ましくはグリシジルエステル基を有する含窒素複素環化合物(イソシアヌル酸等)と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応生成物をレジスト下層膜形成組成物に適用すると、従来技術よりも高エッチレート化を達成できることを見出した。
 本発明は、このような課題解決に鑑み、特に高ドライエッチング速度を有するレジスト下層膜形成組成物を提供することを目的としてなされたものである。また本発明は、当該レジスト下層膜形成組成物を用いたレジスト下層膜及びその製造方法、レジストパターンの形成方法、及び半導体装置の製造方法を提供することをも目的とするものである。
 本発明は以下を包含する。
[1]
 エポキシ基含有化合物と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応生成物、及び溶剤を含む、レジスト下層膜形成組成物。
[2]
 上記複素環化合物に含まれる複素環が、フラン、ピロール、ピラン、イミダゾール、ピラゾール、オキサゾール、チオフェン、チアゾール、チアジアゾール、イミダゾリジン、チアゾリジン、イミダゾリン、ジオキサン、モルホリン、ジアジン、チアジン、トリアゾール、テトラゾール、ジオキソラン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、インドール、プリン、キノリン、イソキノリン、キヌクリジン、クロメン、チアントレン、フェノチアジン、フェノキサジン、キサンテン、アクリジン、フェナジン及びカルバゾールから選択される、[1]に記載のレジスト下層膜形成組成物。
[3]
 エポキシ基と反応性を有する部位が、ヒドロキシ基、チオール基、アミノ基、イミド基及びカルボキシ基から選ばれる、[1]又は[2]に記載のレジスト下層膜形成組成物。
[4]
 上記エポキシ基含有化合物が、下記式(1)で表される化合物である、請求項1~3何れか1項に記載のレジスト下層膜形成組成物。
Figure JPOXMLDOC01-appb-C000007

(式(1)中、Xは、下記式(2)、式(3)又は式(4)で表される2価の有機基であり、n、nは各々独立に1乃至10の整数を表す。)
Figure JPOXMLDOC01-appb-C000008

(式(2)、式(3)及び式(4)中、
 R及びRは、各々独立に水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。
 Rは、水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基、炭素原子数1乃至6のアルキルチオ基及び下記式(5)で表される有機基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000009

(式(5)中、n3は1乃至10の整数を表す。)
[5]
 さらに、架橋剤、架橋触媒及び界面活性剤からなる群より選択される少なくとも一種を含む、[1]~[4]何れか1に記載のレジスト下層膜形成組成物。
[6]
 [1]~[5]のいずれか1項に記載のレジスト下層膜形成組成物からなる塗布膜の焼成物であることを特徴とするレジスト下層膜。
[7]
 半導体基板上に[1]~[5]のいずれか1項に記載のレジスト下層膜形成組成物を塗布しベークしてレジスト下層膜を形成する工程、前記レジスト下層膜上にレジストを塗布しベークしてレジスト膜を形成する工程、前記レジスト下層膜と前記レジストで被覆された半導体基板を露光する工程、露光後の前記レジスト膜を現像し、パターニングする工程を含む、パターニングされた基板の製造方法。
[8]
 半導体基板上に、[1]~[5]の何れか1項に記載のレジスト下層膜形成組成物からなるレジスト下層膜を形成する工程と、
 前記レジスト下層膜の上にレジスト膜を形成する工程と、
 レジスト膜に対する光又は電子線の照射とその後の現像によりレジストパターンを形成する工程と、
 形成された前記レジストパターンを介して前記レジスト下層膜をエッチングすることによりパターン化されたレジスト下層膜を形成する工程と、
 パターン化された前記レジスト下層膜により半導体基板を加工する工程と、
を含むことを特徴とする、半導体装置の製造方法。
[9]
下記式(1)で表される化合物と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応生成物。
Figure JPOXMLDOC01-appb-C000010

(式(1)中、Xは、下記式(2)、式(3)又は式(4)で表される2価の有機基であり、n、nは各々独立に1乃至10の整数を表す。)
Figure JPOXMLDOC01-appb-C000011

(式(2)、式(3)及び式(4)中、
 R及びRは、各々独立に水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。
 Rは、水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基、炭素原子数1乃至6のアルキルチオ基及び下記式(5)で表される有機基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000012

(式(5)中、n3は1乃至10の整数を表す。)
 本発明のレジスト下層膜形成組成物は、高ドライエッチング速度を有し、レジスト膜厚の薄膜化による種々の問題を解決でき、より微細な半導体基板の微細加工が達成される。
<レジスト下層膜形成組成物、エポキシ基含有化合物と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応生成物>
 本願のレジスト下層膜形成組成物は、エポキシ基含有化合物と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応生成物、及び溶剤を含む。
 上記エポキシ基含有化合物は、上記目的を達成できる化合物であれば限定されないが、好ましくはグリシジルエステル基含有化合物、好ましくはグリシジルエステル基を有する含窒素複素環化合物(イソシアヌル酸等)、である。
 上記エポキシ基含有化合物は、例えば炭素原子数6~40の芳香環構造を含む化合物、トリアジンオンを含む化合物、トリアジンジオンを含む化合物又はトリアジントリオンを含む化合物であってよいが、トリアジントリオンを含む化合物が好ましい。
 上記エポキシ基含有化合物は、下記式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000013

(式(1)中、Xは、下記式(2)、式(3)又は式(4)で表される2価の有機基であり、n、nは各々独立に1乃至10の整数を表す。)
Figure JPOXMLDOC01-appb-C000014

(式(2)、式(3)及び式(4)中、
 R及びRは、各々独立に水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。
 Rは、水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基、炭素原子数1乃至6のアルキルチオ基及び下記式(5)で表される有機基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000015

(式(5)中、n3は1乃至10の整数を表す。)
 炭素原子数1乃至10のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 炭素原子数2乃至10のアルケニル基としては、エテニル基、1-プロペニル基、2-プロペニル基、1-メチル-1-エテニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-n-プロピルエテニル基、1-メチル-1-ブテニル基、1-メチル-2-ブテニル基、1-メチル-3-ブテニル基、2-エチル-2-プロペニル基、2-メチル-1-ブテニル基、2-メチル-2-ブテニル基、2-メチル-3-ブテニル基、3-メチル-1-ブテニル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、1,1-ジメチル-2-プロペニル基、1-i-プロピルエテニル基、1,2-ジメチル-1-プロペニル基、1,2-ジメチル-2-プロペニル基、1-シクロペンテニル基、2-シクロペンテニル基、3-シクロペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-メチル-1-ペンテニル基、1-メチル-2-ペンテニル基、1-メチル-3-ペンテニル基、1-メチル-4-ペンテニル基、1-n-ブチルエテニル基、2-メチル-1-ペンテニル基、2-メチル-2-ペンテニル基、2-メチル-3-ペンテニル基、2-メチル-4-ペンテニル基、2-n-プロピル-2-プロペニル基、3-メチル-1-ペンテニル基、3-メチル-2-ペンテニル基、3-メチル-3-ペンテニル基、3-メチル-4-ペンテニル基、3-エチル-3-ブテニル基、4-メチル-1-ペンテニル基、4-メチル-2-ペンテニル基、4-メチル-3-ペンテニル基、4-メチル-4-ペンテニル基、1,1-ジメチル-2-ブテニル基、1,1-ジメチル-3-ブテニル基、1,2-ジメチル-1-ブテニル基、1,2-ジメチル-2-ブテニル基、1,2-ジメチル-3-ブテニル基、1-メチル-2-エチル-2-プロペニル基、1-s-ブチルエテニル基、1,3-ジメチル-1-ブテニル基、1,3-ジメチル-2-ブテニル基、1,3-ジメチル-3-ブテニル基、1-i-ブチルエテニル基、2,2-ジメチル-3-ブテニル基、2,3-ジメチル-1-ブテニル基、2,3-ジメチル-2-ブテニル基、2,3-ジメチル-3-ブテニル基、2-i-プロピル-2-プロペニル基、3,3-ジメチル-1-ブテニル基、1-エチル-1-ブテニル基、1-エチル-2-ブテニル基、1-エチル-3-ブテニル基、1-n-プロピル-1-プロペニル基、1-n-プロピル-2-プロペニル基、2-エチル-1-ブテニル基、2-エチル-2-ブテニル基、2-エチル-3-ブテニル基、1,1,2-トリメチル-2-プロペニル基、1-t-ブチルエテニル基、1-メチル-1-エチル-2-プロペニル基、1-エチル-2-メチル-1-プロペニル基、1-エチル-2-メチル-2-プロペニル基、1-i-プロピル-1-プロペニル基、1-i-プロピル-2-プロペニル基、1-メチル-2-シクロペンテニル基、1-メチル-3-シクロペンテニル基、2-メチル-1-シクロペンテニル基、2-メチル-2-シクロペンテニル基、2-メチル-3-シクロペンテニル基、2-メチル-4-シクロペンテニル基、2-メチル-5-シクロペンテニル基、2-メチレン-シクロペンチル基、3-メチル-1-シクロペンテニル基、3-メチル-2-シクロペンテニル基、3-メチル-3-シクロペンテニル基、3-メチル-4-シクロペンテニル基、3-メチル-5-シクロペンテニル基、3-メチレン-シクロペンチル基、1-シクロヘキセニル基、2-シクロヘキセニル基及び3-シクロヘキセニル基等が挙げられる。
 炭素原子数2乃至10のアルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、4-メチル-1-ペンチニル基、3-メチル-1-ペンチニル基が挙げられる。
 酸素原子若しくは硫黄原子で中断されていてもよい、とは例えば上記アルキル基、アルケニル基及びアルキニル基が含む炭素原子が、酸素原子若しくは硫黄原子で置き換わっていることを指す。例えばアルキル基中、アルケニル基中及びアルキニル基中のある炭素原子が酸素原子で置き換わっている場合は、エーテル結合を含むことになり、例えばアルキル基中、アルケニル基中及びアルキニル基中のある炭素原子が硫黄原子で置き換わっている場合は、チオエーテル結合を含むことになる。
 炭素原子数1乃至6のアルキル基としては、上記炭素原子数1乃至10のアルキル基のうち、炭素原子数が1乃至6のアルキル基である。
 ハロゲン原子としては、フッ素、塩素、臭素、及びヨウ素が挙げられる。
 炭素原子数1乃至10のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペントキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシルオキシ基、1-メチル-n-ペンチルオキシ基、2-メチル-n-ペンチルオキシ基、3-メチル-n-ペンチルオキシ基、4-メチル-n-ペンチルオキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2,-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基、及び1-エチル-2-メチル-n-プロポキシ基等が挙げられる。
 炭素原子数1乃至6のアルキルチオ基としては、エチルチオ基、ブチルチオ基、ヘキシルチオ基等が挙げられる。
 前記式(1)中、Xが式(4)で表されることが好ましい。
 前記式(1)中、Xが式(4)で表され、n1及びn2が1であり、Rが酸素原子で中断されていてもよい炭素原子数1乃至5のアルキル基であることが好ましい。この場合、炭素原子数1乃至5のアルキル基の具体例としては、上記炭素原子数1乃至10のアルキル基のうち、炭素原子数1乃至5のアルキル基である。
 前記式(1)中、Xが式(4)で表され、n1及びn2が1であり、Rがメチル基、メトキシメチル基又は式(5)で表され、n3が1である、以下式(A―1)、式(A―7)又は式(A―19)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018
 本願の式(1)で表される化合物は例えば下記式(A-1)乃至(A-21)を例示することができるが、これらに限定されるわけでは無い。
Figure JPOXMLDOC01-appb-C000019

Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021
 上記エポキシ基含有化合物は、下記の化合物(a)~(s)から選ばれてもよい。式(o)において、Rは炭素原子数1~10のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000022
 又、エポキシ基含有化合物としては、下記に示す3つ以上のエポキシ基を含む化合物でもよい。具体例としてはグリシジルエーテル化合物、グリシジルエステル化合物、グリシジルアミン化合物、グリシジル基含有イソシアヌレートを挙げることができる。本願発明に用いられるエポキシ基含有化合物として、下記式(A0-1)~(A0-13)を例示することができる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 式(A0-1)は日産化学(株)製、商品名TEPIC-G、TEPIC-S、TEPIC-SS、TEPIC-HP、TEPIC-L(いずれも1,3,5-トリス(2,3-エポキシプロピル)イソシアヌル酸)として入手することができる。
 式(A0-2)は日産化学(株)製、商品名TEPIC-VLとして入手することができる。
 式(A0-3)は日産化学(株)製、商品名TEPIC-FLとして入手することができる。
 式(A0-4)は日産化学(株)製、商品名TEPIC-UCとして入手することができる。
 式(A0-5)はナガセケムテック(株)製、商品名デナコールEX-411として入手することができる。
 式(A0-6)はナガセケムテック(株)製、商品名デナコールEX-521として入手することができる。
 式(A0-7)は三菱ガス化学(株)製、商品名TETRAD-Xとして入手することができる。
 式(A0-8)は昭和電工(株)製、商品名BATGとして入手することができる。
 式(A0-9)は新日鉄住金化学(株)製、商品名YH-434Lとして入手することができる。
 式(A0-10)は旭有機材工業(株)製、商品名TEP-Gとして入手することができる。
 式(A0-11)はDIC(株)製、商品名EPICLON HP-4700として入手することができる。
 式(A0-12)は(株)ダイセル製、商品名エポリード GT401として入手することができる。尚、a、b、c、dはそれぞれ0又は1であり、a+b+c+d=1である。
 以下のエポキシ化合物を用いてもよい。
Figure JPOXMLDOC01-appb-C000025
 上記エポキシ基含有化合物と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応は、自体公知の方法で行うことが出来る。
 上記複素環化合物は、下記に記載の複素環を含む化合物である。
 上記複素環は、フラン、ピロール、ピラン、イミダゾール、ピラゾール、オキサゾール、チオフェン、チアゾール、チアジアゾール、イミダゾリジン、チアゾリジン、イミダゾリン 、ジオキサン、モルホリン、ジアジン、チアジン、トリアゾール、テトラゾール、ジオキソラン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、インドール、プリン、キノリン、イソキノリン、キヌクリジン、クロメン、チアントレン、フェノチアジン、フェノキサジン、キサンテン、アクリジン、フェナジン及びカルバゾールから選択されることが好ましい。
 上記複素環の一部の元素が、例えば炭素原子数1乃至5アルキル基、メチルチオ基等の置換基で置換されていてもよい。
 これらの中でも特にレジスト下層膜のドライエッチング速度が速くなるチオフェン、テトラゾール、チアゾール及びチアジアゾールの中から選ばれることが好ましい。
 上記エポキシ基と反応性を有する部位が、ヒドロキシ基、チオール基、アミノ基、イミド基及びカルボキシ基から選ばれることが好ましい。
 これらの中でも特にレジスト下層膜のドライエッチング速度が速くなるカルボキシ基及びチオール基が好ましい。
 エポキシ基と反応性を有する部位を1つ含む複素環化合物の具体例としては、下記に記載の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 上記式(1)で表される化合物のエポキシ基と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応時のモル数の割合(すなわち、前者:後者)は、例えば(0.1~1):1である。好ましくは(0.5~1):1である。
 反応等量以外の(残りの)エポキシ基は、上記エポキシ基と反応性を有する部位を1つ含む複素環化合物以外の化合物(例えばエポキシ基と反応性を有する部位を含む芳香族及び/又は脂肪族(芳香族カルボン酸、芳香族チオール、脂肪族カルボン酸、芳香族チオール、エポキシ基と反応性を有する部位を2つ以上含む複素環化合物等))と反応していても良い。
 上記エポキシ基と反応性を有する部位を含む化合物は下記式(B-1)乃至(B-62)を例示することができるが、これらに限定されるわけではない。
Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031
 本願の反応生成物の重量平均分子量(Mw)が、例えば300~4,000であり、400~3,000であり、又は500~2,000である。
[溶媒]
 本発明のレジスト下層膜形成組成物は、上記各成分を、有機溶剤に溶解させることによって製造でき、均一な溶液状態で用いられる。
 本発明に係るレジスト下層膜形成組成物の溶媒としては、上記化合物、又はその反応生成物を溶解できる溶媒であれば、特に制限なく使用することができる。特に、本発明に係るレジスト下層膜形成組成物は均一な溶液状態で用いられるものであるため、その塗布性能を考慮すると、リソグラフィー工程に一般的に使用される溶媒を併用することが推奨される。
 前記有機溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、4-メチル-2-ペンタノール、2―ヒドロキシイソ酪酸メチル、2―ヒドロキシイソ酪酸エチル、エトキシ酢酸エチル、酢酸2-ヒドロキシエチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、2-ヘプタノン、メトキシシクロペンタン、アニソール、γ-ブチロラクトン、N-メチルピロリドン、N,N-ジメチルホルムアミド、及びN,N-ジメチルアセトアミドが挙げられる。これらの溶剤は、単独で又は2種以上を組み合わせて用いることができる。
 これらの溶媒の中でプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、及びシクロヘキサノン等が好ましい。特にプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが好ましい。
[架橋触媒]
 本発明のレジスト下層膜形成組成物は、任意成分として、架橋反応を促進させるために、架橋触媒を含有することができる。当該架橋触媒としては、酸性化合物、塩基性化合物に加え、熱により酸又は塩基が発生する化合物を用いることができる。酸性化合物としては、スルホン酸化合物又はカルボン酸化合物を用いることができ、熱により酸が発生する化合物としては、熱酸発生剤を用いることができる。
 スルホン酸化合物又はカルボン酸化合物として、例えば、フェノールスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムトリフルオロメタンスルホナート、ピリジニウム-p-トルエンスルホネート(ピリジニウム-p-フェノールスルホン酸)、サリチル酸、カンファースルホン酸、5-スルホサリチル酸、4-クロロベンゼンスルホン酸、4-ヒドロキシベンゼンスルホン酸、ピリジニウム-4-ヒドロキシベンゼンスルホン酸、ベンゼンジスルホン酸、1-ナフタレンスルホン酸、4-ニトロベンゼンスルホン酸、クエン酸、安息香酸、ヒドロキシ安息香酸が挙げられる。
 熱酸発生剤として、例えば、K-PURE〔登録商標〕CXC-1612、同CXC-1614、同TAG-2172、同TAG-2179、同TAG-2678、同TAG2689(以上、King Industries社製)、及びSI-45、SI-60、SI-80、SI-100、SI-110、SI-150(以上、三新化学工業株式会社製)が挙げられる。
 これら架橋触媒は、1種又は2種以上を組み合わせて用いることができる。また、塩基性化合物としては、アミン化合物又は水酸化アンモニウム化合物を用いることができ、熱により塩基が発生する化合物としては、尿素を用いることができる。
 アミン化合物として、例えば、トリエタノールアミン、トリブタノールアミン、トリメチルアミン、トリエチルアミン、トリノルマルプロピルアミン、トリイソプロピルアミン、トリノルマルブチルアミン、トリ-tert-ブチルアミン、トリノルマルオクチルアミン、トリイソプロパノールアミン、フェニルジエタノールアミン、ステアリルジエタノールアミン、及びジアザビシクロオクタン等の第3級アミン、ピリジン及び4-ジメチルアミノピリジン等の芳香族アミンが挙げられる。また、ベンジルアミン及びノルマルブチルアミン等の第1級アミン、ジエチルアミン及びジノルマルブチルアミン等の第2級アミンもアミン化合物として挙げられる。これらのアミン化合物は、単独で又は二種以上を組み合わせて用いることができる。
 水酸化アンモニウム化合物としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化ベンジルトリエチルアンモニウム、水酸化セチルトリメチルアンモニウム、水酸化フェニルトリメチルアンモニウム、水酸化フェニルトリエチルアンモニウムが挙げられる。
 また、熱により塩基が発生する化合物としては、例えば、アミド基、ウレタン基又はアジリジン基のような熱不安定性基を有し、加熱することでアミンを生成する化合物を使用することができる。その他、尿素、ベンジルトリメチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、ベンジルジメチルフェニルアンモニウムクロリド、ベンジルドデシルジメチルアンモニウムクロリド、ベンジルトリブチルアンモニウムクロリド、コリンクロリドも熱により塩基が発生する化合物として挙げられる。
 前記レジスト下層膜形成組成物が架橋触媒を含む場合、その含有量は、レジスト下層膜形成組成物の全固形分に対して、0.0001~20質量%、好ましくは0.01~15質量%、さらに好ましくは0.1~10質量%である。
 上記の中でも、酸性化合物及び/又は熱により酸が発生する化合物(架橋酸触媒)が好ましい。
[架橋剤]
 本発明のレジスト下層膜形成組成物は架橋剤成分を含むことができる。その架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられる。好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、メトキシメチル化グリコールウリル(例えば、テトラメトキシメチルグリコールウリル)、ブトキシメチル化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メトキシメチル化ベンゾグワナミン、ブトキシメチル化ベンゾグワナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メトキシメチル化チオ尿素、またはメトキシメチル化チオ尿素等の化合物である。また、これらの化合物の縮合体も使用することができる。
 これらの中でもメトキシメチル化グリコールウリル(例えば、テトラメトキシメチルグリコールウリル)が好ましい。
 また、上記架橋剤としては耐熱性の高い架橋剤を用いることができる。耐熱性の高い架橋剤としては分子内に芳香族環(例えば、ベンゼン環、ナフタレン環)を有する架橋形成置換基を含有する化合物を用いることができる。
 この化合物は下記式(5-1)の部分構造を有する化合物や、下記式(5-2)の繰り返し単位を有するポリマー又はオリゴマーが挙げられる。
Figure JPOXMLDOC01-appb-C000032
 上記R11、R12、R13、及びR14は水素原子又は炭素原子数1~10のアルキル基である。m1、m2、m3及びm4は各々0~3の整数を表す。炭素原子数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基及び2-エチル-3-メチル-シクロプロピル基等が挙げられる。
 m1は1≦m1≦6-m2、m2は1≦m2≦5、m3は1≦m3≦4-m2、m4は1≦m4≦3をそれぞれ満足する。
 式(5-1)及び式(5-2)の化合物、ポリマー、オリゴマーは以下に例示される。
Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-C000034
 上記化合物は旭有機材工業(株)、本州化学工業(株)の製品として入手することができる。例えば上記架橋剤の中で式(6-22)の化合物は旭有機材工業(株)、商品名TMOM-BPとして入手することができる。
 架橋剤の添加量は、使用する塗布溶剤、使用する下地基板、要求される溶液粘度、要求される膜形状などにより変動するが、レジスト下層膜形成組成物の全固形分に対して0.001~80質量%、好ましくは 0.01~50質量%、さらに好ましくは0.1~40質量%である。これら架橋剤は自己縮合による架橋反応を起こすこともあるが、本発明の上記のポリマー中に架橋性置換基が存在する場合は、それらの架橋性置換基と架橋反応を起こすことができる。
[界面活性剤]
 本発明のレジスト下層膜形成組成物は、任意成分として、半導体基板に対する塗布性を向上させるために界面活性剤を含有することができる。前記界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップ〔登録商標〕EF301、同EF303、同EF352(三菱マテリアル電子化成株式会社製)、メガファック〔登録商標〕F171、同F173、同R-30、同R-30N、同R-40、同R-40-LM(DIC株式会社製)、フロラードFC430、同FC431(住友スリーエム株式会社製)、アサヒガード〔登録商標〕AG710、サーフロン〔登録商標〕S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(旭硝子株式会社製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業株式会社製)を挙げることができる。これらの界面活性剤は、単独で又は二種以上を組み合わせて用いることができる。前記レジスト下層膜形成組成物が界面活性剤を含む場合、その含有量は、レジスト下層膜形成組成物の全固形分に対して、0.0001~10質量%、好ましくは0.01~5質量%である。
 本発明に係るレジスト下層膜形成組成物の固形分は通常0.1~70質量%、好ましくは0.1~60質量%とする。固形分はレジスト下層膜形成組成物から溶媒を除いた全成分の含有割合である。固形分中における本願の化合物又は反応生成物の割合は、1~100質量%、1~99.9質量%、50~99.9質量%、50~95質量%、50~90質量%の順で好ましい。
[その他の成分]
 本発明のレジスト下層膜形成組成物には、吸光剤、レオロジー調整剤、接着補助剤などを添加することができる。レオロジー調整剤は、レジスト下層膜形成組成物の流動性を向上させるのに有効である。接着補助剤は、半導体基板またはレジストと下層膜の密着性を向上させるのに有効である。
 吸光剤としては例えば、「工業用色素の技術と市場」(CMC出版)や「染料便覧」(有機合成化学協会編)に記載の市販の吸光剤、例えば、C.I.Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114及び124;C.I.D isperse Orange1,5,13,25,29,30,31,44,57,72及び73;C.I.Disperse Red 1,5,7,13,17,19,43,50,54,58,65,72,73,88,117,137,143,199及び210;C.I.Disperse Violet 43;C.I.Disperse Blue 96;C.I.Fluorescent Brightening Agent 112,135及び163;C.I.Solvent Orange2及び45;C.I.Solvent Red 1,3,8,23,24,25,27及び49;C.I.Pigment Green 10;C.I.Pigment Brown 2等を好適に用いることができる。上記吸光剤は通常、レジスト下層膜形成組成物の全固形分に対して10質量%以下、好ましくは5質量%以下の割合で配合される。
 レオロジー調整剤は、主にレジスト下層膜形成組成物の流動性を向上させ、特にベーキング工程において、レジスト下層膜の膜厚均一性の向上やホール内部へのレジスト下層膜形成組成物の充填性を高める目的で添加される。具体例としては、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸誘導体、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸誘導体、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸誘導体、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸誘導体、またはノルマルブチルステアレート、グリセリルステアレート等のステアリン酸誘導体を挙げることができる。これらのレオロジー調整剤は、レジスト下層膜形成組成物の全固形分に対して通常30質量%未満の割合で配合される。
 接着補助剤は、主に基板あるいはレジストとレジスト下層膜形成組成物の密着性を向上させ、特に現像においてレジストが剥離しないようにする目的で添加される。具体例としては、トリメチルクロロシラン、ジメチルメチロールクロロシラン、メチルジフエニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルメチロールエトキシシラン、ジフエニルジメトキシシラン、フエニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’-ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール等のシラザン類、メチロールトリクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン等の複素環式化合物や、1,1-ジメチルウレア、1,3-ジメチルウレア等の尿素、またはチオ尿素化合物を挙げることができる。これらの接着補助剤は、レジスト下層膜形成組成物の全固形分に対して通常5質量%未満、好ましくは2質量%未満の割合で配合される。
[レジスト下層膜、パターンニングされた基板の製造方法及び半導体装置の製造方法]
 以下、本発明に係るレジスト下層膜形成組成物を用いて製造されるレジスト下層膜、パターンニングされた基板の製造方法及び半導体装置の製造方法について説明する。
(レジスト下層膜)
 本発明に係るレジスト下層膜は、上記したレジスト下層膜形成組成物を半導体基板上に塗布し、焼成することにより製造することができる。
 本発明のレジスト下層膜形成組成物が塗布される半導体基板としては、例えば、シリコンウェハー、ゲルマニウムウェハー、及びヒ化ガリウム、リン化インジウム、窒化ガリウム、窒化インジウム、窒化アルミニウム等の化合物半導体ウェハーが挙げられる。
 表面に無機膜が形成された半導体基板を用いる場合、当該無機膜は、例えば、ALD(原子層堆積)法、CVD(化学気相堆積)法、反応性スパッタ法、イオンプレーティング法、真空蒸着法、スピンコーティング法(スピンオングラス:SOG)により形成される。前記無機膜として、例えば、ポリシリコン膜、酸化ケイ素膜、窒化珪素膜、BPSG(Boro-Phospho Silicate Glass)膜、窒化チタン膜、窒化酸化チタン膜、タングステン膜、窒化ガリウム膜、及びヒ化ガリウム膜が挙げられる。
 このような半導体基板上に、スピナー、コーター等の適当な塗布方法により本発明のレジスト下層膜形成組成物を塗布する。その後、ホットプレート等の加熱手段を用いてベークすることによりレジスト下層膜を形成する。ベーク条件としては、ベーク温度100℃~400℃、ベーク時間0.3分~60分間の中から適宜、選択される。好ましくは、ベーク温度120℃~350℃、ベーク時間0.5分~30分間、より好ましくは、ベーク温度150℃~300℃、ベーク時間0.8分~10分間である。
 形成されるレジスト下層膜の膜厚としては、例えば0.001μm(1nm)~10μm、好ましくは0.002μm(2nm)~1μm、より好ましくは0.005μm(5nm)~0.5μm(500nm)である。ベーク時の温度が、上記範囲より低い場合には架橋が不十分となる。一方、ベーク時の温度が上記範囲より高い場合は、レジスト下層膜が熱によって分解してしまうことがある。
(パターンニングされた基板の製造方法)
 パターンニングされた基板の製造方法は以下の工程を経る。通常、レジスト下層膜の上にフォトレジスト層を形成して製造される。レジスト下層膜の上に自体公知の方法で塗布、焼成して形成されるフォトレジストとしては露光に使用される光に感光するものであれば特に限定はない。ネガ型フォトレジスト及びポジ型フォトレジストのいずれも使用できる。ノボラック樹脂と1,2-ナフトキノンジアジドスルホン酸エステルとからなるポジ型フォトレジスト、酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと光酸発生剤からなる化学増幅型フォトレジスト、酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物とアルカリ可溶性バインダーと光酸発生剤とからなる化学増幅型フォトレジスト、及び酸により分解してアルカリ溶解速度を上昇させる基を有するバインダーと酸により分解してフォトレジストのアルカリ溶解速度を上昇させる低分子化合物と光酸発生剤からなる化学増幅型フォトレジストなどがある。例えば、JSR(株)製商品名V146G、シプレー社製商品名APEX-E、住友化学工業(株)製商品名PAR710、及び信越化学工業(株)製商品名AR2772、SEPR430等が挙げられる。また、例えば、Proc.SPIE,Vol.3999,330-334(2000)、Proc.SPIE,Vol.3999,357-364(2000)、やProc.SPIE,Vol.3999,365-374(2000)に記載されているような、含フッ素原子ポリマー系フォトレジストを挙げることができる。
 露光は、所定のパターンを形成するためのマスク(レチクル)を通して行われ、例えば、i線、KrFエキシマレーザー、ArFエキシマレーザー、EUV(極端紫外線)またはEB(電子線)が使用される。現像にはアルカリ現像液が用いられ、現像温度5℃~50℃、現像時間10秒~300秒から適宜選択される。アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プロピルアミン等の第一アミン類、ジエチルアミン、ジーn-ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第4級アンモニウム塩、ピロール、ピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することができる。さらに、上記アルカリ類の水溶液にイソプロピルアルコール等のアルコール類、ノニオン系等の界面活性剤を適当量添加して使用することもできる。これらの中で好ましい現像液は第四級アンモニウム塩、さらに好ましくはテトラメチルアンモニウムヒドロキシド及びコリンである。さらに、これらの現像液に界面活性剤などを加えることもできる。アルカリ現像液に代えて、酢酸ブチル等の有機溶媒で現像を行い、フォトレジストのアルカリ溶解速度が向上していない部分を現像する方法を用いることもできる。上記工程を経て、上記レジストがパターンニングされた基板が製造できる。
 次いで、形成したレジストパターンをマスクとして、前記レジスト下層膜をドライエッチングする。その際、用いた半導体基板の表面に前記無機膜が形成されている場合、その無機膜の表面を露出させ、用いた半導体基板の表面に前記無機膜が形成されていない場合、その半導体基板の表面を露出させる。その後基板を自体公知の方法(ドライエッチング法等)により基板を加工する工程を経て、半導体装置が製造できる。
 本明細書の下記合成例に示すポリマーの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(以下、GPCと略称する)による測定結果である。測定には東ソー(株)製GPC装置を用い、測定条件等は次のとおりである。
GPCカラム:Shodex〔登録商標〕・Asahipak〔登録商標〕(昭和電工(株))
カラム温度:40℃
溶媒:テトラヒドロフラン(THF)
流量:0.35ml/min
標準試料:ポリスチレン(東ソー(株))
(原料モノマーの合成)
<合成例1>
 米国特許第3230220号明細書に記載の方法に従って合成したトリカルボキシメチルイソシアヌル酸(TAICA)38.70g、N-メチル-2-ピロリドン(関東化学(株)製)300.00g,アリルブロミド(東京化成工業(株)製)70.91g、炭酸カリウム(関東化学(株)製)79.38gを仕込み、80-90℃まで昇温した。その後、2時間反応を行い反応が恒量となったことを確認した。反応終了後、トルエン(関東化学(株)製)580.50gを追加した。ろ過を行い、水580.50gで3回水洗した。有機層を濃縮乾燥した後にエタノール(関東化学(株)製)387.00gを仕込み、20-30℃で30分撹拌した。撹拌終了後、ろ過し、得られた結晶を乾燥したところ、式(A1-1)で示される目的の生成物(トリアリルアセテートイソシアヌル酸:TAAICA)を44.32g、収率85.2%で得た。
Figure JPOXMLDOC01-appb-C000035
<合成例2>
 合成例1にて合成したTAAICA44.32g、 クロロホルム(関東化学(株)製)443.20gを仕込み、そこへm-クロロ過安息香酸(東京化成工業(株)製)125.06gを加えた。47時間反応を行った。反応終了後、クロロホルム(関東化学(株)製)88.64gを追加した。更に、5%炭酸水素ナトリウム(関東化学(株)製)886.40gで洗浄した。引き続き、10%亜硫酸ナトリウム(関東化学(株)製)443.20g、5%炭酸水素ナトリウム(関東化学(株)製)886.40gで洗浄し、さらに水443.20gで2回洗浄した。濃縮後、カラム精製を行った。カラム精製後、式(A1-2)で示される目的の生成物(トリグリシジルアセテートイソシアヌル酸:TAGICA)を41.31g、収率83.7%で得た。
Figure JPOXMLDOC01-appb-C000036
<合成例3>
 合成例2で得られたTAGICA 5.00g、2-メルカプト-5-メチルチオ-1,3,4-チアジアゾール5.22g、エチルトリフェニルホスホニウムブロミド0.41gにプロピレングリコールモノメチルエーテル42.05gを加えた反応フラスコ中を窒素雰囲気下、105℃で23時間加熱撹拌し、式(A1-3)に相当する反応生成物が得られた。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1000であった。
Figure JPOXMLDOC01-appb-C000037
<合成例4>
 合成例2で得られたTAGICA 5.00g、2-メルカプト-1,3,4-チアジアゾール3.82g、エチルトリフェニルホスホニウムブロミド0.41gにプロピレングリコールモノメチルエーテル36.91gを加えた反応フラスコ中を窒素雰囲気下、105℃で4時間加熱撹拌し、式(A1-4)に相当する反応生成物が得られた。GPCによるポリスチレン換算で測定される重量平均分子量Mwは850であった。
Figure JPOXMLDOC01-appb-C000038
<合成例5>
 合成例2で得られたTAGICA 5.00g、2-メルカプト-5-メチル-1,3,4-チアジアゾール4.20g、エチルトリフェニルホスホニウムブロミド0.41gにプロピレングリコールモノメチルエーテル38.42gを加えた反応フラスコ中を窒素雰囲気下、105℃で22時間加熱撹拌し、式(A1-5)に相当する反応生成物が得られた。GPCによるポリスチレン換算で測定される重量平均分子量Mwは800であった。
Figure JPOXMLDOC01-appb-C000039
<合成例6>
 合成例2で得られたTAGICA 5.00g、5-メルカプト-1-メチルテトラゾール3.69g、エチルトリフェニルホスホニウムブロミド0.41gにプロピレングリコールモノメチルエーテル36.37gを加えた反応フラスコ中を窒素雰囲気下、105℃で24時間加熱撹拌し、式(A1-6)に相当する反応生成物が得られた。GPCによるポリスチレン換算で測定される重量平均分子量Mwは800であった。
Figure JPOXMLDOC01-appb-C000040
<合成例7>
 合成例2で得られたTAGICA 5.00g、1H-テトラゾール-1-酢酸4.07g、エチルトリフェニルホスホニウムブロミド0.41gにプロピレングリコールモノメチルエーテル37.89gを加えた反応フラスコ中を窒素雰囲気下、105℃で24時間加熱撹拌し、式(A1-7)に相当する反応生成物が得られた。GPCによるポリスチレン換算で測定される重量平均分子量Mwは850であった。
Figure JPOXMLDOC01-appb-C000041
<合成例8>
 特許公報(WO2017/208910)記載の方法に従って合成したメチルイソシアヌル酸(Me-ICA)10.00g,炭酸カリウム(関東化学(株)製)14.49g,アリルクロロアセテート(アルドリッチ製)20.48g,N,N-ジメチルホルムアミド(関東化学(株)製)40.00gを仕込み60℃で25時間撹拌した。トルエン(関東化学(株)製)100.00gを仕込み、ろ過した。そこへ水100.00gを追加し、50℃にて分液した。得られた有機層へ更に水100.00gを追加し、50℃にて分液した。得られた有機層を濃縮することにより、式(B1-1)で示される目的の生成物(メチルジアリルアセテートイソシアヌル酸:Me-DAAICA)を20.51g、収率86.5%にて得た。
Figure JPOXMLDOC01-appb-C000042
<合成例9>
 合成例8にて得られたMe-DAAICA 20.51g、クロロホルム(関東化学(株)製)153.83gを仕込み、そこへ、m-クロロ過安息香酸(東京化成工業(株)製)38.52gを添加した。71時間反応を行い、反応が恒量となったことを確認した。反応終了後、クロロホルム(関東化学(株)製)205.10g、5重量%炭酸水素ナトリウム(関東化学(株)製)410.20gを追加した。分液を行い、得られた有機層へ10重量%亜硫酸ナトリウム(関東化学(株)製)205.10gを仕込んだ。再度、分液を行い得られた有機層へ5重量%炭酸水素ナトリウム(関東化学(株)製)410.20gを仕込んだ。その後、分液を行い、得られた有機層へ水205.10gを加え2回洗浄を行った。有機層を濃縮乾燥した後にカラム精製を行い、式(B1-2)で示される目的の生成物(メチルジグリシジルアセテートイソシアヌル酸:Me-DAGICA)を10.46g、収率46.6%で得た。
Figure JPOXMLDOC01-appb-C000043
<合成例10>
 合成例9で得られたMe-DAGICA 5.00g、2-メルカプト-5-メチルチオ-1,3,4-チアジアゾール4.60g、エチルトリフェニルホスホニウムブロミド0.13gにプロピレングリコールモノメチルエーテル38.91gを加えた反応フラスコ中を窒素雰囲気下、105℃で23時間加熱撹拌し、式(B1-3)に相当する反応生成物が得られた。GPCによるポリスチレン換算で測定される重量平均分子量Mwは600であった。
Figure JPOXMLDOC01-appb-C000044
<合成例11>
 合成例2で得られたTAGICA 5.00g、チアゾール-4-カルボン酸4.10g、エチルトリフェニルホスホニウムブロミド0.41gにプロピレングリコールモノメチルエーテル38.02gを加えた反応フラスコ中を窒素雰囲気下、105℃で24時間加熱撹拌し、式(A1-8)に相当する反応生成物が得られた。GPCによるポリスチレン換算で測定される重量平均分子量Mwは1200であった。
Figure JPOXMLDOC01-appb-C000045
<合成例12>
 合成例2で得られたTAGICA 5.00g、2-メルカプトチアゾール3.72g、エチルトリフェニルホスホニウムブロミド0.41gにプロピレングリコールモノメチルエーテル36.50gを加えた反応フラスコ中を窒素雰囲気下、105℃で24時間加熱撹拌し、式(A1-9)に相当する反応生成物が得られた。GPCによるポリスチレン換算で測定される重量平均分子量Mwは760であった。
Figure JPOXMLDOC01-appb-C000046
(組成物調製)
[実施例1]
 合成例3で得られた反応生成物0.23gを含む溶液1.23gに、プロピレングリコールモノメチルエーテル29.70g、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.06g、フェノールスルホン酸(東京化成工業(株))0.01g、及び界面活性剤(大日本インキ化学工業(株)、商品名:R-40)0.001gを加え、溶液とした。その後、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成用組成物を調製した。
[実施例2]
 合成例4で得られた反応生成物0.23gを含む溶液1.23gに、プロピレングリコールモノメチルエーテル29.70g、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.06g、フェノールスルホン酸(東京化成工業(株))0.01g、及び界面活性剤(大日本インキ化学工業(株)、商品名:R-40)0.001gを加え、溶液とした。その後、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成用組成物を調製した。
[実施例3]
 合成例5で得られた反応生成物0.23gを含む溶液1.23gに、プロピレングリコールモノメチルエーテル29.70g、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.06g、フェノールスルホン酸(東京化成工業(株))0.01g、及び界面活性剤(大日本インキ化学工業(株)、商品名:R-40)0.001gを加え、溶液とした。その後、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成用組成物を調製した。
[実施例4]
 合成例6で得られた反応生成物0.23gを含む溶液1.23gに、プロピレングリコールモノメチルエーテル29.70g、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.06g、フェノールスルホン酸(東京化成工業(株))0.01g、及び界面活性剤(大日本インキ化学工業(株)、商品名:R-40)0.001gを加え、溶液とした。その後、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成用組成物を調製した。
[実施例5]
 合成例7で得られた反応生成物0.23gを含む溶液1.23gに、プロピレングリコールモノメチルエーテル29.70g、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.06g、フェノールスルホン酸(東京化成工業(株))0.01g、及び界面活性剤(大日本インキ化学工業(株)、商品名:R-40)0.001gを加え、溶液とした。その後、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成用組成物を調製した。
[実施例6]
 合成例10で得られた反応生成物0.23gを含む溶液1.23gに、プロピレングリコールモノメチルエーテル29.70g、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.06g、フェノールスルホン酸(東京化成工業(株))0.01g、及び界面活性剤(大日本インキ化学工業(株)、商品名:R-40)0.001gを加え、溶液とした。その後、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成用組成物を調製した。
[実施例7]
 合成例11で得られた反応生成物0.23gを含む溶液1.23gに、プロピレングリコールモノメチルエーテル29.70g、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.06g、フェノールスルホン酸(東京化成工業(株))0.01g、及び界面活性剤(大日本インキ化学工業(株)、商品名:R-40)0.001gを加え、溶液とした。その後、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成用組成物を調製した。
[実施例8]
 合成例12で得られた反応生成物0.23gを含む溶液1.23gに、プロピレングリコールモノメチルエーテル29.70g、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.06g、フェノールスルホン酸(東京化成工業(株))0.01g、及び界面活性剤(大日本インキ化学工業(株)、商品名:R-40)0.001gを加え、溶液とした。その後、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成用組成物を調製した。
[比較例1]
 WO2009/096340の合成例1に記載の方法で得られた反応生成物0.72gを含む溶液3.58gに、プロピレングリコールモノメチルエーテル88.43g、プロピレングリコールモノメチルエーテルアセテート9.90g、テトラメトキシメチルグリコールウリル(日本サイテックインダストリーズ(株)、商品名:POWDERLINK〔登録商標〕1174)0.18g、フェノールスルホン酸(東京化成工業(株))0.01g、及び界面活性剤(大日本インキ化学工業(株)、商品名:R-40)0.01gを加え、溶液とした。その後、孔径0.02μmのポリエチレン製ミクロフィルターを用いてろ過して、レジスト下層膜形成用組成物を調製した。
(ドライエッチング速度の測定)
 実施例1~8及び比較例1で調製されたレジスト下層膜形成用組成物を、それぞれスピナーによりシリコンウエハー上に塗布し、ホットプレート上、205℃で1分間ベークし、各々膜厚100nmのレジスト下層膜を形成した。これらをサムコ(株)製ドライエッチング装置(RIE-10NR)を用い、ドライエッチングガスとしてCFを使用する条件下でドライエッチング速度(単位時間当たりの膜厚の減少量)を測定した。比較例1から得られるレジスト下層膜のエッチング選択比を1.00とした場合の各下層膜のエッチング選択比を表1に示す。
Figure JPOXMLDOC01-appb-T000047
 上記の結果から実施例1~8は比較例1よりも十分高いエッチング選択性を有していることがわかる。その結果、本発明によって得られるレジスト下層膜形成用組成物はレジスト下層膜のドライエッチング時のエッチング時間を短縮することができ、レジスト下層膜をドライエッチングで除去する際に、レジスト膜厚が減少する好ましくない現象を抑制できる。さらに、ドライエッチング時間を短縮できることは、レジスト下層膜の下地基板に対して好ましくないエッチングダメージを抑制することができるため、レジスト下層膜として特に有用である。
(光学パラメーターの評価)
 本明細書に記載の実施例1~8及び比較例1で調製されたレジスト下層膜形成組成物を、それぞれスピンコーターにてシリコンウエハー上に塗布(スピンコート)した。塗布後のシリコンウエハーをホットプレート上で205℃、1分間加熱し、レジスト下層膜形成組成物(膜厚30nm)を形成した。そして、これらのレジスト下層膜形成組成物を分光エリプソメーター(製品名:VUV-VASE VU-302、J.A.Woollam社製)を用い、波長193nmでのn値(屈折率)及びk値(減衰係数又は吸光係数)を測定した。光学パラメーターの測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000048
 本発明に係るレジスト下層膜形成組成物は、特に高ドライエッチング速度を有するレジスト下層膜を提供するものである。

Claims (9)

  1.  エポキシ基含有化合物と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応生成物、及び溶剤を含む、レジスト下層膜形成組成物。
  2.  上記複素環化合物に含まれる複素環が、フラン、ピロール、ピラン、イミダゾール、ピラゾール、オキサゾール、チオフェン、チアゾール、チアジアゾール、イミダゾリジン、チアゾリジン、イミダゾリン 、ジオキサン、モルホリン、ジアジン、チアジン、トリアゾール、テトラゾール、ジオキソラン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、インドール、プリン、キノリン、イソキノリン、キヌクリジン、クロメン、チアントレン、フェノチアジン、フェノキサジン、キサンテン、アクリジン、フェナジン及びカルバゾールから選択される、請求項1に記載のレジスト下層膜形成組成物。
  3.  エポキシ基と反応性を有する部位が、ヒドロキシ基、チオール基、アミノ基、イミド基及びカルボキシ基から選ばれる、請求項1又は2に記載のレジスト下層膜形成組成物。
  4.  上記エポキシ基含有化合物が、下記式(1)で表される化合物である、請求項1~3何れか1項に記載のレジスト下層膜形成組成物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、Xは、下記式(2)、式(3)又は式(4)で表される2価の有機基であり、n、nは各々独立に1乃至10の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002

    (式(2)、式(3)及び式(4)中、
     R及びRは、各々独立に水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。
     Rは、水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基、炭素原子数1乃至6のアルキルチオ基及び下記式(5)で表される有機基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000003

    (式(5)中、n3は1乃至10の整数を表す。)
  5.  さらに、架橋剤、架橋触媒及び界面活性剤からなる群より選択される少なくとも一種を含む、請求項1~4何れか1項に記載のレジスト下層膜形成組成物。
  6.  請求項1~請求項5のいずれか1項に記載のレジスト下層膜形成組成物からなる塗布膜の焼成物であることを特徴とするレジスト下層膜。
  7.  半導体基板上に請求項1~請求項5のいずれか1項に記載のレジスト下層膜形成組成物を塗布しベークしてレジスト下層膜を形成する工程、前記レジスト下層膜上にレジストを塗布しベークしてレジスト膜を形成する工程、前記レジスト下層膜と前記レジストで被覆された半導体基板を露光する工程、露光後の前記レジスト膜を現像し、パターニングする工程を含む、パターニングされた基板の製造方法。
  8.  半導体基板上に、請求項1~請求項5の何れか1項に記載のレジスト下層膜形成組成物からなるレジスト下層膜を形成する工程と、
     前記レジスト下層膜の上にレジスト膜を形成する工程と、
     レジスト膜に対する光又は電子線の照射とその後の現像によりレジストパターンを形成する工程と、
     形成された前記レジストパターンを介して前記レジスト下層膜をエッチングすることによりパターン化されたレジスト下層膜を形成する工程と、
     パターン化された前記レジスト下層膜により半導体基板を加工する工程と、
    を含むことを特徴とする、半導体装置の製造方法。
  9.  下記式(1)で表される化合物と、エポキシ基と反応性を有する部位を1つ含む複素環化合物との反応生成物。
    Figure JPOXMLDOC01-appb-C000004

    (式(1)中、Xは、下記式(2)、式(3)又は式(4)で表される2価の有機基であり、n、nは各々独立に1乃至10の整数を表す。)
    Figure JPOXMLDOC01-appb-C000005

    (式(2)、式(3)及び式(4)中、
     R及びRは、各々独立に水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数2乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。
     Rは、水素原子、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数1乃至10のアルキル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルケニル基、酸素原子若しくは硫黄原子で中断されていてもよい炭素原子数3乃至10のアルキニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、炭素原子数1乃至10のアルコキシ基、ニトロ基、シアノ基、炭素原子数1乃至6のアルキルチオ基及び下記式(5)で表される有機基からなる群から選ばれる少なくとも1つの1価の官能基で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000006

    (式(5)中、n3は1乃至10の整数を表す。)
PCT/JP2020/038222 2019-10-10 2020-10-09 複素環化合物を含むレジスト下層膜形成組成物 WO2021070919A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/763,253 US20220356297A1 (en) 2019-10-10 2020-10-09 Resist underlayer film-forming composition containing heterocyclic compound
KR1020227005653A KR20220079813A (ko) 2019-10-10 2020-10-09 복소환 화합물을 포함하는 레지스트 하층막 형성 조성물
CN202080065831.0A CN114424121A (zh) 2019-10-10 2020-10-09 包含杂环化合物的抗蚀剂下层膜形成用组合物
JP2021551710A JPWO2021070919A1 (ja) 2019-10-10 2020-10-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019186784 2019-10-10
JP2019-186784 2019-10-10

Publications (1)

Publication Number Publication Date
WO2021070919A1 true WO2021070919A1 (ja) 2021-04-15

Family

ID=75437247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038222 WO2021070919A1 (ja) 2019-10-10 2020-10-09 複素環化合物を含むレジスト下層膜形成組成物

Country Status (6)

Country Link
US (1) US20220356297A1 (ja)
JP (1) JPWO2021070919A1 (ja)
KR (1) KR20220079813A (ja)
CN (1) CN114424121A (ja)
TW (1) TW202128671A (ja)
WO (1) WO2021070919A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881461A (ja) * 1994-09-12 1996-03-26 Nissan Chem Ind Ltd 新規エポキシ化合物及びその製造方法
WO2013168610A1 (ja) * 2012-05-07 2013-11-14 日産化学工業株式会社 レジスト下層膜形成組成物
WO2018012253A1 (ja) * 2016-07-15 2018-01-18 日産化学工業株式会社 ヒダントイン環を有する化合物を含むレジスト下層膜形成組成物
JP2019091020A (ja) * 2017-11-16 2019-06-13 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 感光性樹脂組成物及びそれから調製された硬化膜
WO2019151471A1 (ja) * 2018-02-02 2019-08-08 日産化学株式会社 ジスルフィド構造を有するレジスト下層膜形成組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034148A (ja) 2002-07-08 2004-02-05 Kurimoto Ltd 遠心力鋳造法による鉄系形状記憶合金製管継手の品質管理方法
JP2009096340A (ja) 2007-10-17 2009-05-07 Toyota Motor Corp ハイブリッド車およびその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881461A (ja) * 1994-09-12 1996-03-26 Nissan Chem Ind Ltd 新規エポキシ化合物及びその製造方法
WO2013168610A1 (ja) * 2012-05-07 2013-11-14 日産化学工業株式会社 レジスト下層膜形成組成物
WO2018012253A1 (ja) * 2016-07-15 2018-01-18 日産化学工業株式会社 ヒダントイン環を有する化合物を含むレジスト下層膜形成組成物
JP2019091020A (ja) * 2017-11-16 2019-06-13 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 感光性樹脂組成物及びそれから調製された硬化膜
WO2019151471A1 (ja) * 2018-02-02 2019-08-08 日産化学株式会社 ジスルフィド構造を有するレジスト下層膜形成組成物

Also Published As

Publication number Publication date
TW202128671A (zh) 2021-08-01
JPWO2021070919A1 (ja) 2021-04-15
CN114424121A (zh) 2022-04-29
US20220356297A1 (en) 2022-11-10
KR20220079813A (ko) 2022-06-14

Similar Documents

Publication Publication Date Title
CN106662819B (zh) 包含芳香族羟甲基化合物反应而得的酚醛清漆树脂的抗蚀剂下层膜形成用组合物
KR102367638B1 (ko) 방향족 비닐화합물이 부가된 노볼락수지를 포함하는 레지스트 하층막 형성 조성물
JP7021636B2 (ja) トリアリールジアミン含有ノボラック樹脂を含むレジスト下層膜形成組成物
CN105027005B (zh) 含有具有羟基的芳基磺酸盐的抗蚀剂下层膜形成用组合物
JP7396049B2 (ja) ジスルフィド構造を有するレジスト下層膜形成組成物
JP7355012B2 (ja) グリシジルエステル化合物との反応生成物を含むレジスト下層膜形成組成物
JP7265225B2 (ja) 芳香族ビニル化合物が付加したトリアリールジアミン含有ノボラック樹脂を含むレジスト下層膜形成組成物
WO2021251482A1 (ja) ジオール構造を含むレジスト下層膜形成用組成物
JP7207417B2 (ja) グリシジル基を有するアリーレン化合物との重合生成物を含む薬液耐性保護膜形成組成物
WO2022030468A1 (ja) レジスト下層膜形成組成物
WO2021070919A1 (ja) 複素環化合物を含むレジスト下層膜形成組成物
WO2020179757A1 (ja) ジオール構造を末端に有する重合生成物を含む薬液耐性保護膜形成組成物
US11965059B2 (en) Chemical-resistant protective film forming composition containing hydroxyaryl-terminated polymer
WO2023063148A1 (ja) レジスト下層膜形成組成物
WO2023149553A1 (ja) 焼成物の硬度の向上方法
WO2022030469A1 (ja) レジスト下層膜形成組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874699

Country of ref document: EP

Kind code of ref document: A1