WO2020179757A1 - ジオール構造を末端に有する重合生成物を含む薬液耐性保護膜形成組成物 - Google Patents

ジオール構造を末端に有する重合生成物を含む薬液耐性保護膜形成組成物 Download PDF

Info

Publication number
WO2020179757A1
WO2020179757A1 PCT/JP2020/008784 JP2020008784W WO2020179757A1 WO 2020179757 A1 WO2020179757 A1 WO 2020179757A1 JP 2020008784 W JP2020008784 W JP 2020008784W WO 2020179757 A1 WO2020179757 A1 WO 2020179757A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
protective film
forming composition
carbon atoms
formula
Prior art date
Application number
PCT/JP2020/008784
Other languages
English (en)
French (fr)
Inventor
貴文 遠藤
登喜雄 西田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080018601.9A priority Critical patent/CN113574085A/zh
Priority to US17/433,523 priority patent/US20220145119A1/en
Priority to JP2021504096A priority patent/JP7447892B2/ja
Priority to KR1020217029173A priority patent/KR20210135252A/ko
Publication of WO2020179757A1 publication Critical patent/WO2020179757A1/ja
Priority to JP2023183011A priority patent/JP2023184588A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1483Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4207Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/423Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof containing an atom other than oxygen belonging to a functional groups to C08G59/42, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4284Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks

Definitions

  • the present invention relates to a composition for forming a protective film excellent in resistance to a wet etching solution for semiconductors in a lithographic process in semiconductor manufacturing.
  • the present invention also relates to a method for manufacturing a substrate with a resist pattern to which the protective film is applied, and a method for manufacturing a semiconductor device.
  • Patent Document 1 discloses a protective film-forming composition for an aqueous hydrogen peroxide solution, which contains a specific compound having a carboxy group and/or a hydroxy group.
  • the resist underlayer film When the underlying substrate is processed by wet etching using the resist underlayer film as an etching mask, the resist underlayer film has a good mask function against the wet etching solution when the underlying substrate is processed (that is, the masked portion can protect the substrate. ) Is required.
  • the resist underlayer film will be used as a protective film for the substrate.
  • the protective film has a high etching rate (high etching rate) so that the underlying substrate is not damaged and can be removed quickly by dry etching. A protective film is required.
  • An object of the present invention is to solve the above problems.
  • the present invention includes the following.
  • a protective film-forming composition for a wet etching solution for a semiconductor which comprises a polymer having a structure containing at least one set of two hydroxyl groups adjacent to each other in the molecule at the terminal and an organic solvent.
  • a protective film-forming composition according to [1] wherein the structure containing at least one set of two hydroxyl groups adjacent to each other in the molecule is a 1,2-ethanediol structure (A).
  • the 1,2-ethanediol structure has the formula (1): (In the formula (1), X represents any one of —COO—, —OCO—, —O—, —S—, and —NR 1 —, R 1 represents a hydrogen atom or a methyl group, and Y is a direct bond. Or, it represents an optionally substituted alkylene group having 1 to 4 carbon atoms, R 2 , R 3 and R 4 are each a hydrogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms or optionally substituted.
  • the protective film-forming composition according to [2] which comprises the structure represented by. [4] In the formula (1), R 2, R 3 and R 4 are hydrogen atom, a protective film forming composition according to [3]. [5] The protective film-forming composition according to [3] or [4], wherein Y is a methylene group in the formula (1). [6] The protective film-forming composition according to any one of [3] to [5], wherein X is —S— in the formula (1).
  • the protective film-forming composition according to [7], wherein the bifunctional or higher functional proton-generating compound (C) is an acid dianhydride.
  • the polymer has the following formula (2): (In formula (2), R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent a hydrogen atom, a methyl group or an ethyl group, and Q 1 is two between two carbon atoms. It represents a valent organic group, and m1 and m2 independently represent 0 or 1, respectively.)
  • the protective film-forming composition according to any one of [1] to [9], which comprises a unit structure represented by.
  • Q 1 in the formula (2) is a compound represented by the following formula (3):
  • Q 2 is a direct bond, an alkylene group having 1 to 10 carbon atoms which may be interrupted by —O—, —S— or —SS—, —O—, —S— Or an alkenylene group having 2 to 6 carbon atoms, which may be interrupted by -SS-, or an alicyclic hydrocarbon ring having 3 to 10 carbon atoms or an aromatic hydrocarbon ring having 6 to 14 carbon atoms
  • the divalent organic group is an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, a halogen atom, a hydroxy group, a nitro group, a cyano group, It may be substituted with at least one group selected from the group consisting of a methylidene group, an alk
  • Formula Q 1 is the following formula (2) (4): (In the formula (4), Q 3 is of the formula (5), equation (6) or Formula (7) represents a.) (In Formula (5), Formula (6) and Formula (7), R 11 , R 12 , R 13 , R 14 and R 15 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a carbon atom. Represents an alkenyl group, a benzyl group or a phenyl group having 3 to 6 atoms.
  • the phenyl group is at least selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a halogen atom, a nitro group, a cyano group, an alkoxy group having 1 to 6 carbon atoms and an alkylthio group having 1 to 6 carbon atoms. It may be replaced by one R 13 and R 14 may be bonded to each other to form a ring having 3 to 6 carbon atoms.
  • the protective film forming composition according to [10] represented by. [13] The protective film-forming composition according to any one of [1] to [12], which further contains a crosslinking catalyst. [14] The protective film-forming composition according to any one of [1] to [13], which further contains a crosslinking agent.
  • a protective film is formed on a semiconductor substrate on which an inorganic film may be formed on the surface using the protective film forming composition according to any one of [1] to [15], and the protective film is formed.
  • a resist pattern is formed on the surface, the protective film is dry-etched using the resist pattern as a mask, the surface of the inorganic film or the semiconductor substrate is exposed, and the protective film after dry etching is used as a mask for wet etching for semiconductors.
  • a method of manufacturing a semiconductor device comprising the steps of wet etching and cleaning the inorganic film or the semiconductor substrate using a liquid.
  • the protective film forming composition is required to have, for example, the following characteristics in a well-balanced manner in the lithography process in semiconductor manufacturing. That is, (1) it has a good masking function against a wet etching solution when processing a base substrate, (2) it has a high dry etching rate, and (3) it has excellent flatness of a stepped substrate.
  • the protective film-forming composition of the present invention has the performances (1) to (3) in a well-balanced manner, so that the semiconductor substrate can be easily microfabricated.
  • alkylene group having 1 to 10 carbon atoms is a methylene group, ethylene group, n-propylene group, isopropylene group, cyclopropylene group, n-butylene group, isobutylene group, s-butylene group, t-butylene group.
  • Cyclobutylene group 1-methyl-cyclopropylene group, 2-methyl-cyclopropylene group, n-pentylene group, 1-methyl-n-butylene group, 2-methyl-n-butylene group, 3-methyl-n- Butylene group, 1,1-dimethyl-n-propylene group, 1,2-dimethyl-n-propylene group, 2,2-dimethyl-n-propylene, 1-ethyl-n-propylene group, cyclopentylene group, 1 -Methyl-cyclobutylene group, 2-methyl-cyclobutylene group, 3-methyl-cyclobutylene group, 1,2-dimethyl-cyclopropylene group, 2,3-dimethyl-cyclopropylene group, 1-ethyl-cyclopropylene group , 2-ethyl-cyclopropylene group, n-hexylene group, 1-methyl-n-pentylene group, 2-methyl-n-pentylene group, 3-methyl-n-pent
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, n-propyl group, i-propyl group, cyclopropyl group, n-butyl group, i-butyl group, s-butyl group, t -Butyl group, cyclobutyl group, 1-methyl-cyclopropyl group, 2-methyl-cyclopropyl group, n-pentyl group, 1-methyl-n-butyl group, 2-methyl-n-butyl group, 3-methyl- n-Butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1-methyl-cyclobutyl group, 2-methyl-cyclobutyl group, 3-methyl-cyclobutyl group, 1,2-dimethyl-cyclopropyl group,
  • aryl group having 6 to 40 carbon atoms examples include phenyl group, o-methylphenyl group, m-methylphenyl group, p-methylphenyl group, o-chlorophenyl group, m-chlorophenyl group, p-chloro group.
  • alkenyl group having 2 to 10 carbon atoms examples include an ethenyl group, a 1-propenyl group, a 2-propenyl group, a 1-methyl-1-ethenyl group, a 1-butenyl group, a 2-butenyl group and a 3-butenyl group.
  • alkenylene group having 2 to 6 carbon atoms is a divalent group obtained by removing one hydrogen atom from the alkenyl group having 2 to 6 carbon atoms mentioned above in the “alkenyl group having 2 to 10 carbon atoms”. Say what was the basis of.
  • Examples of the “alicyclic hydrocarbon ring having 3 to 10 carbon atoms” include cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, spirobicyclopentane and bicyclo[2.1.0]. ] Pentane, bicyclo [3.2.1] octane, tricyclo [3.2.1.0 2,7 ] octane, spiro [3,4] octane and the like.
  • aromatic hydrocarbon ring having 6 to 14 carbon atoms refers to the above-mentioned “aryl group having 6 to 40 carbon atoms”, which has an aromatic hydrocarbon ring having 6 to 14 carbon atoms.
  • alkynyl group having 2 to 6 carbon atoms means that the double bond of the alkenyl group having 2 to 6 carbon atoms mentioned in the above "alkenyl group having 2 to 10 carbon atoms" is replaced with a triple bond. I say the group.
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, t-butoxy group, n-pentyloxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1-dimethyl-n-propoxy group, 1,2-dimethyl- n-propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group, n-hexyloxy group, 1-methyl-n-pentyloxy group, 2-methyl-n-pentyloxy group , 3-Methyl-n-pentyloxy group, 4-methyl-n-pentyloxy group, 1,1-dimethyl-n-butoxy group, 1,2-dimethyl-n-butoxy group, 1,3-dimethyl-n -
  • the alkoxycarbonyl group having 1 to 6 carbon atoms includes methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group and the like.
  • Examples of the "alkylthio group having 1 to 6 carbon atoms” include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group and a hexylthio group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • alkoxy group having 1 to 20 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, t-butoxy group, n-pentyloxy group, 1-methyl-n-butoxy group, 2-methyl-n-butoxy group, 3-methyl-n-butoxy group, 1,1-dimethyl-n-propoxy group, 1,2-dimethyl- n-propoxy group, 2,2-dimethyl-n-propoxy group, 1-ethyl-n-propoxy group, n-hexyloxy group, 1-methyl-n-pentyloxy group, 2-methyl-n-pentyloxy group , 3-methyl-n-pentyloxy group, 4-methyl-n-pentyloxy group, 1,1-dimethyl-n-butoxy group, 1,2-dimethyl-n-butoxy group, 1,3-dimethyl-n -Butoxy group
  • the "may be substituted” means that a part or all of hydrogen atoms present in the alkyl group having 1 to 10 carbon atoms or the aryl group having 6 to 40 carbon atoms is, for example, a hydroxyl group or a halogen atom. , A carboxyl group, a nitro group, a cyano group, a methylenedioxy group, an acetoxy group, a methylthio group, an amino group or an alkoxy group having 1 to 9 carbon atoms.
  • the protective film-forming composition of the present application is a protective film-forming composition for a wet etching solution for semiconductors, which contains a polymer having a structure containing at least one set of two hydroxyl groups adjacent to each other in the molecule at the end, and an organic solvent. is there. This will be described in order below.
  • the structure containing at least one set of two hydroxyl groups adjacent to each other in the molecule may be a 1,2-ethanediol structure (A).
  • the 1,2-ethanediol structure has the formula (1):
  • X represents any of -COO-, -OCO-, -O-, -S- or -NR 1-
  • R 1 represents a hydrogen atom or a methyl group
  • Y is substituted.
  • R 1 represents a hydrogen atom or a methyl group
  • Y is substituted.
  • R 2 , R 3 and R 4 are hydrogen atoms, respectively, and an alkyl group having 1 to 10 carbon atoms or 6 to 40 carbon atoms which may be substituted. It is an aryl group, and R 2 may be combined with R 3 or R 4 to form a ring.
  • It may include the structure represented by.
  • ring formed by R 2 together with R 3 or R 4 include a cyclopentane ring, a cyclohexane ring, a bicyclo [2,2,1] heptane ring and the like.
  • a compound such as cyclopentane-1,2-diol, cyclohexane-1,2-diol, bicyclo [2,2,1] heptane-1,2-diol is reacted at the polymer terminal. It can be induced by.
  • R 2 , R 3 and R 4 may be hydrogen atoms.
  • Y may be a methylene group.
  • X may be —S—.
  • Examples of the compound forming the terminal of the polymer having the 1,2-ethanediol structure (A) include compounds represented by the following formulas (A-1) to (A-4). ..
  • the polymer may be a reaction product of the diepoxy compound (B) and the bifunctional or higher-functional proton-generating compound (C).
  • reaction product is based on the following formula (2):
  • R 5 , R 6 , R 7 , R 8 , R 9 and R 10 each independently represent a hydrogen atom, a methyl group or an ethyl group, and Q 1 represents a carbon atom between two carbon atoms. Represents a valent organic group, and m 1 and m 2 each independently represent 0 or 1.) It may include a unit structure represented by.
  • Q 1 is represented by the following formula in the formula (2) (3):
  • Q 2 is a direct bond, -O -, - S- or -S-S- alkylene group interrupted optionally having 1 to carbon atoms which may be 10, from 2 to 6 carbon atoms
  • the divalent organic group represents an alkenylene group, an alicyclic hydrocarbon ring having 3 to 10 carbon atoms, or a divalent organic group having at least one aromatic hydrocarbon ring having 6 to 14 carbon atoms.
  • Alkyl group with 1 to 6 carbon atoms, alkenyl group with 2 to 6 carbon atoms, alkynyl group with 2 to 6 carbon atoms, halogen atom, hydroxy group, nitro group, cyano group, methylidene group, 1 carbon atom number Z 1 and Z 2 may be substituted with at least one group selected from the group consisting of an alkoxy group of 1 to 6, an alkoxycarbonyl group having 1 to 6 carbon atoms and an alkylthio group having 1 to 6 carbon atoms. Each represents -COO-, -OCO-, -O-, or -S-.) It may be represented by.
  • Q 1 is the following formula in the formula (2) (4):
  • R 11 , R 12 , R 13 , R 14 and R 15 are independently hydrogen atoms, alkyl groups having 1 to 6 carbon atoms, and carbon. Represents an alkenyl group, a benzyl group or a phenyl group having 3 to 6 atoms, and the phenyl group is an alkyl group having 1 to 6 carbon atoms, a halogen atom, a nitro group, a cyano group and an alkoxy group having 1 to 6 carbon atoms.
  • R 13 and R 14 may be substituted with at least one selected from the group consisting of alkylthio groups having 1 to 6 carbon atoms, and R 13 and R 14 are bonded to each other to form a ring having 3 to 6 carbon atoms. May be good.) It may be represented by.
  • the diepoxy compound (B) represented by the above formula (2) and forming a structural unit in which m 1 and m 2 represent 1 is represented by, for example, the following formulas (B-1) to (B-46).
  • Diglycidyl ether having two epoxy groups and compounds having diglycidyl ester can be exemplified, but are not limited to these examples.
  • Examples of the bifunctional or higher functional proton-generating compound (C) represented by the above formula (2) and forming a structural unit in which m 1 and m 2 are represented by 0 include the following formulas (C-1) to (C-1). Examples of compounds having two carboxyl groups, hydroxyphenyl groups or imide groups represented by C-47), and acid dianhydrides can be exemplified, but are not limited to these examples.
  • the weight average molecular weight of the polymer is, for example, 1,000 to 30,000.
  • the resist underlayer film forming composition of the present invention may contain a cross-linking agent component.
  • the cross-linking agent include melamine-based, substituted urea-based, and polymer-based materials thereof.
  • Preferred is a cross-linking agent having at least two cross-linking substituents, methoxymethylated glycoluril, butoxymethylated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methoxymethylated benzogwanamine, butoxymethylated benzogwanamine, It is a compound such as methoxymethylated urea, butoxymethylated urea, methoxymethylated thiourea, or methoxymethylated thiourea.
  • a condensate of these compounds can also be used.
  • a cross-linking agent having high heat resistance can be used.
  • a compound containing a cross-linking substituent having an aromatic ring for example, a benzene ring or a naphthalene ring
  • an aromatic ring for example, a benzene ring or a naphthalene ring
  • Examples of such a compound include a compound having a partial structure of the following formula (5-1) and a polymer or an oligomer having a repeating unit of the following formula (5-2).
  • R 11 , R 12 , R 13 and R 14 are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, and specific examples of these alkyl groups are as described above.
  • M1 is 1 ⁇ m1 ⁇ 6-m2
  • m2 is 1 ⁇ m2 ⁇ 5
  • m3 is 1 ⁇ m3 ⁇ 4-m2
  • m4 is 1 ⁇ m4 ⁇ 3.
  • the above compounds can be obtained as products of Asahi Organic Materials Industry Co., Ltd. and Honshu Chemical Industry Co., Ltd.
  • the compound of formula (6-22) can be obtained under the trade name TMOM-BP of Asahi Organic Materials Co., Ltd.
  • the amount of the cross-linking agent added varies depending on the coating solvent used, the substrate used, the required solution viscosity, the required film shape, etc., but is usually 0.001 with respect to the total solid content of the protective film forming composition. It is from 80% by weight, preferably 0.01 to 50% by weight, and more preferably 0.1 to 40% by weight.
  • These cross-linking agents may cause a cross-linking reaction by self-condensation, but when a cross-linking substituent is present in the above-mentioned polymer of the present invention, it can cause a cross-linking reaction with the cross-linking substituent.
  • the protective film-forming composition of the present invention may contain a cross-linking catalyst as an optional component in order to promote the cross-linking reaction.
  • a crosslinking catalyst in addition to an acidic compound and a basic compound, a compound capable of generating an acid or a base by heat can be used, but a crosslinking acid catalyst is preferable.
  • a sulfonic acid compound or a carboxylic acid compound can be used as the acidic compound, and a thermal acid generator can be used as the compound that generates an acid by heat.
  • sulfonic acid compound or carboxylic acid compound examples include p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium trifluoromethanesulfonate, pyridinium-p-toluenesulfonate, salicylic acid, camphorsulfonic acid, 5-sulfosalicylic acid, 4-chlorobenzene.
  • thermoacid generator examples include K-PURE (registered trademark) CXC-1612, CXC-1614, TAG-2172, TAG-2179, TAG-2678, and TAG2689 (all manufactured by King Industries). , SI-45, SI-60, SI-80, SI-100, SI-110, SI-150 (all manufactured by Sanshin Chemical Industry Co., Ltd.).
  • cross-linking catalysts can be used alone or in combination of two or more. Further, an amine compound or an ammonium hydroxide compound can be used as the basic compound, and urea can be used as the compound that generates a base by heat.
  • Examples of the amine compound include triethanolamine, tributanolamine, trimethylamine, triethylamine, trinormalpropylamine, triisopropylamine, trinormalbutylamine, tri-tert-butylamine, trinormaloctylamine, triisopropanolamine, phenyldiethanolamine, stearyl.
  • Examples thereof include diethanolamine, tertiary amines such as diazabicyclooctane, and aromatic amines such as pyridine and 4-dimethylaminopyridine.
  • primary amines such as benzylamine and n-butylamine
  • secondary amines such as diethylamine and di-n-butylamine are also mentioned as amine compounds. These amine compounds can be used alone or in combination of two or more.
  • ammonium hydroxide compound examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, benzyltrimethylammonium hydroxide, benzyltriethylammonium hydroxide, and cetyltrimethylammonium hydroxide. Examples thereof include phenyltrimethylammonium hydroxide and phenyltriethylammonium hydroxide.
  • the compound that generates a base by heat for example, a compound that has a heat labile group such as an amide group, a urethane group, or an aziridine group and that generates an amine by heating can be used.
  • a heat labile group such as an amide group, a urethane group, or an aziridine group and that generates an amine by heating
  • urea benzyltrimethylammonium chloride, benzyltriethylammonium chloride, benzyldimethylphenylammonium chloride, benzyldodecyldimethylammonium chloride, benzyltributylammonium chloride, and choline chloride are also mentioned as the compounds which generate a base by heat.
  • the content thereof is usually 0.0001 to 20% by weight, preferably 0.01 to 15% by weight, based on the total solid content of the protective film-forming composition. More preferably, it is 0.1 to 10% by mass.
  • the protective film-forming composition of the present invention may contain, as an optional component, a surfactant in order to improve the coatability on the semiconductor substrate.
  • a surfactant examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene oleyl ether and other polyoxyethylene alkyl ethers, polyoxyethylene octyl phenyl ether, polyoxyethylene.
  • Polyoxyethylene alkylaryl ethers such as nonylphenyl ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitantri Polysorbate fatty acid esters such as stearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, etc.
  • Nonionic surfactants such as oxyethylene sorbitan fatty acid esters, Ftop [registered trademarks] EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronics Co., Ltd.), Megafuck [registered trademarks] F171, F173, R -30, R-40, R-40-LM (manufactured by DIC Co., Ltd.), Florard FC430, FC431 (manufactured by Sumitomo 3M Co., Ltd.), Asahi Guard [registered trademark] AG710, Surflon [registered trademark] S-382 , SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.) and other fluorine-based surfactants, organosiloxane polymer KP341 (manufactured by Shin-Etsu Chemical Industry Co., Ltd.).
  • the protective film-forming composition contains a surfactant
  • the content thereof is usually 0.0001 to 10% by weight, preferably 0.01 to 5% by weight, based on the total solid content of the protective film-forming composition. Is.
  • the protective film-forming composition of the present invention can be prepared by dissolving the above components in an organic solvent, and is used in a uniform solution state.
  • any solvent that can dissolve a compound containing at least one set of two hydroxyl groups adjacent to each other in the molecule or a polymer thereof can be used without particular limitation. You can In particular, since the protective film forming composition according to the present invention is used in a uniform solution state, it is recommended to use a solvent generally used in the lithography process in combination in consideration of its coating performance.
  • organic solvent examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, Propylene glycol monomethyl ether acetate, propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, cycloheptanone, 4-methyl-2-pentanol, methyl 2-hydroxyisobutyrate, 2- Ethyl hydroxyisobutyrate, ethyl ethoxyacetate, 2-hydroxyethyl acetate, methyl 3-methoxypropionate, ethyl 3-me
  • propylene glycol monomethyl ether propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, cyclohexanone and the like are preferable.
  • propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate are preferable.
  • a light absorbing agent, a rheology adjusting agent, an adhesion auxiliary agent and the like can be added to the protective film forming composition of the present invention.
  • the rheology modifier is effective in improving the fluidity of the protective film forming composition.
  • the adhesion aid is effective in improving the adhesion between the semiconductor substrate or resist and the lower layer film.
  • Examples of the light absorber include commercially available light absorbers described in "Technology and Market of Industrial Dyes” (CMC Publishing) and “Dye Handbook” (edited by Synthetic Organic Chemistry Association), for example, C.I. I. Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114 and 124; C.I. I. D isperse Orange 1, 5, 13, 25, 29, 30, 31, 44, 57, 72 and 73; C.I. I. Disperse Red 1, 5, 7, 13, 17, 17, 43, 50, 54, 58, 65, 72, 73, 88, 117, 137, 143, 199 and 210; I.
  • the above-mentioned light absorbent is usually added in a proportion of 10% by mass or less, preferably 5% by mass or less, based on the total solid content of the protective film-forming composition.
  • the rheology modifier is mainly intended to improve the fluidity of the protective film-forming composition, and particularly to improve the film thickness uniformity of the resist underlayer film and the filling property of the protective film-forming composition into the holes in the baking step.
  • Specific examples include phthalate derivatives such as dimethylphthalate, diethylphthalate, diisobutylphthalate, dihexylphthalate and butylisodecylphthalate, adipic acid derivatives such as dinormal butyl adipate, diisobutyl adipate, diisooctyl adipate and octyldecyl adipate, and didi.
  • maleic acid derivatives such as normal butyl maleate, diethyl maleate and dinonyl maleate
  • oleic acid derivatives such as methyl oleate, butyl oleate and tetrahydrofurfuryl oleate
  • stearic acid derivatives such as normal butyl stearate and glyceryl stearate. It can.
  • These rheology adjusters are usually added in a proportion of less than 30% by mass based on the total solid content of the protective film-forming composition.
  • Adhesion aids are added mainly for the purpose of improving the adhesion between the substrate or resist and the protective film forming composition, and in particular preventing the resist from peeling during development.
  • Specific examples include chlorosilanes such as trimethylchlorosilane, dimethylmethylolchlorosilane, methyldiphenylchlorosilane, and chloromethyldimethylchlorosilane, trimethylmethoxysilane, dimethyldiethoxysilane, methyldimethoxysilane, dimethylmethylolethoxysilane, diphenyldimethoxysilane, and phenyltriethoxy.
  • Alkoxysilanes such as silane, hexamethyldisilazane, N,N′-bis(trimethylsilyl)urea, dimethyltrimethylsilylamine, silazanes such as trimethylsilylimidazole, methyloltrichlorosilane, ⁇ -chloropropyltrimethoxysilane, ⁇ -aminopropyl Silanes such as triethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane, benzotriazole, benzimidazole, indazole, imidazole, 2-mercaptobenzimidazole, 2-mercaptobenzothiazole, 2-mercaptobenzoxazole, urazol, thiouracil, Examples thereof include heterocyclic compounds such as mercaptoimidazole and mercaptopyrimidine, ureas such as 1,1-dimethylurea and 1,3-dimethylurea, and thiourea compounds
  • the solid content of the protective film forming composition according to the present invention is usually 0.1 to 70% by mass, preferably 0.1 to 60% by mass.
  • the solid content is the content ratio of all the components excluding the solvent from the protective film forming composition.
  • the proportion of the polymer in the solid content is preferably 1 to 100% by mass, 1 to 99.9% by mass, 50 to 99.9% by mass, 50 to 95% by mass, and 50 to 90% by mass in this order.
  • the substrate with a resist pattern according to the present invention can be manufactured by applying the above-mentioned protective film-forming composition onto a semiconductor substrate and baking it.
  • Examples of the semiconductor substrate to which the protective film forming composition of the present invention is applied include silicon wafers, germanium wafers, and compound semiconductor wafers such as gallium arsenide, indium phosphide, gallium nitride, indium nitride, and aluminum nitride. ..
  • the inorganic film is formed by, for example, ALD (atomic layer deposition) method, CVD (chemical vapor deposition) method, reactive sputtering method, ion plating method, vacuum deposition. It is formed by the method, spin coating method (spin-on-glass: SOG).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • reactive sputtering method reactive sputtering method
  • ion plating method vacuum deposition. It is formed by the method, spin coating method (spin-on-glass: SOG).
  • the inorganic film examples include a polysilicon film, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a BPSG (Boro-Phospho Silicate Glass) film, a titanium nitride film, a titanium oxynitride film, a tungsten nitride film, and a gallium nitride film. , And a gallium arsenide film.
  • the protective film-forming composition of the present invention is applied onto such a semiconductor substrate by an appropriate coating method such as a spinner or a coater. Then, a protective film is formed by baking using a heating means such as a hot plate.
  • the baking conditions are appropriately selected from a baking temperature of 100 ° C. to 400 ° C. and a baking time of 0.3 minutes to 60 minutes.
  • the bake temperature is preferably 120 ° C. to 350 ° C. and the bake time is 0.5 minutes to 30 minutes, and more preferably the bake temperature is 150 ° C. to 300 ° C. and the bake time is 0.8 minutes to 10 minutes.
  • the film thickness of the protective film formed is, for example, 0.001 ⁇ m to 10 ⁇ m, preferably 0.002 ⁇ m to 1 ⁇ m, and more preferably 0.005 ⁇ m to 0.5 ⁇ m. If the temperature at the time of baking is lower than the above range, cross-linking may be insufficient, and it may be difficult to obtain resistance of the formed protective film to the resist solvent or the basic hydrogen peroxide aqueous solution. On the other hand, if the baking temperature is higher than the above range, the protective film may be decomposed by heat.
  • the exposure is performed through a mask (reticle) for forming a predetermined pattern, and for example, i-ray, KrF excimer laser, ArF excimer laser, EUV (extreme ultraviolet) or EB (electron beam) is used.
  • a mask reticle
  • An alkaline developer is used for development, and the development temperature is appropriately selected from 5 ° C. to 50 ° C. and the development time is 10 seconds to 300 seconds.
  • alkaline developing solution examples include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia water; primary amines such as ethylamine and n-propylamine; diethylamine; Secondary amines such as di-n-butylamine, tertiary amines such as triethylamine and methyldiethylamine, alcohol amines such as dimethylethanolamine and triethanolamine, and primary amines such as tetramethylammonium hydroxide, tetraethylammonium hydroxide and choline.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia water
  • primary amines such as ethylamine and n-propylamine; diethylamine
  • Secondary amines such as di-n-butylamine, tertiary
  • an aqueous solution of an alkali such as a quaternary ammonium salt, cyclic amines such as pyrrole and piperidine can be used.
  • an appropriate amount of alcohol such as isopropyl alcohol or a surfactant such as nonionic surfactant may be added to the above aqueous solution of alkalis.
  • the preferred developer is a quaternary ammonium salt, more preferably tetramethylammonium hydroxide and choline.
  • a surfactant or the like can be added to these developers.
  • a method of developing with an organic solvent such as butyl acetate to develop a portion of the photoresist in which the alkali dissolution rate has not been improved can also be used.
  • the protective film is dry-etched using the formed resist pattern as a mask. At that time, when the inorganic film is formed on the surface of the used semiconductor substrate, the surface of the inorganic film is exposed, and when the inorganic film is not formed on the surface of the used semiconductor substrate, Expose the surface.
  • a desired pattern is obtained by performing wet etching using a wet etching solution for semiconductors using the protective film after dry etching (and the resist pattern if the resist pattern remains on the protective film) as a mask. It is formed.
  • the wet etching liquid for semiconductors a general chemical liquid for etching a semiconductor wafer can be used, and for example, both substances exhibiting acidity and substances exhibiting basicity can be used.
  • Examples of the substance exhibiting acidity include hydrogen peroxide, hydrofluoric acid, ammonium fluoride, ammonium acid fluoride, ammonium hydrogen fluoride, buffered hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, or a mixed solution thereof. ..
  • an organic amine such as ammonia, sodium hydroxide, potassium hydroxide, sodium cyanide, potassium cyanide, or triethanolamine is mixed with a hydrogen peroxide solution to make the pH basic.
  • Hydrogen peroxide water can be mentioned. Specific examples include SC-1 (ammonia-hydrogen peroxide solution).
  • SC-1 ammonia-hydrogen peroxide solution
  • those that can make the pH basic for example, those that mix urea and hydrogen peroxide solution and cause thermal decomposition of urea by heating to generate ammonia, and finally make the pH basic.
  • an acidic hydrogen peroxide solution or a basic hydrogen peroxide solution is preferable.
  • These chemicals may contain additives such as surfactants.
  • the use temperature of the wet etching solution for semiconductors is preferably 25°C to 90°C, more preferably 40°C to 80°C.
  • the wet etching time is preferably 0.5 minutes to 30 minutes, and more preferably 1 minute to 20 minutes.
  • Example 2 Diglycidyl terephthalate (product name: Denacol EX-711, manufactured by Nagase Chemtex Co., Ltd.) 8.00 g, succinic acid 2.61 g, 1-thioglycerol 1.19 g, tetrabutylphosphonium bromide 0.70 g and propylene glycol monomethyl.
  • the reaction flask containing 50.01 g of ether was heated and stirred at 100° C. for 23 hours under a nitrogen atmosphere.
  • the obtained reaction product corresponded to the formula (D-2), and the weight average molecular weight Mw measured in terms of polystyrene by GPC was 3,700.
  • Example 4 Terephthalic acid diglycidyl ester (product name: Denacol EX-711, manufactured by Nagase Chemtex Co., Ltd.) 8.00 g, 2,2′-thiodiglycolic acid 3.31 g, 1-thioglycerol 1.19 g, tetrabutylphosphonium bromide
  • a reaction flask prepared by adding 51.90 g of propylene glycol monomethyl ether to 0.47 g was heated and stirred at 100° C. for 24 hours under a nitrogen atmosphere.
  • the obtained reaction product corresponded to the formula (D-4), and the weight average molecular weight Mw measured by GPC in terms of polystyrene was 2,700.
  • Example 5 Diglycidyl phthalate (product name: Denacol EX-721, manufactured by Nagase Chemtex Co., Ltd.) 8.00 g, succinic acid 2.47 g, 1-thioglycerol 1.13 g, tetrabutylphosphonium bromide 0.66 g and propylene glycol monomethyl.
  • the reaction flask containing 49.03 g of ether was heated and stirred at 100° C. for 23 hours under a nitrogen atmosphere.
  • the obtained reaction product corresponded to the formula (D-5), and the weight average molecular weight Mw measured by GPC in terms of polystyrene was 2,100.
  • the obtained reaction product corresponded to the formula (D-6), and the weight average molecular weight Mw measured by GPC in terms of polystyrene was 3,600.
  • Example 7 Resorcinol diglycidyl ether (Product name: Denacol EX-201-IM, manufactured by Nagase Chemtex Co., Ltd., 50.0 wt% propylene glycol monomethyl ether solution) 12.00 g, 3,3′-dithiopropionic acid 4.33 g, A reaction flask in which 1.11 g of 1-thioglycerol and 0.44 g of tetrabutylphosphonium bromide were added with 41.51 g of propylene glycol monomethyl ether was heated and stirred at 100 ° C. for 23 hours under a nitrogen atmosphere. The obtained reaction product corresponded to the formula (D-7), and the weight average molecular weight Mw measured by GPC in terms of polystyrene was 4,700.
  • D-7 the weight average molecular weight Mw measured by GPC in terms of polystyrene was 4,700.
  • Example 8 Resorcinol diglycidyl ether (product name: Denacol EX-201-IM, manufactured by Nagase Chemtex Co., Ltd., 50.0 wt% propylene glycol monomethyl ether solution) 13.00 g, 2,2′-thiodiglycolic acid 3.35 g , 1-thioglycerol (1.21 g), tetrabutylphosphonium bromide (0.47 g) and propylene glycol monomethyl ether (39.61 g) were added thereto, and the reaction flask was heated and stirred at 100 ° C. for 23 hours under a nitrogen atmosphere. The obtained reaction product corresponds to the formula (D-8), and the weight average molecular weight Mw measured by GPC in terms of polystyrene was 1,900.
  • the reaction flask containing 0.76 g was heated and stirred at 100° C. for 24 hours under a nitrogen atmosphere.
  • the obtained reaction product corresponded to the formula (E-3), and the weight average molecular weight Mw measured by GPC in terms of polystyrene was 3,200.
  • the resist solvent resistance was evaluated by the formula: ((film thickness before solvent immersion)-(film thickness after solvent immersion))/(film thickness before solvent immersion) x 100, protective film removed by solvent immersion
  • the film thickness reduction rate (%) was calculated and evaluated. The results are shown in Table 1. If the film thickness reduction rate is about 1% or less, it can be said that the resist solvent has sufficient resistance.
  • the film thickness change of the protective film forming compositions of Examples 1 to 8 and Comparative Examples 1 to 8 was very small even after being immersed in the resist solvent. Therefore, the protective film-forming compositions of Examples 1 to 8 have sufficient resist solvent resistance to function as a protective film.
  • the TiN-deposited substrate coated with the protective film-forming composition is immersed in this basic hydrogen peroxide solution heated to 50 ° C., and the time (peeling time) from immediately after immersion until the protective film is peeled from the substrate is measured. did.
  • Table 2 shows the results of the resistance test to the basic hydrogen peroxide solution. It can be said that the longer the peeling time, the higher the resistance to the wet etching solution using the basic hydrogen peroxide solution.
  • each of the protective film forming compositions prepared in Examples 1 to 8 and Comparative Examples 1 to 8 was applied to a TiN-deposited substrate having a film thickness of 50 nm, and 250 A protective film was formed so as to have a film thickness of 100 nm by heating at ° C. for 1 minute. Next, 85% phosphoric acid and water were mixed so as to have a weight ratio of 1: 1 to prepare an acidic hydrogen peroxide solution.
  • the TiN-deposited substrate coated with the protective film-forming composition was immersed in this acidic hydrogen peroxide solution heated to 60 ° C., and the time (peeling time) from immediately after the immersion until the protective film was peeled from the substrate was measured. .. Table 2 shows the results of the resistance test to the acidic hydrogen peroxide solution. It can be said that the longer the peeling time, the higher the resistance to the wet etching solution using acidic hydrogen peroxide solution.
  • Example 1 using a polymer having at the end having a structure containing at least one set of two hydroxyl groups adjacent to each other in the molecule and Comparative Example 1 not using such a polymer were compared.
  • the peeling time of the protective film against the basic hydrogen peroxide solution was longer in Example 1.
  • Example 2 with Comparative Example 2 Example 3 with Comparative Example 3, Example 4 with Comparative Example 4, Example 5 with Comparative Example 5, and Example 6 with Comparative Example 6, each Example The peeling time of the protective film against the basic hydrogen peroxide solution and the acidic hydrogen peroxide solution was longer in the case of.
  • Examples 7 to 8 have better resistance to a wet etching solution using a basic hydrogen peroxide solution, an acidic hydrogen peroxide solution, or both, as compared with Comparative Example 1 and Comparative Example 6. Can be said to indicate. Therefore, Examples 1 to 8 show better chemical resistance to basic hydrogen peroxide solution, acidic hydrogen peroxide solution, or both as compared with Comparative Examples 1 to 6, and thus are semiconductors. It is useful as a protective film against a wet etching solution for hydrogen peroxide.
  • each of the protective film forming compositions prepared in Examples 1 to 8 and Comparative Examples 7 to 8 is applied onto a silicon wafer and heated at 250 ° C. for 1 minute. As a result, a protective film was formed so that the film thickness was 100 nm.
  • a dry etching apparatus product name: RIE-10NR, manufactured by Samco Co., Ltd.
  • ARC registered trademark
  • the dry etching rate of the protective film was used to measure the dry etching rate ratio of the protective film (dry etching rate selection ratio).
  • the measurement results of the etching selectivity are shown in Table 3. It can be said that the larger the etching selection ratio, the faster the dry etching rate.
  • the protective film forming composition was applied and heated at 250 ° C. for 1 minute.
  • the protective film forming composition was prepared so as to have a film thickness of 100 nm when heated on a silicon wafer at 250 ° C. for 1 minute.
  • the dry etching rate is high in Examples 1 to 8 because the dry etching selection ratio is higher than that in Comparative Examples 7 to 8. That is, Examples 1 to 8 are useful because the dry etching time required for removing the protective film can be shortened, and therefore damage to the underlying substrate can be reduced.
  • Examples 1 to 8 the difference in film thickness (film thickness bias) between the dense area and the open area was smaller than that in Comparative Examples 7 to 8, and the film was formed flatter on the underlying substrate having a pattern. It can be said that it is possible to film. That is, Examples 1 to 8 are useful because nonuniformity of the film thickness is unlikely to occur on the underlying substrate having a pattern and a certain amount of the protective film can be uniformly removed in a desired etching time.
  • Examples 1 to 8 are superior to Comparative Examples 1 to 6 in the resistance to the wet etching solution for semiconductors using the basic hydrogen peroxide solution, the acidic hydrogen peroxide solution, or both, and
  • the etching rate is faster than in Examples 7 to 8, and the coating can be applied flatly on the underlying substrate having a pattern. Therefore, according to the present invention, it is possible to provide a protective film forming composition having a high wet etching solution resistance, a high etching rate, and a high planarization property.
  • the protective film-forming composition according to the present invention has excellent resistance when a wet etching solution is applied to substrate processing and has a high dry etching rate, so that substrate processing is easy, and flatness when applied to a stepped substrate. It provides an excellent protective film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

半導体基板加工時にウエットエッチング液に対する良好なマスク(保護)機能、高ドライエッチング速度を有し、さらに段差基板に対しても被覆性が良好で、埋め込み後の膜厚差が小さく、平坦な膜を形成し得る保護膜形成組成物、該組成物を用いて製造した保護膜、レジストパターン付き基板、及び半導体装置の製造方法を提供すること。 分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造を末端に有する重合体、及び有機溶剤を含む、半導体用ウエットエッチング液に対する保護膜形成組成物である。前記分子内に互いに隣接する2つの水酸基を含む構造が、1,2-エタンジオール構造(A)であってよい。

Description

ジオール構造を末端に有する重合生成物を含む薬液耐性保護膜形成組成物
 本発明は、半導体製造におけるリソグラフィープロセスにおいて、特に半導体用ウエットエッチング液に対する耐性に優れた保護膜を形成するための組成物に関する。また、前記保護膜を適用したレジストパターン付き基板の製造方法、及び半導体装置の製造方法に関する。
 半導体製造において、基板とその上に形成されるレジスト膜との間にレジスト下層膜を設け、所望の形状のレジストパターンを形成するリソグラフィープロセスは広く知られている。レジストパターンを形成した後に基板の加工を行うが、その工程としてはドライエッチングが主に用いられるが、基板種によってはウエットエッチングが用いられる場合がある。特許文献1には、カルボキシ基及び/又はヒドロキシ基を含む特定の化合物を含む、過酸化水素水溶液に対する保護膜形成組成物が開示されている。
国際公開第2018/052130号公報
 レジスト下層膜をエッチングマスクとして用い、下地基板の加工をウエットエッチングで行う場合、レジスト下層膜には下地基板加工時にウエットエッチング液に対する良好なマスク機能(すなわち、マスクされている部分は基板を保護できる)が求められている。
 このような場合、該レジスト下層膜は基板に対する保護膜として用いられることになる。さらに、ウエットエッチング後に不要な該保護膜をドライエッチングで除去する場合、該保護膜は下地基板にダメージが生じないように、ドライエッチングで速やかに除去できるようなエッチング速度の速い(高エッチングレート)保護膜が求められている。
 さらには、いわゆる段差基板に対しても被覆性が良好で、埋め込み後の膜厚差が小さく、平坦な膜を形成し得る保護膜形成組成物も求められている。
 従来、ウエットエッチング薬液の一種であるSC-1(アンモニア-過酸化水素溶液)に対する耐性を発現させるためには、低分子化合物(例えばガリック酸)を添加剤として適用する手法が用いられていたが、上記の課題を解決するには限界があった。
 本発明の目的は、上記の課題を解決することである。
 本発明は以下を包含する。
[1] 分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造を、末端に有する重合体、及び有機溶剤を含む、半導体用ウエットエッチング液に対する保護膜形成組成物。
[2] 前記分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造が、1,2-エタンジオール構造(A)である、[1]に記載の保護膜形成組成物。
[3] 前記1,2-エタンジオール構造が、式(1):
Figure JPOXMLDOC01-appb-C000006

(式(1)中、Xは-COO-、-OCO-、-O-、-S-又は-NR-のいずれかを表し、Rは水素原子又はメチル基を表す。Yは直接結合又は置換されてもよい炭素原子数1乃至4のアルキレン基を表す。R、R及びRはそれぞれ水素原子、置換されてもよい炭素原子数1乃至10のアルキル基又は置換されてもよい炭素原子数6乃至40のアリール基であり、RはR又はRと一緒になって環を形成してもよい。)
で表される構造を含む、[2]に記載の保護膜形成組成物。
[4] 前記式(1)中、R、R及びRが水素原子である、[3]に記載の保護膜形成組成物。
[5] 前記式(1)中、Yがメチレン基である、[3]又は[4]に記載の保護膜形成組成物。
[6] 前記式(1)中、Xが-S-である、[3]乃至[5]のいずれか1に記載の保護膜形成組成物。
[7] 前記重合体が、ジエポキシ化合物(B)と2官能以上のプロトン発生化合物(C)との反応生成物である、[1]乃至[6]のいずれか1に記載の保護膜形成組成物。
[8] 前記2官能以上のプロトン発生化合物(C)が、水酸基、カルボキシ基、チオール基、アミノ基及びイミド基から選ばれる少なくとも1種の官能基を有する、[7]に記載の保護膜形成組成物。
[9] 前記2官能以上のプロトン発生化合物(C)が、酸二無水物である、[7]に記載の保護膜形成組成物。
[10] 前記重合体が、下記式(2):
Figure JPOXMLDOC01-appb-C000007

(式(2)中、R、R、R、R、R及びR10は、それぞれ独立に水素原子、メチル基又はエチル基を表し、Qは2つの炭素原子間の二価の有機基を表し、m1及びm2はそれぞれ独立に0又は1を表す。)
で表される単位構造を含む、[1]乃至[9]のいずれか1に記載の保護膜形成組成物。
[11] 前記式(2)のQが、下記式(3):
Figure JPOXMLDOC01-appb-C000008

(式(3)中、Qは直接結合、-O-、-S-又は-S-S-で中断されていてもよい炭素原子数1乃至10のアルキレン基、-O-、-S-又は-S-S-で中断されていてもよい炭素原子数2乃至6のアルケニレン基、又は炭素原子数3乃至10の脂環式炭化水素環若しくは炭素原子数6乃至14の芳香族炭化水素環を少なくとも1つ有する二価の有機基を表し、
前記二価の有機基は、炭素原子数1乃至6のアルキル基、炭素原子数2乃至6のアルケニル基、炭素原子数2乃至6のアルキニル基、ハロゲン原子、ヒドロキシ基、ニトロ基、シアノ基、メチリデン基、炭素原子数1乃至6のアルコキシ基、炭素原子数1乃至6のアルコキシカルボニル基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよい。
及びZはそれぞれ-COO-、-OCO-、-O-、-S-のいずれかを表す。)
で表される[10]に記載の保護膜形成組成物。
[12] 前記式(2)のQが下記式(4):
Figure JPOXMLDOC01-appb-C000009

(式(4)中、Qは下記式(5)、式(6)又は式(7)を表す。)
Figure JPOXMLDOC01-appb-C000010

(式(5)、式(6)及び式(7)中、R11、R12、R13、R14及びR15はそれぞれ独立に、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、
前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、ニトロ基、シアノ基、炭素原子数1乃至6のアルコキシ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つで置換されていてもよく、
13とR14は互いに結合して炭素原子数3乃至6の環を形成していてもよい。)
で表される[10]に記載の保護膜形成組成物。
[13] 架橋触媒をさらに含む、[1]乃至[12]のいずれか1に記載の保護膜形成組成物。
[14] 架橋剤をさらに含む、[1]乃至[13]のいずれか1に記載の保護膜形成組成物。
[15] 界面活性剤をさらに含む、[1]乃至[14]のいずれか1に記載の保護膜形成組成物。
[16] [1]から[15]のいずれか1に記載の保護膜形成組成物からなる塗布膜の焼成物であることを特徴とする保護膜。
[17] [1]から[15]のいずれか1に記載の保護膜組成物を半導体基板上に塗布し焼成してレジスト下層膜としての保護膜を形成する工程、該保護膜上にレジスト膜を形成し、次いで露光、現像してレジストパターンを形成する工程を含み、半導体の製造に用いることを特徴とするレジストパターン付き基板の製造方法。
[18] 表面に無機膜が形成されていてもよい半導体基板上に、[1]乃至[15]のいずれか1に記載の保護膜形成組成物を用いて保護膜を形成し、前記保護膜上にレジストパターンを形成し、前記レジストパターンをマスクとして前記保護膜をドライエッチングし、前記無機膜又は前記半導体基板の表面を露出させ、ドライエッチング後の前記保護膜をマスクとして、半導体用ウエットエッチング液を用いて前記無機膜又は前記半導体基板をウエットエッチング及び洗浄する工程を含む半導体装置の製造方法。
 保護膜形成組成物は、半導体製造におけるリソグラフィープロセスにおいて、例えば下記の特性をバランス良く有していることが要求される。すなわち、(1)下地基板加工時にウエットエッチング液に対する良好なマスク機能を有すること、(2)さらにドライエッチング速度が高いこと、及び(3)段差基板の平坦化性に優れることである。本発明の保護膜形成組成物は、これら(1)~(3)の性能をバランスよく有することで、半導体基板の微細加工を容易に行うことができる。
≪用語の説明≫
 本発明において用いられる用語は、他に特に断りのない限り、以下の定義を有する。
 「炭素原子数1乃至10のアルキレン基」としては、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、シクロプロピレン基、n-ブチレン基、イソブチレン基、s-ブチレン基、t-ブチレン基、シクロブチレン基、1-メチル-シクロプロピレン基、2-メチル-シクロプロピレン基、n-ペンチレン基、1-メチル-n-ブチレン基、2-メチル-n-ブチレン基、3-メチル-n-ブチレン基、1,1-ジメチル-n-プロピレン基、1,2-ジメチル-n-プロピレン基、2,2-ジメチル-n-プロピレン、1-エチル-n-プロピレン基、シクロペンチレン基、1-メチル-シクロブチレン基、2-メチル-シクロブチレン基、3-メチル-シクロブチレン基、1,2-ジメチル-シクロプロピレン基、2,3-ジメチル-シクロプロピレン基、1-エチル-シクロプロピレン基、2-エチル-シクロプロピレン基、n-ヘキシレン基、1-メチル-n-ペンチレン基、2-メチル-n-ペンチレン基、3-メチル-n-ペンチレン基、4-メチル-n-ペンチレン基、1,1-ジメチル-n-ブチレン基、1,2-ジメチル-n-ブチレン基、1,3-ジメチル-n-ブチレン基、2,2-ジメチル-n-ブチレン基、2,3-ジメチル-n-ブチレン基、3,3-ジメチル-n-ブチレン基、1-エチル-n-ブチレン基、2-エチル-n-ブチレン基、1,1,2-トリメチル-n-プロピレン基、1,2,2-トリメチル-n-プロピレン基、1-エチル-1-メチル-n-プロピレン基、1-エチル-2-メチル-n-プロピレン基、シクロヘキシレン基、1-メチル-シクロペンチレン基、2-メチル-シクロペンチレン基、3-メチル-シクロペンチレン基、1-エチル-シクロブチレン基、2-エチル-シクロブチレン基、3-エチル-シクロブチレン基、1,2-ジメチル-シクロブチレン基、1,3-ジメチル-シクロブチレン基、2,2-ジメチル-シクロブチレン基、2,3-ジメチル-シクロブチレン基、2,4-ジメチル-シクロブチレン基、3,3-ジメチル-シクロブチレン基、1-n-プロピル-シクロプロピレン基、2-n-プロピル-シクロプロピレン基、1-イソプロピル-シクロプロピレン基、2-イソプロピル-シクロプロピレン基、1,2,2-トリメチル-シクロプロピレン基、1,2,3-トリメチル-シクロプロピレン基、2,2,3-トリメチル-シクロプロピレン基、1-エチル-2-メチル-シクロプロピレン基、2-エチル-1-メチル-シクロプロピレン基、2-エチル-2-メチル-シクロプロピレン基、2-エチル-3-メチル-シクロプロピレン基、n-ヘプチレン基、n-オクチレン基、n-ノニレン基又はn-デカニレン基が挙げられる。
 「炭素原子数1乃至10のアルキル基」としては、メチル基、エチル基、n-プロピル基、i-プロピル基、シクロプロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、シクロブチル基、1-メチル-シクロプロピル基、2-メチル-シクロプロピル基、n-ペンチル基、1-メチル-n-ブチル基、2-メチル-n-ブチル基、3-メチル-n-ブチル基、1,1-ジメチル-n-プロピル基、1,2-ジメチル-n-プロピル基、2,2-ジメチル-n-プロピル基、1-エチル-n-プロピル基、シクロペンチル基、1-メチル-シクロブチル基、2-メチル-シクロブチル基、3-メチル-シクロブチル基、1,2-ジメチル-シクロプロピル基、2,3-ジメチル-シクロプロピル基、1-エチル-シクロプロピル基、2-エチル-シクロプロピル基、n-ヘキシル基、1-メチル-n-ペンチル基、2-メチル-n-ペンチル基、3-メチル-n-ペンチル基、4-メチル-n-ペンチル基、1,1-ジメチル-n-ブチル基、1,2-ジメチル-n-ブチル基、1,3-ジメチル-n-ブチル基、2,2-ジメチル-n-ブチル基、2,3-ジメチル-n-ブチル基、3,3-ジメチル-n-ブチル基、1-エチル-n-ブチル基、2-エチル-n-ブチル基、1,1,2-トリメチル-n-プロピル基、1,2,2-トリメチル-n-プロピル基、1-エチル-1-メチル-n-プロピル基、1-エチル-2-メチル-n-プロピル基、シクロヘキシル基、1-メチル-シクロペンチル基、2-メチル-シクロペンチル基、3-メチル-シクロペンチル基、1-エチル-シクロブチル基、2-エチル-シクロブチル基、3-エチル-シクロブチル基、1,2-ジメチル-シクロブチル基、1,3-ジメチル-シクロブチル基、2,2-ジメチル-シクロブチル基、2,3-ジメチル-シクロブチル基、2,4-ジメチル-シクロブチル基、3,3-ジメチル-シクロブチル基、1-n-プロピル-シクロプロピル基、2-n-プロピル-シクロプロピル基、1-i-プロピル-シクロプロピル基、2-i-プロピル-シクロプロピル基、1,2,2-トリメチル-シクロプロピル基、1,2,3-トリメチル-シクロプロピル基、2,2,3-トリメチル-シクロプロピル基、1-エチル-2-メチル-シクロプロピル基、2-エチル-1-メチル-シクロプロピル基、2-エチル-2-メチル-シクロプロピル基、2-エチル-3-メチル-シクロプロピル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコデシル基等が挙げられる。
 「炭素原子数6乃至40のアリール基」としては、フェニル基、o-メチルフェニル基、m-メチルフェニル基、p-メチルフェニル基、o-クロルフェニル基、m-クロルフェニル基、p-クロルフェニル基、o-フルオロフェニル基、p-フルオロフェニル基、o-メトキシフェニル基、p-メトキシフェニル基、p-ニトロフェニル基、p-シアノフェニル基、α-ナフチル基、β-ナフチル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基及び9-フェナントリル基が挙げられる。
 「炭素原子数2乃至10のアルケニル基」としては、エテニル基、1-プロペニル基、2-プロペニル基、1-メチル-1-エテニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-n-プロピルエテニル基、1-メチル-1-ブテニル基、1-メチル-2-ブテニル基、1-メチル-3-ブテニル基、2-エチル-2-プロペニル基、2-メチル-1-ブテニル基、2-メチル-2-ブテニル基、2-メチル-3-ブテニル基、3-メチル-1-ブテニル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、1,1-ジメチル-2-プロペニル基、1-i-プロピルエテニル基、1,2-ジメチル-1-プロペニル基、1,2-ジメチル-2-プロペニル基、1-シクロペンテニル基、2-シクロペンテニル基、3-シクロペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-メチル-1-ペンテニル基、1-メチル-2-ペンテニル基、1-メチル-3-ペンテニル基、1-メチル-4-ペンテニル基、1-n-ブチルエテニル基、2-メチル-1-ペンテニル基、2-メチル-2-ペンテニル基、2-メチル-3-ペンテニル基、2-メチル-4-ペンテニル基、2-n-プロピル-2-プロペニル基、3-メチル-1-ペンテニル基、3-メチル-2-ペンテニル基、3-メチル-3-ペンテニル基、3-メチル-4-ペンテニル基、3-エチル-3-ブテニル基、4-メチル-1-ペンテニル基、4-メチル-2-ペンテニル基、4-メチル-3-ペンテニル基、4-メチル-4-ペンテニル基、1,1-ジメチル-2-ブテニル基、1,1-ジメチル-3-ブテニル基、1,2-ジメチル-1-ブテニル基、1,2-ジメチル-2-ブテニル基、1,2-ジメチル-3-ブテニル基、1-メチル-2-エチル-2-プロペニル基、1-s-ブチルエテニル基、1,3-ジメチル-1-ブテニル基、1,3-ジメチル-2-ブテニル基、1,3-ジメチル-3-ブテニル基、1-i-ブチルエテニル基、2,2-ジメチル-3-ブテニル基、2,3-ジメチル-1-ブテニル基、2,3-ジメチル-2-ブテニル基、2,3-ジメチル-3-ブテニル基、2-i-プロピル-2-プロペニル基、3,3-ジメチル-1-ブテニル基、1-エチル-1-ブテニル基、1-エチル-2-ブテニル基、1-エチル-3-ブテニル基、1-n-プロピル-1-プロペニル基、1-n-プロピル-2-プロペニル基、2-エチル-1-ブテニル基、2-エチル-2-ブテニル基、2-エチル-3-ブテニル基、1,1,2-トリメチル-2-プロペニル基、1-t-ブチルエテニル基、1-メチル-1-エチル-2-プロペニル基、1-エチル-2-メチル-1-プロペニル基、1-エチル-2-メチル-2-プロペニル基、1-i-プロピル-1-プロペニル基、1-i-プロピル-2-プロペニル基、1-メチル-2-シクロペンテニル基、1-メチル-3-シクロペンテニル基、2-メチル-1-シクロペンテニル基、2-メチル-2-シクロペンテニル基、2-メチル-3-シクロペンテニル基、2-メチル-4-シクロペンテニル基、2-メチル-5-シクロペンテニル基、2-メチレン-シクロペンチル基、3-メチル-1-シクロペンテニル基、3-メチル-2-シクロペンテニル基、3-メチル-3-シクロペンテニル基、3-メチル-4-シクロペンテニル基、3-メチル-5-シクロペンテニル基、3-メチレン-シクロペンチル基、1-シクロヘキセニル基、2-シクロヘキセニル基及び3-シクロヘキセニル基等が挙げられる。
 「炭素原子数2乃至6のアルケニレン基」とは、上記「炭素原子数2乃至10のアルケニル基」に挙げられた炭素原子数2乃至6のアルケニル基の水素原子が1つ除かれ、2価の基になったものを言う。
 「炭素原子数3乃至10の脂環式炭化水素環」としては、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロへプタン、シクロオクタン、シクロノナン、シクロデカン、スピロビシクロペンタン、ビシクロ[2.1.0]ペンタン、ビシクロ[3.2.1]オクタン、トリシクロ[3.2.1.02,7]オクタン、スピロ[3,4]オクタン等が挙げられる。
 「炭素原子数6乃至14の芳香族炭化水素環」とは、上記「炭素原子数6乃至40のアリール基」の内、炭素原子数6乃至14の芳香族炭化水素環を有するものを言う。
 「炭素原子数2乃至6のアルキニル基」とは、上記「炭素原子数2乃至10のアルケニル基」に挙げられた炭素原子数2乃至6のアルケニル基の2重結合が3重結合に置き換えられている基を言う。
 「炭素原子数1乃至20のアルコキシ基」としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシルオキシ基、1-メチル-n-ペンチルオキシ基、2-メチル-n-ペンチルオキシ基、3-メチル-n-ペンチルオキシ基、4-メチル-n-ペンチルオキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基、及び1-エチル-2-メチル-n-プロポキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、ノルボルニオキシ基、アダマンチルオキシ基、アダマンタンメチルオキシ基、アダマンタンエチルオキシ基、テトラシクロデカニルオキシ基、トリシクロデカニルオキシ基等が挙げられる。
 「炭素原子数1乃至6のアルコキシカルボニル基」としては、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基等が挙げられる。
 「炭素原子数1乃至6のアルキルチオ基」としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基及びヘキシルチオ基等が挙げられる。
 「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 「炭素原子数1乃至20のアルコキシ基」としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、i-ブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、1-メチル-n-ブトキシ基、2-メチル-n-ブトキシ基、3-メチル-n-ブトキシ基、1,1-ジメチル-n-プロポキシ基、1,2-ジメチル-n-プロポキシ基、2,2-ジメチル-n-プロポキシ基、1-エチル-n-プロポキシ基、n-ヘキシルオキシ基、1-メチル-n-ペンチルオキシ基、2-メチル-n-ペンチルオキシ基、3-メチル-n-ペンチルオキシ基、4-メチル-n-ペンチルオキシ基、1,1-ジメチル-n-ブトキシ基、1,2-ジメチル-n-ブトキシ基、1,3-ジメチル-n-ブトキシ基、2,2-ジメチル-n-ブトキシ基、2,3-ジメチル-n-ブトキシ基、3,3-ジメチル-n-ブトキシ基、1-エチル-n-ブトキシ基、2-エチル-n-ブトキシ基、1,1,2-トリメチル-n-プロポキシ基、1,2,2-トリメチル-n-プロポキシ基、1-エチル-1-メチル-n-プロポキシ基、及び1-エチル-2-メチル-n-プロポキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、ノルボルニルオキシ基、アダマンチルオキシ基、アダマンタンメチルオキシ基、アダマンタンエチルオキシ基、テトラシクロデカニルオキシ基、トリシクロデカニルオキシ基等が挙げられる。
 「置換されてもよい」とは、上記炭素原子数1乃至10のアルキル基又は上記炭素原子数6乃至40のアリール基中に存在する一部又は全部の水素原子が、例えば、水酸基、ハロゲン原子、カルボキシル基、ニトロ基、シアノ基、メチレンジオキシ基、アセトキシ基、メチルチオ基、アミノ基又は炭素原子数1乃至9のアルコキシ基で置換されてもよいことを意味する。
<保護膜形成組成物>
 本願の保護膜形成組成物は、分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造を末端に有する重合体、及び有機溶剤を含む、半導体用ウエットエッチング液に対する保護膜形成組成物、である。以下に順に説明する。
<分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造>
 分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造は、1,2-エタンジオール構造(A)であってもよい。
 前記1,2-エタンジオール構造が、式(1):
Figure JPOXMLDOC01-appb-C000011
(式(1)中、Xは-COO-、-OCO-、-O-、-S-又は-NR-のいずれかを表し、Rは水素原子又はメチル基を表す。Yは置換されてもよい炭素原子数1乃至4のアルキレン基を表す。R、R及びRはそれぞれ水素原子、置換されてもよい炭素原子数1乃至10のアルキル基又は炭素原子数6乃至40のアリール基であり、RはR又はRと一緒になって環を形成してもよい。)
で表される構造を含んでもよい。
 RがR又はRと一緒になって形成している環の具体例としては、シクロペンタン環、シクロヘキサン環、ビシクロ[2,2,1]ヘプタン環等が挙げられる。
 上記環を形成する場合、例えばシクロペンタン-1、2-ジオール、シクロヘキサン-1、2-ジオール、ビシクロ[2,2,1]ヘプタン-1、2-ジオール等の化合物を重合体末端に反応させることで誘導することができる。
 前記式(1)中、R、R及びRが水素原子であってもよい。
 前記式(1)中、Yがメチレン基であってもよい。
 前記式(1)中、Xが-S-であってもよい。
 1,2-エタンジオール構造(A)を有する前記ポリマーの末端を形成する化合物としては、例えば、下記式(A-1)乃至式(A-4)で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000012
 <重合体>
 前記重合体が、ジエポキシ化合物(B)と2官能以上のプロトン発生化合物(C)との反応生成物であってもよい。
 上記反応生成物は、下記式(2):
Figure JPOXMLDOC01-appb-C000013
(式(2)中、R、R、R、R、R及びR10は、それぞれ独立に水素原子、メチル基又はエチル基を表し、Qは2つの炭素原子間の二価の有機基を表し、m及びmはそれぞれ独立に0又は1を表す。)
で表される単位構造を含むものであってもよい。
 前記式(2)のQが、下記式(3):
Figure JPOXMLDOC01-appb-C000014
(式(3)中、Qは直接結合、-O-、-S-又は-S-S-で中断されていてもよい炭素原子数1乃至10のアルキレン基、炭素原子数2乃至6のアルケニレン基、又は炭素原子数3乃至10の脂環式炭化水素環若しくは炭素原子数6乃至14の芳香族炭化水素環を少なくとも1つ有する二価の有機基を表し、前記二価の有機基は、炭素原子数1乃至6のアルキル基、炭素原子数2乃至6のアルケニル基、炭素原子数2乃至6のアルキニル基、ハロゲン原子、ヒドロキシ基、ニトロ基、シアノ基、メチリデン基、炭素原子数1乃至6のアルコキシ基、炭素原子数1乃至6のアルコキシカルボニル基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよい。Z及びZはそれぞれ-COO-、-OCO-、-O-、-S-のいずれかを表す。)
で表されてもよい。
 前記式(2)のQが下記式(4):
Figure JPOXMLDOC01-appb-C000015
(式(4)中、Qは下記式(5)、式(6)又は式(7)を表す。)
Figure JPOXMLDOC01-appb-C000016
(式(5)、式(6)及び式(7)中、R11、R12、R13、R14及びR15はそれぞれ独立に、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、ニトロ基、シアノ基、炭素原子数1乃至6のアルコキシ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つで置換されていてもよく、R13とR14は互いに結合して炭素原子数3乃至6の環を形成していてもよい。)
で表されてもよい。
 前記式(2)で表され、m及びmが1を表す構造単位を形成するジエポキシ化合物(B)としては、例えば、下記式(B-1)乃至式(B-46)で表されるエポキシ基を2つ有するジグリシジルエーテル、ジグリシジルエステルを有する化合物を例示するこができるが、これらの例に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 前記式(2)で表され、m及びmが0で表される構造単位を形成する2官能以上のプロトン発生化合物(C)としては、例えば、下記式(C-1)乃至式(C-47)で表されるカルボキシル基、ヒドロキシフェニル基又はイミド基を2つ有する化合物、及び酸二無水物を例示することができるが、これらの例に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記重合体の重量平均分子量は、例えば1,000~30,000である。
[架橋剤]
 本発明のレジスト下層膜形成組成物は架橋剤成分を含むことができる。その架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられる。好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、メトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メトキシメチル化ベンゾグワナミン、ブトキシメチル化ベンゾグワナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メトキシメチル化チオ尿素、またはメトキシメチル化チオ尿素等の化合物である。また、これらの化合物の縮合体も使用することができる。
 また、上記架橋剤としては耐熱性の高い架橋剤を用いることができる。耐熱性の高い架橋剤としては分子内に芳香族環(例えば、ベンゼン環、ナフタレン環)を有する架橋形成置換基を含有する化合物を用いることができる。
 このような化合物としては、下記式(5-1)の部分構造を有する化合物や、下記式(5-2)の繰り返し単位を有するポリマー又はオリゴマーが挙げられる。
Figure JPOXMLDOC01-appb-C000021
 上記R11、R12、R13、及びR14は水素原子又は炭素数1乃至10のアルキル基であり、これらのアルキル基の具体例は上述のとおりである。
 m1は1≦m1≦6-m2、m2は1≦m2≦5、m3は1≦m3≦4-m2、m4は1≦m4≦3である。
 式(5-1)及び式(5-2)の化合物、ポリマー、オリゴマーは以下に例示される。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 上記化合物は旭有機材工業(株)、本州化学工業(株)の製品として入手することができる。例えば上記架橋剤の中で式(6-22)の化合物は旭有機材工業(株)、商品名TMOM-BPとして入手することができる。
 架橋剤の添加量は、使用する塗布溶剤、使用する下地基板、要求される溶液粘度、要求される膜形状などにより変動するが、保護膜形成組成物の全固形分に対して通常0.001乃至80重量%、好ましくは 0.01乃至50重量%、さらに好ましくは0.1乃至40重量%である。これら架橋剤は自己縮合による架橋反応を起こすこともあるが、本発明の上記のポリマー中に架橋性置換基が存在する場合は、それらの架橋性置換基と架橋反応を起こすことができる。
[架橋触媒]
 本発明の保護膜形成組成物は、任意成分として、架橋反応を促進させるために、架橋触媒を含有することができる。当該架橋触媒としては、酸性化合物、塩基性化合物に加え、熱により酸又は塩基が発生する化合物を用いることができるが、架橋酸触媒であることが好ましい。酸性化合物としては、スルホン酸化合物又はカルボン酸化合物を用いることができ、熱により酸が発生する化合物としては、熱酸発生剤を用いることができる。
 スルホン酸化合物又はカルボン酸化合物としては、例えば、p-トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムトリフルオロメタンスルホナート、ピリジニウム-p-トルエンスルホネート、サリチル酸、カンファースルホン酸、5-スルホサリチル酸、4-クロロベンゼンスルホン酸、4-フェノールスルホン酸、ピリジニウム-4-フェノールスルホネート、ベンゼンジスルホン酸、1-ナフタレンスルホン酸、4-ニトロベンゼンスルホン酸、クエン酸、安息香酸、ヒドロキシ安息香酸が挙げられる。
 熱酸発生剤としては、例えば、K-PURE〔登録商標〕CXC-1612、同CXC-1614、同TAG-2172、同TAG-2179、同TAG-2678、同TAG2689(以上、King Industries社製)、及びSI-45、SI-60、SI-80、SI-100、SI-110、SI-150(以上、三新化学工業株式会社製)が挙げられる。
 これら架橋触媒は、1種又は2種以上を組み合わせて用いることができる。また、塩基性化合物としては、アミン化合物又は水酸化アンモニウム化合物を用いることができ、熱により塩基が発生する化合物としては、尿素を用いることができる。
 アミン化合物として、例えば、トリエタノールアミン、トリブタノールアミン、トリメチルアミン、トリエチルアミン、トリノルマルプロピルアミン、トリイソプロピルアミン、トリノルマルブチルアミン、トリ-tert-ブチルアミン、トリノルマルオクチルアミン、トリイソプロパノールアミン、フェニルジエタノールアミン、ステアリルジエタノールアミン、及びジアザビシクロオクタン等の第3級アミン、ピリジン及び4-ジメチルアミノピリジン等の芳香族アミンが挙げられる。また、ベンジルアミン及びノルマルブチルアミン等の第1級アミン、ジエチルアミン及びジノルマルブチルアミン等の第2級アミンもアミン化合物として挙げられる。これらのアミン化合物は、単独で又は二種以上を組み合わせて用いることができる。
 水酸化アンモニウム化合物としては、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、水酸化ベンジルトリエチルアンモニウム、水酸化セチルトリメチルアンモニウム、水酸化フェニルトリメチルアンモニウム、水酸化フェニルトリエチルアンモニウムが挙げられる。
 また、熱により塩基が発生する化合物としては、例えば、アミド基、ウレタン基又はアジリジン基のような熱不安定性基を有し、加熱することでアミンを生成する化合物を使用することができる。その他、尿素、ベンジルトリメチルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、ベンジルジメチルフェニルアンモニウムクロリド、ベンジルドデシルジメチルアンモニウムクロリド、ベンジルトリブチルアンモニウムクロリド、コリンクロリドも熱により塩基が発生する化合物として挙げられる。
 前記保護膜形成組成物が架橋触媒を含む場合、その含有量は、保護膜形成組成物の全固形分に対して、通常0.0001乃至20重量%、好ましくは0.01乃至15重量%、さらに好ましくは0.1乃至10質量%である。
[界面活性剤]
 本発明の保護膜形成組成物は、任意成分として、半導体基板に対する塗布性を向上させるために界面活性剤を含有することができる。前記界面活性剤としては、例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタントリステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノニオン系界面活性剤、エフトップ〔登録商標〕EF301、同EF303、同EF352(三菱マテリアル電子化成株式会社製)、メガファック〔登録商標〕F171、同F173、同R-30、同R-40、同R-40-LM(DIC株式会社製)、フロラードFC430、同FC431(住友スリーエム株式会社製)、アサヒガード〔登録商標〕AG710、サーフロン〔登録商標〕S-382、同SC101、同SC102、同SC103、同SC104、同SC105、同SC106(旭硝子株式会社製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341(信越化学工業株式会社製)を挙げることができる。これらの界面活性剤は、単独で又は二種以上を組み合わせて用いることができる。前記保護膜形成組成物が界面活性剤を含む場合、その含有量は、保護膜形成組成物の全固形分に対して、通常0.0001乃至10重量%、好ましくは0.01乃至5重量%である。
[溶媒]
 本発明の保護膜形成組成物は、上記各成分を、有機溶剤に溶解させることによって調製でき、均一な溶液状態で用いられる。
 本発明に係る保護膜形成組成物の溶媒としては、上記分子内に互いに隣接する2つの水酸基を少なくとも1組以上含む化合物、又はその重合体を溶解できる溶媒であれば、特に制限なく使用することができる。特に、本発明に係る保護膜形成組成物は均一な溶液状態で用いられるものであるため、その塗布性能を考慮すると、リソグラフィー工程に一般的に使用される溶媒を併用することが推奨される。
 前記有機溶剤としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、4-メチル-2-ペンタノール、2―ヒドロキシイソ酪酸メチル、2―ヒドロキシイソ酪酸エチル、エトキシ酢酸エチル、酢酸2-ヒドロキシエチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、2-ヘプタノン、メトキシシクロペンタン、アニソール、γ-ブチロラクトン、N-メチルピロリドン、N,N-ジメチルホルムアミド、及びN,N-ジメチルアセトアミドが挙げられる。これらの溶剤は、単独で又は2種以上を組み合わせて用いることができる。
 これらの溶媒の中でプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、乳酸ブチル、及びシクロヘキサノン等が好ましい。特にプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが好ましい。
[その他の成分]
 本発明の保護膜形成組成物には、吸光剤、レオロジー調整剤、接着補助剤などを添加することができる。レオロジー調整剤は、保護膜形成組成物の流動性を向上させるのに有効である。接着補助剤は、半導体基板またはレジストと下層膜の密着性を向上させるのに有効である。
 吸光剤としては例えば、「工業用色素の技術と市場」(CMC出版)や「染料便覧」(有機合成化学協会編)に記載の市販の吸光剤、例えば、C.I.Disperse Yellow 1,3,4,5,7,8,13,23,31,49,50,51,54,60,64,66,68,79,82,88,90,93,102,114及び124;C.I.D isperse Orange1,5,13,25,29,30,31,44,57,72及び73;C.I.Disperse Red 1,5,7,13,17,19,43,50,54,58,65,72,73,88,117,137,143,199及び210;C.I.Disperse Violet 43;C.I.Disperse Blue 96;C.I.Fluorescent Brightening Agent 112,135及び163;C.I.Solvent Orange2及び45;C.I.Solvent Red 1,3,8,23,24,25,27及び49;C.I.Pigment Green 10;C.I.Pigment Brown 2等を好適に用いることができる。
 上記吸光剤は通常、保護膜形成組成物の全固形分に対して通常10質量%以下、好ましくは5質量%以下の割合で配合される。
 レオロジー調整剤は、主に保護膜形成組成物の流動性を向上させ、特にベーキング工程において、レジスト下層膜の膜厚均一性の向上やホール内部への保護膜形成組成物の充填性を高める目的で添加される。具体例としては、ジメチルフタレート、ジエチルフタレート、ジイソブチルフタレート、ジヘキシルフタレート、ブチルイソデシルフタレート等のフタル酸誘導体、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオクチルアジペート、オクチルデシルアジペート等のアジピン酸誘導体、ジノルマルブチルマレート、ジエチルマレート、ジノニルマレート等のマレイン酸誘導体、メチルオレート、ブチルオレート、テトラヒドロフルフリルオレート等のオレイン酸誘導体、またはノルマルブチルステアレート、グリセリルステアレート等のステアリン酸誘導体を挙げることができる。これらのレオロジー調整剤は、保護膜形成組成物の全固形分に対して通常30質量%未満の割合で配合される。
 接着補助剤は、主に基板あるいはレジストと保護膜形成組成物の密着性を向上させ、特に現像においてレジストが剥離しないようにする目的で添加される。具体例としては、トリメチルクロロシラン、ジメチルメチロールクロロシラン、メチルジフェニルクロロシラン、クロロメチルジメチルクロロシラン等のクロロシラン類、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルメチロールエトキシシラン、ジフェニルジメトキシシラン、フェニルトリエトキシシラン等のアルコキシシラン類、ヘキサメチルジシラザン、N,N’-ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール等のシラザン類、メチロールトリクロロシラン、γ-クロロプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のシラン類、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2-メルカプトベンズイミダゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン等の複素環式化合物や、1,1-ジメチルウレア、1,3-ジメチルウレア等の尿素、またはチオ尿素化合物を挙げることができる。これらの接着補助剤は、保護膜形成組成物の全固形分に対して通常5質量%未満、好ましくは2質量%未満の割合で配合される。
[保護膜形成組成物]
 本発明に係る保護膜形成組成物の固形分は通常0.1乃至70質量%、好ましくは0.1乃至60質量%とする。固形分は保護膜形成組成物から溶媒を除いた全成分の含有割合である。固形分中におけるポリマーの割合は、1乃至100質量%、1乃至99.9質量%、50乃至99.9質量%、50乃至95質量%、50乃至90質量%の順で好ましい。
[レジストパターン付き基板及び半導体装置の製造方法]
 以下、本発明に係る保護膜形成組成物を用いたレジストパターン付き基板の製造方法及び半導体装置の製造方法について説明する。
 本発明に係るレジストパターン付き基板は、上記した保護膜形成組成物を半導体基板上に塗布し、焼成することにより製造することができる。
 本発明の保護膜形成組成物が塗布される半導体基板としては、例えば、シリコンウエハ、ゲルマニウムウエハ、及びヒ化ガリウム、リン化インジウム、窒化ガリウム、窒化インジウム、窒化アルミニウム等の化合物半導体ウエハが挙げられる。
 表面に無機膜が形成された半導体基板を用いる場合、当該無機膜は、例えば、ALD(原子層堆積)法、CVD(化学気相堆積)法、反応性スパッタ法、イオンプレーティング法、真空蒸着法、スピンコーティング法(スピンオングラス:SOG)により形成される。前記無機膜として、例えば、ポリシリコン膜、酸化ケイ素膜、窒化ケイ素膜、酸窒化ケイ素膜、BPSG(Boro-Phospho Silicate Glass)膜、窒化チタン膜、酸窒化チタン膜、窒化タングステン膜、窒化ガリウム膜、及びヒ化ガリウム膜が挙げられる。
 このような半導体基板上に、スピナー、コーター等の適当な塗布方法により本発明の保護膜形成組成物を塗布する。その後、ホットプレート等の加熱手段を用いてベークすることにより保護膜を形成する。ベーク条件としては、ベーク温度100℃乃至400℃、ベーク時間0.3分乃至60分間の中から適宜、選択される。好ましくは、ベーク温度120℃乃至350℃、ベーク時間0.5分乃至30分間、より好ましくは、ベーク温度150℃乃至300℃、ベーク時間0.8分乃至10分間である。形成される保護膜の膜厚としては、例えば0.001μm乃至10μm、好ましくは0.002μm乃至1μm、より好ましくは0.005μm乃至0.5μmである。ベーク時の温度が、上記範囲より低い場合には架橋が不十分となり、形成される保護膜の、レジスト溶剤又は塩基性過酸化水素水溶液に対する耐性が得られにくくなることがある。一方、ベーク時の温度が上記範囲より高い場合は、保護膜が熱によって分解してしまうことがある。
 露光は、所定のパターンを形成するためのマスク(レチクル)を通して行われ、例えば、i線、KrFエキシマレーザー、ArFエキシマレーザー、EUV(極端紫外線)またはEB(電子線)が使用される。現像にはアルカリ現像液が用いられ、現像温度5℃乃至50℃、現像時間10秒乃至300秒から適宜選択される。アルカリ現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、n-プロピルアミン等の第一アミン類、ジエチルアミン、ジーn-ブチルアミン等の第二アミン類、トリエチルアミン、メチルジエチルアミン等の第三アミン類、ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン類、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、コリン等の第4級アンモニウム塩、ピロール、ピペリジン等の環状アミン類、等のアルカリ類の水溶液を使用することができる。さらに、上記アルカリ類の水溶液にイソプロピルアルコール等のアルコール類、ノニオン系等の界面活性剤を適当量添加して使用することもできる。これらの中で好ましい現像液は第四級アンモニウム塩、さらに好ましくはテトラメチルアンモニウムヒドロキシド及びコリンである。さらに、これらの現像液に界面活性剤などを加えることもできる。アルカリ現像液に代えて、酢酸ブチル等の有機溶媒で現像を行い、フォトレジストのアルカリ溶解速度が向上していない部分を現像する方法を用いることもできる。
 次いで、形成したレジストパターンをマスクとして、前記保護膜をドライエッチングする。その際、用いた半導体基板の表面に前記無機膜が形成されている場合、その無機膜の表面を露出させ、用いた半導体基板の表面に前記無機膜が形成されていない場合、その半導体基板の表面を露出させる。
 さらに、ドライエッチング後の保護膜(その保護膜上にレジストパターンが残存している場合、そのレジストパターンも)をマスクとして、半導体用ウエットエッチング液を用いてウエットエッチングすることにより、所望のパターンが形成される。
 半導体用ウエットエッチング液としては、半導体用ウエハをエッチング加工するための一般的な薬液を使用することが出来、例えば酸性を示す物質、塩基性を示す物質何れも使用することができる。
 酸性を示す物質としては、例えば過酸化水素、フッ酸、フッ化アンモニウム、酸性フッ化アンモニウム、フッ化水素アンモニウム、バッファードフッ酸、塩酸、硝酸、硫酸、リン酸又はこれらの混合液が挙げられる。
 塩基性を示す物質としては、アンモニア、水酸化ナトリウム、水酸化カリウム、シアン化ナトリウム、シアン化カリウム、トリエタノールアミン等の有機アミンと過酸化水素水とを混合し、pHを塩基性にした、塩基性過酸化水素水を挙げることができる。具体例としては、SC-1(アンモニア-過酸化水素溶液)が挙げられる。その他、pHを塩基性にすることができるもの、例えば、尿素と過酸化水素水を混合し、加熱により尿素の熱分解を引き起こすことでアンモニアを発生させ、最終的にpHを塩基性にするものも、ウエットエッチングの薬液として使用できる。
 これらの中でも、酸性過酸化水素水又は塩基性過酸化水素水であることが好ましい。
 これらの薬液は、界面活性剤等の添加剤が含まれていてもよい。
 半導体用ウエットエッチング液の使用温度は25℃乃至90℃であることが望ましく、40℃乃至80℃であることがさらに望ましい。ウエットエッチング時間としては、0.5分乃至30分であることが望ましく、1分乃至20分であることがさらに望ましい。
 次に実施例を挙げ本発明の内容を具体的に説明するが、本発明はこれらに限定されるものではない。
 下記合成例で得られたポリマーの重量平均分子量の測定に用いた装置等を示す。
装置:東ソー株式会社製HLC-8320GPC
GPCカラム:Shodex〔登録商標〕・Asahipak〔登録商標〕(昭和電工(株))
カラム温度:40℃
流量:0.35mL/分
溶離液:テトラヒドロフラン(THF)
標準試料:ポリスチレン(東ソー株式会社)
<実施例1>
 メチルイソシアヌル酸ジグリシジル(製品名:MeDGIC、四国化成工業株式会社製、49.2重量%プロピレングリコールモノメチルエーテル溶液)13.00g、コハク酸2.36g、1-チオグリセロール1.08g、テトラブチルホスホニウムブロミド0.64gにプロピレングリコールモノメチルエーテル35.27gを加えた反応フラスコを窒素雰囲気下、100℃で23時間加熱撹拌した。得られた反応生成物は式(D-1)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは1400であった。
Figure JPOXMLDOC01-appb-C000024
前記式(D-1)に相当する反応生成物の溶液(固形分は17.3重量%)4.26g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.15g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.67g、プロピレングリコールモノメチルエーテルアセテート1.91gを加え、保護膜形成組成物の溶液を調製した。
<実施例2>
 テレフタル酸ジグリシジルエステル(製品名:デナコールEX-711、ナガセケムテックス株式会社製)8.00g、コハク酸2.61g、1-チオグリセロール1.19g、テトラブチルホスホニウムブロミド0.70gにプロピレングリコールモノメチルエーテル50.01gを加えた反応フラスコを窒素雰囲気下、100℃で23時間加熱撹拌した。得られた反応生成物は式(D-2)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは3700であった。 
Figure JPOXMLDOC01-appb-C000025
前記式(D-2)に相当する反応生成物の溶液(固形分は16.6重量%)4.45g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.15g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.48g、プロピレングリコールモノメチルエーテルアセテート1.91gを加え、保護膜形成組成物の溶液を調製した。
<実施例3>
 テレフタル酸ジグリシジルエステル(製品名:デナコールEX-711、ナガセケムテックス株式会社製)7.00g、3,3’-ジチオプロピオン酸4.06g、1-チオグリセロール1.04g、テトラブチルホスホニウムブロミド0.41gにプロピレングリコールモノメチルエーテル50.06gを加えた反応フラスコを窒素雰囲気下、100℃で24時間加熱撹拌した。得られた反応生成物は式(D-3)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは4300であった。 
Figure JPOXMLDOC01-appb-C000026
前記式(D-3)に相当する反応生成物の溶液(固形分は15.2重量%)4.85g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.15g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.08g、プロピレングリコールモノメチルエーテルアセテート1.91gを加え、保護膜形成組成物の溶液を調製した。
<実施例4>
 テレフタル酸ジグリシジルエステル(製品名:デナコールEX-711、ナガセケムテックス株式会社製)8.00g、2,2’-チオジグリコール酸3.31g、1-チオグリセロール1.19g、テトラブチルホスホニウムブロミド0.47gにプロピレングリコールモノメチルエーテル51.90gを加えた反応フラスコを窒素雰囲気下、100℃で24時間加熱撹拌した。得られた反応生成物は式(D-4)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは2700であった。 
Figure JPOXMLDOC01-appb-C000027
前記式(D-4)に相当する反応生成物の溶液(固形分は16.6重量%)4.43g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.15g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.50g、プロピレングリコールモノメチルエーテルアセテート1.91gを加え、保護膜形成組成物の溶液を調製した。
<実施例5>
 フタル酸ジグリシジルエステル(製品名:デナコールEX-721、ナガセケムテックス株式会社製)8.00g、コハク酸2.47g、1-チオグリセロール1.13g、テトラブチルホスホニウムブロミド0.66gにプロピレングリコールモノメチルエーテル49.03gを加えた反応フラスコを窒素雰囲気下、100℃で23時間加熱撹拌した。得られた反応生成物は式(D-5)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは2100であった。 
Figure JPOXMLDOC01-appb-C000028
前記式(D-5)に相当する反応生成物の溶液(固形分は16.1重量%)4.58g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.15g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.35g、プロピレングリコールモノメチルエーテルアセテート1.91gを加え、保護膜形成組成物の溶液を調製した。
<実施例6>
 レソルシノールジグリシジルエーテル(製品名:デナコールEX-201-IM、ナガセケムテックス株式会社製、50.0重量%プロピレングリコールモノメチルエーテル溶液)14.00g、コハク酸2.84g、1-チオグリセロール1.30g、テトラブチルホスホニウムブロミド0.76gにプロピレングリコールモノメチルエーテル40.59gを加えた反応フラスコを窒素雰囲気下、100℃で23時間加熱撹拌した。得られた反応生成物は式(D-6)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは3600であった。 
Figure JPOXMLDOC01-appb-C000029
前記式(D-6)に相当する反応生成物の溶液(固形分は16.2重量%)4.54g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.15g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.38g、プロピレングリコールモノメチルエーテルアセテート1.91gを加え、保護膜形成組成物の溶液を調製した。
<実施例7>
 レソルシノールジグリシジルエーテル(製品名:デナコールEX-201-IM、ナガセケムテックス株式会社製、50.0重量%プロピレングリコールモノメチルエーテル溶液)12.00g、3,3’-ジチオプロピオン酸4.33g、1-チオグリセロール1.11g、テトラブチルホスホニウムブロミド0.44gにプロピレングリコールモノメチルエーテル41.51gを加えた反応フラスコを窒素雰囲気下、100℃で23時間加熱撹拌した。得られた反応生成物は式(D-7)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは4700であった。 
Figure JPOXMLDOC01-appb-C000030
前記式(D-7)に相当する反応生成物の溶液(固形分は16.1重量%)4.57g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.15g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.36g、プロピレングリコールモノメチルエーテルアセテート1.91gを加え、保護膜形成組成物の溶液を調製した。
<実施例8>
 レソルシノールジグリシジルエーテル(製品名:デナコールEX-201-IM、ナガセケムテックス株式会社製、50.0重量%プロピレングリコールモノメチルエーテル溶液)13.00g、2,2’-チオジグリコール酸3.35g、1-チオグリセロール1.21g、テトラブチルホスホニウムブロミド0.47gにプロピレングリコールモノメチルエーテル39.61gを加えた反応フラスコを窒素雰囲気下、100℃で23時間加熱撹拌した。得られた反応生成物は式(D-8)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは1900であった。 
Figure JPOXMLDOC01-appb-C000031
前記式(D-8)に相当する反応生成物の溶液(固形分は16.6重量%)4.45g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.15g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.48g、プロピレングリコールモノメチルエーテルアセテート1.91gを加え、保護膜形成組成物の溶液を調製した。
<比較例1>
 メチルイソシアヌル酸ジグリシジル(製品名:MeDGIC、四国化成工業株式会社製、49.2重量%プロピレングリコールモノメチルエーテル溶液)10.00g、コハク酸2.72g、テトラブチルホスホニウムブロミド0.49gにプロピレングリコールモノメチルエーテル27.44gを加えた反応フラスコを窒素雰囲気下、100℃で23時間加熱撹拌した。得られた反応生成物は式(E-1)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは1400であった。 
Figure JPOXMLDOC01-appb-C000032
前記式(E-1)に相当する反応生成物の溶液(固形分は17.5重量%)4.21g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.15g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.72g、プロピレングリコールモノメチルエーテルアセテート1.91gを加え、保護膜形成組成物の溶液を調製した。
<比較例2>
 テレフタル酸ジグリシジルエステル(製品名:デナコールEX-711、ナガセケムテックス株式会社製)10.00g、コハク酸4.89g、エチルトリフェニルホスホニウムブロミド0.64gにプロピレングリコールモノメチルエーテル62.11gを加えた反応フラスコを窒素雰囲気下、100℃で23時間加熱撹拌した。得られた反応生成物は式(E-2)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは3100であった。
Figure JPOXMLDOC01-appb-C000033
前記式(E-2)に相当する反応生成物の溶液(固形分は16.3重量%)4.03g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.13g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.91g、プロピレングリコールモノメチルエーテルアセテート1.92gを加え、保護膜形成組成物の溶液を調製した。
<比較例3>
 テレフタル酸ジグリシジルエステル(製品名:デナコールEX-711、ナガセケムテックス株式会社製)10.00g、3,3’-ジチオプロピオン酸8.70g、ベンジルトリエチルアンモニウムクロリド0.31gにプロピレングリコールモノメチルエーテル107.76gを加えた反応フラスコを窒素雰囲気下、100℃で24時間加熱撹拌した。得られた反応生成物は式(E-3)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは3200であった。 
Figure JPOXMLDOC01-appb-C000034
前記式(E-3)に相当する反応生成物の溶液(固形分は16.2重量%)4.04g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.13g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.89g、プロピレングリコールモノメチルエーテルアセテート1.92gを加え、保護膜形成組成物の溶液を調製した。
<比較例4>
 テレフタル酸ジグリシジルエステル(製品名:デナコールEX-711、ナガセケムテックス株式会社製)10.00g、2,2’-チオジグリコール酸6.21g、エチルトリフェニルホスホニウムブロミド0.64gにプロピレングリコールモノメチルエーテル67.42gを加えた反応フラスコを窒素雰囲気下、100℃で23時間加熱撹拌した。得られた反応生成物は式(E-4)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは2700であった。 
Figure JPOXMLDOC01-appb-C000035
前記式(E-4)に相当する反応生成物の溶液(固形分は16.7重量%)3.93g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.13g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル14.00g、プロピレングリコールモノメチルエーテルアセテート1.92gを加え、保護膜形成組成物の溶液を調製した。
<比較例5>
 フタル酸ジグリシジルエステル(製品名:デナコールEX-721、ナガセケムテックス株式会社製)10.00g、コハク酸4.62g、エチルトリフェニルホスホニウムブロミド0.61gにプロピレングリコールモノメチルエーテル60.91gを加えた反応フラスコを窒素雰囲気下、100℃で27時間加熱撹拌した。得られた反応生成物は式(E-5)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは1900であった。
Figure JPOXMLDOC01-appb-C000036
前記式(E-5)に相当する反応生成物の溶液(固形分は16.1重量%)4.07g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.13g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.87g、プロピレングリコールモノメチルエーテルアセテート1.92gを加え、保護膜形成組成物の溶液を調製した。
<比較例6>
 レソルシノールジグリシジルエーテル(製品名:デナコールEX-201-IM、ナガセケムテックス株式会社製)10.00g、コハク酸6.09g、エチルトリフェニルホスホニウムブロミド0.80gにプロピレングリコールモノメチルエーテル67.55gを加えた反応フラスコを窒素雰囲気下、100℃で27時間加熱撹拌した。得られた反応生成物は式(E-6)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは3000であった。
Figure JPOXMLDOC01-appb-C000037
前記式(E-6)に相当する反応生成物の溶液(固形分は16.7重量%)3.93g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.13g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.94g、プロピレングリコールモノメチルエーテルアセテート1.92gを加え、保護膜形成組成物の溶液を調製した。
<比較例7>
 グリシジルメタクリレート5.00g、5-ビニルベンゾ[d][1,3]ジオキソール(Cool Pharm LTD.製)5.21g、2,2’-アゾビス(イソブチロニトリル)0.58g、プロピレングリコールモノメチルエーテル34.53gの溶液を滴下ロートに加え、プロピレングリコールモノメチルエーテル8.63gを加えた反応フラスコ中に窒素雰囲気下、100℃で滴下させ、20時間加熱撹拌した。得られた反応生成物は式(E-7)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは9000であった。
Figure JPOXMLDOC01-appb-C000038
前記式(E-7)に相当する反応生成物の溶液(固形分は16.1重量%)4.06g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.13g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル13.87g、プロピレングリコールモノメチルエーテルアセテート1.92gを加え、保護膜形成組成物の溶液を調製した。
<比較例8>
 グリシジルメタクリレート16.00g、2,2’-アゾビス(イソブチロニトリル)4.53g、プロピレングリコールモノメチルエーテル65.68gの溶液を滴下ロートに加え、プロピレングリコールモノメチルエーテル16.48gを加えた反応フラスコ中に窒素雰囲気下、100℃で滴下させ、13時間加熱撹拌した。得られた溶液30.00g(エポキシ価676g/eq)に、3,4-ジヒドロキシ安息香酸5.31g、ベンジルトリエチルアンモニウムクロリド0.20g、プロピレングリコールモノメチルエーテル17.89gを加え、窒素雰囲気下、20時間加熱還流撹拌した。得られた反応生成物は式(E-8)に相当し、GPCによるポリスチレン換算で測定される重量平均分子量Mwは24400であった。
Figure JPOXMLDOC01-appb-C000039
前記式(E-8)に相当する反応生成物の溶液(固形分は19.5重量%)3.36g、架橋剤として3,3’,5,5’-テトラキス(メトキシメチル)-4,4’-ジヒドロキシビフェニル(製品名:TMOM-BP、本州化学工業株式会社製)0.13g、架橋触媒としてピリジニウム-4-ヒドロキシベンゼンスルホナート0.01g、界面活性剤としてフッ素系界面活性剤(製品名:メガファックR-40、DIC株式会社製)0.001g、プロピレングリコールモノメチルエーテル14.58g、プロピレングリコールモノメチルエーテルアセテート1.92gを加え、保護膜形成組成物の溶液を調製した。
〔レジスト溶剤耐性試験〕
 実施例1乃至実施例8及び比較例1乃至比較例8で調製された保護膜形成組成物のそれぞれをスピンコーターにてシリコンウェハー上に塗布(スピンコート)した。塗布後のシリコンウェハーをホットプレート上で250℃、1分間加熱し、膜厚100nmの被膜(保護膜)を形成した。次に、保護膜のレジスト溶剤耐性を確認するため、保護膜形成後のシリコンウェハーを、プロピレングリコールモノメチルエーテルとプロピレングリコールモノメチルエーテルアセテートとを重量比7対3で混合した溶剤に1分間浸漬し、スピンドライ後に100℃、30秒間ベークした。混合溶剤を浸漬する前後の保護膜の膜厚を光干渉膜厚計(製品名:ナノスペック6100、ナノメトリクス・ジャパン株式会社製)で測定した。
 レジスト溶剤耐性の評価は、((溶剤浸漬前の膜厚)-(溶剤浸漬後の膜厚))÷(溶剤浸漬前の膜厚)×100の計算式から、溶剤浸漬によって除去された保護膜の膜厚減少率(%)を算出、評価した。結果を表1に示す。なお、膜厚減少率が約1%以下であれば十分なレジスト溶剤耐性を有すると言える。
Figure JPOXMLDOC01-appb-T000040
 上記の結果から、実施例1乃至実施例8及び比較例1乃至8の保護膜形成組成物はレジスト溶剤に浸漬後も膜厚変化が非常に小さかった。よって、実施例1乃至実施例8の保護膜形成組成物は保護膜として機能するに十分なレジスト溶剤耐性を有している。
[塩基性過酸化水素水への耐性試験]
 塩基性過酸化水素水への耐性評価として、実施例1乃至実施例8及び比較例1乃至比較例8で調製された保護膜形成組成物のそれぞれを50nm膜厚の窒化チタン(TiN)蒸着基板に塗布し、250℃、1分間加熱することで、膜厚100nmとなるように保護膜を成膜した。次に、28%アンモニア水、33%過酸化水素、水をそれぞれ重量比1対1対2となるように混合し、塩基性過酸化水素水を調製した。前記の保護膜形成組成物を塗布したTiN蒸着基板を50℃に加温したこの塩基性過酸化水素水中に浸漬し、浸漬直後から保護膜が基板から剥離するまでの時間(剥離時間)を測定した。塩基性過酸化水素水への耐性試験の結果を表2に示す。尚、剥離時間が長くなるほど、塩基性過酸化水素水を用いたウエットエッチング液への耐性が高いと言える。
[酸性過酸化水素水への耐性試験]
 酸性過酸化水素水への耐性評価として、実施例1乃至実施例8及び比較例1乃至比較例8で調製された保護膜形成組成物のそれぞれを50nm膜厚のTiN蒸着基板に塗布し、250℃、1分間加熱することで、膜厚100nmとなるように保護膜を成膜した。次に、85%リン酸、水をそれぞれ重量比1対1となるように混合し、酸性過酸化水素水を調製した。前記の保護膜形成組成物を塗布したTiN蒸着基板を60℃に加温したこの酸性過酸化水素水中に浸漬し、浸漬直後から保護膜が基板から剥離するまでの時間(剥離時間)を測定した。酸性過酸化水素水への耐性試験の結果を表2に示す。尚、剥離時間が長くなるほど、酸性過酸化水素水を用いたウエットエッチング液への耐性が高いと言える。
Figure JPOXMLDOC01-appb-T000041
 上記の結果から、分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造を、末端に有する重合体を用いた実施例1とそのような重合体を用いていない比較例1とを比較した場合、実施例1の方が塩基性過酸化水素水に対する保護膜の剥離時間が長かった。同様に実施例2と比較例2、実施例3と比較例3、実施例4と比較例4、実施例5と比較例5、実施例6と比較例6とを比較した場合、各実施例の方が塩基性過酸化水素水や酸性過酸化水素水に対する保護膜の剥離時間が長かった。
 すなわち、実施例1乃至実施例6の結果より、分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造を、末端に有する重合体を選択、採用することによって、そのような重合体を選択、採用しない比較例1乃至比較例6と比較して塩基性過酸化水素水もしくは酸性過酸化水素水もしくはその両方を用いたウエットエッチング液に対して良好な耐性を得ることができた。
 また、実施例7乃至実施例8は、比較例1乃比較例6と比較して、塩基性過酸化水素水もしくは酸性過酸化水素水またはその両方を用いたウエットエッチング液に対して良好な耐性を示すと言える。したがって、実施例1乃至実施例8は、比較例1乃至6と比較して、塩基性過酸化水素水もしくは酸性過酸化水素水もしくはその両方に対して、良好な薬液耐性を示すことから、半導体用ウエットエッチング液に対する保護膜として有用である。
[エッチング選択比の評価]
 エッチング選択比の評価として、前記の実施例1乃至実施例8及び比較例7乃至比較例8で調製された保護膜形成組成物のそれぞれをシリコンウェハー上に塗布し、250℃、1分間加熱することで、膜厚100nmとなるように保護膜を成膜した。次に、成膜した保護膜と半導体リソグラフィー用レジスト下層膜(製品名:ARC(登録商標)29A、日産化学株式会社製)をドライエッチング装置(製品名:RIE-10NR、サムコ株式会社製)を用い、窒素ガスによるドライエッチングを行うことで、保護膜のドライエッチング速度の比(ドライエッチング速度の選択比)を測定した。エッチング選択比の測定結果を表3に示す。尚、エッチング選択比が大きくなるほど、ドライエッチング速度が速いと言える。
[パターン基板上での平坦化性試験]
 パターン基板上での平坦化性試験として、膜厚5nmでTiNを蒸着した深さ200nm、トレンチ幅50nmを有するシリコン基板に、実施例1乃至実施例8及び比較例7乃至比較例8で調製された保護膜形成組成物を塗布し、250℃、1分間加熱した。尚、保護膜形成組成物はシリコンウェハー上で250℃、1分間加熱した際に膜厚100nmとなるように調製した。パターン基板上に保護膜を成膜後、ピッチ100nmのデンスパターンエリアとパターンが形成されていないオープンエリアにおける膜厚を走査型電子顕微鏡(製品名:S-4800、日立ハイテクノロジーズ社製)を用いて観察し、デンスエリアとオープンエリアの膜厚の差(膜厚バイアス)を測定した。膜厚バイアスの測定結果を表3に示す。尚、膜厚バイアスが小さくなるほど、デンスエリアとオープンエリアの膜厚差が小さくなるため、パターンを有する下地基板上でより高平坦に塗布できると言える。
Figure JPOXMLDOC01-appb-T000042
 上記の結果から、実施例1乃至実施例8は、比較例7乃至比較例8と比較してドライエッチング選択比が高いため、ドライエッチング速度が速いと言える。すなわち、実施例1乃至実施例8は、保護膜を除去するために必要なドライエッチング時間を短縮できることから、下地基板へのダメージを低減することができるために有用である。
 また、実施例1乃至実施例8は、比較例7乃至比較例8と比較してデンスエリアとオープンエリアの膜厚差(膜厚バイアス)が小さく、パターンを有する下地基板上でより平坦に成膜することが可能であると言える。すなわち、実施例1乃至実施例8は、パターンを有する下地基板で膜厚の不均一性が発生しにくく、所望のエッチング時間で一定量の保護膜を均一に除去できるために有用である。
 すなわち、実施例1乃至実施例8は、比較例1乃至比較例6よりも塩基性過酸化水素水または酸性過酸化水素水またはその両方を用いた半導体用ウエットエッチング液への耐性に優れ、比較例7乃至8よりもエッチング速度が速く、パターンを有する下地基板上へ平坦に塗布することができる。よって、本発明によれば、高ウエットエッチング液耐性、高エッチング速度、高平坦化性を併せ有する保護膜形成組成物を提供することができる。
 本発明に係る保護膜形成組成物は、基板加工にウエットエッチング液を適用する際に耐性に優れ、高ドライエッチング速度を有するため、基板加工が容易であり、段差基板に塗布した場合平坦化性に優れる保護膜を提供するものである。

Claims (18)

  1.  分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造を、末端に有する重合体、及び有機溶剤を含む、半導体用ウエットエッチング液に対する保護膜形成組成物。
  2.  前記分子内に互いに隣接する2つの水酸基を少なくとも1組含む構造が、1,2-エタンジオール構造(A)である、請求項1に記載の保護膜形成組成物。
  3.  前記1,2-エタンジオール構造が、式(1):
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、Xは-COO-、-OCO-、-O-、-S-又は-NR-のいずれかを表し、Rは水素原子又はメチル基を表す。Yは直接結合又は置換されてもよい炭素原子数1乃至4のアルキレン基を表す。R、R及びRはそれぞれ水素原子、置換されてもよい炭素原子数1乃至10のアルキル基又は置換されてもよい炭素原子数6乃至40のアリール基であり、RはR又はRと一緒になって環を形成してもよい。)
    で表される構造を含む、請求項2に記載の保護膜形成組成物。
  4.  前記式(1)中、R、R及びRが水素原子である、請求項3に記載の保護膜形成組成物。
  5.  前記式(1)中、Yがメチレン基である、請求項3又は4に記載の保護膜形成組成物。
  6.  前記式(1)中、Xが-S-である、請求項3乃至5のいずれか1項に記載の保護膜形成組成物。
  7.  前記重合体が、ジエポキシ化合物(B)と2官能以上のプロトン発生化合物(C)との反応生成物である、請求項1乃至6のいずれか一項に記載の保護膜形成組成物。
  8.  前記2官能以上のプロトン発生化合物(C)が、水酸基、カルボキシ基、チオール基、アミノ基及びイミド基から選ばれる少なくとも1種の官能基を有する、請求項7に記載の保護膜形成組成物。
  9.  前記2官能以上のプロトン発生化合物(C)が、酸二無水物である、請求項7に記載の保護膜形成組成物。
  10.  前記重合体が、下記式(2):
    Figure JPOXMLDOC01-appb-C000002

    (式(2)中、R、R、R、R、R及びR10は、それぞれ独立に水素原子、メチル基又はエチル基を表し、Qは2つの炭素原子間の二価の有機基を表し、m1及びm2はそれぞれ独立に0又は1を表す。)
    で表される単位構造を含む、請求項1乃至9のいずれか一項に記載の保護膜形成組成物。
  11.  前記式(2)のQが、下記式(3):
    Figure JPOXMLDOC01-appb-C000003

    (式(3)中、Qは直接結合、-O-、-S-又は-S-S-で中断されていてもよい炭素原子数1乃至10のアルキレン基、-O-、-S-又は-S-S-で中断されていてもよい炭素原子数2乃至6のアルケニレン基、又は炭素原子数3乃至10の脂環式炭化水素環若しくは炭素原子数6乃至14の芳香族炭化水素環を少なくとも1つ有する二価の有機基を表し、
    前記二価の有機基は、炭素原子数1乃至6のアルキル基、炭素原子数2乃至6のアルケニル基、炭素原子数2乃至6のアルキニル基、ハロゲン原子、ヒドロキシ基、ニトロ基、シアノ基、メチリデン基、炭素原子数1乃至6のアルコキシ基、炭素原子数1乃至6のアルコキシカルボニル基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つの基で置換されていてもよい。
    及びZはそれぞれ-COO-、-OCO-、-O-、-S-のいずれかを表す。)
    で表される請求項10に記載の保護膜形成組成物。
  12.  前記式(2)のQが下記式(4):
    Figure JPOXMLDOC01-appb-C000004

    (式(4)中、Qは下記式(5)、式(6)又は式(7)を表す。)
    Figure JPOXMLDOC01-appb-C000005

    (式(5)、式(6)及び式(7)中、R11、R12、R13、R14及びR15はそれぞれ独立に、水素原子、炭素原子数1乃至6のアルキル基、炭素原子数3乃至6のアルケニル基、ベンジル基又はフェニル基を表し、
    前記フェニル基は、炭素原子数1乃至6のアルキル基、ハロゲン原子、ニトロ基、シアノ基、炭素原子数1乃至6のアルコキシ基及び炭素原子数1乃至6のアルキルチオ基からなる群から選ばれる少なくとも1つで置換されていてもよく、
    13とR14は互いに結合して炭素原子数3乃至6の環を形成していてもよい。)
    で表される請求項10に記載の保護膜形成組成物。
  13.  架橋触媒をさらに含む、請求項1乃至請求項12のいずれか1項に記載の保護膜形成組成物。
  14.  架橋剤をさらに含む、請求項1乃至請求項13のいずれか1項に記載の保護膜形成組成物。
  15.  界面活性剤をさらに含む、請求項1乃至請求項14のいずれか1項に記載の保護膜形成組成物。
  16.  請求項1から請求項15のいずれか1項に記載の保護膜形成組成物からなる塗布膜の焼成物であることを特徴とする保護膜。
  17.  請求項1から請求項15のいずれか1項に記載の保護膜組成物を半導体基板上に塗布し焼成してレジスト下層膜としての保護膜を形成する工程、該保護膜上にレジスト膜を形成し、次いで露光、現像してレジストパターンを形成する工程を含み、半導体の製造に用いることを特徴とするレジストパターン付き基板の製造方法。
  18.  表面に無機膜が形成されていてもよい半導体基板上に、請求項1乃至請求項15のいずれか1項に記載の保護膜形成組成物を用いて保護膜を形成し、前記保護膜上にレジストパターンを形成し、前記レジストパターンをマスクとして前記保護膜をドライエッチングし、前記無機膜又は前記半導体基板の表面を露出させ、ドライエッチング後の前記保護膜をマスクとして、半導体用ウエットエッチング液を用いて前記無機膜又は前記半導体基板をウエットエッチング及び洗浄する工程を含む半導体装置の製造方法。
PCT/JP2020/008784 2019-03-04 2020-03-03 ジオール構造を末端に有する重合生成物を含む薬液耐性保護膜形成組成物 WO2020179757A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080018601.9A CN113574085A (zh) 2019-03-04 2020-03-03 包含末端具有二醇结构的聚合生成物的药液耐性保护膜形成用组合物
US17/433,523 US20220145119A1 (en) 2019-03-04 2020-03-03 Chemical solution-resistant protective film forming composition containing polymerization product having diol structure at terminal thereof
JP2021504096A JP7447892B2 (ja) 2019-03-04 2020-03-03 ジオール構造を末端に有する重合生成物を含む薬液耐性保護膜形成組成物
KR1020217029173A KR20210135252A (ko) 2019-03-04 2020-03-03 디올구조를 말단에 갖는 중합생성물을 포함하는 약액내성 보호막형성 조성물
JP2023183011A JP2023184588A (ja) 2019-03-04 2023-10-25 ジオール構造を末端に有する重合生成物を含む薬液耐性保護膜形成組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038936 2019-03-04
JP2019038936 2019-03-04

Publications (1)

Publication Number Publication Date
WO2020179757A1 true WO2020179757A1 (ja) 2020-09-10

Family

ID=72338334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008784 WO2020179757A1 (ja) 2019-03-04 2020-03-03 ジオール構造を末端に有する重合生成物を含む薬液耐性保護膜形成組成物

Country Status (6)

Country Link
US (1) US20220145119A1 (ja)
JP (2) JP7447892B2 (ja)
KR (1) KR20210135252A (ja)
CN (1) CN113574085A (ja)
TW (1) TW202104329A (ja)
WO (1) WO2020179757A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122488A1 (ja) * 2022-12-05 2024-06-13 日産化学株式会社 保護膜形成用組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148627A1 (ja) * 2006-06-19 2007-12-27 Nissan Chemical Industries, Ltd. 水酸基含有縮合系樹脂を含有するレジスト下層膜形成組成物
WO2009104685A1 (ja) * 2008-02-21 2009-08-27 日産化学工業株式会社 レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
JP2015038534A (ja) * 2011-12-16 2015-02-26 日産化学工業株式会社 レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
WO2018203540A1 (ja) * 2017-05-02 2018-11-08 日産化学株式会社 レジスト下層膜形成組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6761657B2 (ja) * 2015-03-31 2020-09-30 住友化学株式会社 レジスト組成物及びレジストパターンの製造方法
KR102446132B1 (ko) 2016-09-16 2022-09-22 닛산 가가쿠 가부시키가이샤 보호막 형성 조성물
JP7302480B2 (ja) * 2017-12-22 2023-07-04 日産化学株式会社 ジオール構造を有する保護膜形成組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148627A1 (ja) * 2006-06-19 2007-12-27 Nissan Chemical Industries, Ltd. 水酸基含有縮合系樹脂を含有するレジスト下層膜形成組成物
WO2009104685A1 (ja) * 2008-02-21 2009-08-27 日産化学工業株式会社 レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
JP2015038534A (ja) * 2011-12-16 2015-02-26 日産化学工業株式会社 レジスト下層膜形成組成物及びそれを用いたレジストパターンの形成方法
WO2018203540A1 (ja) * 2017-05-02 2018-11-08 日産化学株式会社 レジスト下層膜形成組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122488A1 (ja) * 2022-12-05 2024-06-13 日産化学株式会社 保護膜形成用組成物

Also Published As

Publication number Publication date
CN113574085A (zh) 2021-10-29
KR20210135252A (ko) 2021-11-12
US20220145119A1 (en) 2022-05-12
JP7447892B2 (ja) 2024-03-12
JPWO2020179757A1 (ja) 2020-09-10
TW202104329A (zh) 2021-02-01
JP2023184588A (ja) 2023-12-28

Similar Documents

Publication Publication Date Title
KR102417838B1 (ko) 방향족 메틸올 화합물이 반응된 노볼락 수지를 포함하는 레지스트 하층막 형성 조성물
JP6256719B2 (ja) 水酸基を有するアリールスルホン酸塩含有レジスト下層膜形成組成物
JP2023184588A (ja) ジオール構造を末端に有する重合生成物を含む薬液耐性保護膜形成組成物
JP7355012B2 (ja) グリシジルエステル化合物との反応生成物を含むレジスト下層膜形成組成物
JP7468645B2 (ja) ジオール構造を含むレジスト下層膜形成用組成物
JP7207417B2 (ja) グリシジル基を有するアリーレン化合物との重合生成物を含む薬液耐性保護膜形成組成物
TWI846857B (zh) 包含羥芳基末端之聚合物之耐藥液性保護膜形成組成物
US11965059B2 (en) Chemical-resistant protective film forming composition containing hydroxyaryl-terminated polymer
WO2021251481A1 (ja) ジオール構造を含む保護膜形成用組成物
WO2023095461A1 (ja) カテコール基を有する薬液耐性保護膜形成用組成物
KR20220079813A (ko) 복소환 화합물을 포함하는 레지스트 하층막 형성 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767366

Country of ref document: EP

Kind code of ref document: A1