WO2021068776A1 - 一种谐振变换器软启动方法、电路及装置 - Google Patents

一种谐振变换器软启动方法、电路及装置 Download PDF

Info

Publication number
WO2021068776A1
WO2021068776A1 PCT/CN2020/118181 CN2020118181W WO2021068776A1 WO 2021068776 A1 WO2021068776 A1 WO 2021068776A1 CN 2020118181 W CN2020118181 W CN 2020118181W WO 2021068776 A1 WO2021068776 A1 WO 2021068776A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant converter
control module
level
value
circuit
Prior art date
Application number
PCT/CN2020/118181
Other languages
English (en)
French (fr)
Inventor
高巍
王林国
张滨
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021068776A1 publication Critical patent/WO2021068776A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the embodiment of the present invention relates to but not limited to the field of resonant converters, and specifically relates to but not limited to a resonant converter soft start method, circuit and device.
  • the LLC resonant converter can realize the zero voltage turn-on of the primary side power switch device and the zero current turn off of the secondary side power switch. It can work at a very high switching frequency and significantly improve the efficiency and power density of the converter. This type of resonant conversion The device has the highest efficiency when working at the resonant frequency, and has been widely used in recent years.
  • the soft start method, circuit and device of the resonant converter provided by the embodiments of the present invention mainly solve the technical problem that the input inrush current is too large when the resonant converter is started.
  • an embodiment of the present invention provides a soft start method for a resonant converter, including:
  • the value of the drive signal level of the power switch tube in the resonant converter is controlled to a first level value, and the first level value makes the power switch tube work in the linear region;
  • the value of the drive signal level is controlled to switch to a second level value, and the second level value makes the power switch tube work in the saturation region.
  • the above-mentioned level switching condition includes at least one of the following:
  • the peak current value of the primary side of the transformer is lower than the preset first conversion threshold
  • the output voltage value of the resonant converter is higher than the preset second switching threshold.
  • it also includes:
  • the driving signal parameters are adjusted.
  • the foregoing adjustment of the driving signal parameters includes at least one of the following:
  • the third level value makes the power switch tube work in the linear region, and restore the drive after the primary peak current value of the transformer is less than the first warning threshold
  • the level value of the signal is the first level value.
  • the above-mentioned driving signal parameters are adaptively adjusted.
  • the embodiment of the present invention also provides a resonant converter soft start circuit, including:
  • Signal sampling module digital control module, auxiliary power control module, drive module;
  • the above-mentioned signal sampling module is set to sample the signal parameters in the circuit
  • the above-mentioned auxiliary power control module is set to provide voltage
  • the above-mentioned digital control module is set to control the duty cycle of the output and control the auxiliary power control module;
  • the driving module is configured to output a driving signal to the power switch tube in the resonant converter according to the voltage provided by the auxiliary power control module and the duty cycle provided by the digital control module;
  • the digital control module controls the auxiliary power control module to provide a first voltage value, and the drive module causes the power switch tube to work in the linear region according to the drive signal output by the first voltage value.
  • the digital control module accepts the signal sampled by the signal sampling module, and judges whether the circuit state meets the level switching condition based on the sampled signal, and when the circuit state reaches the level switching condition, the auxiliary power control module will be controlled to provide The voltage is smoothly switched to the second voltage value; the driving module according to the driving signal output by the second voltage value makes the power switch tube work in the saturation region.
  • the above-mentioned digital control module judging whether the circuit state meets the level switching condition includes at least one of the following:
  • the digital control module receives the sampling result of the peak current value of the transformer primary side transmitted by the signal sampling module, and if the peak current value of the transformer primary side is lower than the preset first conversion threshold, it is determined that the state of the circuit reaches the level switching condition;
  • the digital control module receives the output voltage value sampling result of the resonant converter transmitted by the signal sampling module, and if the output voltage value of the resonant converter is higher than the preset second switching threshold, it is determined that the state of the circuit reaches the level switching condition.
  • the above-mentioned digital control module is further configured to: during the period when the value of the voltage provided by the above-mentioned auxiliary power control module is less than the first level threshold, if the peak current value of the primary side of the transformer is received higher than the first warning threshold, the drive signal
  • the parameters are adjusted in at least one of the following:
  • the auxiliary power control circuit is controlled to reduce the provided voltage value to a third voltage value, and the drive module according to the drive signal output by the third voltage value makes the power switch tube work in the linear region, and the peak current value of the primary side of the transformer is less than After the first warning threshold, the voltage value provided by the auxiliary power control circuit is restored to the first voltage value.
  • the above-mentioned digital control module further includes an adaptive adjustment sub-module, and the above-mentioned adaptive adjustment sub-module is configured to calculate the adjustment of the duty ratio of the driving signal or the voltage value of the driving signal;
  • the digital control module adjusts the duty cycle of the driving signal or controls the auxiliary power control circuit to adjust the voltage value of the driving signal according to the calculation result of the adaptive adjustment submodule.
  • An embodiment of the present invention also provides a device, which is provided with the above-mentioned resonant converter soft-start circuit or the steps of implementing the above-mentioned resonant converter soft-start method.
  • the power switch tube in the resonant converter is controlled at the level of the power switch tube when the resonant converter starts, so that the power switch tube works in the linear region and utilizes power
  • the resistance of the switch tube when working in the linear region suppresses the impulse current and the impulse voltage; when the state of the circuit reaches the condition of switching level, the level value of the power switch tube is smoothly switched to make it work in a saturated state, and the start of the resonant converter is completed.
  • the technical effect of including but not limited to the suppression of the inrush current and the inrush voltage when the resonant converter is started, and the improvement of the carrying capacity can be achieved.
  • FIG. 1 is a flowchart of a soft-start method for a resonant converter according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of the relationship between the driving signal level and the peak current of the transformer primary provided by the first embodiment of the present invention
  • FIG. 3 is a schematic diagram of the relationship between the driving signal level and the output voltage value of the resonant converter according to the first embodiment of the present invention
  • FIG. 4 is a flowchart of a soft start method for a resonant converter according to the second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a circuit parameter provided by the second embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a circuit parameter provided by the second embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a resonant converter soft-start circuit provided by the third embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the relationship between the auxiliary power control module voltage 25 and the power switch tube driving signal 24 provided by the third embodiment of the present invention.
  • FIG. 9 is a more specific circuit structure diagram of the resonant converter soft-start circuit provided by the third embodiment of the present invention.
  • FIG. 10 is a more specific circuit structure diagram of the soft start circuit of the resonant converter provided by the third embodiment of the present invention.
  • FIG. 11 is a more specific circuit structure diagram of the soft start circuit of the resonant converter provided in the third embodiment of the present invention.
  • the first embodiment of the present invention provides a soft start method of the resonant converter.
  • FIG. 1 is a flowchart of a soft-start method for a resonant converter according to Embodiment 1 of the present invention
  • the drive signal level value of the power switch tube is set to the first level value; when the level value of the drive signal is the first level value, the power switch tube works in the linear region.
  • the specific value of the first level value may have different settings according to the specific power switch tubes used; for the same type of power switch tubes in different application scenarios, it can also be flexibly set according to actual needs.
  • the power switch tube usually works in the saturation zone and the cut-off zone to control the on and off of the switch.
  • the power switch tube works in the saturation region, it is equivalent to a wire, and the voltage drop is very small; and the power switch tube works in the linear region.
  • the power switch tube is equivalent to a variable resistance.
  • the drive signal parameters are adjusted.
  • the driving signal parameters can be adjusted.
  • other parameters can also be detected to reflect the current startup state of the resonant converter, so as to achieve further adjustments.
  • the adjustment of driving signal parameters includes at least one of the following:
  • the third level value also makes the power switch tube work in the linear region. By reducing the input level value, the impact is suppressed ; Similarly, after the peak current value of the primary side of the transformer is less than the first threshold, the level of the drive signal is restored to the first level value.
  • the parameters of the drive signal can also be adaptively adjusted.
  • the parameters of the drive signal such as duty cycle, level, etc., are automatically adjusted according to the current parameter status of the circuit. Specifically, if the current or voltage of the resonant converter is too large, reduce the duty cycle, and adaptively select the adjustment range according to the current specific conditions of the resonant converter; or adaptively reduce the level value.
  • the duty cycle and the level value can be adjusted individually, or both can be adjusted. For example, the level value at this time has been adjusted to a higher level, but the impact of the resonant converter is still large. You can choose to adjust the duty cycle as well. This method can achieve a greater adjustment range and adapt to more environments.
  • the adaptive adjustment of the driving signal parameters can make the start-up process of the resonant converter more flexible and improve the stability.
  • S102 Detect the state of the circuit, and determine whether the level switching condition is reached.
  • a level switching condition is preset to determine whether the state of the circuit meets the level switching condition.
  • the circuit state is detected to determine whether the level switching condition is reached; the circuit state may be the running time of the circuit, or the current stable program of the circuit, or various electrical parameters in the circuit.
  • the level switching includes at least one of the following:
  • the peak current value of the primary side of the transformer is lower than the preset first conversion threshold
  • the output voltage value of the resonant converter is higher than the preset second switching threshold
  • the resonant converter when the peak current value of the primary side of the transformer is lower than the preset first switching threshold or the output voltage value of the resonant converter is higher than the preset second switching threshold, it means that the resonant converter is basically started. Successfully completed or reached a relatively stable working state. Therefore, it can be understood that the first switching threshold and the second switching threshold described above can also be flexibly set according to requirements; in the actual setting process, the parameters and performance of the resonant converter are estimated or measured, and the production personnel A suitable conversion threshold can be obtained.
  • FIG. 2 is a schematic diagram of the relationship between the driving signal level and the peak current of the transformer primary provided by Embodiment 1 of the present invention.
  • the peak current 21 of the transformer primary is lower than the preset first conversion threshold 31, and the driving power Ping 22 smoothly switches to the second level value.
  • FIG. 3 is a schematic diagram of the relationship between the drive signal level and the output voltage value of the resonant converter according to Embodiment 1 of the present invention.
  • the output voltage value of the resonant converter 23 is higher than the preset second conversion threshold 32, The driving level 22 is smoothly switched to the second level value.
  • the circuit state reaches the level switching condition, indicating that the resonant converter may have basically completed the start-up or the work has been basically stabilized. Therefore, the driving signal level of the control power switch tube is smoothly switched to the second level threshold; the second level value makes the power The switch tube works in the saturation zone.
  • the soft-start method of the resonant converter controls the level of the power switch tube to make it work in the linear region when the resonant converter starts, and uses the resistance of the power switch tube in the linear region to suppress the impact at startup. And after the circuit state of the resonant converter reaches the level switching condition, the drive level is smoothly switched to the second level value that makes the power switch tube work in the saturation region; the stability of the resonant converter when it is started is improved, and the stability of the resonant converter is suppressed.
  • Impulse current and impulse voltage and improve the carrying capacity of the circuit.
  • FIG. 4 is a flowchart of a soft-start method for a resonant converter according to Embodiment 2 of the present invention, please refer to FIG. 4;
  • S402 Detect the peak current value of the primary side of the transformer, and perform adaptive adjustment.
  • the duty cycle can be adjusted adaptively.
  • Figure 5 is a schematic diagram of a circuit parameter provided by the second embodiment of the present invention.
  • the peak current value of the transformer primary 21 is higher than the first warning threshold 33
  • the duty cycle of the driving signal 24 is adaptively adjusted; similarly, the driving level can also be adaptively adjusted, as shown in FIG. 6, which is the second embodiment of the present invention.
  • a schematic diagram of circuit parameters is provided.
  • the drive signal level 22 is adaptively adjusted according to the peak current value 21 of the transformer primary side.
  • the peak current value of the transformer primary side 21 It is higher than the first warning threshold 33, so the drive signal level 22 is adjusted.
  • S403 Detecting that the peak current value of the primary side of the transformer is lower than the preset first conversion threshold, and controlling the level value of the driving signal of the power switch tube to smoothly switch to the second level value.
  • the peak current value 21 of the transformer primary side is lower than the preset first conversion threshold 31, and the level value of the driving signal 22 of the power switch tube is smoothly switched to the second level value. It is understandable that the output voltage value of the resonant converter can also be detected, and after the output voltage value of the resonant converter is higher than the preset second conversion threshold, the level value of the drive signal 22 of the power switch tube is smoothly switched to the second voltage. Fair value.
  • the soft-start method of the resonant converter controls the level of the power switch tube to work in the linear region when the resonant converter starts, and adapts the duty cycle or the drive level of the power switch tube. After the circuit state of the resonant converter reaches the level switching condition, the driving level is smoothly switched to the second level value that makes the power switch tube work in the saturation region; the stability of the resonant converter when it is started is improved, Suppress the impulse current and impulse voltage, and improve the capacity of the circuit.
  • the third embodiment of the present invention provides a resonant converter soft-start circuit, as shown in FIG. 7, which is a schematic structural diagram of a resonant converter soft-start circuit provided in the third embodiment of the present invention, please refer to FIG. 7;
  • the resonant converter soft start circuit includes: a signal sampling module 71, a digital control module 72, an auxiliary power control module 73, and a driving module 74; the signal sampling module 71 can collect various signal parameters in the circuit, and the auxiliary power
  • the control module 73 can provide voltage
  • the digital control module 72 can provide a duty cycle and control the auxiliary power control module 73
  • the drive module 74 outputs a drive signal according to the voltage provided by the auxiliary power control module 73 and the duty cycle provided by the digital control module 72 .
  • the digital control module 72 controls the voltage value provided by the auxiliary power control module 73 to be the first voltage value.
  • the drive signal output by the drive module 74 makes the power switch tube work in the linear region, and the power switch tube is in the linear region.
  • the resistance of the zone suppresses the impulse current and impulse voltage generated when the resonant converter starts.
  • the signal sampling module 71 samples the parameters in the circuit and sends them to the digital control module 72.
  • the digital control module 72 judges whether the circuit state meets the level switching condition according to the collected signal parameters. When the level switching conditions are met, it indicates that the resonant converter is basically completed or has been relatively stable.
  • the digital control module 72 controls the auxiliary power control module 73 to smoothly switch the provided voltage value to the second voltage value. At this time, the output of the drive module 74
  • the driving signal makes the power switch tube work in the saturation region.
  • the signal sampling module 71 samples the peak current value of the primary side of the transformer, and can also sample the output voltage of the resonant converter.
  • the peak current value of the primary side of the transformer is lower than the preset first conversion threshold, and/or the output voltage of the resonant converter is higher than the preset second conversion threshold, it indicates that the resonant converter has basically completed or is relatively stable. It can be judged that the level switching condition is satisfied.
  • the first switching threshold and the second switching threshold can be flexibly set according to requirements. In the actual setting process, the parameters and performance of the resonant converter are estimated or measured, and the production personnel can obtain the appropriate switching threshold.
  • FIG. 8 is a schematic diagram of the relationship between the auxiliary power control module voltage 25 and the power switch tube driving signal 24 provided by the third embodiment of the present invention, please refer to FIG. 8; at t0, the circuit state reaches the level switching condition Therefore, the auxiliary power control module smoothly switches the voltage 25 to the second voltage value, and the generated driving signal 24 at this time also changes accordingly, so that the power switch tube works in the saturation region.
  • resonant converter soft-start circuit provided by the embodiment of the present invention can have a variety of specific implementation methods without departing from the concept of the present invention.
  • Fig. 9 is a more specific circuit structure diagram of the resonant converter soft start circuit provided in the third embodiment of the present invention, please refer to Fig. 9; the signal sampling module 71 obtains the result through the coupling winding on the resonant inductor For the peak current signal of the primary side of the transformer, the signal sampling module 71 sends the peak current signal of the primary side of the transformer to the digital control module 72; the driving module 74 outputs the driving signal according to the voltage provided by the auxiliary power control module 73 and the duty ratio provided by the digital control module 72 When the digital control module 72 detects that the primary peak current value is lower than the preset first conversion threshold, the auxiliary power control module 73 is controlled to smoothly switch the output voltage to the second voltage value.
  • auxiliary power control module 73 shown in FIG. 9 is only an illustration, which means that the auxiliary power control module 73 can provide the first voltage value and the second voltage value, and can realize switching. In the process, the auxiliary power control module 73 has other specific implementations.
  • FIG. 10 is a more specific circuit structure diagram of the resonant converter soft start circuit provided by the third embodiment of the present invention, please refer to FIG. 10; in the circuit structure shown in FIG.
  • the control module 73 is implemented by COT (Constant On-Time, constant on-time control mode) to control the main control chip; the signal sampling module 71 obtains the primary peak current signal through a current transformer or a Hall device, and samples the output through a separate winding of the transformer The voltage signal is sent to the digital control module 72 for processing; the driving module 74 outputs the driving signal according to the voltage provided by the auxiliary power control module 73 and the duty ratio provided by the digital control module 72.
  • COT Constant On-Time, constant on-time control mode
  • FIG. 11 is a more specific circuit structure diagram of the resonant converter soft start circuit provided in the third embodiment of the present invention, please refer to FIG. 11; the signal sampling module 71 uses a current transformer or a Hall device to Acquire the peak current signal of the primary side and directly sample the output voltage signal, and send it to the digital control module for processing 72.
  • the digital control module detects that the peak current value of the transformer primary side is higher than the first warning threshold, the duty cycle of the driving signal is reduced, and/or the auxiliary power control is controlled The circuit reduces the voltage value to the third voltage value. At this time, the drive signal output by the drive module makes the power switch tube still work in the linear region. It is understandable that after the peak current value of the primary side of the transformer is less than the first threshold, the adjusted parameters are restored to the original state.
  • the digital control module also includes an adaptive adjustment sub-module.
  • the adaptive adjustment sub-module helps the digital control module to adjust the duty cycle of the drive signal according to the actual conditions of the circuit parameters, and/or the auxiliary power control module.
  • the voltage value is adjusted flexibly and adaptively.
  • PID proportion, integral, differential
  • control can be used to implement adaptive adjustment.
  • the resonant converter soft-start circuit provided in this embodiment makes the power switch tube work in the linear region when the resonant converter is started, and the resistance of the power switch tube working in the linear region is used to suppress the impact when the resonant converter starts, thereby improving the resonance.
  • the stability of the converter starting and the capacity of the circuit is used to suppress the impact when the resonant converter starts, thereby improving the resonance.
  • This embodiment also provides a device in which the resonant converter soft-start circuit as described above is provided, or at least one step of the resonant converter soft-start method in the first and second embodiments is realized.
  • the power switch by controlling the level of the power switch in the resonant converter when the resonant converter is started, the power switch is operated in the linear region, and the resistance of the power switch when the power switch is working in the linear region is used to suppress the impact.
  • Current and impulse voltage When the state of the circuit reaches the condition of switching level, the level value of the power switch tube is smoothly switched to make it work in a saturated state, and the start of the resonant converter is completed.
  • the technical effect of including but not limited to suppressing the inrush current and the inrush voltage when the resonant converter is started, and improving the carrying capacity can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明实施例提供一种谐振变换器软启动方法、电路及装置,通过使谐振变换器中功率开关管的驱动信号电平在谐振变换器启动时设置为第一电平值,第一电平值使功率开关管工作在线性区,并检测电路是否达到电平切换条件,在达到电平切换条件后,将驱动信号电平平滑切换至第二电平值,第二电平值使功率开关管工作在饱和区。在某些实施过程中具有抑制谐振变换器启动时冲击电流和冲击电压的效果,提高谐振变换器启动时的稳定性,增加电路容性带载。

Description

一种谐振变换器软启动方法、电路及装置 技术领域
本发明实施例涉及但不限于谐振变换器领域,具体而言,涉及但不限于一种谐振变换器软启动方法、电路及装置。
背景技术
LLC谐振变换器能实现原边功率开关器件的零电压开通和副边功率开关的零电流关断,能够工作在很高的开关频率下,显著的提高变换器效率和功率密度,此类谐振变换器工作在谐振频率时具有最高效率,近年来受到广泛应用。
然而,此类谐振变换器在启动时,由于副边输出电容的存在,若直接以谐振频率启动,启动的瞬间相当于对地短路,形成很大的原边输入冲击电流,严重影响谐振变换器带容性负载的能力。过大的输入冲击电流还可能造成器件的损坏,引起谐振变换器的失效。相关技术中,在谐振变换器启动时使其在3至4倍的谐振频率下工作,并逐步减小开关频率以抑制启动时的冲击电流,实现软启动。然而,大多数主控芯片往往只支持2Mhz的最高工作频率,因此在应对Mhz级开关频率的谐振变换器时,启动时的增益往往大大超过实际需求,无法有效的抑制启动冲击电流。
发明内容
本发明实施例提供的谐振变换器软启动方法、电路和装置,主要解决的技术问题是在谐振变换器启动时输入冲击电流过大。
为解决上述技术问题,本发明实施例提供一种谐振变换器软启动方法,包括:
在谐振变换器启动时,控制谐振变换器中功率开关管的驱动信号电平的值为第一电平值,上述第一电平值使上述功率开关管工作在线性区;
检测电路状态是否达到电平切换条件;
若上述电路状态达到上述电平切换条件,则控制上述驱动信号电平的值切 换至第二电平值,上述第二电平值使上述功率开关管工作在饱和区。
可选的,上述电平切换条件包括以下中的至少一个:
变压器原边峰值电流值低于预设的第一转换阈值;
谐振变换器输出电压值高于预设的第二转换阈值。
可选的,还包括:
在上述功率开关管工作在线性区期间,若检测到变压器原边峰值电流值高于第一警示阈值,则对驱动信号参数进行调整。
可选的,上述对驱动信号参数进行调整包括以下的至少一种:
减小驱动信号的占空比,并在上述变压器原边峰值电流值小于第一警示阈值后,恢复上述驱动信号的占空比;
降低上述驱动信号的电平值为第三电平值,上述第三电平值使上述功率开关管工作在线性区,并在上述变压器原边峰值电流值小于第一警示阈值后,恢复上述驱动信号的电平值为第一电平值。
可选的,对上述驱动信号参数进行自适应调整。
本发明实施例还提供一种谐振变换器软启动电路,包括:
信号采样模块、数字控制模块、辅电控制模块、驱动模块;
上述信号采样模块设置为对电路中的信号参数进行采样;
上述辅电控制模块设置为提供电压;
上述数字控制模块设置为控制输出的占空比,并对辅电控制模块进行控制;
上述驱动模块设置为根据上述辅电控制模块提供的电压以及上述数字控制模块提供的占空比输出驱动信号给谐振变换器中的功率开关管;
上述数字控制模块控制上述辅电控制模块提供第一电压值,上述驱动模块根据上述第一电压值输出的驱动信号使上述功率开关管工作在线性区
上述数字控制模块接受上述信号采样模块采样的信号,并根据上述采样的信号判断电路状态是否达到电平切换条件,并在上述电路状态达到上述电平切换条件时,控制上述辅电控制模块将提供的电压平滑切换至第二电压值;上述 驱动模块根据上述第二电压值输出的驱动信号使上述功率开关管工作在饱和区。
可选的,上述数字控制模块判断电路状态是否达到电平切换条件包括以下中的至少一个:
上述数字控制模块接收上述信号采样模块传输的变压器原边峰值电流值采样结果,若上述变压器原边峰值电流值低于预设的第一转换阈值,则判断上述电路状态达到上述电平切换条件;
上述数字控制模块接收上述信号采样模块传输的谐振变换器输出电压值采样结果,若上述谐振变换器输出电压值高于预设的第二转换阈值,则判断上述电路状态达到上述电平切换条件。
可选的,上述数字控制模块还设置为在上述辅电控制模块提供的电压的值小于第一电平阈值期间,若接收到上述变压器原边峰值电流值高于第一警示阈值,对驱动信号参数进行以下至少一种调整:
减小驱动信号的占空比,并在上述变压器原边峰值电流值小于第一警示阈值后,恢复上述驱动信号的占空比;
控制上述辅电控制电路降低提供的电压值为第三电压值,上述驱动模块根据上述第三电压值输出的驱动信号使上述功率开关管工作在线性区,并在上述变压器原边峰值电流值小于第一警示阈值后,恢复上述辅电控制电路提供的电压值为第一电压值。
可选的,上述数字控制模块还包括自适应调整子模块,上述自适应调整子模块设置为对上述驱动信号的占空比或上述驱动信号的电压值的调整进行计算;
上述数字控制模块根据自适应调整子模块计算的结果对上述驱动信号的占空比进行调整或控制上述辅电控制电路对上述驱动信号的电压值进行调整。
本发明实施例还提供一种装置,上述装置中设置有如上上述的谐振变换器软启动电路或实现如上上述的谐振变换器软启动方法的步骤。
本发明实施例的有益效果是:
根据本发明实施例提供的谐振变换器软启动方法、电路及装置,通过在谐振变换器启动时,控制谐振变换器中的功率开关管的电平,使功率开关管工作 在线性区,利用功率开关管工作在线性区时的电阻抑制冲击电流和冲击电压;当电路的状态达到切换电平的条件时,平滑切换功率开关管的电平值使其工作在饱和状态,完成谐振变换器的启动。在某些实施过程中可实现包括但不限于的抑制谐振变换器启动时的冲击电流和冲击电压,提升带容载能力的技术效果。
本发明实施例其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本发明说明书中的记载变的显而易见。
附图说明
图1为本发明实施例一提供的谐振变换器软启动方法的流程图;
图2为本发明实施例一提供的驱动信号电平和变压器原边峰值电流关系示意图;
图3为本发明实施例一提供的驱动信号电平和谐振变换器输出电压值关系示意图;
图4为本发明实施例二提供的一种谐振变换器软启动方法的流程图;
图5为本发明实施例二提供的一种电路参数示意图;
图6为本发明实施例二提供的一种电路参数示意图;
图7为本发明实施例三提供的一种谐振变换器软启动电路的结构示意图;
图8为本发明实施例三提供的辅电控制模块电压25和功率开关管驱动信号24的关系示意图;
图9为本发明实施例三提供的谐振变换器软启动电路的一种较具体的电路结构图;
图10为本发明实施例三提供的谐振变换器软启动电路的一种较具体的电路结构图;
图11为本发明实施例三提供的谐振变换器软启动电路的一种较具体的电路结构图。
具体实施方式
为了使本发明实施例的目的、技术方案及优点更加清楚明白,下面通过具 体实施方式结合附图对本发明实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一:
为了抑制谐振变换器在启动时产生的过高的冲击电流和冲击电压,本发明实施例一提供一种谐振变换器软启动方法。
请参见图1,图1为本发明实施例一提供的谐振变换器软启动方法的流程图;
S101、谐振变换器启动,控制功率开关管的驱动信号电平值为第一电平值。
本实施例中,将功率开关管的驱动信号电平值设置为第一电平值;功率开关管在驱动信号的电平值为第一电平值的情况下,工作在线性区。第一电平值的具体值根据具体使用的功率开关管的不同可能有不同的设置;对于在不同应用场景下的同种功率开关管,也可以根据实际需求灵活设置。
功率开关管通常工作在饱和区和截止区,用以控制开关的通断。当功率开关管工作在饱和区时,相当于导线,压降很小;而使功率开关管工作在线性区,此时的功率开关管相当于一个可变的电阻,在谐振变换器启动时,利用功率开关管线性区的电阻,能够抑制谐振变换器启动时产生的过大冲击电压和冲击电流。
可选的,在功率开关管工作在线性区期间,若检测到变压器原边峰值电流值高于第一警示阈值,对驱动信号参数进行调整。
本实施例中,检测到变压器原边峰值电流高于第一警示阈值时,说明当前谐振变换器的冲击可能过大,因此,可以对驱动信号参数进行调整。在其他具体实施过程中,还可以对其他参数进行检测用以反映谐振变换器当前的启动状态,以实现进一步的调整。
应当说明的是,对驱动信号参数进行调整包括以下的至少一种:
可以减小驱动信号的占空比,并在变压器原边峰值电流值小于第一警示阈值后,将驱动信号的占空比恢复到调整之前的状态;
降低驱动信号的电平值,将电平值降低至第三电平值,应当说明的是,第三电平值同样使得功率开关管工作在线性区,通过降低输入的电平值,抑制冲 击;同样的,在变压器原边峰值电流值小于第一阈值后,将驱动信号的电平恢复至第一电平值。
可选的,在功率开关管工作在线性区期间,还可以对驱动信号的参数进行自适应的调整。对驱动信号的参数,例如占空比、电平等,根据电路当前的参数状况,自动进行调整。具体的,若谐振变换器当前的电流或电压过大,减小占空比,根据谐振变换器当前的具体状况,自适应的选择调节的幅度;或者自适应的降低电平值。在自适应调整时,占空比和电平值可以单独调整,也可以都进行调整,例如此时的电平值已经调整到了较高的程度,但谐振变换器的冲击依然较大,此时可以选择对占空比也进行调整,此种方式能够达到更大的调整幅度,适应更多环境。对驱动信号参数进行自适应调整能够使得谐振变换器的启动过程更加灵活,提高稳定性。
S102、检测电路状态,判断是否达到电平切换条件。
由于谐振变换器中功率开关管正常工作应当在饱和区和截止区,本实施例中,在谐振变换器启动时使功率开关管工作在线性区只是暂时的,需要在之后将功率开关管的电平切换至正常的工作电平。因此预先设置一个电平切换条件,判断电路的状态是否满足该电平切换条件。本实施例中,检测电路状态,判断是否达到电平切换条件;电路状态可以是电路运行的时间,或者电路当前的稳定程序,又或者电路中的各电学参数。
可选的,电平切换包括以下中的至少一个:
变压器原边峰值电流值低于预设的第一转换阈值;
谐振变换器输出电压值高于预设的第二转换阈值;
应当说明的是,本实施例中,变压器原边峰值电流值低于预设的第一转换阈值或谐振变换器输出电压值高于预设的第二转换阈值时,表示谐振变换器的启动基本成功完成或者说达到了较稳定的工作状态。因此,可以理解的是,如上所述的第一转换阈值和第二转换阈值也是可以根据需求灵活设置的;在实际的设置过程中,对谐振变换器的参数和性能进行估算或者测量,生产人员能够得到合适的转换阈值。
S103、电路状态达到电平切换条件后,控制功率开关管的驱动信号电平值平滑切换至第二电平值。
请参见图2,图2为本发明实施例一提供的驱动信号电平和变压器原边峰值电流关系示意图;在t0时刻,变压器原边峰值电流21低于预设的第一转换阈值31,驱动电平22平滑切换至第二电平值。
请参见图3,图3为本发明实施例一提供的驱动信号电平和谐振变换器输出电压值关系示意图;在t0时刻,谐振变换器输出电压值23高于预设的第二转换阈值32,驱动电平22平滑切换至第二电平值。
电路状态达到电平切换条件,说明谐振变换器可能基本完成了启动或工作已经基本稳定,因此,控制功率开关管的驱动信号电平平滑切换至第二电平阈值;第二电平值使功率开关管工作在饱和区。
本发明实施例提供的谐振变换器软启动方法,通过在谐振变换器启动时,控制功率开关管的电平使其工作在线性区,利用功率开关管在线性区的电阻抑制启动时的冲击,并在谐振变换器的电路状态达到电平切换条件后,将驱动电平平滑切换至使功率开关管工作在饱和区的第二电平值;提高了谐振变换器启动时的稳定性,抑制了冲击电流和冲击电压,并提高了电路的带容载能力。
实施例二
如图4所示,图4为本发明实施例二提供的一种谐振变换器软启动方法的流程图,请参见图4;
S401、谐振变换器启动,控制功率开关管的驱动信号电平值为第一电平值。
S402、检测变压器原边峰值电流值,并进行自适应调整。
本实施例中,可以对占空比进行自适应的调整,如图5所示,图5为本发明实施例二提供的一种电路参数示意图,在t1和t2时刻,变压器原边峰值电流值21高于第一警示阈值33,对驱动信号24的占空比进行自适应调整;类似的,也可以对驱动电平进行自适应调整,如图6所示,图6为本发明实施例二提供的一种电路参数示意图,在功率开关管工作在线性区期间,根据变压器原边峰值电流值21对驱动信号电平22进行自适应调整,在t1和t2时刻,变压器原边 峰值电流值21高于第一警示阈值33,因此对驱动信号电平22进行调整。
S403、检测到变压器原边峰值电流值低于预设的第一转换阈值,控制功率开关管的驱动信号电平值平滑切换为第二电平值。
请参见图6,在t3时刻,变压器原边峰值电流值21低于预设的第一转换阈值31,功率开关管的驱动信号22电平值平滑切换至第二电平值。可以理解的是,也可以检测谐振变换器输出电压值,在谐振变换器输出电压值高于预设的第二转换阈值后,将功率开关管的驱动信号22电平值平滑切换至第二电平值。
本实施例提供的谐振变换器软启动方法,通过在谐振变换器启动时,控制功率开关管的电平使其工作在线性区,并对占空比或功率开关管的驱动电平进行自适应调整,并在谐振变换器的电路状态达到电平切换条件后,将驱动电平平滑切换至使功率开关管工作在饱和区的第二电平值;提高了谐振变换器启动时的稳定性,抑制了冲击电流和冲击电压,并提高了电路的带容载能力。
实施例三:
本发明实施例三提供一种谐振变换器软启动电路,如图7所示,图7为本发明实施例三提供的一种谐振变换器软启动电路的结构示意图,请参见图7;
本实施例提供的谐振变换器软启动电路包括:信号采样模块71、数字控制模块72、辅电控制模块73、驱动模块74;信号采样模块71可以对电路中的各信号参数进行采集,辅电控制模块73能够提供电压,数字控制模块72可以提供占空比以及控制辅电控制模块73,驱动模块74则根据辅电控制模块73提供的电压以及数字控制模块72提供的占空比输出驱动信号。
谐振变换器启动时,数字控制模块72控制辅电控制模块73提供的电压值为第一电压值,此时,驱动模块74输出的驱动信号使功率开关管工作在线性区,功率开关管在线性区的电阻对谐振变换器启动时产生的冲击电流和冲击电压进行抑制。
信号采样模块71对电路中的参数进行采样,并发送给数字控制模块72,数字控制模块72根据采集到的信号参数,判断电路状态是否达到电平切换条件。电平切换条件满足时,说明谐振变换器启动基本完成或者已经较为稳定,数字 控制模块72控制辅电控制模块73将提供的电压值平滑切换至第二电压值,此时,驱动模块74输出的驱动信号使功率开关管工作在饱和区。
对于电平切换条件,信号采样模块71对变压器原边峰值电流值进行采样,也可对谐振变换器的输出电压进行采样。当变压器原边峰值电流值低于预设的第一转换阈值,和/或,谐振变换器的输出电压高于预设的第二转换阈值时,说明谐振变换器启动基本完成或者已经较为稳定,可以判断为满足电平切换条件。第一转换阈值和第二转换阈值可以根据需求灵活设置,实际的设置过程中,对谐振变换器的参数和性能进行估算或者测量,生产人员能够得到合适的转换阈值。
如图8所示,图8为本发明实施例三提供的辅电控制模块电压25和功率开关管驱动信号24的关系示意图,请参见图8;在t0时刻,电路状态达到了电平切换条件,因此,辅电控制模块将电压25平滑切换至第二电压值,此时的生成驱动信号24也随之变化,使得功率开关管工作在饱和区。
应当说明的是,本发明实施例提供的谐振变换器软启动电路在不脱离本发明构思的情况下可以有多种具体的实现方法。
如图9所示,图9为本发明实施例三提供的谐振变换器软启动电路的一种较具体的电路结构图,请参见图9;信号采样模块71通过谐振电感上的耦合绕组来获取变压器原边峰值电流信号,信号采样模块71将变压器原边峰值电流信号发送给数字控制模块72;驱动模块74根据辅电控制模块73提供的电压和数字控制模块72提供的占空比输出驱动信号;当数字控制模块72检测到原边峰值电流值低于预设的第一转换阈值后,控制辅电控制模块73将输出电压平滑切换至第二电压值。应当说明的是,图9中所示的辅电控制模块73仅仅是一种示意,其表示辅电控制模块73能够提供第一电压值和第二电压值,并能实现切换,在具体的实施过程中,辅电控制模块73有其他具体的实现方式。
如图10所示,图10为本发明实施例三提供的谐振变换器软启动电路的一种较具体的电路结构图,请参见图10;在图10中所示的电路结构中,辅电控制模块73具体通过COT(ConstantOn-Time,恒定导通时间控制模式)控制主控芯片实现;信号采样模块71通过电流互感器或霍尔器件来获取原边峰值电流信 号以及通过变压器单独绕组采样输出电压信号,送往数字控制模块72处理;驱动模块74根据辅电控制模块73提供的电压和数字控制模块72提供的占空比输出驱动信号。
如图11所示,图11为本发明实施例三提供的谐振变换器软启动电路的一种较具体的电路结构图,请参见图11;信号采样模块71通过电流互感器或霍尔器件来获取原边峰值电流信号以及直接采样输出电压信号,送往数字控制模块处理72。
可选的,功率开关管工作在线性区期间,若数字控制模块检测到变压器原边峰值电流值高于第一警示阈值,则减小驱动信号的占空比,和/或,控制辅电控制电路降低电压值至第三电压值,此时,驱动模块输出的驱动信号使功率开关管工作依然在线性区。可以理解的是,在变压器原边峰值电流值小于第一阈值后,将调整的参数恢复至原本的状态。
可选的,数字控制模块中还包括自适应调整子模块,自适应调整子模块帮助数字控制模块根据电路参数的实际情况,对驱动信号的占空比,和/或,辅电控制模块提供的电压值进行灵活的自适应调整。在一些具体实施方式中,可以使用PID(比例(proportion)、积分(integral)、微分(differential))控制实现自适应的调整。
本实施例提供的谐振变换器软启动电路,在谐振变换器启动时,使得功率开关管工作在线性区,利用功率开关管工作在线性区的电阻抑制谐振变换器启动时的冲击,提高了谐振变换器启动的稳定性和电路的带容载能力。
本实施例还提供一种装置,装置中设置有如上所述的谐振变换器软启动电路,或实现如上述实施例一和实施例二中的谐振变换器软启动方法的至少一个步骤。
可见,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分; 例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
以上内容是结合具体的实施方式对本发明实施例所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
在本发明实施例中,通过在谐振变换器启动时,控制谐振变换器中的功率开关管的电平,使功率开关管工作在线性区,利用功率开关管工作在线性区时的电阻抑制冲击电流和冲击电压;当电路的状态达到切换电平的条件时,平滑切换功率开关管的电平值使其工作在饱和状态,完成谐振变换器的启动。在某些实施过程中可实现包括但不限于的抑制谐振变换器启动时的冲击电流和冲击电压,提升带容载能力的技术效果。

Claims (10)

  1. 一种谐振变换器软启动方法,包括:
    在谐振变换器启动时,控制谐振变换器中功率开关管的驱动信号电平的值为第一电平值,所述第一电平值使所述功率开关管工作在线性区;
    检测电路状态是否达到电平切换条件;
    若所述电路状态达到所述电平切换条件,则控制所述驱动信号电平的值切换至第二电平值,所述第二电平值使所述功率开关管工作在饱和区。
  2. 如权利要求1所述的谐振变换器软启动方法,其中,所述电平切换条件包括以下中的至少一个:
    变压器原边峰值电流值低于预设的第一转换阈值;
    谐振变换器输出电压值高于预设的第二转换阈值。
  3. 如权利要求1所述的谐振变换器软启动方法,其中,还包括:
    在所述功率开关管工作在线性区期间,若检测到变压器原边峰值电流值高于第一警示阈值,则对驱动信号参数进行调整。
  4. 如权利要求3所述的谐振变换器软启动方法,其中,所述对驱动信号参数进行调整包括以下的至少一种:
    减小驱动信号的占空比,并在所述变压器原边峰值电流值小于第一警示阈值后,恢复所述驱动信号的占空比;
    降低所述驱动信号的电平值为第三电平值,所述第三电平值使所述功率开关管工作在线性区,并在所述变压器原边峰值电流值小于第一警示阈值后,恢复所述驱动信号的电平值为第一电平值。
  5. 如权利要求4所述的谐振变换器软启动方法,其中,对所述驱动信号参数进行自适应调整。
  6. 一种谐振变换器软启动电路,包括:信号采样模块、数字控制模块、辅电控制模块、驱动模块;
    信号采样模块、数字控制模块、辅电控制模块、驱动模块;
    所述信号采样模块设置为对电路中的信号参数进行采样;
    所述辅电控制模块设置为提供电压;
    所述数字控制模块设置为控制输出的占空比,并对辅电控制模块进行控制;
    所述驱动模块设置为根据所述辅电控制模块提供的电压以及所述数字控制模块提供的占空比输出驱动信号给谐振变换器中的功率开关管;
    所述数字控制模块控制所述辅电控制模块提供第一电压值,所述驱动模块根据所述第一电压值输出的驱动信号使所述功率开关管工作在线性区
    所述数字控制模块接受所述信号采样模块采样的信号,并根据所述采样的信号判断电路状态是否达到电平切换条件,并在所述电路状态达到所述电平切换条件时,控制所述辅电控制模块将提供的电压平滑切换至第二电压值;所述驱动模块根据所述第二电压值输出的驱动信号使所述功率开关管工作在饱和区。
  7. 如权利要求6所述的谐振变换器软启动电路,其中,所述数字控制模块判断电路状态是否达到电平切换条件包括以下中的至少一个:
    所述数字控制模块接收所述信号采样模块传输的变压器原边峰值电流值采样结果,若所述变压器原边峰值电流值低于预设的第一转换阈值,则判断所述电路状态达到所述电平切换条件;
    所述数字控制模块接收所述信号采样模块传输的谐振变换器输出电压值采样结果,若所述谐振变换器输出电压值高于预设的第二转换阈值,则判断所述电路状态达到所述电平切换条件。
  8. 如权利要求6所述的谐振变换器软启动电路,其中,所述数字控制模块还设置为在所述辅电控制模块提供的电压的值小于第一电平阈值期间,若接收到所述变压器原边峰值电流值高于第一警示阈值,对驱动信号参数进行以下至少一种调整:
    减小驱动信号的占空比,并在所述变压器原边峰值电流值小于第一警示阈值后,恢复所述驱动信号的占空比;
    控制所述辅电控制电路降低提供的电压值为第三电压值,所述驱动模块根 据所述第三电压值输出的驱动信号使所述功率开关管工作在线性区,并在所述变压器原边峰值电流值小于第一警示阈值后,恢复所述辅电控制电路提供的电压值为第一电压值。
  9. 如权利要求8所述的谐振变换器软启动电路,其中,所述数字控制模块还包括自适应调整子模块,所述自适应调整子模块设置为对所述驱动信号的占空比或所述驱动信号的电压值的调整进行计算;
    所述数字控制模块根据自适应调整子模块计算的结果对所述驱动信号的占空比进行调整或控制所述辅电控制电路对所述驱动信号的电压值进行调整。
  10. 一种装置,其中,所述装置中设置有如权利要求6-9任一项所述的谐振变换器软启动电路或实现如权利要求1-5任一项所述的谐振变换器软启动方法。
PCT/CN2020/118181 2019-10-09 2020-09-27 一种谐振变换器软启动方法、电路及装置 WO2021068776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910955541.2 2019-10-09
CN201910955541.2A CN112653323A (zh) 2019-10-09 2019-10-09 一种谐振变换器软启动方法、电路及装置

Publications (1)

Publication Number Publication Date
WO2021068776A1 true WO2021068776A1 (zh) 2021-04-15

Family

ID=75342345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118181 WO2021068776A1 (zh) 2019-10-09 2020-09-27 一种谐振变换器软启动方法、电路及装置

Country Status (2)

Country Link
CN (1) CN112653323A (zh)
WO (1) WO2021068776A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839549A (zh) * 2021-10-28 2021-12-24 富满微电子集团股份有限公司 一种llc谐振转换器的启动电路、芯片及方法
CN113839554A (zh) * 2021-10-28 2021-12-24 阳光电源股份有限公司 一种开关电容变换器及其预充电方法
CN115313836A (zh) * 2022-07-11 2022-11-08 西北工业大学 一种llc谐振变换器软启动控制方法
CN115473417A (zh) * 2022-09-05 2022-12-13 上能电气股份有限公司 基于混合逻辑驱动的变换器电流控制方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114499146B (zh) * 2022-02-23 2023-12-26 上海杰瑞兆新信息科技有限公司 一种适用于谐振变换器的闭环软启动控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1368787A (zh) * 2001-02-09 2002-09-11 台达电子工业股份有限公司 Llc串联共振dc/dc变换器
US20070195562A1 (en) * 2006-02-22 2007-08-23 Sanken Electric Co., Ltd. Resonant switching power source device
CN107231086A (zh) * 2017-05-03 2017-10-03 浙江大学 一种谐振直流变压器的软启动方法及其电路
CN207382185U (zh) * 2017-09-08 2018-05-18 中国船舶重工集团公司第七0四研究所 直流供电大功率逆变器的软启动电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1368787A (zh) * 2001-02-09 2002-09-11 台达电子工业股份有限公司 Llc串联共振dc/dc变换器
US20070195562A1 (en) * 2006-02-22 2007-08-23 Sanken Electric Co., Ltd. Resonant switching power source device
CN107231086A (zh) * 2017-05-03 2017-10-03 浙江大学 一种谐振直流变压器的软启动方法及其电路
CN207382185U (zh) * 2017-09-08 2018-05-18 中国船舶重工集团公司第七0四研究所 直流供电大功率逆变器的软启动电路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839549A (zh) * 2021-10-28 2021-12-24 富满微电子集团股份有限公司 一种llc谐振转换器的启动电路、芯片及方法
CN113839554A (zh) * 2021-10-28 2021-12-24 阳光电源股份有限公司 一种开关电容变换器及其预充电方法
CN115313836A (zh) * 2022-07-11 2022-11-08 西北工业大学 一种llc谐振变换器软启动控制方法
CN115313836B (zh) * 2022-07-11 2024-03-08 西北工业大学 一种llc谐振变换器软启动控制方法
CN115473417A (zh) * 2022-09-05 2022-12-13 上能电气股份有限公司 基于混合逻辑驱动的变换器电流控制方法及装置
CN115473417B (zh) * 2022-09-05 2024-01-09 上能电气股份有限公司 基于混合逻辑驱动的变换器电流控制方法及装置

Also Published As

Publication number Publication date
CN112653323A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
WO2021068776A1 (zh) 一种谐振变换器软启动方法、电路及装置
US11750033B2 (en) Wireless power transfer control apparatus and method
US10770979B2 (en) LLC resonant converter
JP6095788B2 (ja) 電力変換装置及びこれを用いた空気調和装置
US10097043B2 (en) Contactless power transmission device and power transfer system
US8305051B2 (en) AC-DC switching power converters with frequency variation in response to load changes
WO2011057523A1 (zh) 逻辑链路控制谐振变换器控制方法、同步整流控制方法及装置
US10110064B2 (en) Contactless power transmission device and power transfer system
JP5563425B2 (ja) 電源装置
JP5826559B2 (ja) スイッチング電源装置及びその制御方法
CN117318499B (zh) 一种电压调节方法、调节电路、电源电路及电子设备
EP2778824A2 (en) Power conditioner and program
JP5554591B2 (ja) 電源装置
US20200007031A1 (en) Control method, apparatus, device, and medium for power factor correction pfc circuit
CN108631271B (zh) 过流保护控制电路
JP2012210028A (ja) スイッチング電源装置
CN115940681A (zh) 一种用于桥臂拓扑的新型死区自适应控制方法及装置
JP5712608B2 (ja) Pwmインバータのデッドタイム補償装置および補償方法
CN111384848A (zh) 电源变换器启动控制方法、装置和电源变换器启动系统
CN111049394A (zh) 电源电路、电路控制方法、电源适配器、及电子设备
JP2007003082A (ja) 空気調和機
US11784558B2 (en) LLC stage for LED drivers
JP7332395B2 (ja) 電源回路の制御装置及び制御方法
US20220158536A1 (en) Soft-start for resonant converters
JP6889872B2 (ja) 半導体素子の駆動回路、半導体素子の駆動方法、およびモータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875100

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20875100

Country of ref document: EP

Kind code of ref document: A1