WO2021068418A1 - 一种雷达范围测量系统及方法 - Google Patents

一种雷达范围测量系统及方法 Download PDF

Info

Publication number
WO2021068418A1
WO2021068418A1 PCT/CN2019/128615 CN2019128615W WO2021068418A1 WO 2021068418 A1 WO2021068418 A1 WO 2021068418A1 CN 2019128615 W CN2019128615 W CN 2019128615W WO 2021068418 A1 WO2021068418 A1 WO 2021068418A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
drive member
rotary drive
rotation
distance
Prior art date
Application number
PCT/CN2019/128615
Other languages
English (en)
French (fr)
Inventor
李亮
黄常军
刘强生
柯志达
Original Assignee
厦门金龙联合汽车工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门金龙联合汽车工业有限公司 filed Critical 厦门金龙联合汽车工业有限公司
Publication of WO2021068418A1 publication Critical patent/WO2021068418A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system

Definitions

  • the invention relates to the technical field of radar detection, in particular to a radar range measurement system and method.
  • the directivity of millimeter wave radar that is, the millimeter wave intensity level of the millimeter wave radar at various angles in its detection area, directly determines the measurement range of the millimeter wave radar in the horizontal and vertical directions, and is one of the most important performance indicators of the millimeter wave radar. .
  • the directivity test of millimeter wave radar is an important test and evaluation link in the process of its development and application, and it needs to be tested by building a special test system.
  • the existing testing technology mainly uses manual methods to measure the emission intensity of millimeter-wave radars at various distances and angles in space.
  • the manpower and material resources are huge and the test samples are relatively small, and the accurate measurement of millimeter-wave radars cannot be quickly achieved.
  • the present invention aims to provide a radar range measurement system and method.
  • a radar range measurement system comprising: a radar, a radar probe, a bracket, a first rotation driving part, a second rotation driving part, a first angle sensor, a second angle sensor, and a main controller;
  • the radar has a transmitting surface,
  • the emitting surface has a center point, a line perpendicular to the emitting surface and passing through the center point is defined as the radar center axis,
  • the radar probe has a cone-shaped detection area, and the cone-shaped detection area is defined
  • the central axis of the zone is the central axis of the probe;
  • Each of the first rotary drive member and the second rotary drive member includes a first rotary shaft and a second rotary shaft, respectively; one end of the first rotary shaft of the first rotary drive member is vertically connected to the transmitting surface of the radar And pass through the center point; the first rotation driving member is fixedly connected to one end of the second rotation shaft of the second rotation driving member, and the first rotation shaft and the second rotation shaft are perpendicular to each other Intersect at the center point of the transmitting surface of the radar; the second rotary drive member and the radar probe are both mounted on the bracket, and the distance between the two can be adjusted; when the rotation axis of the second rotary drive member rotates to a certain level When angled, the center axis of the radar can coincide with the center axis of the probe;
  • the first angle sensor and the second angle sensor are respectively used to detect the angle of rotation of the first rotary drive member and the second rotary drive member;
  • the main controller controls the rotation of the first rotary drive member and the second rotary drive member, reads the angle data detected by the first angle sensor and the second angle sensor, and controls the operation of the radar and the radar probe;
  • the main controller calculates the detection range parameter of the radar according to the rotation angle of the first rotary drive member and the second rotary drive member, the intensity of the radar wave detected by the radar probe, and the separation distance between the radar probe and the transmitting surface of the radar.
  • the first rotating drive piece is fixedly connected to one end of the second rotating shaft of the second rotating drive piece through the connecting piece
  • the connecting piece includes a first connecting rod
  • the second connecting rod and the third connecting rod the first connecting rod is fixedly connected to the first rotating drive member, and the axis of the first connecting rod is on the same straight line with the first rotating shaft
  • the second connecting rod Both ends of the rod are vertically and fixedly connected to the first connecting rod and the third connecting rod
  • the third connecting rod is vertically fixedly connected to the second rotating shaft, so that the first rotating shaft and the second rotating shaft are perpendicular to each other And intersect at the center point of the radar transmitting surface.
  • the radar is a millimeter wave radar.
  • a radar range measurement method includes the following steps:
  • the main controller calculates the detection range parameter of the radar according to the rotation angle of the first rotary drive member and the second rotary drive member, the intensity of the radar wave detected by the radar probe, and the separation distance between the radar probe and the transmitting surface of the radar.
  • step S5 specifically includes the following steps:
  • S51 Draw radar wave intensity graphs at different intervals according to the angle of rotation of the first and second rotary drive members and the intensity of the radar waves detected by the radar probe, and convert all the radar wave intensity maps to the spherical coordinate system ;
  • S52 Set the radar wave intensity threshold, and calculate the interval when the corresponding radar wave intensity is equal to the radar wave intensity threshold under the angle of rotation of each first rotary drive member and the second rotary drive member according to the radar wave intensity map at all separation distances Distance, draw a distance curve on the spherical coordinate system;
  • S53 Calculate the detection range parameters of the radar according to the distance curve.
  • the detection range parameters of the radar include the maximum detection distance, and the calculation method is as follows: the distance curve in the spherical coordinate system passing through the coordinate origin and parallel to the horizontal plane of all points corresponding to the longest separation distance as the maximum Detection distance.
  • the detection range parameters of the radar include lateral detection distances, different separation distances correspond to different lateral detection distances, and the calculation method of the lateral detection distance corresponding to each separation distance is: the distance curve passes through the spherical coordinate system The distance between two points equal to the separation distance among all points on the cross-section of the coordinate origin and parallel to the horizontal plane is regarded as the lateral detection distance.
  • the detection range parameters of the radar include horizontal detection coverage angles. Different separation distances correspond to different horizontal detection coverage angles.
  • the calculation method for each horizontal detection coverage angle is: Among all the points of the origin and the cross-section parallel to the horizontal plane, two points equal to the separation distance are connected to the coordinate origin respectively, and the angle between the two lines is the horizontal detection coverage angle.
  • the detection range parameters of the radar include vertical detection coverage angles. Different separation distances correspond to different vertical detection coverage angles.
  • the calculation method for each vertical detection coverage angle is: The origin and the point farthest from the origin of the coordinates in the curve, and the two points equal to the interval of all points in the section perpendicular to the horizontal plane are connected to the origin of the coordinates respectively, and the angle between the two lines is vertical Detect coverage angle.
  • the rated angle of each rotating gear in the first rotating drive member is 10°, and a total of 18 rotating gears are included.
  • the invention adopts the above technical scheme and has the beneficial effects of high degree of automation, simple operation, high reliability and high efficiency.
  • Fig. 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Figure 2 shows a schematic top view of the radar in this embodiment when the horizontal direction is at 180° and the vertical direction is at 0°.
  • Figure 3 shows a schematic top view of the radar in this embodiment when the horizontal direction is at 0° (or 360°) and the vertical direction is at 0°.
  • Figure 4 is a schematic top view of the radar in this embodiment when the horizontal direction is at 90° and the vertical direction is at 0°.
  • Figure 5 shows a schematic top view of the radar when the horizontal direction is at 270° and the vertical direction is at 0° in this embodiment.
  • Fig. 6 is a schematic diagram of the detection curve when the first rotary drive member is at the 0° position in this embodiment.
  • Fig. 7 is a schematic diagram of the detection curve when the first rotary drive member is at a position of 90° in this embodiment.
  • Fig. 8 is a schematic diagram of the detection curve when the first rotary drive member is at a position of 180° in this embodiment.
  • Fig. 9 is a schematic diagram showing the envelope effect of the detection curve of the first rotary driving member in different rotation gear positions in this embodiment.
  • FIG. 10 is a schematic diagram of the detection data of the radar rotating one circle of the first rotating drive member in a certain rotating gear in the rectangular coordinate system in this embodiment.
  • FIG. 11 is a schematic diagram of the detection data of the radar rotating one circle of the first rotating drive member in a certain rotating gear in the horizontal coordinate plane of the spherical coordinate system in this embodiment.
  • Fig. 12 shows a schematic diagram of the first rotary driving member in the horizontal coordinate plane of the spherical coordinate system under different rotation gear positions in this embodiment.
  • Fig. 13 shows a schematic diagram of the solution method for the farthest detection distance, the lateral detection distance, and the horizontal detection coverage angle in this embodiment.
  • Figure 14 is a schematic diagram of the method for solving the vertical detection coverage angle in this embodiment.
  • the present invention provides a radar range measurement system.
  • a millimeter wave radar is used as an example for description. In other embodiments, it can also be used to measure the range of other radars, which is not limited here.
  • the system includes a radar 1, a radar probe 2, a bracket, a first rotation driving part 3, a second rotation driving part 4, a first angle sensor 5, a second angle sensor 6 and a main controller.
  • the radar 1 has a transmitting surface with a center point, and a line perpendicular to the transmitting surface and passing through the center point is defined as the radar center axis.
  • the radar probe 2 is used to detect the signal strength of the radar 1 in real time.
  • the radar probe 2 has a cone-shaped detection area, and the central axis of the cone-shaped detection area is defined as the central axis of the probe.
  • Each of the first rotary drive member 3 and the second rotary drive member 4 includes a fixed end and a rotating shaft, and the rotating shaft is mounted on the fixed end and can rotate around the axis of the rotating shaft itself.
  • the first rotary driving part 3 and the second rotary driving part 4 may be commonly used driving mechanisms, such as motors, steering gears, etc., and the steering gears may be electric steering gears or hydraulic steering gears. Do restrictions.
  • the rotating shaft of the first rotating drive member 3 is connected to the radar 1 so that the emitting surface of the radar 1 can rotate around its central axis.
  • the radar 1 in this embodiment is installed on the radar fixing bracket 7, and the radar fixing bracket 7 is connected to the rotation axis of the first rotating drive member 3.
  • the fixed end of the first rotary driving part 3 is fixedly connected to the rotation axis of the second rotary driving part 4 through the connecting part 8, and the rotation axis of the first rotary driving part 3 and the rotation axis of the second rotary driving part 4 are perpendicular to each other .
  • the connecting member 8 includes a first connecting rod, a second connecting rod, and a third connecting rod.
  • the first connecting rod is fixedly connected to the first rotary driving member 3, and its axis is the same as that of the first rotary driving member.
  • the axes of the rotating shafts of the member 3 are on the same straight line, the two ends of the second connecting rod are fixedly connected to the first connecting rod and the third connecting rod respectively, and the third connecting rod is fixedly connected to the first rotating drive. Rotation axis of piece 3.
  • the connecting piece 8 has the advantages of simple structure and convenient installation. In other embodiments, the connecting member 8 can also adopt other structures, which is not limited here.
  • the axis of the rotating shaft of the second rotating drive member 4 passes through the center point of the emitting surface of the radar 1 and is in the same plane as the emitting surface. Through this setting method, it can be ensured that the radar 1 always rotates around the center point of its launch surface during the rotation of the radar 1.
  • the fixed end of the second rotating drive member 4 and the radar probe 2 are both mounted on the bracket, and the distance between the two can be adjusted.
  • the specific structure of the bracket in this embodiment includes two supports with sliders on both sides and two slide rails.
  • the two supports include a first support 9 and a second support 10, and the two slide rails include the first slide.
  • the sliders on both sides of each support are slidably connected with the slide rail.
  • the fixed end of the second rotary drive member 4 and the radar probe 2 are both fixedly installed on the support.
  • the slide rail 10 also includes a scale.
  • a probe holder 12 for increasing the height of the radar probe 2 is also provided between the radar probe 2 and the first support 9 in this embodiment.
  • the bracket can also adopt other structures, which is not limited here.
  • the distance between the fixed end of the second rotating drive member 4 and the radar probe 2 can be adjusted manually or by a motor.
  • the fixed end of the second rotating drive member 4 or the radar probe 2 is connected by a motor, so that the distance between the two is changed.
  • the main controller is electrically connected to the motor, and the moving distance can be calculated during the movement of the motor to obtain the radar probe.
  • the probe center axis of the radar probe 2 can coincide with the radar center axis of the radar 1.
  • the first angle sensor 5 and the second angle sensor 6 are respectively used to detect the rotation angle of the first rotation driving member 3 and the second rotation driving member 4.
  • the main controller is electrically connected to the first rotation driving part 3, the second rotation driving part 4, the first angle sensor 5, the second angle sensor 6, the radar 1 and the radar probe 2, for controlling the first rotation driving part 3 ,
  • the rotation of the second rotary drive member 4 control the first angle sensor 5, the second angle sensor 6 to collect the rotation angles of the first rotary drive member 3 and the second rotary drive member 4, control the radar 1 to emit pulses and control the radar probe 2 Detect the intensity of radar waves.
  • the main controller may also use the angle data detected by the first angle sensor 5 and the second angle sensor 6 Compare with the angle data required to rotate the first rotary drive part 3 and the second rotary drive part 4, and then realize the negative feedback control of the rotation angle of the first rotary drive part 3 and the second rotary drive part 4, so that the first rotation The driving member 3 and the second rotary driving member 4 rotate to a preset angle more accurately.
  • the main controller calculates the radar 1 based on the rotation angle of the first rotary drive 3 and the second rotary drive 4, the intensity of the radar wave detected by the radar probe 2, and the separation distance between the radar probe 2 and the emitting surface of the radar 1.
  • the detection range parameters are the detection range parameters.
  • the main controller may be a microprocessor 13, or a PC 14, or a combination of the microprocessor 13 and the PC 14, which is not limited here.
  • a combination of the microprocessor 13 and the PC 14 is adopted.
  • the microprocessor 13 is mainly responsible for the first rotation driving part 3, the second rotation driving part 4, the first angle sensor 5, The second angle sensor 6, the radar 1 and the radar probe 2 communicate, and send the collected data to the PC 14 for processing.
  • the PC 14 is used to calculate the detection range parameters of the radar 1 based on the data.
  • the microprocessor 13 communicates with the PC.
  • the computers 14 can communicate with each other through communication methods such as serial ports or CAN.
  • the millimeter wave radar in order to better drive the millimeter wave radar, it also includes a signal generator 15 and a power amplifier 16.
  • the main controller controls the signal generator 15 to send out pulses required to generate millimeter waves, which are amplified by the power amplifier 16.
  • the suitable frequency and intensity are adopted for different millimeter-wave radars, which is convenient for selecting suitable parameters, and can provide data support for the design and optimization of millimeter-wave radar drive circuits.
  • an embodiment of the present invention also provides a radar range measurement method, which includes the following steps:
  • the separation distance range can be set by those skilled in the art based on experience and experimental data. It needs to satisfy that the radar probe 2 cannot detect the data of the radar 1 at a separation distance outside the separation distance range. Therefore, the The radar 1 data is meaningless, and there is no need to record the radar 1 data at this separation distance.
  • S2 The main controller collects radar wave intensity data in real time through the radar probe 2.
  • the main controller controls the first rotary driving part 3 to rotate with a rated angle as a rotation gear, and when the first rotary driving part 3 is in each rotation gear, the main controller controls the second rotary driving part 4 to rotate The set angle range.
  • the set angle range is 360°.
  • the angle range can also be set to other angles, but the angle range needs to include all angles that the radar probe 2 can detect data.
  • a rated angle of 10° is taken as an example for description, which includes 18 rotation gears, that is, a total of 180° rotation data, and the rotation of the second rotary driving member 4 completes a spherical rotation.
  • the second rotary drive member 4 is provided to collect data every 1° during the rotation.
  • this embodiment also includes a negative feedback adjustment of the rotation angle of the first rotation driving member 3 and the second rotation driving member 4.
  • the first rotary driving member 3 is at the 0° position, and the second rotary driving member 4 rotates one circle (360°), and the radar probe 2 can detect the millimeter wave intensity at 360 angular positions in a circle.
  • the radar probe 2 as shown in FIG. 6 will move 360° in the horizontal plane.
  • the first rotary driving part 3 rotates to a position of 90°, and the second rotary driving part 4 rotates one circle (360°), and the radar probe 2 can detect the millimeter wave intensity in a circle of 360 angular positions.
  • the radar probe 2 as shown in FIG. 7 will move 360° in the vertical plane.
  • the first rotary driving part 3 rotates to a position of 180°, and the second rotary driving part 4 rotates one circle (360°), and the radar probe 2 can detect the millimeter wave intensity at 360 angle positions in a circle.
  • the radar probe 2 as shown in FIG. 8 will move 360° in the horizontal plane.
  • the radar probe 2 can detect 360 in one circle. Millimeter wave intensity at angular position. As shown in Figure 9, all the 19 detected circles form a spherical envelope with the center of radar 1 as the center.
  • the main controller calculates the radar based on the rotation angle of the first rotary driving part 3 and the second rotary driving part 4, the intensity of the radar wave detected by the radar probe 2, and the separation distance between the radar probe 2 and the transmitting surface of the radar 1. 1 detection range parameter.
  • Step S5 specifically includes the following steps:
  • the radar wave intensity detected by the radar probe 2 draws the radar wave intensity graphs at different intervals, and converts all the radar wave intensity graphs to Spherical coordinate system.
  • FIG. 10 it is a radar wave intensity graph when the first rotary driving member 3 is at a certain rotation gear at a certain interval distance.
  • the result of transforming the radar wave intensity map of Fig. 10 to the spherical coordinate system is shown in Fig. 11.
  • the entire radar wave intensity map at a certain distance is roughly an ellipsoid in the spherical coordinate system, but the cross-section of one end is smaller than the other end.
  • Fig. 12 is a graph showing the intensity of radar waves of the first rotating drive member 3 in different rotation gears.
  • the data can be stored in the database in the form of a table.
  • the radar wave intensity map before drawing the radar wave intensity map, it also includes testing the completeness of the data and excluding abnormal data. When the data is incomplete or abnormal, supplementary measurement should be performed on the data.
  • S52 Set the radar wave intensity threshold (such as 20). According to the radar wave intensity map at all separation distances, calculate the corresponding radar wave intensity at the angle of rotation of each first rotary drive member 3 and second rotary drive member 4 to be equal to the radar The interval distance when the wave intensity threshold is set, and the distance curve is drawn on the spherical coordinate system.
  • the radar wave intensity threshold such as 20
  • FIG. 13 shows the projection of the distance curve formed by the separation distance formed when the radar wave intensity of the first rotating drive member 3 in the same rotation gear is equal to the radar wave intensity threshold value 20 in the horizontal plane.
  • S53 Calculate the detection range parameter of radar 1 according to the distance curve.
  • the detection range parameters include, but are not limited to, the maximum detection distance, the horizontal detection distance, the horizontal detection coverage angle, and the vertical detection coverage angle.
  • the maximum detection distance is the farthest separation distance corresponding to all points of the cross-section of the distance curve passing through the coordinate origin and parallel to the horizontal plane in the spherical coordinate system, as shown in FIG. 13.
  • the distance curve is equal to the interval in all points of the spherical coordinate system that pass through the coordinate origin and are parallel to the horizontal plane.
  • the distance between the two points of the distance is regarded as the lateral detection distance, as shown in Fig. 13.
  • the calculation method for each horizontal detection coverage angle is:
  • the distance curve is equal to the separation distance among all points in the spherical coordinate system that pass through the coordinate origin and are parallel to the horizontal plane.
  • the two points are connected to the origin of the coordinate respectively, and the angle between the two lines is the horizontal detection coverage angle, as shown in Figure 13.
  • the calculation method for each vertical detection coverage angle is: the distance curve passes through the origin of the coordinate in the spherical coordinate system and the point in the curve that is the farthest from the origin of the coordinate, and is perpendicular to Among all the points of the horizontal plane, the two points equal to the separation distance are connected to the origin of the coordinate respectively, and the angle between the two lines is the vertical detection coverage angle, as shown in Figure 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种雷达范围测量系统及方法,系统包括:雷达(1)、雷达探头(2)、支架、第一旋转驱动件(3)、第二旋转驱动件(4)、第一角度传感器(5)、第二角度传感器(6)和主控制器;主控制器根据采集的第一旋转驱动件(3)和第二旋转驱动件(4)转动的角度、雷达探头(2)探测的雷达波强度、和雷达探头(2)与雷达(1)的发射面之间的间隔距离,计算雷达(1)的探测范围参数,该系统具有自动化程度高、操作简便、可靠性高、效率高的有益效果。

Description

一种雷达范围测量系统及方法 技术领域
本发明涉及雷达探测技术领域,尤其涉及一种雷达范围测量系统及方法。
背景技术
目前,国家标准规范对行车安全的要求日益提高,同时车辆生产厂家和车辆乘客对行车安全更加重视,车辆自动紧急制动系统、盲区监测报警系统配备率越来越高。毫米波雷达作为绝大多数自动紧急制动系统和盲区监测报警系统的核心探测传感器,具有探测精度高、探测距离范围大等特点,因此得到广泛应用。
毫米波雷达的指向性,即毫米波雷达在其探测区域内各角度上的毫米波强度级别,直接决定了毫米波雷达在横向和纵向的测量范围,是毫米波雷达最重要的性能指标之一。毫米波雷达指向性测试是其开发、应用过程中的重要测试评价环节,需要通过搭建专门的测试系统进行测试。
现有测试技术主要通过手动方式,在空间各距离、角度上对毫米波雷达的发射强度进行测定,人力物力耗费巨大且测试样本相对较少,无法快速实现毫米波雷达的准确测定。
发明内容
针对上述问题,本发明旨在提供一种雷达范围测量系统及方法。
具体方案如下:
一种雷达范围测量系统,包括:雷达、雷达探头、支架、第一旋转驱动件、第二旋转驱动件、第一角度传感器、第二角度传感器和主控制器;所述雷达具有一发射面,所述发射面上具有一中心点,定义垂直于所述发射面且穿过所述中心点的线为雷达中心轴线,所述雷达探头具有一锥体状探测区,定义所述锥体状探测区的中心轴线为探头中心轴线;
所述第一旋转驱动件和第二旋转驱动件均分别包括第一旋转轴和第二旋转轴;所述第一旋转驱动件的第一旋转轴的一端垂直连接所述雷达的所述发射面并穿过所述中心点;所述第一旋转驱动件固定连接于所述第二旋转驱动件的所述第二旋转轴的一端,且所述第一旋转轴与第二旋转轴相互垂直并相交于所述雷达的发射面的中心点;所述第二旋转驱动件和雷达探头均安装于支架上,且两者之间的距离能够调整;当第二旋转驱动件的旋转轴转动到一定角度时,所述雷达中心轴线能够与所述探头中心轴线重合;
所述第一角度传感器和第二角度传感器分别用于检测第一旋转驱动件和第二旋转驱动件 转动的角度;
所述主控制器控制所述第一旋转驱动件、第二旋转驱动件的转动,读取所述第一角度传感器、第二角度传感器检测的角度数据,控制雷达和雷达探头的工作;从而所述主控制器根据第一旋转驱动件和第二旋转驱动件转动的角度、雷达探头探测的雷达波强度和雷达探头与雷达的发射面之间的间隔距离,计算雷达的探测范围参数。
进一步的,还包括一连接件,所述第一旋转驱动件通过所述连接件固定连接于所述第二旋转驱动件的所述第二旋转轴的一端,所述连接件包括第一连接杆,第二连接杆和第三连接杆,所述第一连接杆固定连接于第一旋转驱动件,且第一连接杆的轴线与所述第一旋转轴处于同一直线上,所述第二连接杆的两端分别垂直固定连接于第一连接杆和第三连接杆,所述第三连接杆垂直固定连接于所述第二旋转轴,实现所述第一旋转轴与第二旋转轴相互垂直并相交于所述雷达的发射面的中心点。
进一步的,所述雷达为毫米波雷达。
一种雷达范围测量方法,包括以下步骤:
S1:调整雷达探头与第二旋转驱动件在支架上的位置,使得雷达探头与雷达的发射面之间的间隔距离满足间隔距离范围;
S2:通过雷达探头实时采集雷达波强度数据;
S3:控制第一旋转驱动件以额定角度为一个转动档位进行转动,且在第一旋转驱动件位于每个转动档位时,控制第二旋转驱动件转动设定的角度范围;
S4:当第一旋转驱动件的所有转动档位均转动完成后,在间隔距离范围内改变雷达探头与雷达的发射面之间的间隔距离,返回S3,直到间隔距离范围内所有间隔距离均测试完毕;
S5:主控制器根据第一旋转驱动件和第二旋转驱动件转动的角度、雷达探头探测的雷达波强度和雷达探头与雷达的发射面之间的间隔距离,计算雷达的探测范围参数。
进一步的,步骤S5具体包括以下步骤:
S51:根据第一旋转驱动件和第二旋转驱动件转动的角度、雷达探头探测的雷达波强度绘制在不同间隔距离下的雷达波强度图,并将所有雷达波强度图均转换到球坐标系;
S52:设定雷达波强度阈值,根据所有间隔距离下雷达波强度图,计算每个第一旋转驱动件和第二旋转驱动件转动的角度下对应的雷达波强度等于雷达波强度阈值时的间隔距离,在球坐标系上绘制距离曲线;
S53:根据距离曲线计算雷达的探测范围参数。
进一步的,所述雷达的探测范围参数包括最大探测距离,其计算方法为:将距离曲线在球坐标系的穿过坐标原点且平行于水平面的截面的所有点中对应的最远间隔距离作为最大探测距离。
进一步的,所述雷达的探测范围参数包括横向探测距离,不同的间隔距离对应不同的横向探测距离,每个间隔距离对应的横向探测距离的计算方法为:将距离曲线在球坐标系的穿过坐标原点且平行于水平面的截面的所有点中等于该间隔距离的两点之间的距离作为横向探测距离。
进一步的,所述雷达的探测范围参数包括水平探测覆盖角度,不同的间隔距离对应不同的水平探测覆盖角度,每个水平探测覆盖角度的计算方法为:将距离曲线在球坐标系的穿过坐标原点且平行于水平面的截面的所有点中等于该间隔距离的两点分别与坐标原点进行连线,两条连线之间的夹角即为水平探测覆盖角度。
进一步的,所述雷达的探测范围参数包括垂直探测覆盖角度,不同的间隔距离对应不同的垂直探测覆盖角度,每个垂直探测覆盖角度的计算方法为:将距离曲线在球坐标系的穿过坐标原点和距离曲线中距离坐标原点最远的点,且垂直于水平面的截面的所有点中等于该间隔距离的两点分别与坐标原点进行连线,两条连线之间的夹角即为垂直探测覆盖角度。
进一步的,所述第一旋转驱动件中每个转动档位的额定角度为10°,共包含18个转动档位。
本发明采用如上技术方案,具有自动化程度高、操作简便、可靠性高、效率高的有益效果。
附图说明
图1所示为本发明实施例一的结构示意图。
图2所示为该实施例中雷达水平方向处于180°、垂直方向处于0°位置时的俯视示意图。
图3所示为该实施例中雷达水平方向处于0°(或360°)、垂直方向处于0°位置时的俯视示意图。
图4所示为该实施例中雷达水平方向处于90°、垂直方向处于0°位置时的俯视示意图。
图5所示为该实施例中雷达水平方向处于270°、垂直方向处于0°位置时的俯视示意图。
图6所示为该实施例中第一旋转驱动件处于0°位置时的探测曲线示意图。
图7所示为该实施例中第一旋转驱动件处于90°位置时的探测曲线示意图。
图8所示为该实施例中第一旋转驱动件处于180°位置时的探测曲线示意图。
图9所示为该实施例中第一旋转驱动件在不同转动档位时的探测曲线包络效果示意图。
图10所示为该实施例中第一旋转驱动件在某个转动档位下雷达转动一周的探测数据在直角坐标系的示意图。
图11所示为该实施例中第一旋转驱动件在某个转动档位下雷达转动一周的探测数据在球坐标系的水平坐标面内的示意图。
图12所示为该实施例中第一旋转驱动件在不同转动档位下在球坐标系的水平坐标面内的示意图。
图13所示为该实施例中最远探测距离、横向探测距离和水平探测覆盖角度的求解方法示意图。
图14所示为该实施例中垂向探测覆盖角度求解方法示意图。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。
现结合附图和具体实施方式对本发明进一步说明。
实施例一:
本发明提供了一种雷达范围测量系统,该实施例中,采用毫米波雷达为例进行说明,在其他的实施例中,也可以用于测量其他雷达的范围,在此不做限制。
参考图1所示,该系统包括:雷达1、雷达探头2、支架、第一旋转驱动件3、第二旋转驱动件4、第一角度传感器5、第二角度传感器6和主控制器。
所述雷达1具有一发射面,所述发射面上具有一中心点,定义垂直于所述发射面且穿过所述中心点的线为雷达中心轴线。
所述雷达探头2用于实时检测雷达1的信号强度,所述雷达探头2具有一锥体状探测区,定义所述锥体状探测区的中心轴线为探头中心轴线。
所述第一旋转驱动件3和第二旋转驱动件4均包括固定端和旋转轴,所述旋转轴安装于固定端上且能够绕旋转轴自身的轴线旋转。所述第一旋转驱动件3和第二旋转驱动件4可以为常用的驱动机构,如电机、舵机等等,所述舵机可以为电动舵机,也可以为液压舵机,在此不做限制。
所述第一旋转驱动件3的旋转轴连接雷达1,以使雷达1的发射面能够绕其中心轴线旋转。为了方便雷达1的安装,该实施例中所述雷达1安装于雷达固定支架7上,通过雷达固定支架7与第一旋转驱动件3的旋转轴进行连接。
所述第一旋转驱动件3的固定端通过连接件8固定连接于第二旋转驱动件4的旋转轴,且第一旋转驱动件3的旋转轴与第二旋转驱动件4的旋转轴相互垂直。
该实施例中,所述连接件8包括第一连接杆,第二连接杆和第三连接杆,所述第一连接杆固定连接于第一旋转驱动件3,且其轴线与第一旋转驱动件3的旋转轴的轴线处于同一直线上,所述第二连接杆的两端分别垂直固定连接于第一连接杆和第三连接杆,所述第三连接杆垂直固定连接于第一旋转驱动件3的旋转轴。该连接件8具有结构简单,安装方便的优点。在其他的实施例中,所述连接件8也可以采用其他的结构,在此不做限制。
所述第二旋转驱动件4的旋转轴的轴线穿过雷达1的发射面的中心点且与发射面处于同一平面内。通过该设置方式,可以确保在雷达1的转动过程中始终绕其发射面的中心点旋转。
所述第二旋转驱动件4的固定端和雷达探头2均安装于支架上,且两者之间的距离能够调整。该实施例中支架的具体结构包括两个两侧带滑块的支座和两条滑轨,两个支座包括第一支座9和第二支座10,两条滑轨包括第一滑轨11和第二滑轨12,每个支座两侧的滑块均与滑轨滑动连接。第二旋转驱动件4的固定端和雷达探头2均固定安装于支座上。为了方便移动距离的计算,所述滑轨10上还包括刻度尺。为了使雷达探头2与雷达1的发射面的轴线处于同一水平面内,该实施例中在雷达探头2与第一支座9之间还设置一用于增加雷达探头2的高度的探头支架12。在其他的实施例中所述支架也可以采用其他的结构,在此不做限制。
第二旋转驱动件4的固定端和雷达探头2之间的距离可以通过手动进行调整,也可以通过电机进行调整。通过电机连接第二旋转驱动件4的固定端或雷达探头2,使得两者之间的距离改变,主控制器电连接电机,在电机的运动过程中可以计算获得移动的距离,进而获得雷达探头2与雷达1的发射面之间的间隔距离。手动调整时,可以根据刻度尺计算或刻度尺测量间隔距离。
当第二旋转驱动件4的旋转轴转动到一定角度时,所述雷达探头2的探头中心轴线能够与雷达1的雷达中心轴线重合。
所述第一角度传感器5和第二角度传感器6分别用于检测第一旋转驱动件3和第二旋转驱动件4转动的角度。
所述主控制器电连接于第一旋转驱动件3、第二旋转驱动件4、第一角度传感器5、第二角度传感器6、雷达1和雷达探头2,用于控制第一旋转驱动件3、第二旋转驱动件4的转动,控制第一角度传感器5、第二角度传感器6采集第一旋转驱动件3和第二旋转驱动件4转动的角度,控制雷达1发射脉冲和控制雷达探头2进行雷达波强度的探测。
该实施例中,为了确保第一旋转驱动件3和第二旋转驱动件4转动的角度更加的精确,所述主控制器还可以根据第一角度传感器5和第二角度传感器6检测的角度数据与第一旋转驱动件3和第二旋转驱动件4需要转动的角度数据进行比对,进而实现对第一旋转驱动件3和第二旋转驱动件4转动角度的负反馈控制,使得第一旋转驱动件3和第二旋转驱动件4更精确地旋转至预设角度。
所述主控制器根据第一旋转驱动件3和第二旋转驱动件4转动的角度、雷达探头2探测的雷达波强度和雷达探头2与雷达1的发射面之间的间隔距离,计算雷达1的探测范围参数。
所述主控制器可以为微型处理器13,也可以为PC机14,也可以为微型处理器13与PC机14两者结合,在此不做限制。该实施例中,为了方便设计,采用微型处理器13与PC机14两者结合的方式,微型处理器13主要负责第一旋转驱动件3、第二旋转驱动件4、第一角度传感器5、第二角度传感器6、雷达1和雷达探头2的通讯,并将采集的数据发送至PC机14进行处理,PC机14用于根据数据来计算雷达1的探测范围参数,微型处理器13与PC机14之间可以通过串口或CAN等通信方式进行通讯。
该实施例中,为了更好的对毫米波雷达进行驱动,还包括信号发生器15和功率放大器16,主控制器控制信号发生器15发出产生毫米波所需的脉冲,经功率放大器16放大后直接驱动毫米波雷达工作,从而发出频率和强度均可调的毫米波。针对不同的毫米波雷达采用适用的频率和强度,便于选择出合适的参数,可为毫米波雷达驱动电路设计和优化提供数据支持。
实施例2
基于实施例1的雷达范围测量系统,本发明实施例还提供了一种雷达范围测量方法,包括以下步骤:
S1:调整雷达探头2与第二旋转驱动件4在支架上的位置,使得雷达探头2与雷达1的发射面之间的间隔距离满足间隔距离范围。
所述间隔距离范围本领域技术人员可以根据经验和实验数据进行设定,需满足在间隔距 离范围之外的间隔距离下,雷达探头2探测不到雷达1的数据,因此,该间隔距离下的雷达1数据是无意义的,不需要对该间隔距离下的雷达1数据进行记录。
S2:主控制器通过雷达探头2实时采集雷达波强度数据。
S3:主控制器控制第一旋转驱动件3以额定角度为一个转动档位进行转动,且在第一旋转驱动件3位于每个转动档位时,主控制器控制第二旋转驱动件4转动设定的角度范围。
该实施例中为了方便计算,设定的角度范围为360°,在其他实施例中,该角度范围也可以设置为其他角度,但该角度范围需包括雷达探头2能探测到数据的所有角度。
该实施例中以额定角度为10°为例进行说明,共包含18个转动档位,即总共包含转动180°的数据,与第二旋转驱动件4的转动共同完成一个球面的转动。
为了增加结果的准确度,因此,该实施例中设置第二旋转驱动件4在转动过程中,每转动1°采集一次数据。
为了确保转动角度的准确性,该实施例中还包括对第一旋转驱动件3和第二旋转驱动件4转动角度的负反馈调节。
S4:当第一旋转驱动件3的所有档位均转动完成后,在间隔距离范围内改变雷达探头2与雷达1的发射面之间的间隔距离,返回S3,直到间隔距离范围内所有间隔距离均测试完毕。
参考图2~9,下面对该实施例中的数据探测方式进行如下说明:
(1)第一旋转驱动件3在0°位置,第二旋转驱动件4转动一周(360°),雷达探头2可以探测一圈360个角度位置的毫米波强度。此时假设雷达1不动而雷达探头2运动,则如图6所示的雷达探头2将在水平面内运动360°。
(2)第一旋转驱动件3转动至90°位置,第二旋转驱动件4转动一周(360°),雷达探头2可以探测一圈360个角度位置的毫米波强度。此时假设雷达1不动而雷达探头2运动,则如图7所示的雷达探头2将在垂直面内运动360°。
(3)第一旋转驱动件3转动至180°位置,第二旋转驱动件4转动一周(360°),雷达探头2可以探测一圈360个角度位置的毫米波强度。此时假设雷达1不动而雷达探头2运动,则如图8所示的雷达探头2将在水平面内运动360°。
(4)第一旋转驱动件3从0°转动至180°(每隔10°)的过程中,第二旋转驱动件4每转动一周(360°),雷达探头2即可以探测一圈360个角度位置的毫米波强度。如图9所示,所有探测到的19个圆圈,组成一个以雷达1中心点为圆心的球状包络面。
(5)调整雷达1与雷达探头2的距离,重复进行上述操作,可以获得多个球状探测包络面,所有包络面组成雷达1在空间中的雷达波强度探测球状体。
S5:主控制器根据第一旋转驱动件3和第二旋转驱动件4转动的角度、雷达探头2探测的雷达波强度、和雷达探头2与雷达1的发射面之间的间隔距离,计算雷达1的探测范围参数。
步骤S5具体包括以下步骤:
S51:根据第一旋转驱动件3和第二旋转驱动件4转动的角度、雷达探头2探测的雷达波强度绘制在不同间隔距离下的雷达波强度图,并将所有雷达波强度图均转换到球坐标系。
如图10所示,其为某个间隔距离第一旋转驱动件3在某个转动档位上时的雷达波强度图。将图10的雷达波强度图转换到球坐标系的结果如图11所示。某个间隔距离下的整个雷达波强度图在球坐标系统大致呈一椭球体,但一端截面大小小于另一端。图12所示为第一旋转驱动件3在不同转动档位张的雷达波强度图。
为了方便数据的统计,可以将数据以表格的形式存储于数据库内。
进一步的,为了保证结果的准确性,在雷达波强度图的绘制之前,还包括对数据的完成性进行检测,并排除异常数据,当数据不完整和有异常时,应对数据进行补充测量。
S52:设定雷达波强度阈值(如20),根据所有间隔距离下雷达波强度图,计算每个第一旋转驱动件3和第二旋转驱动件4转动的角度下对应的雷达波强度等于雷达波强度阈值时的间隔距离,在球坐标系上绘制距离曲线。
图13所示为第一旋转驱动件3在同一转动档位下的雷达波强度等于雷达波强度阈值20时形成的间隔距离形成的距离曲线在水平面内的投影。
S53:根据距离曲线计算雷达1的探测范围参数。
所述探测范围参数包括但不限于最大探测距离、横向探测距离、水平探测覆盖角度和垂向探测覆盖角度。
所述最大探测距离为距离曲线在球坐标系的穿过坐标原点且平行于水平面的截面的所有点中对应的最远间隔距离,参考图13所示。
不同的间隔距离对应不同的横向探测距离,每个间隔距离对应的横向探测距离的计算方法为:将距离曲线在球坐标系的穿过坐标原点且平行于水平面的截面的所有点中等于该间隔距离的两点之间的距离作为横向探测距离,参考图13所示。
不同的间隔距离对应不同的水平探测覆盖角度,每个水平探测覆盖角度的计算方法为:将距离曲线在球坐标系的穿过坐标原点且平行于水平面的截面的所有点中等于该间隔距离的两点分别与坐标原点进行连线,两条连线之间的夹角即为水平探测覆盖角度,参考图13所示。
不同的间隔距离对应不同的垂直探测覆盖角度,每个垂直探测覆盖角度的计算方法为:将距离曲线在球坐标系的穿过坐标原点和距离曲线中距离坐标原点最远的点,且垂直于水平面的截面的所有点中等于该间隔距离的两点分别与坐标原点进行连线,两条连线之间的夹角即为垂直探测覆盖角度,参考图14所示。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (10)

  1. 一种雷达范围测量系统,其特征在于,包括:雷达、雷达探头、支架、第一旋转驱动件、第二旋转驱动件、第一角度传感器、第二角度传感器和主控制器;所述雷达具有一发射面,所述发射面上具有一中心点,定义垂直于所述发射面且穿过所述中心点的线为雷达中心轴线,所述雷达探头具有一锥体状探测区,定义所述锥体状探测区的中心轴线为探头中心轴线;
    所述第一旋转驱动件和第二旋转驱动件均分别包括第一旋转轴和第二旋转轴;所述第一旋转驱动件的第一旋转轴的一端垂直连接所述雷达的所述发射面并穿过所述中心点;所述第一旋转驱动件固定连接于所述第二旋转驱动件的所述第二旋转轴的一端,且所述第一旋转轴与第二旋转轴相互垂直并相交于所述雷达的发射面的中心点;所述第二旋转驱动件和雷达探头均安装于支架上,且两者之间的距离能够调整;当第二旋转驱动件的旋转轴转动到一定角度时,所述雷达中心轴线能够与所述探头中心轴线重合;
    所述第一角度传感器和第二角度传感器分别用于检测第一旋转驱动件和第二旋转驱动件转动的角度;
    所述主控制器控制所述第一旋转驱动件、第二旋转驱动件的转动,读取所述第一角度传感器、第二角度传感器检测的角度数据,控制雷达和雷达探头的工作;从而所述主控制器根据第一旋转驱动件和第二旋转驱动件转动的角度、雷达探头探测的雷达波强度和雷达探头与雷达的发射面之间的间隔距离,计算雷达的探测范围参数。
  2. 根据权利要求1所述的系统,其特征在于:还包括一连接件,所述第一旋转驱动件通过所述连接件固定连接于所述第二旋转驱动件的所述第二旋转轴的一端,所述连接件包括第一连接杆,第二连接杆和第三连接杆,所述第一连接杆固定连接于第一旋转驱动件,且第一连接杆的轴线与所述第一旋转轴处于同一直线上,所述第二连接杆的两端分别垂直固定连接于第一连接杆和第三连接杆,所述第三连接杆垂直固定连接于所述第二旋转轴,实现所述第一旋转轴与第二旋转轴相互垂直并相交于所述雷达的发射面的中心点。
  3. 根据权利要求1所述的系统,其特征在于:所述雷达为毫米波雷达。
  4. 一种雷达范围测量方法,基于权利要求1~3中任一所述的系统,其特征在于,包括以下步骤:
    S1:调整雷达探头与第二旋转驱动件在支架上的位置,使得雷达探头与雷达的发射面之间的间隔距离满足间隔距离范围;
    S2:通过雷达探头实时采集雷达波强度数据;
    S3:控制第一旋转驱动件以额定角度为一个转动档位进行转动,且在第一旋转驱动件位 于每个转动档位时,控制第二旋转驱动件转动设定的角度范围;
    S4:当第一旋转驱动件的所有转动档位均转动完成后,在间隔距离范围内改变雷达探头与雷达的发射面之间的间隔距离,返回S3,直到间隔距离范围内所有间隔距离均测试完毕;
    S5:主控制器根据第一旋转驱动件和第二旋转驱动件转动的角度、雷达探头探测的雷达波强度和雷达探头与雷达的发射面之间的间隔距离,计算雷达的探测范围参数。
  5. 根据权利要求4所述的方法,其特征在于:步骤S5具体包括以下步骤:
    S51:根据第一旋转驱动件和第二旋转驱动件转动的角度、雷达探头探测的雷达波强度绘制在不同间隔距离下的雷达波强度图,并将所有雷达波强度图均转换到球坐标系;
    S52:设定雷达波强度阈值,根据所有间隔距离下雷达波强度图,计算每个第一旋转驱动件和第二旋转驱动件转动的角度下对应的雷达波强度等于雷达波强度阈值时的间隔距离,在球坐标系上绘制距离曲线;
    S53:根据距离曲线计算雷达的探测范围参数。
  6. 根据权利要求5所述的方法,其特征在于:所述雷达的探测范围参数包括最大探测距离,其计算方法为:将距离曲线在球坐标系的穿过坐标原点且平行于水平面的截面的所有点中对应的最远间隔距离作为最大探测距离。
  7. 根据权利要求5所述的方法,其特征在于:所述雷达的探测范围参数包括横向探测距离,不同的间隔距离对应不同的横向探测距离,每个间隔距离对应的横向探测距离的计算方法为:将距离曲线在球坐标系的穿过坐标原点且平行于水平面的截面的所有点中等于该间隔距离的两点之间的距离作为横向探测距离。
  8. 根据权利要求5所述的方法,其特征在于:所述雷达的探测范围参数包括水平探测覆盖角度,不同的间隔距离对应不同的水平探测覆盖角度,每个水平探测覆盖角度的计算方法为:将距离曲线在球坐标系的穿过坐标原点且平行于水平面的截面的所有点中等于该间隔距离的两点分别与坐标原点进行连线,两条连线之间的夹角即为水平探测覆盖角度。
  9. 根据权利要求5所述的方法,其特征在于:所述雷达的探测范围参数包括垂直探测覆盖角度,不同的间隔距离对应不同的垂直探测覆盖角度,每个垂直探测覆盖角度的计算方法为:将距离曲线在球坐标系的穿过坐标原点和距离曲线中距离坐标原点最远的点,且垂直于水平面的截面的所有点中等于该间隔距离的两点分别与坐标原点进行连线,两条连线之间的夹角即为垂直探测覆盖角度。
  10. 根据权利要求4所述的方法,其特征在于:所述第一旋转驱动件中每个转动档位的额 定角度为10°,共包含18个转动档位。
PCT/CN2019/128615 2019-10-08 2019-12-26 一种雷达范围测量系统及方法 WO2021068418A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910947991.7 2019-10-08
CN201910947991.7A CN110658501B (zh) 2019-10-08 2019-10-08 一种雷达范围测量系统及方法

Publications (1)

Publication Number Publication Date
WO2021068418A1 true WO2021068418A1 (zh) 2021-04-15

Family

ID=69038537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128615 WO2021068418A1 (zh) 2019-10-08 2019-12-26 一种雷达范围测量系统及方法

Country Status (2)

Country Link
CN (1) CN110658501B (zh)
WO (1) WO2021068418A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112578377B (zh) * 2020-12-10 2023-09-12 珠海格力电器股份有限公司 雷达、空调器及空调器控制方法
CN117596536B (zh) * 2024-01-18 2024-04-09 杭州爱华仪器有限公司 一种传声器频率计权测试时入射角度切换装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913775B1 (fr) * 2007-03-16 2010-08-13 Thales Sa Systeme de detection d'obstacle notamment pour un systeme d'anticollision
CN102109598A (zh) * 2011-01-11 2011-06-29 同致电子科技(昆山)有限公司 倒车雷达三轴向实测系统
CN106501783A (zh) * 2016-09-22 2017-03-15 西安空间无线电技术研究所 一种交会对接微波雷达测角性能系统误差标定系统及方法
CN108267741A (zh) * 2018-03-12 2018-07-10 苏州青飞智能科技有限公司 一种超声波探头标定装置及标定超声波探头的方法
CN109143206A (zh) * 2018-08-27 2019-01-04 森思泰克河北科技有限公司 激光雷达标定装置及标定方法
CN109443689A (zh) * 2018-11-28 2019-03-08 南京航空航天大学 一种雷达天线旋转工作时动态气动力的风洞试验测量装置及其测量方法
CN109633577A (zh) * 2018-11-30 2019-04-16 上海无线电设备研究所 一种弹载相控阵雷达二维s曲线的测试方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3966301B2 (ja) * 2004-03-25 2007-08-29 株式会社デンソー 車両用レーダ装置
CN103196552B (zh) * 2013-03-28 2015-06-24 宁波高新区通尚光电技术有限公司 一种窄光束led灯光强测量装置
CN104515595B (zh) * 2014-12-20 2017-05-24 西安炬光科技有限公司 用于半导体光源的远场强度测试装置
CN104913908A (zh) * 2015-06-15 2015-09-16 中国科学院上海光学精密机械研究所 氙灯发光强度分布测试装置
CN204925281U (zh) * 2015-08-25 2015-12-30 深圳光启创新技术有限公司 雷达罩测试装置
CN205247525U (zh) * 2015-11-30 2016-05-18 北京西门子西伯乐斯电子有限公司 光报警器的测试系统和测试装置
EP3450915B1 (de) * 2017-08-30 2020-11-25 Hexagon Technology Center GmbH Totalstation oder theodolit mit scanfunktionalität und einstellbaren empfangsbereichen des empfängers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913775B1 (fr) * 2007-03-16 2010-08-13 Thales Sa Systeme de detection d'obstacle notamment pour un systeme d'anticollision
CN102109598A (zh) * 2011-01-11 2011-06-29 同致电子科技(昆山)有限公司 倒车雷达三轴向实测系统
CN106501783A (zh) * 2016-09-22 2017-03-15 西安空间无线电技术研究所 一种交会对接微波雷达测角性能系统误差标定系统及方法
CN108267741A (zh) * 2018-03-12 2018-07-10 苏州青飞智能科技有限公司 一种超声波探头标定装置及标定超声波探头的方法
CN109143206A (zh) * 2018-08-27 2019-01-04 森思泰克河北科技有限公司 激光雷达标定装置及标定方法
CN109443689A (zh) * 2018-11-28 2019-03-08 南京航空航天大学 一种雷达天线旋转工作时动态气动力的风洞试验测量装置及其测量方法
CN109633577A (zh) * 2018-11-30 2019-04-16 上海无线电设备研究所 一种弹载相控阵雷达二维s曲线的测试方法及装置

Also Published As

Publication number Publication date
CN110658501A (zh) 2020-01-07
CN110658501B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN107479040B (zh) 一种紧缩场车载毫米波雷达测试系统
CN106226557B (zh) 一种风速风向传感器现场标定系统及方法
CN103674223B (zh) 噪声源测试装置、系统及方法
WO2021068418A1 (zh) 一种雷达范围测量系统及方法
CN103674232B (zh) 用于噪声源测试的声强获取装置
CN103760536B (zh) 雷达测速仪的现场检测方法
CN108037492A (zh) 雷达性能的测试系统及利用其进行雷达性能测试的方法
CN104330049A (zh) 便携式机车车辆轮对表面磨损自动检测装置及检测方法
CN106813584B (zh) 螺旋伞齿轮关键参数激光检测系统及其检测方法
CN111983573A (zh) 一种毫米波雷达角度自动校准系统及方法
CN111692974B (zh) 测量事故车辆底盘硬点尺寸的间接测量方法
CN107884736B (zh) 一种非接触式局部放电超声传感器校验系统及测试方法
CN108646250A (zh) 一种多探头式车载雷达及距离求取方法
CN112033412A (zh) 一种提高巡检机器人定位精度的方法及装置
CN218037768U (zh) 一种车辆底盘标定系统及车辆
CN115560936A (zh) 一种杆塔螺栓松动激光自动检测装置及检测方法
CN207281277U (zh) 一种用于汽车雷达的检测装置
KR20040053599A (ko) 열연강판 형상측정기용 다중교정기
CN207181597U (zh) 基于微波测距补偿光子数的紫外检测装置
CN106597426A (zh) 车载测速测距装置
CN117590022B (zh) 一种巷道用风速仪控制方法、装置、设备及存储介质
JP2000338238A (ja) レーダ装置
CN109353972A (zh) 高空作业设备导航定位装置、定位方法及其高空作业设备
CN115494264B (zh) 用于两束平行光线测量速度的测速仪的检测装置及方法
RU145435U1 (ru) Устройство ультразвукового контроля крупногабаритных изделий

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948316

Country of ref document: EP

Kind code of ref document: A1