WO2021065900A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2021065900A1
WO2021065900A1 PCT/JP2020/036875 JP2020036875W WO2021065900A1 WO 2021065900 A1 WO2021065900 A1 WO 2021065900A1 JP 2020036875 W JP2020036875 W JP 2020036875W WO 2021065900 A1 WO2021065900 A1 WO 2021065900A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
active material
secondary battery
reaction
Prior art date
Application number
PCT/JP2020/036875
Other languages
English (en)
French (fr)
Inventor
利恵 渡部
盛朗 奥野
吉一 堀越
泰地 葛本
真治 早崎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080067466.7A priority Critical patent/CN114514646B/zh
Priority to JP2021551304A priority patent/JP7211528B2/ja
Priority to EP20870990.7A priority patent/EP4040524A1/en
Publication of WO2021065900A1 publication Critical patent/WO2021065900A1/ja
Priority to US17/708,567 priority patent/US20220223872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This technology is related to secondary batteries.
  • positive electrodes and negative electrodes are alternately laminated via a polymer electrolyte layer or a separator, and the length of the positive electrode and the length of the negative electrode are equal to each other.
  • the positive electrode is cut by using a laser (so-called laser cut) (see, for example, Patent Documents 4 and 5).
  • Japanese Unexamined Patent Publication No. 11-307084 Special Table 2007-510259 Gazette Japanese Unexamined Patent Publication No. 06-223860 Japanese Unexamined Patent Publication No. 2018-037308 Japanese Unexamined Patent Publication No. 2016-219327
  • This technology was made in view of such problems, and its purpose is to provide a secondary battery capable of suppressing short circuits and increasing the battery capacity at the same time.
  • the secondary battery of one embodiment of the present invention includes a negative electrode including a negative electrode active material layer, a positive electrode including a positive electrode active material layer having the same dimensions as the negative electrode active material layer in the width direction, and an electrolytic solution.
  • the positive electrode active material layer includes a reaction active portion in which the charge / discharge reaction proceeds and a reaction low active portion in which the charge / discharge reaction is less likely to proceed than the reaction active portion, and the reaction low active portion is a positive electrode active material layer in the width direction. It is at least one of one end and the other end of the above.
  • the positive electrode active material layer has the same dimensions as the negative electrode active material layer in the width direction, and the positive electrode active material layer has a reaction active portion and a reaction low activity. Since the reaction low activity portion is at least one of one end portion and the other end portion of the positive electrode active material layer in the width direction, it is possible to suppress short circuits and increase the battery capacity at the same time. ..
  • the effect of the present technology is not necessarily limited to the effect described here, and may be any effect of a series of effects related to the present technology described later.
  • FIG. 5 is an enlarged cross-sectional view showing the configuration of the battery element shown in FIG. It is sectional drawing which shows the structure of the secondary battery of 1st comparative example. It is sectional drawing which shows the structure of the secondary battery of the 2nd comparative example. It is sectional drawing which shows the structure of the secondary battery in 2nd Embodiment of this technique. It is sectional drawing which shows the structure of the secondary battery in 3rd Embodiment of this technique. It is sectional drawing which shows the structure of the secondary battery of the modification 1. FIG. It is sectional drawing which shows the other structure of the secondary battery of the modification 1. FIG.
  • FIG. It is sectional drawing which shows the structure of the secondary battery of the modification 2.
  • FIG. It is sectional drawing which shows the other structure of the secondary battery of the modification 2.
  • FIG. It is sectional drawing which shows the structure of the secondary battery of the modification 3.
  • FIG. It is sectional drawing which shows the structure of the secondary battery of the modification 4.
  • the secondary battery described here is a secondary battery having a flat and columnar shape, and the secondary battery includes a so-called coin-type secondary battery, a button-type secondary battery, and the like.
  • this flat and columnar secondary battery has a pair of bottom portions facing each other and a side wall portion between the pair of bottom portions, and the secondary battery is higher than the outer diameter. Is getting smaller.
  • the specific dimensions (outer diameter and height) of the flat and columnar secondary battery will be described later.
  • the charging / discharging principle of the secondary battery is not particularly limited.
  • a secondary battery in which the battery capacity can be obtained by using the occlusion and release of the electrode reactant will be described.
  • This secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode.
  • the charge capacity of the negative electrode is set to the positive electrode in order to prevent electrode reactants from depositing on the surface of the negative electrode during charging. It is larger than the discharge capacity. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode.
  • the type of electrode reactant is not particularly limited, but is a light metal such as an alkali metal and an alkaline earth metal.
  • Alkali metals include lithium, sodium and potassium, and alkaline earth metals include beryllium, magnesium and calcium.
  • a secondary battery whose battery capacity can be obtained by using the occlusion and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is occluded and released in an ionic state.
  • FIG. 1 shows a cross-sectional configuration of the secondary battery of the first embodiment.
  • each of the positive electrode 21, the negative electrode 22, the separator 23, the positive electrode lead 50, and the negative electrode lead 60, which will be described later, is shown linearly.
  • the upper direction in FIG. 1 will be described as the upper side of the secondary battery, and the lower direction in FIG. 1 will be described as the lower side of the secondary battery.
  • this secondary battery is a button-type secondary battery, as shown in FIG. 1, it has a flat and columnar three-dimensional shape in which the height H is smaller than the outer diameter D.
  • the secondary battery has a flat and cylindrical (cylindrical) three-dimensional shape.
  • the secondary battery includes a battery can 10, a battery element 20, an electrode terminal 30, a gasket 40, a positive electrode lead 50, and a negative electrode lead 60. ..
  • the battery can 10 houses the battery element 20 and has a three-dimensional shape corresponding to the three-dimensional shape of the secondary battery described above.
  • the battery can 10 has a hollow, flat and columnar three-dimensional shape extending in the height direction (direction corresponding to the height H) according to the three-dimensional shape of the secondary battery described above. doing. Therefore, the battery can 10 has a pair of bottom portions M1 and M2 and a side wall portion M3.
  • the side wall portion M3 is connected to the bottom portion M1 at one end and is connected to the bottom M2 at the other end.
  • each of the bottom portions M1 and M2 has a circular planar shape, and the surface of the side wall portion M3 is a convex curved surface.
  • the battery can 10 includes a storage portion 11 and a lid portion 12.
  • the storage portion 11 is a flat and columnar (vessel-shaped) member having one end open and the other end closed, and houses the battery element 20. That is, the storage portion 11 has an opening 11K at one end so that the battery element 20 can be stored.
  • the lid portion 12 is a substantially plate-shaped member, and is joined to the storage portion 11 so as to shield the opening 11K.
  • the lid portion 12 is joined to the storage portion 11 by a welding method or the like. Therefore, the battery can 10 after the lid portion 12 is joined to the storage portion 11 is a single member as a whole, that is, it cannot be separated into two or more members.
  • the battery can 10 is a single member that does not have a folded portion in the middle and does not have a portion in which two or more members overlap each other.
  • the phrase "does not have a folded portion in the middle” means that the battery cans 10 are not processed so as to be folded in the middle.
  • two or more members do not have a portion where they overlap each other means that the battery can 10 is physically one member, so that the battery can 10 includes two including a container and a lid. This means that the above members are not composites fitted together so that they can be separated after the fact.
  • the battery can 10 described here is a so-called clean press can. This is because the element space volume increases inside the battery can 10, so that the energy density per unit volume of the secondary battery also increases.
  • the "element space volume” is the volume of the internal space of the battery can 10 that can be used to house the battery element 20.
  • the battery can 10 has conductivity. As a result, since the battery can 10 is connected to the negative electrode 22 described later in the battery element 20, it functions as a negative electrode terminal. This is because the battery can 10 functions as a negative electrode terminal, so that the secondary battery does not have to have a negative electrode terminal separately from the battery can 10. As a result, it is possible to avoid a decrease in the element space volume due to the presence of the negative electrode terminal. Therefore, since the element space volume increases, the energy density per unit volume of the secondary battery increases.
  • the battery can 10 has a through hole of 10K.
  • the through hole 10K is used to attach the electrode terminal 30 to the battery can 10.
  • the through hole 10K is provided in the bottom M1.
  • the battery can 10 contains any one or more of conductive materials such as metal (including stainless steel) and alloys.
  • the battery can 10 contains any one or more of iron, copper, nickel, stainless steel, iron alloy, copper alloy, nickel alloy, and the like in order to function as a negative electrode terminal.
  • the type of stainless steel is not particularly limited, but is SUS304, SUS316, and the like.
  • the battery can 10 is insulated from the electrode terminal 30 that functions as the positive electrode terminal via the gasket 40. This is to prevent contact (short circuit) between the battery can 10 and the electrode terminal 30.
  • the battery element 20 is an element that promotes a charge / discharge reaction, and includes a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution that is a liquid electrolyte. However, in FIG. 1, the illustration of the electrolytic solution is omitted.
  • the battery element 20 has a three-dimensional shape corresponding to the three-dimensional shape of the battery can 10.
  • the "three-dimensional shape corresponding to the three-dimensional shape of the battery can 10" means a three-dimensional shape similar to the three-dimensional shape of the battery can 10.
  • a dead space battery can
  • the internal space of the battery can 10 is effectively used, so that the element space volume increases, so that the energy density per unit volume of the secondary battery also increases.
  • the battery element 20 since the battery can 10 has a flat and columnar three-dimensional shape, the battery element 20 also has a flat and columnar three-dimensional shape.
  • the positive electrode 21 and the negative electrode 22 are laminated via the separator 23. More specifically, the positive electrode 21 and the negative electrode 22 are alternately laminated via the separator 23 in the height direction. Therefore, the battery element 20 is a laminated electrode body including a positive electrode 21 and a negative electrode 22 laminated via a separator 23. Since the number of layers of the positive electrode 21 and the negative electrode 22 is not particularly limited, it can be set arbitrarily.
  • FIG. 1 also shows a laminate 120 used for manufacturing a battery element 20 in a secondary battery manufacturing process described later.
  • the laminated body 120 has the same configuration as the battery element 20 which is a laminated electrode body, except that the positive electrode 21, the negative electrode 22, and the separator 23 are not impregnated with the electrolytic solution.
  • the detailed configuration of the battery element 20 (positive electrode 21, negative electrode 22, separator 23 and electrolytic solution) will be described later (see FIG. 2).
  • the electrode terminal 30 is an external connection terminal connected to an electronic device on which a secondary battery is mounted, and is provided on the bottom M1 (lid portion 12) of the battery can 10.
  • this electrode terminal 30 is inserted through a through hole 10K provided in the battery can 10, it is attached to the battery can 10 using the through hole 10K. One end of the electrode terminal 30 is exposed to the outside of the battery can 10, and the other end of the electrode terminal 30 is exposed to the inside of the battery can 10.
  • the electrode terminal 30 is connected to the positive electrode 21 (positive electrode current collector) of the battery element 20, it functions as a positive electrode terminal.
  • the material for forming the electrode terminal 30 is the same as the material for forming the positive electrode current collector described later.
  • the three-dimensional shape of the electrode terminal 30 is not particularly limited.
  • the electrode terminal 30 has a substantially columnar three-dimensional shape extending in the height direction and having a partially reduced outer diameter in the middle. That is, the electrode terminal 30 has a three-dimensional shape in which a large outer diameter cylindrical portion, a small outer diameter cylindrical portion, and a large outer diameter cylindrical portion are connected in this order in the height direction.
  • the outer diameter of each of the two large outer diameter cylindrical portions is larger than the inner diameter of the through hole 10K, and the outer diameter of the smaller outer diameter cylindrical portion is smaller than the inner diameter of the through hole 10K.
  • the battery can 10 Since it becomes difficult for the large outer diameter cylindrical portion to pass through the through hole 10K and the electrode terminal 30 is fixed to the battery can 10 by utilizing the pressing force of the large outer diameter cylindrical portion with respect to the battery can 10, the battery can 10 is used. This is because the electrode terminal 30 is less likely to fall off.
  • the gasket 40 is arranged between the battery can 10 and the electrode terminal 30, and insulates the electrode terminal 30 from the battery can 10. As a result, the electrode terminal 30 is fixed to the battery can 10 via the gasket 40.
  • This gasket 40 contains any one or more of insulating materials such as polypropylene and polyethylene.
  • the installation range of the gasket 40 is not particularly limited.
  • the gasket 40 is arranged in the gap between the battery can 10 and the electrode terminal 30.
  • the positive electrode lead 50 connects the electrode terminal 30 and the positive electrode 21 (connected to the positive electrode current collector 21A described later) to each other, and the material for forming the positive electrode lead 50 is the same as the material for forming the positive electrode current collector 21A. is there. Since the number of positive electrode leads 50 is not particularly limited, it can be set arbitrarily.
  • the negative electrode lead 60 connects the battery can 10 and the negative electrode 22 (negative electrode current collector 22A described later) to each other, and the material for forming the negative electrode lead 60 is the same as the material for forming the battery can 10. Since the number of negative electrode leads 60 is not particularly limited, it can be set arbitrarily.
  • the secondary battery may further include any one or more of the other components (not shown).
  • the secondary battery is equipped with a safety valve mechanism.
  • This safety valve mechanism disconnects the electrical connection between the battery can 10 and the battery element 20 when the internal pressure of the battery can 10 exceeds a certain level due to an internal short circuit, external heating, or the like.
  • the installation position of the safety valve mechanism is not particularly limited, but the safety valve mechanism is provided in any one of the bottom portions M1 and M2, and preferably is provided in the bottom portion M2 in which the electrode terminal 30 is not provided.
  • the secondary battery is provided with an insulator between the battery can 10 and the battery element 20.
  • This insulator contains any one or more of an insulating film, an insulating sheet, and the like, and prevents a short circuit between the battery can 10 and the battery element 20 (positive electrode 21). Since the installation range of the insulator is not particularly limited, it can be set arbitrarily.
  • the battery can 10 is provided with a liquid injection hole, a tear valve, and the like.
  • the liquid injection hole is used for injecting the electrolytic solution into the battery can 10 and then sealed.
  • the cleavage valve opens when the internal pressure of the battery can 10 reaches a certain level or higher due to an internal short circuit, external heating, or the like, so that the internal pressure is released.
  • the installation positions of the liquid injection hole and the opening valve are not particularly limited, but are either one of the bottoms M1 and M2, and the electrode terminal 30 is preferably provided, as in the installation position of the safety valve mechanism described above. There is no bottom M2.
  • FIG. 2 is an enlarged cross-sectional configuration of the battery element 20 shown in FIG. However, FIG. 2 shows only a set of the positive electrode 21 and the negative electrode 22 facing each other via the separator 23, and shows a state in which the positive electrode 21, the negative electrode 22 and the separator 23 are separated from each other.
  • the positive electrode 21 and the negative electrode 22 are laminated with each other via the separator 23, so that they face each other via the separator 23.
  • the positive electrode 21 In the positive electrode 21, lithium is easily occluded and discharged only in a part of the whole, so that the charge / discharge reaction is likely to proceed in only a part of the positive electrode 21.
  • the positive electrode 21 extends in the width direction R and has a dimension (width L1) in the width direction R. This width L1 is the distance from one end to the other end of the positive electrode 21 in the width direction R. As shown in FIG. 2, the above-mentioned width direction R is a direction along the paper surface of FIG. 2, and more specifically, a lateral direction in FIG.
  • the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B provided on both sides of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B may be provided on only one side of the positive electrode current collector 21A.
  • the positive electrode current collector 21A contains any one or more of conductive materials such as aluminum, aluminum alloy, and stainless steel.
  • the positive electrode active material layer 21B contains a positive electrode active material that can occlude and release lithium, and the positive electrode active material may be any one or more of lithium-containing compounds such as a lithium-containing transition metal compound.
  • the lithium-containing transition metal compound is an oxide, a phosphoric acid compound, a silicic acid compound, a boric acid compound or the like containing one or more kinds of transition metal elements as constituent elements together with lithium.
  • oxides are LiNiO 2 , LiCoO 2 and LiMn 2 O 4 .
  • Specific examples of the phosphoric acid compound are LiFePO 4 and LiMnPO 4 .
  • the positive electrode active material layer may further contain a positive electrode binder, a positive electrode conductive agent, and the like.
  • the positive electrode binder contains a polymer compound
  • the positive electrode conductive agent contains a conductive material such as a carbon material, a metal material and a polymer compound.
  • the negative electrode 22 In the negative electrode 22, lithium is easily occluded and discharged as a whole, so that the charge / discharge reaction is likely to proceed in the whole.
  • the negative electrode 22 extends in the width direction R and has a dimension (width L2) in the width direction R. This width L2 is the distance from one end to the other end of the negative electrode 22 in the width direction R.
  • the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B provided on both sides of the negative electrode current collector 22A.
  • the negative electrode active material layer 22B may be provided on only one side of the negative electrode current collector 22A.
  • the negative electrode current collector 22A contains any one or more of conductive materials such as iron, copper, nickel, stainless steel, iron alloy, copper alloy and nickel alloy.
  • the negative electrode active material layer 22B contains a negative electrode active material that can occlude and release lithium, and the negative electrode active material contains any one or more of a carbon material, a metal-based material, and the like. .. This carbon material is graphite or the like.
  • the metal-based material is a material containing one or more of metal elements and metalloid elements forming an alloy with lithium as constituent elements, and specifically contains silicon, tin, and the like as constituent elements. I'm out.
  • the metal-based material may be a simple substance, an alloy, a compound, or a mixture of two or more of them.
  • the negative electrode active material layer may further contain a negative electrode binder, a negative electrode conductive agent, and the like. The details regarding the negative electrode binder and the negative electrode conductive agent are the same as the details regarding the positive electrode binder and the positive electrode conductive agent, respectively.
  • the separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, and allows lithium to pass through while preventing a short circuit between the positive electrode 21 and the negative electrode 22.
  • the separator 23 extends in the width direction R and has a dimension (width L3) in the width direction R. This width L3 is the distance from one end to the other end of the separator 23 in the width direction R. Further, the separator 23 contains any one or more of the polymer compounds such as polyethylene.
  • the electrolytic solution is impregnated in each of the positive electrode 21, the negative electrode 22, and the separator 23, and contains a solvent and an electrolyte salt.
  • the solvent contains any one or more of non-aqueous solvents (organic solvents) such as carbonic acid ester compounds, carboxylic acid ester compounds and lactone compounds.
  • the electrolyte salt contains any one or more of light metal salts such as lithium salt.
  • the positive electrode 21 has the same dimensions as the negative electrode 22. That is, the width L1 of the positive electrode 21 is the same as the width L2 of the negative electrode 22. However, the fact that the width L1 is the same as the width L2 is not only when the width L1 is completely the same as the width L2, but also when the width L1 is substantially the same as the width L2 in consideration of the dimensional deviation due to the manufacturing error. It also means that it is the same as.
  • the negative electrode active material is present throughout in the width direction R.
  • the negative electrode active material layer 22B lithium is easily occluded and released as a whole, so that the charge / discharge reaction is likely to proceed in the whole.
  • the charge / discharge reaction is likely to proceed at each of one end and the other end in the width direction R, and also at the central portion between the one end and the other end. , The charge / discharge reaction is easy to proceed.
  • the "one end portion” described here is the left end portion in FIG. 2, and the “other end portion” is the right end portion in FIG. 2, and the same applies hereinafter.
  • the positive electrode active material is present throughout in the width direction R.
  • the charge / discharge reaction is easy to proceed, whereas the other positive electrode active material layer 21B is easy to proceed.
  • the charge / discharge reaction tends to proceed only in a part of the whole.
  • the charge / discharge reaction is unlikely to proceed at each of one end portion (reaction low activity portion 21X1) and the other end portion (reaction low activity portion 21X2) in the width direction R.
  • the charge / discharge reaction is likely to proceed in the central portion (reaction active portion 21Y) between one end portion and the other end portion. That is, in the positive electrode active material layer 21B, one end portion and the other end portion are reaction low active portions 21X1, 21X2, respectively, and the central portion is a reaction active portion 21Y.
  • the positive electrode 21 includes the reaction low activity portion 21X1, the reaction active portion 21Y, and the reaction low activity portion 21X2 in this order in the width direction R. That is, the positive electrode 21 includes two reaction low activity portions 21X1, 21, X2 and one reaction active portion 21Y.
  • each of the reaction low activity parts 21X1, 21X2 is shaded, and the boundary between the reaction low activity parts 21X1, 21, X2 and the reaction active part 21Y is marked with a broken line.
  • the reaction active unit 21Y includes a positive electrode current collector 21A and a positive electrode active material layer 21B, and the positive electrode active material layer 21B contains a positive electrode active material. Since the reaction active portion 21Y is not cut in the secondary battery manufacturing step (the positive electrode 21 manufacturing step) described later, the positive electrode active material contained in the positive electrode active material layer 21B is two. Even after the completion of the next battery, it is easy to occlude and release lithium. Therefore, in the reaction active unit 21Y, the charge / discharge reaction is likely to proceed even after the completion of the secondary battery.
  • the reaction low activity portion 21X1 contains the positive electrode current collector 21A and the positive electrode active material layer 21B, and the positive electrode active material layer 21B contains the positive electrode active material. Since the reaction low activity portion 21X1 is cut in the secondary battery manufacturing step (the positive electrode 21 manufacturing step), the surface of the positive electrode active material layer 21B on the side facing the negative electrode 22 is extremely thin and high. A resistance layer is formed.
  • the thickness of the high resistance layer is not particularly limited, but is about several tens of nm to several hundreds of nm, and the illustration of the high resistance layer is omitted in FIG.
  • this high resistance layer serves as an insulating layer having substantially low ion conductivity (low ion permeability), it is contained in the reaction low activity portion 21X1 due to the presence of the high resistance layer.
  • the positive electrode active material is difficult to occlude and release lithium after the completion of the secondary battery.
  • the reaction low activity portion 21X1 the charge / discharge reaction is less likely to proceed after the completion of the secondary battery. More specifically, in the reaction low activity section 21X1, the charge / discharge reaction is less likely to proceed than in the reaction active section 21Y.
  • the high resistance layer is formed up to the side surface of the reaction low activity portion 21X1 (positive electrode active material layer 21B). This is because the charge / discharge reaction is less likely to proceed.
  • the reaction low activity portion 21X1 does not include a coat layer intended to reduce electrical conductivity.
  • the porous coat layer having ionic conductivity or the gel coat layer is contained in the reaction low activity portion 21X1 even if it contains a material such as aluminum oxide (alumina) which does not have conductivity. Is not included.
  • the configuration of the reaction low activity portion 21X2 is the same as the configuration of the reaction low activity portion 21X2 described above.
  • the reaction low activity portion 21X2 also does not include a coat layer intended to reduce electrical conductivity, as in the case described with respect to the reaction low activity portion 21X1 described above.
  • the reason why the width L1 of the positive electrode 21 is the same as the width L2 of the negative electrode 22 and the positive electrode 21 includes the reaction low activity portions 21X1, 21, X2 and the reaction active portion 21Y is the reason why the secondary battery is manufactured during and after manufacturing ( This is because the stacking deviation (positional deviation) between the positive electrode 21 and the negative electrode 22 is less likely to occur after completion), and the short circuit between the positive electrode 21 and the negative electrode 22 is less likely to occur. The details of the reason explained here will be described later.
  • the respective dimensions (width L4) of the reaction low activity portions 21X1, 21X2 in the width direction R are not particularly limited, but are preferably 50 ⁇ m to 150 ⁇ m. This is because misalignment is less likely to occur and short circuits are less likely to occur. In this case, while the battery capacity is guaranteed, even a minute short circuit is less likely to occur.
  • the positive electrode 21 may be analyzed using an analysis method such as microscopic Raman spectroscopy. ..
  • the method for specifying the width L4 using micro-Raman spectroscopy is as described below.
  • the positive electrode active material contains a lithium-containing transition metal compound (lithium cobalt oxide (LiCoO 2 )) which is an oxide and the width L4 of the reaction low activity portion 21X1 is specified will be described.
  • a Raman spectrum is obtained by analyzing the positive electrode active material layer 21B (reaction low activity part 21X1 and reaction active part 21Y) using a microscopic Raman spectroscopic analyzer.
  • a laser Raman microscope RAMAN-11 manufactured by Nanophoton Co., Ltd. can be used.
  • a peak derived from the A1 g mode of the positive electrode active material is detected in or near the range where the Raman shift is 590 cm -1 to 600 cm -1.
  • This peak is an analytical parameter related to stretching of the Co—O bond, and the A1g full width at half maximum represents the crystallinity of the positive electrode active material.
  • the fact that the half width of A1g is small indicates that the charge / discharge reaction is likely to proceed using the positive electrode active material because the crystallinity of the positive electrode active material is high.
  • the fact that the half width of A1g is large indicates that the charge / discharge reaction does not easily proceed using the positive electrode active material because the crystallinity of the positive electrode active material is low.
  • the analysis results used to identify the width L4 are obtained.
  • the distance on the horizontal axis is one end of the low reaction active portion 21X1 in the direction from the low reaction active portion 21X1 to the reaction active portion 21Y (one end of the low reaction active portion 21X1 on the side far from the reaction active portion 21Y).
  • the average value of the A1g full width at half maximum on the vertical axis is the average value of the five A1g full widths obtained based on the five Raman spectra after detecting five Raman spectra for each distance.
  • the positive electrode 21 is formed by cutting (laser cutting) the positive electrode current collector 21A on which the positive electrode active material layer 21B is formed by using a laser device.
  • the positive electrode active material is denatured (the crystallinity of the positive electrode active material changes) at one end thereof. , Reaction low activity part 21X1 is formed.
  • the average value of the A1g full width at half maximum shows an upward convex peak as the distance increases. After increasing as drawn and then decreasing, it becomes almost constant. That is, in the laser-cut positive electrode 21 (positive electrode active material layer 21B), the crystallinity of the positive electrode active material is low in a range where the distance is small (reaction low activity portion 21X1), so that the charge / discharge reaction is difficult to proceed. In a range where the distance is large (reaction active portion 21Y), the crystallinity of the positive electrode active material becomes high, so that the charge / discharge reaction easily proceeds.
  • a differential curve (vertical axis is the differential value and horizontal axis is the distance ( ⁇ m)) is obtained by performing a differential calculation process on the distance of the average value of the A1 g half width.
  • the differential value representing the slope at the time of change with respect to the average value of the A1g full width at half maximum increases. And after decreasing, it becomes almost zero.
  • the width L4 is specified by specifying the position (distance) where the differential value becomes almost zero. Since the position where the differential value becomes almost zero is the boundary position between the reaction low activity portion 21X1 and the reaction active portion 21Y, the distance corresponding to the boundary position is the width L4.
  • the reaction low activity part 21X2 and the reaction activity part 21Y are analyzed instead of the reaction low activity part 21X1 and the reaction activity part 21Y.
  • the procedure is the same as the procedure for specifying the width L4 of the reaction low activity portion 21X1 except that the analysis result obtained is the distance in the direction from the reaction active portion 21X2 to the reaction active portion 21Y.
  • the width L4 is specified based on the analysis result of the positive electrode active material layer 21B using the above-mentioned micro Raman spectroscopy, the average value of the A1 g half width, which is an analysis parameter related to the crystallinity of the positive electrode active material.
  • the width L4 may be specified based on other analytical parameters.
  • the positive electrode active material contains LiCoO 2 , which is an oxide
  • the same procedure is performed except that the analysis result regarding the intensity of the peak derived from CoO x is used instead of the full width at half maximum of A1 g. May specify the width L4.
  • the positive electrode active material layer 21B contains a carbon material as the positive electrode conductive agent
  • the analysis result regarding the intensity of the G band peak derived from the physical properties of the carbon material is used instead of the A1 g half width.
  • the width L4 may be specified by the same procedure.
  • the width L3 of the separator 23 is the same as the width L2 of the negative electrode 22.
  • the width L3 is the width L1
  • the width L3 is substantially the same as the width L2. It also means that it is the same as.
  • the difference between the width L3 and the width L2 when the width L3 is substantially the same as the width L2 is 0.01 mm or less.
  • This secondary battery operates as described below. At the time of charging, lithium is discharged from the positive electrode 21 in the battery element 20, and the lithium is occluded in the negative electrode 22 via the electrolytic solution. Further, at the time of discharge, lithium is discharged from the negative electrode 22 in the battery element 20, and the lithium is occluded in the positive electrode 21 via the electrolytic solution. In these cases, lithium is occluded and released in the ionic state.
  • the positive electrode active material is mixed with a positive electrode binder, a positive electrode conductive agent, and the like, if necessary, to obtain a positive electrode mixture.
  • a paste-like positive electrode mixture slurry is prepared by adding the positive electrode mixture to an organic solvent or the like.
  • the positive electrode active material layer 21B is formed by applying the positive electrode mixture slurry on both sides of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B is compression-molded using a roll press machine or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated a plurality of times.
  • the positive electrode active material layer 21B is cut.
  • a laser device is used to cut (laser cut) the positive electrode current collector 21A on which the positive electrode active material layer 21B is formed.
  • the portions (one end and the other end) in the vicinity of the cut portion of the positive electrode active material layer 21B are heated at a high temperature.
  • components such as the positive electrode active material contained in the positive electrode active material layer 21B evaporate and oxidize at each of one end and the other end, so that a high resistance layer is formed on the surface of the positive electrode active material layer 21B. It is formed.
  • the positive electrode active material contains LiCoO 2 which is an oxide
  • the high resistance layer may contain any one or more of cobalt compounds such as cobalt oxide and cobalt hydroxide. It is thought to contain.
  • the reaction low activity portion 21X1 is formed as one end portion on which the high resistance layer is formed, and the reaction low activity portion 21X2 is formed as the other end portion on which the high resistance layer is similarly formed. That is, the high temperature heating phenomenon at the time of laser cutting can be used to intentionally reduce the occlusion / release property of lithium in a part (one end and the other end) of the positive electrode active material layer 21B, so that the reaction is low activity.
  • Each of the portions 21X1, 21X2 can be formed.
  • Conditions such as heating temperature and heating time during the cutting process are not particularly limited as long as the temperature at which the high resistance layer is formed. This heating temperature can be adjusted according to conditions such as laser output.
  • the width L4 can be adjusted by changing the above-mentioned conditions such as heating temperature and heating time.
  • the positive electrode active material layer 21B including the reaction low activity portion 21X1, 21, X2 and the reaction active portion 21Y is formed on both surfaces of the positive electrode current collector 21A, so that the positive electrode 21 is produced.
  • the negative electrode 22 is manufactured by the same procedure as the procedure for manufacturing the positive electrode 21 described above, except that the cutting process is not performed. Specifically, the negative electrode active material is mixed with a negative electrode binder, a negative electrode conductive agent, etc. as necessary to obtain a negative electrode mixture, and then the negative electrode mixture is added to an organic solvent or the like. Prepare a paste-like negative electrode mixture slurry. Subsequently, the negative electrode active material layer 22B is formed by applying the negative electrode mixture slurry on both surfaces of the negative electrode current collector 22A. Subsequently, if necessary, the negative electrode active material layer 22B is compression-molded.
  • a punching device is used to punch the negative electrode current collector 22A on which the negative electrode active material layer 22B is formed.
  • the negative electrode active material layers 22B are formed on both sides of the negative electrode current collector 22A, so that the negative electrode 22 is manufactured.
  • the electrolyte salt is added to the solvent.
  • the electrolyte salt is dissolved or dispersed in the solvent, so that an electrolytic solution containing the solvent and the electrolyte salt is prepared.
  • the laminated body 120 is produced by alternately laminating the positive electrode 21 and the negative electrode 22 via the separator 23.
  • the laminated body 120 is stored inside the storage unit 11 from the opening 11K.
  • one end of the negative electrode lead 60 is connected to the laminated body 120 (negative electrode current collector 22A of the negative electrode 22) by using a welding method or the like, and the other end of the negative electrode lead 60 is connected to the storage portion 11.
  • the type of welding method is not particularly limited, but is any one or more than one of a laser welding method and a resistance welding method. The details regarding the types of welding methods described here will be the same thereafter.
  • the lid portion 12 in which the electrode terminal 30 is attached to the through hole 10K via the gasket 40, the lid portion 12 is arranged on the storage portion 11 so as to shield the opening portion 11K, and then the welding method is performed.
  • the lid portion 12 is joined to the storage portion 11 by using or the like.
  • one end of the positive electrode lead 50 is connected to the laminated body 120 (positive electrode current collector 21A of the positive electrode 21) by using a welding method or the like, and the other end of the positive electrode lead 50 is connected to the electrode terminal 30.
  • the opening 11K is sealed by the lid 12, so that the laminate 120 is sealed inside the battery can 10.
  • the positive electrode 21 has the same width L1 as the width L2 of the negative electrode 22, and the positive electrode 21 includes reaction low activity portions 21X1, 21, X2 and reaction active portion 21Y. Therefore, excellent battery characteristics can be obtained for the reasons described below.
  • FIG. 3 shows the cross-sectional configuration of the secondary battery (battery element 20) of the first comparative example, and corresponds to FIG.
  • FIG. 4 shows the cross-sectional configuration of the secondary battery (battery element 20) of the second comparative example, and corresponds to FIG.
  • the positive electrode 21 does not include the reaction low activity portions 21X1, 21, X2 and the reaction active portion 21Y, and the width L1 of the positive electrode 21 is the width L2 of the negative electrode 22. It has the same configuration as the secondary battery of the present embodiment except that the width L3 of the separator 23 is larger than the width L2 of the negative electrode 22. In this case, one end of the positive electrode 21 is retracted inward by a width L5 from one end of the negative electrode 22, and the other end of the positive electrode 21 is retracted inward by a width L5 from the other end of the negative electrode 22. doing.
  • the width L3 of the separator 23 is larger than the width L2 of the negative electrode 22 in order to prevent a short circuit between the positive electrode 21 and the negative electrode 22 due to the precipitation of lithium during charging and discharging.
  • the positive electrode 21 does not include the reaction low activity portions 21X1, 21, X2 and the reaction active portion 21Y, and the width L3 of the separator 23 is the width L2 of the negative electrode 22. It has the same configuration as the configuration of the secondary battery of the present embodiment except that it is larger than the above.
  • the positive electrode 21, the negative electrode 22, and the separator 23 are displaced from each other during the manufacturing process and after the manufacturing (after completion) of the secondary battery, the one end and the other end of the negative electrode 22 are charged and discharged. Lithium is likely to be discharged toward the positive electrode 21. As a result, lithium is deposited at each of one end and the other end of the negative electrode 22, so that a short circuit between the positive electrode 21 and the negative electrode 22 due to the precipitation of lithium is likely to occur.
  • the facing area between the positive electrode 21 and the negative electrode 22 decreases due to the width L5, so that the battery capacity tends to decrease.
  • the width L5 is reduced, the corresponding area between the positive electrode 21 and the negative electrode 22 increases, so that the battery capacity increases.
  • the width L5 becomes smaller, one end of the positive electrode 21 and one end of the negative electrode 22 come close to each other, and the other end of the positive electrode 21 and the other end of the negative electrode 22 come close to each other. Short circuits due to misalignment are likely to occur.
  • the entire negative electrode 22 faces the positive electrode 21. In this case, the facing area between the positive electrode 21 and the negative electrode 22 increases, so that the battery capacity increases.
  • the separator 23 does not intervene between the positive electrode 21 and the negative electrode 22 due to the occurrence of misalignment, a short circuit between the positive electrode 21 and the negative electrode 22 is likely to occur as described above.
  • the width L1 is the same as the width L2
  • one end of the positive electrode 21 and one end of the negative electrode 22 face each other before the displacement occurs, and the positive electrode The other end of the 21 and the other end of the negative electrode 22 face each other. Therefore, if the separator 23 does not intervene between the positive electrode 21 and the negative electrode 22 due to the misalignment, a short circuit between the positive electrode 21 and the negative electrode 22 is likely to occur remarkably.
  • the battery capacity can be increased, but it is more difficult to suppress the occurrence of a short circuit due to the misalignment.
  • the width L1 of the positive electrode 21 is the same as the width L2 of the negative electrode 22, but the positive electrode 21 is the reaction low activity portion 21X1,21X2. And the reaction active part 21Y is contained.
  • the charge / discharge reaction easily proceeds in the central portion (reaction active portion 21Y), whereas the one end portion (low reaction active portion 21X1) and the other end portion (low reaction).
  • the charge / discharge reaction is less likely to proceed in each of the active portions 21X2). Therefore, even if each of one end and the other end of the positive electrode 21 faces the negative electrode 22, lithium is less likely to be released from the negative electrode 22 toward the positive electrode 21 (reaction low activity portions 21X1,21X2).
  • the width L1 is the same as the width L2, a short circuit between the positive electrode 21 and the negative electrode 22 due to the precipitation of lithium is less likely to occur.
  • reaction low activity portion 21X1 the separator 23 does not intervene between the positive electrode 21 and the negative electrode 22 due to the occurrence of misalignment, one end (reaction low activity portion 21X1) and the other end (reaction low activity portion 21X2) of the positive electrode 21 ), Since it is difficult to occlude and release lithium, it is difficult for lithium to be released from the negative electrode 22 toward the positive electrode 21 (reaction low activity portions 21X1,21X2). As a result, even if the width L1 is the same as the width L2, a short circuit between the positive electrode 21 and the negative electrode 22 due to the precipitation of lithium is less likely to occur.
  • reaction low activity portion 21X1 in order to make it difficult for lithium to be released from the negative electrode 22 to each of one end (reaction low activity portion 21X1) and the other end (reaction low activity portion 21X2) of the positive electrode 21. Since it is sufficient that each of the reaction low activity portions 21X1, 21X2 is present in a small amount, the width L4 can be small. As a result, the facing area between the positive electrode 21 and the negative electrode 22 becomes substantially maximum within the range in which the short circuit between the positive electrode 21 and the negative electrode 22 due to the precipitation of lithium can be prevented, so that the battery capacity is significantly increased.
  • the width L4 is 50 ⁇ m to 150 ⁇ m, not only the misalignment is less likely to occur and the short circuit is less likely to occur, but also the battery capacity is secured. Since even a minute short circuit is less likely to occur, a higher effect can be obtained.
  • the width L3 of the separator 23 is larger than the width L2 of the negative electrode 22 because the short circuit between the positive electrode 21 and the negative electrode 22 is fundamentally less likely to occur by utilizing the reaction low activity portions 21X1, 21X2. It does not have to be, and the width L3 of the separator 23 may be the same as the width L2 of the negative electrode 22.
  • the width L3 of the separator 23 is larger than the width L2 of the negative electrode 22, the width of the entire battery element 20 is determined based on the width L3 of the separator 23, as compared with the case where the width of the entire battery element 20 is determined. The width is determined based on the width L2 of the negative electrode 22. Therefore, if the separator 23 has the same width L3 as the width L2 of the negative electrode 22, the facing area between the positive electrode 21 and the negative electrode 22 is further increased, so that a higher effect can be obtained.
  • the positive electrode 21 and the negative electrode 22 are laminated via the separator 23 (laminated electrode body), the positive electrode 21 and the negative electrode 22 are wound via the separator 23 (wound electrode body).
  • Dead space is less likely to occur in the battery element 20.
  • the dead space generated in the wound electrode body is a space formed in the winding core portion or the like. Therefore, since the energy density per unit volume is further increased, a higher effect can be obtained.
  • the secondary battery is a flat and columnar button-type secondary battery, the energy density per unit volume is effectively increased in a small secondary battery having a large restriction in terms of size, so that the effect is higher. Can be obtained.
  • FIG. 5 shows the cross-sectional configuration of the secondary battery of the second embodiment, and corresponds to FIG.
  • the secondary battery of the second embodiment has the same configuration as the secondary battery of the first embodiment except for the configuration described below.
  • FIG. 5 the same components as those shown in FIG. 2 are designated by the same reference numerals. In the following description, the components of the secondary battery of the first embodiment already described will be quoted from time to time.
  • the positive electrode 21 instead of forming an ultrathin high resistance layer at each of one end and the other end of the positive electrode active material layer 21B, the positive electrode 21 newly includes insulating layers 24 and 25.
  • the reaction low activity portions 21X1, 21, X2 and the reaction active portion 21Y are formed by utilizing the presence or absence of the insulating layers 24 and 25.
  • the positive electrode active material layer 21B has the same configuration as the reaction active portion 21Y described in the first embodiment as a whole. That is, since the central portion of the positive electrode active material layer 21B contains the positive electrode active material, the charge / discharge reaction easily proceeds in the central portion. Further, since each of one end and the other end of the positive electrode active material layer 21B contains the positive electrode active material, the charge / discharge reaction can easily proceed at each of the one end and the other end.
  • the insulating layer 24 is arranged on the surface of one end of the positive electrode active material layer 21B on the side facing the negative electrode 22, whereby the insulating layer 24 has a high resistance in the region where the insulating layer 24 is arranged. Since it plays the same role as the layer, the charge / discharge reaction is less likely to proceed at one end of the positive electrode active material layer 21B. Therefore, the reaction low activity portion 21X1 is formed by using the insulating layer 24 as one end portion of the positive electrode active material layer 21B.
  • the insulating layer 24 is arranged up to the side surface of the reaction low activity portion 21X1 (one end portion of the positive electrode active material layer 21B). This is because the charge / discharge reaction is less likely to proceed.
  • the insulating layer 25 is arranged on the surface of the other end of the positive electrode active material layer 21B on the side facing the negative electrode 22, so that the insulating layer 25 is high in the region where the insulating layer 25 is arranged. Since it plays the same role as the resistance layer, the charge / discharge reaction is less likely to proceed at the other end of the positive electrode active material layer 21B. Therefore, as the other end of the positive electrode active material layer 21B, the reaction low activity portion 21X2 is formed by utilizing the insulating layer 25.
  • the insulating layer 25 is arranged up to the side surface of the reaction low activity portion 21X2 (the other end portion of the positive electrode active material layer 21B). This is because the charge / discharge reaction is less likely to proceed.
  • the charge / discharge reaction of the positive electrode active material layer 21B with the negative electrode 22 is likely to proceed.
  • the reaction active portion 21Y is formed as the central portion of the positive electrode active material layer 21B.
  • Each of the insulating layers 24 and 25 is an insulating resin tape that does not have ionic conductivity (ion permeability).
  • This insulating resin tape contains any one or more of polymer materials such as polyimide, polyethylene terephthalate (PET) and polyolefin.
  • PET polyethylene terephthalate
  • the material for forming the insulating layer 24 may be the same as the material for forming the insulating layer 25, or may be different from the material for forming the insulating layer 25.
  • the details regarding the width L6 of the insulating layers 24 and 25 are the same as the details regarding the width L4.
  • the method for manufacturing the secondary battery of the second embodiment is the same as the method for manufacturing the secondary battery of the first embodiment, except that the insulating layers 24 and 25 are formed instead of performing the cutting treatment.
  • an insulating resin tape is attached to the surface of the positive electrode active material layer 21B.
  • the width L1 of the positive electrode 21 is the same as the width L2 of the negative electrode 22, and the positive electrode 21 uses the insulating layers 24 and 25 to form the reaction low activity portions 21X1, 21X2 and the reaction activity. Includes part 21Y. Therefore, for the same reason as the secondary battery of the first embodiment, it is possible to suppress the short circuit and increase the battery capacity at the same time.
  • each of the reaction low activity portions 21X1, 21, X2 and the reaction active portion 21Y contains a positive electrode active material, but the insulating layers 24 and 25 are arranged on the surface of the positive electrode active material layer 21B on the side facing the negative electrode 22. Then, each of the reaction low activity portions 21X1, 21, X2 and the reaction active portion 21Y can be realized without performing the cutting treatment by a simple configuration utilizing the presence or absence of the insulating layers 24 and 25. Therefore, it is possible to obtain a higher effect because both the suppression of the short circuit and the increase in the battery capacity can be easily and stably achieved.
  • the other actions and effects of the secondary battery of the second embodiment are the same as those of the secondary battery of the first embodiment, except for the actions and effects related to the cutting process.
  • FIG. 6 shows the cross-sectional configuration of the secondary battery of the third embodiment, and corresponds to FIG.
  • the secondary battery of the third embodiment has the same configuration as the secondary battery of the first embodiment except for the configuration described below.
  • FIG. 6 the same components as those shown in FIG. 2 are designated by the same reference numerals. In the following description, the components of the secondary battery of the first embodiment already described will be quoted from time to time.
  • the positive electrode active material layer 21B of the positive electrode 21 newly contains the inactive material parts 21M1,21M2 and the active material part 21N, the positive electrode 21 has the inactive material parts 21M1,21M2 and the active material part 21N.
  • the reaction low activity part 21X1, 21, X2 and the reaction active part 21Y are formed by utilizing the above.
  • the positive electrode active material layer 21B cannot occlude and release lithium in the inactive material portion 21M1. , 21M2 and an active material portion 21N capable of occluding and releasing lithium. Therefore, in the positive electrode 21, the inactive material parts 21M1,21M2 form the reaction low activity parts 21X1,21X2, and the active material part 21N forms the reaction active part 21Y.
  • Each of the inactive material portions 21M1, 21M2 does not contain the positive electrode active material, but contains any one or more of the insulating materials such as aluminum oxide (alumina).
  • the forming material of the inactive material portion 21M1 may be the same as the forming material of the inactive material portion 21M2, or may be different from the forming material of the inactive material portion 21M2.
  • each of the inactive material parts 21M1, 21M2 may further contain a binder and the like.
  • reaction low activity portion 21X1 is formed as one end portion (inactive material portion 21M1) of the positive electrode active material layer 21B, and the reaction low activity portion 21X1 is formed as the other end portion (inactive material portion 21M2) of the positive electrode active material layer 21B. Part 21X2 is formed.
  • the active material section 21N contains a positive electrode active material.
  • the structure of the active material portion 21N is the same as that of the positive electrode active material layer 21B that has not been cut.
  • the reaction active portion 21Y is formed as the central portion (active material portion 21N) of the positive electrode active material layer 21B.
  • the details regarding the width L7 of the inactive material parts 21M1, 21M2 are the same as the details regarding the width L4.
  • the method for manufacturing the secondary battery of the third embodiment is the first embodiment, except that the positive electrode active material layer 21B including the inactive material parts 21M1, 21M2 and the active material part 21N is formed instead of performing the cutting treatment. It is the same as the manufacturing method of the secondary battery of the form.
  • the positive electrode active material layer 21B When forming the positive electrode active material layer 21B, first, an insulating material and, if necessary, a binder or the like are mixed, and then the mixture is added to an organic solvent or the like to form a paste-like insulating slurry. To prepare. Subsequently, according to the above procedure, the active material portion 21N is formed by applying a paste-like positive electrode mixture slurry to a part of the surface of the positive electrode current collector 21A. Finally, each of the inactive material portions 21M1, 21M2 is formed by applying a paste-like insulating slurry to the remaining portion of the surface of the positive electrode current collector 21A.
  • the width L1 of the positive electrode 21 is the same as the width L2 of the negative electrode 22, and the positive electrode 21 reacts with low activity using the inactive material portions 21M1, 21M2 and the active material portion 21N. It contains parts 21X1, 21X2 and a reaction active part 21Y. Therefore, for the same reason as the secondary battery of the first embodiment, it is possible to suppress the short circuit and increase the battery capacity at the same time.
  • the active material portion 21N contains the positive electrode active material, but if each of the non-active material portions 21M1, 21M2 does not contain the positive electrode active material and contains an insulating material, the presence or absence of the positive electrode active material is present.
  • each of the reaction low activity parts 21X1, 21, X2 and the reaction active part 21Y can be realized without performing the cutting treatment. Therefore, it is possible to obtain a higher effect because both the suppression of the short circuit and the increase in the battery capacity can be easily and stably achieved.
  • the other actions and effects of the secondary battery of the third embodiment are the same as those of the secondary battery of the first embodiment, except for the actions and effects related to the cutting process.
  • the positive electrode 21 contains both reaction low activity portions 21X1, 21X2 formed by using the cutting treatment.
  • the positive electrode 21 may contain only the reaction low activity portion 21X1 without containing the reaction low activity portion 21X2.
  • the positive electrode 21 may include the reaction low activity portion 21X2 instead of the reaction low activity portion 21X1.
  • the positive electrode 21 preferably contains both the reaction low activity portions 21X1, 21X2.
  • the reaction does not include the reaction low activity portion 21X2. It may contain only the low activity portion 21X1.
  • the reaction does not include the reaction low activity portion 21X1. It may contain only the low activity portion 21X2.
  • the method for manufacturing the secondary battery shown in FIG. 9 is for manufacturing the secondary battery shown in FIG. 2, except that only the insulating layer 24 is formed without forming the insulating layer 25 in the step of manufacturing the positive electrode 21. Similar to the method.
  • the method for manufacturing the secondary battery shown in FIG. 8 is for manufacturing the secondary battery shown in FIG. 2, except that only the insulating layer 25 is formed without forming the insulating layer 24 in the step of manufacturing the positive electrode 21. Similar to the method.
  • the positive electrode 21 includes both the insulating layers 24 and 25, as shown in FIG.
  • the positive electrode 21 since the positive electrode 21 does not contain the inactive material portion 21M2 but contains only the inactive material portion 21M1, the positive electrode 21 includes the reaction low activity portion 21X2. Instead, it may contain only the reaction low activity portion 21X1.
  • the positive electrode 21 since the positive electrode 21 does not contain the inactive material portion 21M1 but contains only the inactive material portion 21M2, the positive electrode 21 includes the reaction low activity portion 21X1. Instead, it may contain only the reaction low activity portion 21X2.
  • the method for manufacturing the secondary battery shown in FIG. 11 is the second shown in FIG. 2, except that the inactive material portion 21M1 is formed without forming the inactive material portion 21M2 in the process of manufacturing the positive electrode 21.
  • the method is the same as that for manufacturing the next battery.
  • the method for manufacturing the secondary battery shown in FIG. 12 is the second shown in FIG. 2, except that the inactive material portion 21M1 is not formed and only the inactive material portion 21M2 is formed in the step of manufacturing the positive electrode 21.
  • the method is the same as that for manufacturing the next battery.
  • the positive electrode 21 contains both the inactive material portions 21M1 and 21M2, as shown in FIG.
  • the secondary battery is a laminated electrode in which a positive electrode 21 and a negative electrode 22 are laminated inside a battery can 10 via a separator 23. It includes a battery element 20 which is a body.
  • the secondary battery is wound inside the battery can 10 instead of the battery element 20 (positive electrode 21, negative electrode 22 and separator 23) which is a laminated electrode body.
  • a battery element 70 (positive electrode 71, negative electrode 72, and separator 73), which is a rotating electrode body, may be provided.
  • a positive electrode 71 and a negative electrode 72 are wound around the separator 73. More specifically, in the battery element 70 which is a wound electrode body, the positive electrode 71 and the negative electrode 72 are laminated via the separator 73, and the positive electrode 71 and the negative electrode 72 and the negative electrode 72 are alternately laminated via the separator 73.
  • the negative electrode 72 is wound around.
  • the battery element 70 has a space (winding center space 70S) in which each of the positive electrode 71, the negative electrode 72, and the separator 73 does not exist in the winding core.
  • the configurations of the positive electrode 71, the negative electrode 72, and the separator 73 are the same as the configurations of the positive electrode 21, the negative electrode 22, and the separator 23, respectively.
  • the width direction R is the direction intersecting the paper surface of FIG. 13 as shown in FIG.
  • a positive electrode 71 and a negative electrode 72 are alternately laminated via a separator 73, and then the positive electrode 71, the negative electrode 72, and the separator 73 are wound around the battery element 70.
  • the method is the same as the method for manufacturing the secondary battery shown in FIG. 1, except that the winding body 170 used for manufacturing the above is manufactured.
  • the electrolytic solution injected into the inside of the battery can 10 impregnates the winding body 170. Therefore, the battery element 70 is manufactured.
  • the same effect can be obtained because the suppression of the short circuit and the increase in the battery capacity are compatible with each other by using the reaction low activity section 21X1, 21, X2 and the reaction activity section 21Y.
  • the wound electrode body in which the dead space is generated is used.
  • a battery element 20 which is a laminated electrode body that does not generate a dead space is preferable to a certain battery element 70.
  • a cutting process is performed using laser cutting in which the object is heated at a high temperature during the process.
  • the method for forming the high resistance layer may be a method other than laser cutting.
  • the positive electrode current collector 21A on which the positive electrode active material layer 21B is formed is punched by using a punching treatment, and then the positive electrode active material layer 21B is punched by using a laser irradiation treatment (non-cutting treatment).
  • the positive electrode current collector 21A on which the positive electrode active material layer 21B was formed was cut (laser cut).
  • the positive electrode current collector 21A on which the positive electrode active material layer 21B was formed was cut (laser cut).
  • laser cut the positive electrode current collector 21A on which the positive electrode active material layer 21B was formed.
  • reaction low activity portions 21X1,21X2 were formed in the vicinity of the cutting portion (one end portion and the other end portion) by utilizing high temperature heating, and the other portions were formed.
  • the reaction active part 21Y was formed.
  • the positive electrode active material layer 21B (LiCoO 2 ) is analyzed by microscopic Raman spectroscopy to obtain a Raman spectrum, which is then used to specify the width L4 based on the Raman spectrum.
  • the analysis results were obtained (the vertical axis is the average value of the A1 g half width (cm -1) and the horizontal axis is the distance ( ⁇ m)).
  • the width L4 ( ⁇ m) was examined based on this analysis result, the results shown in Table 1 were obtained.
  • the detailed procedure for specifying the width L4 is as described above.
  • the positive electrode lead 50 (aluminum wire) was welded to the positive electrode 21 (positive electrode current collector 21A) using the resistance welding method, and the negative electrode lead 60 (aluminum wire) was attached to the negative electrode 22 (negative electrode current collector 22A). Welded.
  • the laminated body 120 was produced by alternately laminating.
  • the laminated body 120 was stored inside the storage unit 11 (SUS316) from the opening 11K.
  • the negative electrode lead 60 was welded to the storage portion 11 (bottom M2) by using the resistance welding method.
  • the lid portion 12 (SUS316) was welded to the storage portion 11 by using a laser welding method.
  • An electrode terminal 30 (aluminum plate) is attached to the lid portion 12 via a gasket 40 (polypropylene film).
  • the positive electrode lead 50 was welded to the electrode terminal 30 by using the resistance welding method.
  • the laminate 120 (positive electrode 21, negative electrode 22 and separator 23) was impregnated with the electrolytic solution, so that the battery element 20 was produced, and the lid portion 12 was joined to the storage portion 11, so that the battery can 10 was formed. Was done. Therefore, since the battery element 20 and the like are enclosed inside the battery can 10, the secondary battery is assembled.
  • a secondary battery was produced by the same procedure except that the positive electrode 21 was produced by punching without using laser cutting.
  • the positive electrode active material layer 21B does not contain the reaction low activity portions 21X1,21X2.
  • 0.5C is a current value that can completely discharge the battery capacity in 2 hours
  • 0.2C is a current value that can completely discharge the battery capacity in 5 hours.
  • the capacity reduction rate (%) [(battery capacity of the secondary battery of Comparative Example 1-battery capacity of each of the secondary batteries of Examples 1 to 5) / battery capacity of the secondary battery of Comparative Example 1] Based on the formula of ⁇ 100, the capacity reduction rate, which is an index for evaluating the battery capacity characteristics, was calculated.
  • the charging conditions were the same as the charging conditions during the stabilization process of the secondary battery described above, except that the batteries were charged until the charging rate (SOC) reached 25%.
  • SOC charging rate
  • OCV open circuit voltage
  • the capacity reduction rate was zero, so that a high battery capacity was obtained, but it was very small.
  • the number of OCV defects increased because of the tendency for short circuits to occur. In this case, the number of OCV defects reached about half.
  • the positive electrode active material layer 21B contains the reaction low activity portions 21X1, 21X2 (Examples 1 to 5), the capacity reduction rate is suppressed to the low single digit range, so that the battery capacity is guaranteed.
  • the number of OCV defects decreased because minute short circuits were less likely to occur. In this case, the number of OCV defects became almost zero.
  • the width L4 is 50 ⁇ m to 150 ⁇ m, the capacity reduction rate is sufficiently suppressed, so that a higher battery capacity can be obtained.
  • the positive electrode 21 has the same width L1 as the width L2 of the negative electrode 22, and the positive electrode 21 includes the reaction low activity portions 21X1, 21, X2 and the reaction active portion 21Y. High voltage stability was obtained while ensuring capacitance characteristics. Therefore, since both suppression of short circuit and increase in battery capacity are achieved, excellent battery characteristics can be obtained.
  • liquid electrolyte electrolyte solution
  • gel-like electrolyte electrolyte layer
  • solid electrolyte solid electrolyte
  • the element structure of the battery element is a wound type (wound electrode body) and a laminated type (laminated electrode body) has been described, but since the element structure of the battery element is not particularly limited, the electrode (positive electrode and the positive electrode and the electrode body) Other element structures such as a ninety-nine-fold type in which the negative electrode) is folded in a zigzag manner may be used.
  • the electrode reactant is lithium has been described, but the electrode reactant is not particularly limited. Specifically, as described above, the electrode reactant may be another alkali metal such as sodium and potassium, or an alkaline earth metal such as beryllium, magnesium and calcium. In addition, the electrode reactant may be another light metal such as aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

二次電池は、負極活物質層を含む負極と、幅方向において負極活物質層の寸法と同じ寸法を有する正極活物質層を含む正極と、電解液とを備える。正極活物質層は、充放電反応が進行する反応活性部と、その反応活性部よりも充放電反応が進行しにくい反応低活性部とを含み、その反応低活性部は、幅方向における正極活物質層の一端部および他端部のうちの少なくとも一方である。

Description

二次電池
 本技術は、二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高いエネルギー密度が得られる電源として、二次電池の開発が進められている。二次電池の構成は、電池特性に影響を及ぼすため、その二次電池の構成に関しては、様々な検討がなされている。
 具体的には、良好な電池特性などを実現するために、高分子電解質層またはセパレータを介して正極および負極が交互に積層されており、その正極の長さと負極の長さとが互いに等しくなっている(例えば、特許文献1~3参照。)。また、安定な製造性などを実現するために、レーザ(いわゆるレーザカット)を用いて正極が切断されている(例えば、特許文献4,5参照。)。
特開平11-307084号公報 特表2007-510259号公報 特開平06-223860号公報 特開2018-037308号公報 特開2016-219327号公報
 二次電池の課題を解決するために様々な検討がなされているが、短絡の抑制と電池容量の増加との両立に関する対策は未だ十分でないため、未だ改善の余地がある。
 本技術はかかる問題点に鑑みてなされたもので、その目的は、短絡の抑制と電池容量の増加とを両立させることが可能な二次電池を提供することにある。
 本技術の一実施形態の二次電池は、負極活物質層を含む負極と、幅方向において負極活物質層の寸法と同じ寸法を有する正極活物質層を含む正極と、電解液とを備え、その正極活物質層は充放電反応が進行する反応活性部とその反応活性部よりも充放電反応が進行しにくい反応低活性部とを含み、その反応低活性部が幅方向における正極活物質層の一端部および他端部のうちの少なくとも一方であるものである。
 本技術の一実施形態の二次電池によれば、幅方向において正極活物質層が負極活物質層の寸法と同じ寸法を有しており、その正極活物質層が反応活性部および反応低活性部を含んでおり、その反応低活性部が幅方向における正極活物質層の一端部および他端部のうちの少なくとも一方であるので、短絡の抑制と電池容量の増加とを両立させることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の第1実施形態における二次電池の構成を表す断面図である。 図1に示した電池素子の構成を拡大して表す断面図である。 第1比較例の二次電池の構成を表す断面図である。 第2比較例の二次電池の構成を表す断面図である。 本技術の第2実施形態における二次電池の構成を表す断面図である。 本技術の第3実施形態における二次電池の構成を表す断面図である。 変形例1の二次電池の構成を表す断面図である。 変形例1の二次電池の他の構成を表す断面図である。 変形例2の二次電池の構成を表す断面図である。 変形例2の二次電池の他の構成を表す断面図である。 変形例3の二次電池の構成を表す断面図である。 変形例3の二次電池の他の構成を表す断面図である。 変形例4の二次電池の構成を表す断面図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池(第1実施形態)
  1-1.全体構成
  1-2.電池素子の詳細な構成
  1-3.動作
  1-4.製造方法
  1-5.作用および効果
 2.二次電池(第2実施形態)
 3.二次電池(第3実施形態)
 4.変形例
<1.二次電池(第1実施形態)>
 まず、本技術の第1実施形態の二次電池に関して説明する。
 ここで説明する二次電池は、扁平かつ柱状の形状を有する二次電池であり、その二次電池には、いわゆるコイン型の二次電池およびボタン型の二次電池などが含まれる。この扁平かつ柱状の二次電池は、後述するように、互いに対向する一対の底部とその一対の底部の間の側壁部とを有しており、その二次電池では、外径に対して高さが小さくなっている。なお、扁平かつ柱状の二次電池の具体的な寸法(外径および高さ)に関しては、後述する。
 二次電池の充放電原理は、特に限定されない。以下では、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池に関して説明する。この二次電池は、正極および負極と共に電解液を備えており、その二次電池では、充電途中において負極の表面に電極反応物質が析出することを防止するために、負極の充電容量が正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。
 電極反応物質の種類は、特に限定されないが、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵および放出される。
<1-1.全体構成>
 図1は、第1実施形態の二次電池の断面構成を表している。ただし、図1では、図示内容を簡略化するために、後述する正極21、負極22、セパレータ23、正極リード50および負極リード60のそれぞれを線状に示している。
 以下では、便宜上、図1中の上方向を二次電池の上側として説明すると共に、図1中の下方向を二次電池の下側として説明する。
 この二次電池は、ボタン型の二次電池であるため、図1に示したように、外径Dに対して高さHが小さい扁平かつ柱状の立体的形状を有している。ここでは、二次電池は、扁平かつ円筒(円柱)状の立体的形状を有している。二次電池に関する寸法は、特に限定されないが、外径(ここでは直径)D=3mm~30mmであると共に、高さH=0.5mm~70mmである。ただし、高さHに対する外径Dの比(D/H)は、1よりも大きいと共に25以下である。
 具体的には、二次電池は、図1に示したように、電池缶10と、電池素子20と、電極端子30と、ガスケット40と、正極リード50と、負極リード60とを備えている。
[電池缶]
 電池缶10は、電池素子20を収納しており、上記した二次電池の立体的形状に対応した立体的形状を有している。
 ここでは、電池缶10は、上記した二次電池の立体的形状に応じて、高さ方向(高さHに対応する方向)に延在する中空である扁平かつ円柱状の立体的形状を有している。このため、電池缶10は、一対の底部M1,M2と、側壁部M3とを有している。この側壁部M3は、一端部において底部M1に連結されていると共に、他端部において底部M2に連結されている。上記したように、電池缶10が扁平かつ円柱状であるため、底部M1,M2のそれぞれは円形の平面形状を有していると共に、側壁部M3の表面は凸型の曲面である。
 この電池缶10は、収納部11および蓋部12を含んでいる。収納部11は、一端部が開放されていると共に他端部が閉塞されている扁平かつ円柱状(器状)の部材であり、電池素子20を収納している。すなわち、収納部11は、電池素子20を収納可能とするために、一端部に開口部11Kを有している。蓋部12は、略板状の部材であり、収納部11に対して開口部11Kを遮蔽するように接合されている。
 ここでは、後述するように、溶接法などを用いて蓋部12が収納部11に接合されている。このため、収納部11に対する蓋部12の接合後の電池缶10は、全体として1個の部材であり、すなわち2個以上の部材に分離することができない状態である。
 これにより、電池缶10は、途中で折り重なった部分を有していないと共に2個以上の部材が互いに重なった部分も有していない1個の部材である。この「途中で折り重なった部分を有していない」とは、電池缶10が途中で互いに折り重なるように加工されていないことを意味している。また、「2個以上の部材が互いに重なった部分を有していない」とは、電池缶10が物理的に1個の部材であるため、その電池缶10は容器および蓋などを含む2個以上の部材が事後的に分離可能となるように互いに嵌合された複合体でないことを意味している。
 すなわち、ここで説明する電池缶10は、いわゆるクリンプレスの缶である。電池缶10の内部において素子空間体積が増加するため、二次電池の単位体積当たりのエネルギー密度も増加するからである。この「素子空間体積」とは、電池素子20を収納するために利用可能である電池缶10の内部空間の体積である。
 また、電池缶10は、導電性を有している。これにより、電池缶10は、電池素子20のうちの後述する負極22に接続されているため、負極端子として機能する。電池缶10が負極端子として機能することにより、二次電池が電池缶10とは別個に負極端子を備えていなくてもよいからである。これにより、負極端子の存在に起因して素子空間体積が減少することは回避される。よって、素子空間体積が増加するため、二次電池の単位体積当たりのエネルギー密度が増加する。
 また、電池缶10は、貫通孔10Kを有している。この貫通孔10Kは、電池缶10に電極端子30を取り付けるために用いられる。ここでは、貫通孔10Kは、底部M1に設けられている。
 なお、電池缶10は、金属(ステンレスを含む。)および合金などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。ここでは、電池缶10は、負極端子として機能するために、鉄、銅、ニッケル、ステンレス、鉄合金、銅合金およびニッケル合金などのうちのいずれか1種類または2種類以上を含んでいる。ステンレスの種類は、特に限定されないが、SUS304およびSUS316などである。
 ただし、電池缶10は、後述するように、正極端子として機能する電極端子30からガスケット40を介して絶縁されている。電池缶10と電極端子30との接触(短絡)が発生することを防止するためである。
[電池素子]
 電池素子20は、充放電反応を進行させる素子であり、正極21と、負極22と、セパレータ23と、液状の電解質である電解液とを含んでいる。ただし、図1では、電解液の図示を省略している。
 この電池素子20は、電池缶10の立体的形状に対応した立体的形状を有している。この「電池缶10の立体的形状に対応した立体的形状」とは、電池缶10の立体的形状と同様の立体的形状を意味している。電池素子20が電池缶10の立体的形状とは異なる立体的形状を有している場合と比較して、その電池缶10の内部に電池素子20が収納された際に、デッドスペース(電池缶10と電池素子20との間の隙間)が過剰に発生しにくくなるからである。これにより、電池缶10の内部空間が有効に利用されることに起因して、素子空間体積が増加するため、二次電池の単位体積当たりのエネルギー密度も増加する。ここでは、上記したように、電池缶10が扁平かつ円柱状の立体的形状を有しているため、電池素子20も扁平かつ円柱状の立体的形状を有している。
 ここでは、正極21および負極22は、セパレータ23を介して積層されている。より具体的には、正極21および負極22は、高さ方向においてセパレータ23を介して交互に積層されている。このため、電池素子20は、セパレータ23を介して積層された正極21および負極22を含む積層電極体である。正極21および負極22のそれぞれの積層数は、特に限定されないため、任意に設定可能である。
 図1では、後述する二次電池の製造工程において電池素子20を作製するために用いられる積層体120を併せて示している。この積層体120は、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されていないことを除いて、積層電極体である電池素子20の構成と同様の構成を有している。
 なお、電池素子20(正極21、負極22、セパレータ23および電解液)の詳細な構成に関しては、後述する(図2参照)。
[電極端子]
 電極端子30は、二次電池が搭載される電子機器に接続される外部接続端子であり、電池缶10の底部M1(蓋部12)に設けられている。
 この電極端子30は、電池缶10に設けられた貫通孔10Kに挿通されているため、その貫通孔10Kを用いて電池缶10に取り付けられている。電極端子30の一端部は、電池缶10の外部に露出していると共に、電極端子30の他端部は、電池缶10の内部に露出している。
 また、電極端子30は、電池素子20のうちの正極21(正極集電体)に接続されているため、正極端子として機能する。電極端子30の形成材料は、後述する正極集電体の形成材料と同様である。
 なお、電極端子30の立体的形状は、特に限定されない。ここでは、電極端子30は、高さ方向に延在すると共に途中で外径が部分的に小さくなった略円柱状の立体的形状を有している。すなわち、電極端子30は、高さ方向において、大外径の円柱部分と、小外径の円柱部分と、大外径の円柱部分とがこの順に連結された立体的形状を有している。2個の大外径の円柱部分のそれぞれの外径は、貫通孔10Kの内径よりも大きくなっていると共に、小外径の円柱部分の外径は、貫通孔10Kの内径よりも小さくなっている。大外径の円柱部分が貫通孔10Kを通過しにくくなると共に、電池缶10に対する大外径の円柱部分の押圧力を利用して電極端子30が電池缶10に固定されるため、電池缶10から電極端子30が脱落しにくくなるからである。
[ガスケット]
 ガスケット40は、電池缶10と電極端子30との間に配置されており、その電池缶10から電極端子30を絶縁している。これにより、電極端子30は、ガスケット40を介して電池缶10に固定されている。
 このガスケット40は、ポリプロピレンおよびポリエチレンなどの絶縁性材料のうちのいずれか1種類または2種類以上を含んでいる。ガスケット40の設置範囲は、特に限定されない。ここでは、ガスケット40は、電池缶10と電極端子30との間の隙間に配置されている。
[正極リードおよび負極リード]
 正極リード50は、電極端子30と正極21(後述する正極集電体21Aに接続)とを互いに接続させており、その正極リード50の形成材料は、正極集電体21Aの形成材料と同様である。正極リード50の本数は、特に限定されないため、任意に設定可能である。
 負極リード60は、電池缶10と負極22(後述する負極集電体22A)とを互いに接続させており、その負極リード60の形成材料は、電池缶10の形成材料と同様である。負極リード60の本数は、特に限定されないため、任意に設定可能である。
[その他]
 なお、二次電池は、さらに、図示しない他の構成要素のうちのいずれか1種類または2種類以上を備えていてもよい。
 具体的には、二次電池は、安全弁機構を備えている。この安全弁機構は、内部短絡および外部加熱などに起因して電池缶10の内圧が一定以上になると、電池缶10と電池素子20との電気的接続を切断する。安全弁機構の設置位置は、特に限定されないが、その安全弁機構は、底部M1,M2のうちのいずれかに設けられており、好ましくは電極端子30が設けられていない底部M2に設けられている。
 また、二次電池は、電池缶10と電池素子20との間に絶縁体を備えている。この絶縁体は、絶縁フィルムおよび絶縁シートなどのうちのいずれか1種類または2種類以上を含んでおり、電池缶10と電池素子20(正極21)との短絡を防止する。絶縁体の設置範囲は、特に限定されないため、任意に設定可能である。
 なお、電池缶10には、注液孔および開裂弁などが設けられている。この注液孔は、電池缶10の内部に電解液を注入するために用いられたのち、封止されている。開裂弁は、上記したように、内部短絡および外部加熱などに起因して電池缶10の内圧が一定以上に到達した場合において開裂するため、その内圧を開放する。注液孔および開裂弁のそれぞれの設置位置は、特に限定されないが、上記した安全弁機構の設置位置と同様に、底部M1,M2のうちのいずれかであり、好ましくは電極端子30が設けられていない底部M2である。
<1-2.電池素子の詳細な構成>
 図2は、図1に示した電池素子20の断面構成を拡大している。ただし、図2では、セパレータ23を介して互いに対向している一組の正極21および負極22だけを示していると共に、正極21、負極22およびセパレータ23が互いに離間された状態を示している。
 正極21および負極22は、図2に示したように、セパレータ23を介して互いに積層されているため、そのセパレータ23を介して互いに対向している。
[正極]
 正極21では、全体のうちの一部だけにおいてリチウムを吸蔵放出しやすくなっているため、その一部だけにおいて充放電反応が進行しやすくなっている。この正極21は、幅方向Rに延在していると共に、その幅方向Rにおいて寸法(幅L1)を有している。この幅L1は、幅方向Rにおいて正極21の一端から他端までの距離である。上記した幅方向Rとは、図2に示したように、その図2の紙面に沿った方向であり、より具体的には図2中の横方向である。
 具体的には、正極21は、正極集電体21Aと、その正極集電体21Aの両面に設けられた正極活物質層21Bとを含んでいる。ただし、正極活物質層21Bは、正極集電体21Aの片面だけに設けられていてもよい。
 正極集電体21Aは、アルミニウム、アルミニウム合金およびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。
 正極活物質層21Bは、リチウムを吸蔵放出可能である正極活物質を含んでおり、その正極活物質は、リチウム含有遷移金属化合物などのリチウム含有化合物のうちのいずれか1種類または2種類以上を含んでいる。このリチウム含有遷移金属化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。酸化物の具体例は、LiNiO、LiCoOおよびLiMnなどである。リン酸化合物の具体例は、LiFePOおよびLiMnPOなどである。ただし、正極活物質層は、さらに正極結着剤および正極導電剤などを含んでいてもよい。正極結着剤は、高分子化合物を含んでいると共に、正極導電剤は、炭素材料、金属材料および高分子化合物などの導電性材料を含んでいる。
[負極]
 負極22では、全体においてリチウムを吸蔵放出しやすくなっているため、その全体において充放電反応が進行しやすくなっている。この負極22は、幅方向Rに延在していると共に、その幅方向Rにおいて寸法(幅L2)を有している。この幅L2は、幅方向Rにおいて負極22の一端から他端までの距離である。
 具体的には、負極22は、負極集電体22Aと、その負極集電体22Aの両面に設けられた負極活物質層22Bとを含んでいる。ただし、負極活物質層22Bは、負極集電体22Aの片面だけに設けられていてもよい。
 負極集電体22Aは、鉄、銅、ニッケル、ステンレス、鉄合金、銅合金およびニッケル合金などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。
 負極活物質層22Bは、リチウムを吸蔵放出可能である負極活物質を含んでおり、その負極活物質は、炭素材料および金属系材料などのうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、黒鉛などである。金属系材料は、リチウムと合金を形成する金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、具体的にはケイ素およびスズなどを構成元素として含んでいる。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよい。ただし、負極活物質層は、さらに負極結着剤および負極導電剤などを含んでいてもよい。負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。
[セパレータ]
 セパレータ23は、正極21と負極22との間に介在する絶縁性の多孔質膜であり、その正極21と負極22との短絡を防止しながらリチウムを通過させる。このセパレータ23は、幅方向Rに延在していると共に、その幅方向Rにおいて寸法(幅L3)を有している。この幅L3は、幅方向Rにおいてセパレータ23の一端から他端までの距離である。また、セパレータ23は、ポリエチレンなどの高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。
[電解液]
 電解液は、正極21、負極22およびセパレータ23のそれぞれに含浸されており、溶媒および電解質塩を含んでいる。溶媒は、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などの非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでいる。電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含んでいる。
[正極、負極およびセパレータのそれぞれの詳細な構成]
 幅方向Rにおいて、正極21は、負極22の寸法と同じ寸法を有している。すなわち、正極21の幅L1は、負極22の幅L2と同じである。ただし、幅L1が幅L2と同じであるとは、幅L1が完全に幅L2と同じである場合だけでなく、製造誤差に起因する寸法ずれを加味した上で幅L1が幅L2と実質的に同じである場合も意味している。
 負極22では、幅方向Rにおける全体に渡って負極活物質が存在している。これにより、負極活物質層22Bでは、全体においてリチウムを吸蔵放出しやすくなっているため、その全体において充放電反応が進行しやすくなっている。
 具体的には、負極22では、幅方向Rにおける一端部および他端部のそれぞれにおいて、充放電反応が進行しやすくなっていると共に、その一端部と他端部との間の中央部においても、充放電反応が進行しやすくなっている。ここで説明した「一端部」とは図2中の左端部であると共に、「他端部」とは図2中の右端部であり、以降においても同様である。
 これに対して、正極21では、幅方向Rにおける全体に渡って正極活物質が存在している。しかしながら、正極活物質層21Bのうちの一部では、リチウムを吸蔵放出しやすくなっているため、充放電反応が進行しやすくなっているのに対して、正極活物質層21Bのうちの他の部分では、リチウムを吸蔵放出しにくくなっているため、充放電反応が進行しにくくなっている。このため、正極21では、上記したように、全体のうちの一部だけにおいて充放電反応が進行しやすくなっている。
 具体的には、正極21の正極活物質層21Bでは、幅方向Rにおける一端部(反応低活性部21X1)および他端部(反応低活性部21X2)のそれぞれにおいて、充放電反応が進行しにくくなっていると共に、その一端部と他端部との間の中央部(反応活性部21Y)において、充放電反応が進行しやすくなっている。すなわち、正極活物質層21Bでは、一端部および他端部のそれぞれが反応低活性部21X1,21X2であると共に、中央部が反応活性部21Yである。
 このため、正極21は、幅方向Rにおいて、反応低活性部21X1、反応活性部21Yおよび反応低活性部21X2をこの順に含んでいる。すなわち、正極21は、2個の反応低活性部21X1,21X2と、1個の反応活性部21Yとを含んでいる。図2では、反応低活性部21X1,21X2のそれぞれに網掛けを施していると共に、反応低活性部21X1,21X2と反応活性部21Yとの境界に破線を付している。
 反応活性部21Yは、正極集電体21Aおよび正極活物質層21Bを含んでおり、その正極活物質層21B中には、正極活物質が含まれている。この反応活性部21Yでは、後述する二次電池の製造工程(正極21の作製工程)において切断処理が施されていないため、その正極活物質層21B中に含まれている正極活物質は、二次電池の完成後においてもリチウムを吸蔵放出しやすくなっている。このため、反応活性部21Yでは、二次電池の完成後においても充放電反応が進行しやすくなっている。
 これに対して、反応低活性部21X1は、正極集電体21Aおよび正極活物質層21Bを含んでおり、その正極活物質層21B中には、正極活物質が含まれている。この反応低活性部21X1では、二次電池の製造工程(正極21の作製工程)において切断処理が施されているため、負極22に対向する側における正極活物質層21Bの表面に極薄の高抵抗層が形成されている。高抵抗層の厚さは、特に限定されないが、数十nm~数百nm程度であり、図2では、高抵抗層の図示を省略している。この高抵抗層は、実質的に低イオン伝導性(低イオン透過性)の絶縁層としての役割を果たすため、その高抵抗層の存在に起因して、反応低活性部21X1中に含まれている正極活物質は、二次電池の完成後においてはリチウムを吸蔵放出しにくくなっている。これにより、反応低活性部21X1では、二次電池の完成後において充放電反応が進行しにくくなっている。より具体的には、反応低活性部21X1では、反応活性部21Yよりも充放電反応が進行しにくくなっている。
 中でも、高抵抗層は、反応低活性部21X1(正極活物質層21B)の側面まで形成されていることが好ましい。充放電反応がより進行しにくくなるからである。
 ここで、反応低活性部21X1には、電気伝導性を低下させることを目的としたコート層は含まれない。具体的には、イオン導電性を有する多孔質のコート層またはゲル質のコート層は、導電性を有していない酸化アルミニウム(アルミナ)などの材料を含んでいても、反応低活性部21X1には含まれない。
 なお、反応低活性部21X2の構成は、上記した反応低活性部21X2の構成と同様である。この反応低活性部21X2に関しても、上記した反応低活性部21X1に関して説明した場合と同様に、電気伝導性を低下させることを目的としたコート層は含まれない。
 正極21の幅L1が負極22の幅L2と同じであると共に、その正極21が反応低活性部21X1,21X2および反応活性部21Yを含んでいる理由は、二次電池の製造過程および製造後(完成後)において正極21と負極22との積層ずれ(位置ずれ)が発生しにくくなると共に、正極21と負極22との短絡が発生しにくくなるからである。ここで説明した理由の詳細に関しては、後述する。
 幅方向Rにおける反応低活性部21X1,21X2のそれぞれの寸法(幅L4)は、特に限定されないが、中でも、50μm~150μmであることが好ましい。位置ずれが十分に発生しにくくなると共に、短絡が十分に発生しにくくなるからである。この場合には、電池容量が担保されながら、微小な短絡まで発生しにくくなる。
 反応低活性部21X1,21X2のそれぞれと反応活性部21Yとの境界を特定することにより、幅L4を特定するためには、顕微ラマン分光法などの分析法を用いて正極21を分析すればよい。
 顕微ラマン分光法を用いて幅L4を特定する方法は、以下で説明する通りである。ここでは、正極活物質が酸化物であるリチウム含有遷移金属化合物(コバルト酸リチウム(LiCoO))を含んでいると共に、反応低活性部21X1の幅L4を特定する場合に関して説明する。
 最初に、顕微ラマン分光分析装置を用いて正極活物質層21B(反応低活性部21X1および反応活性部21Y)を分析することにより、ラマンスペクトルを得る。この顕微ラマン分光分析装置としては、ナノフォトン株式会社製のレーザーラマン顕微鏡 RAMAN-11などを用いることができる。
 このラマンスペクトルでは、ラマンシフトが590cm-1~600cm-1である範囲またはその近傍に、正極活物質(LiCoO)のA1gモードに由来するピークが検出される。このピークは、Co-O結合の伸縮振動(stretching)に関する分析パラメータであり、A1g半値幅は、正極活物質の結晶化度を表している。具体的には、A1g半値幅が小さいということは、正極活物質の結晶性が高いため、その正極活物質を用いて充放電反応が進行しやすいことを表している。一方、A1g半値幅が大きいということは、正極活物質の結晶性が低いため、その正極活物質を用いて充放電反応が進行しにくいことを表している。
 上記したラマンスペクトルに基づいて、幅L4を特定するために用いられる分析結果(縦軸はA1g半値幅(cm-1)の平均値および横軸は距離(μm))を得る。この場合において、横軸の距離は、反応低活性部21X1から反応活性部21Yに向かう方向において、その反応低活性部21X1の一端(反応活性部21Yから遠い側における反応低活性部21X1の一端)からの距離とする。縦軸のA1g半値幅の平均値は、距離ごとに5個のラマンスペクトルを検出したのち、その5個のラマンスペクトルに基づいて得られた5個のA1g半値幅の平均値とする。
 この正極21は、後述するように、レーザ装置を用いて、正極活物質層21Bが形成された正極集電体21Aを切断(レーザカット)することにより形成されている。この場合には、正極活物質層21Bの切断箇所の近傍部分(一端部)が高温で加熱されることにより、その一端部において正極活物質が変性(正極活物質の結晶性が変化)するため、反応低活性部21X1が形成されている。
 これにより、顕微ラマン分光法を用いた正極21(反応低活性部21X1および反応活性部21Y)の分析結果において、A1g半値幅の平均値は、距離が増加するにしたがって、上向き凸型のピークを描くように増加してから減少したのち、ほぼ一定になる。すなわち、レーザカットされた正極21(正極活物質層21B)では、距離が小さい範囲(反応低活性部21X1)では、正極活物質の結晶性が低くなるため、充放電反応が進行しにくくなると共に、距離が大きい範囲(反応活性部21Y)では、正極活物質の結晶性が高くなるため、充放電反応が進行しやすくなる。
 続いて、上記した分析結果に基づいて、A1g半値幅の平均値の距離に対する微分演算処理を行うことにより、微分曲線(縦軸は微分値および横軸は距離(μm))を得る。上記したように、A1g半値幅の平均値は、距離が増加するにしたがって増加および減少してからほぼ一定になるため、そのA1g半値幅の平均値に関する変化時の傾きを表す微分値は、増加および減少してからほぼゼロになる。
 最後に、微分値がほぼゼロになる位置(距離)を特定することにより、幅L4を特定する。微分値がほぼゼロになる位置は、反応低活性部21X1と反応活性部21Yとの境界位置になるため、その境界位置に対応する距離は、幅L4となる。
 反応低活性部21X2の幅L4を特定する手順は、反応低活性部21X1および反応活性部21Yの代わりに反応低活性部21X2および反応活性部21Yを分析することにより、横軸が反応低活性部21X2から反応活性部21Yに向かう方向の距離である分析結果を得ることを除いて、反応低活性部21X1の幅L4を特定する手順と同様である。
 なお、上記した顕微ラマン分光法を用いた正極活物質層21Bの分析結果に基づいて幅L4を特定する場合には、正極活物質の結晶性に関係する分析パラメータであるA1g半値幅の平均値に基づいて幅L4を特定する代わりに、他の分析パラメータに基づいて幅L4を特定してもよい。
 具体的には、正極活物質が酸化物であるLiCoOを含んでいる場合には、A1g半値幅の代わりに、CoOに由来するピークの強度に関する分析結果を用いることを除いて同様の手順により、幅L4を特定してもよい。また、正極活物質層21Bが正極導電剤として炭素材料を含んでいる場合には、A1g半値幅の代わりに、炭素材料の物性に由来するGバンドピークの強度に関する分析結果を用いることを除いて同様の手順により、幅L4を特定してもよい。
 ここでは、セパレータ23の幅L3は、負極22の幅L2と同じである。ただし、幅L3が幅L1であるとは、幅L2が幅L1と同じである場合と同様に、幅L3が完全に幅L2と同じである場合だけでなく、幅L3が幅L2と実質的に同じである場合も意味している。幅L3が幅L2と実質的に同じである場合における幅L3と幅L2との差異は、0.01mm以下である。
<1-3.動作>
 この二次電池は、以下で説明するように動作する。充電時には、電池素子20において正極21からリチウムが放出されると共に、そのリチウムが電解液を介して負極22に吸蔵される。また、放電時には、電池素子20において負極22からリチウムが放出されると共に、そのリチウムが電解液を介して正極21に吸蔵される。これらの場合には、リチウムがイオン状態で吸蔵および放出される。
<1-4.製造方法>
 二次電池を製造する場合には、以下で説明する手順により、その二次電池を組み立てる。
[正極の作製]
 最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を投入することにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。続いて、必要に応じて、ロールプレス機などを用いて正極活物質層21Bを圧縮成型する。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
 最後に、正極活物質層21Bに対して切断処理を施す。具体的には、レーザ装置を用いて、正極活物質層21Bが形成された正極集電体21Aを切断(レーザカット)する。レーザの種類は、特に限定されないが、YAGレーザ(波長=1064nm)などである。切断方法としてレーザカットを用いることにより、正極活物質層21Bが形成された正極集電体21Aは容易かつ高精度に切断される。
 この場合には、正極活物質層21Bの切断箇所の近傍部分(一端部および他端部)が高温で加熱される。これにより、一端部および他端部のそれぞれにおいて正極活物質層21B中に含まれている正極活物質などの成分が蒸発および酸化などするため、その正極活物質層21Bの表面に高抵抗層が形成される。一例を挙げると、正極活物質が酸化物であるLiCoOを含んでいる場合には、高抵抗層は、酸化コバルトおよび水酸化コバルトなどのコバルト化合物のうちのいずれか1種類または2種類以上を含んでいると考えられる。これにより、高抵抗層が形成された一端部として反応低活性部21X1が形成されると共に、同様に高抵抗層が形成された他端部として反応低活性部21X2が形成される。すなわち、レーザカット時の高温加熱現象を利用して、正極活物質層21Bの一部(一端部および他端部)においてリチウムの吸蔵放出性を意図的に低下させることができるため、反応低活性部21X1,21X2のそれぞれを形成することができる。
 切断処理時における加熱温度および加熱時間などの条件は、高抵抗層が形成される温度であれば、特に限定されない。この加熱温度は、レーザの出力などの条件に応じて調整可能である。
 反応低活性部21X1,21X2のそれぞれを形成する場合には、上記した加熱温度および加熱時間などの条件を変更することにより、幅L4を調整可能である。
 なお、正極活物質層21Bのうちの一端部と他端部との間の中央部では、高温で加熱されないことに起因して高抵抗層が形成されないため、その中央部として反応活性部21Yが形成される。
 これにより、反応低活性部21X1,21X2および反応活性部21Yを含む正極活物質層21Bが正極集電体21Aの両面に形成されるため、正極21が作製される。
[負極の作製]
 切断処理を行わないことを除いて、上記した正極21の作製手順と同様の手順により、負極22を作製する。具体的には、負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤などに負極合剤を投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。続いて、必要に応じて、負極活物質層22Bを圧縮成型する。最後に、打ち抜き装置を用いて、負極活物質層22Bが形成された負極集電体22Aを打ち抜く。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極22が作製される。
[電解液の調製]
 溶媒中に電解質塩を添加する。これにより、溶媒中において電解質塩が溶解または分散されるため、その溶媒および電解質塩を含む電解液が調製される。
[二次電池の組み立て]
 最初に、セパレータ23を介して正極21および負極22を交互に積層させることにより、積層体120を作製する。
 続いて、開口部11Kから収納部11の内部に積層体120を収納する。この場合には、溶接法などを用いて、負極リード60の一端部を積層体120(負極22の負極集電体22A)に接続させると共に、負極リード60の他端部を収納部11に接続させる。溶接法の種類は、特に限定されないが、レーザ溶接法および抵抗溶接法などのうちのいずれか1種類または2種類以上である。ここで説明した溶接法の種類に関する詳細は、以降においても同様である。
 続いて、電極端子30がガスケット40を介して貫通孔10Kに取り付けられた蓋部12を用いて、開口部11Kを遮蔽するように収納部11の上に蓋部12を配置したのち、溶接法などを用いて収納部11に蓋部12を接合させる。この場合には、溶接法などを用いて、正極リード50の一端部を積層体120(正極21の正極集電体21A)に接続させると共に、正極リード50の他端部を電極端子30に接続させる。これにより、開口部11Kが蓋部12により封止されるため、電池缶10の内部に積層体120が封入される。
 最後に、図示しない注液孔から電池缶10の内部に電解液を注入したのち、その注液孔を封止する。これにより、積層体120(正極21、負極22およびセパレータ23)に電解液が含浸されるため、電池素子20が作製される。よって、電池缶10の内部に電池素子20が封入されるため、二次電池が完成する。
<1-5.作用および効果>
 この二次電池によれば、正極21が負極22の幅L2と同じ幅L1を有していると共に、その正極21が反応低活性部21X1,21X2および反応活性部21Yを含んでいる。よって、以下で説明する理由により、優れた電池特性を得ることができる。
 図3は、第1比較例の二次電池(電池素子20)の断面構成を表しており、図2に対応している。図4は、第2比較例の二次電池(電池素子20)の断面構成を表しており、図2に対応している。
 第1比較例の二次電池は、図3に示したように、正極21が反応低活性部21X1,21X2および反応活性部21Yを含んでおらず、正極21の幅L1が負極22の幅L2よりも小さくなっており、セパレータ23の幅L3が負極22の幅L2よりも大きくなっていることを除いて、本実施形態の二次電池の構成と同様の構成を有している。この場合には、正極21の一端部が負極22の一端部よりも幅L5だけ内側に後退していると共に、正極21の他端部が負極22の他端部よりも幅L5だけ内側に後退している。セパレータ23の幅L3が負極22の幅L2よりも大きくなっているのは、充放電時におけるリチウムの析出に起因する正極21と負極22との短絡を防止するためである。
 第2比較例の二次電池は、図4に示したように、正極21が反応低活性部21X1,21X2および反応活性部21Yを含んでいないと共に、セパレータ23の幅L3が負極22の幅L2よりも大きくなっていることを除いて、本実施形態の二次電池の構成と同様の構成を有している。
 第1比較例の二次電池では、図3に示したように、正極21の幅L1が負極22の幅L2よりも小さいため、その負極22の一端部および他端部のそれぞれが正極21と対向していない。ただし、正極21と負極22との間には、セパレータ23が介在している。
 しかしながら、二次電池の製造過程および製造後(完成後)において、正極21、負極22およびセパレータ23のそれぞれの位置ずれが発生すると、充放電時において負極22の一端部および他端部のそれぞれから正極21に向かってリチウムが放出されやすくなる。これにより、負極22の一端部および他端部のそれぞれにおいてリチウムが析出するため、そのリチウムの析出に起因する正極21と負極22との短絡が発生しやすくなる。
 この短絡が発生しやすくなる傾向は、特に、正極21と負極22との間に介在しているセパレータ23が大きく位置ずれした場合に顕著となる。位置ずれに起因して正極21と負極22との間にセパレータ23が存在しなくなると、負極22の一端部および他端部のそれぞれにおいてリチウムが析出しやすくなるからである。
 しかも、第1比較例の二次電池では、幅L5に起因して正極21と負極22との対向面積が減少するため、電池容量が減少しやすくなる。この場合には、幅L5を小さくすれば、正極21と負極22との対応面積が増加するため、電池容量は増加する。しかしながら、幅L5が小さくなると、正極21の一端部と負極22との一端部とが互いに接近すると共に、正極21の他端部と負極22の他端部とが互いに接近するため、上記した位置ずれに起因した短絡が発生しやすくなる。
 これらのことから、第1比較例の二次電池では、短絡の抑制と電池容量の増加とが互いにトレードオフの関係、すなわち2つの特性のうちの一方の特性が改善されると他方の特性が低下するという関係がある。よって、短絡の抑制と電池容量の増加とを両立させることが困難である。
 第2比較例の二次電池では、図4に示したように、正極21の幅L1が負極22の幅L2に等しくなっているため、負極22の全体が正極21と対向している。この場合には、正極21と負極22との対向面積が増加するため、電池容量が増加する。
 しかしながら、位置ずれの発生に起因して、正極21と負極22との間にセパレータ23が介在しなくなると、上記したように、正極21と負極22との短絡が発生しやすくなる。この場合には、特に、幅L1が幅L2と同じであることに起因して、位置ずれの発生前から正極21の一端部と負極22との一端部とが互いに対向していると共に、正極21の他端部と負極22の他端部とが互いに対向している。このため、位置ずれに起因して正極21と負極22との間にセパレータ23が介在しなくなると、正極21と負極22との短絡が著しく発生しやすくなる。
 これらのことから、第2比較例の二次電池では、電池容量を増加させることはできるが、位置ずれに起因した短絡の発生を抑制することはより困難である。
 これに対して、本実施形態の二次電池では、図2に示したように、正極21の幅L1は負極22の幅L2と同じであるが、その正極21が反応低活性部21X1,21X2および反応活性部21Yを含んでいる。
 この場合には、正極活物質層21Bにおいて、中央部(反応活性部21Y)では充放電反応が進行しやすくなるのに対して、一端部(反応低活性部21X1)および他端部(反応低活性部21X2)のそれぞれでは充放電反応が進行しにくくなる。このため、正極21の一端部および他端部のそれぞれが負極22に対向していても、その負極22から正極21(反応低活性部21X1,21X2)に向かってリチウムが放出されにくくなる。これにより、幅L1が幅L2と同じでも、リチウムの析出に起因する正極21と負極22との短絡が発生しにくくなる。
 また、位置ずれの発生に起因して正極21と負極22との間にセパレータ23が介在しなくなっても、正極21の一端部(反応低活性部21X1)および他端部(反応低活性部21X2)のそれぞれはリチウムを吸蔵放出しにくくなっているため、負極22から正極21(反応低活性部21X1,21X2)に向かってリチウムが放出されにくくなる。これにより、幅L1が幅さL2と同じでも、リチウムの析出に起因する正極21と負極22との短絡が発生しにくくなる。
 しかも、上記したように、負極22から正極21の一端部(反応低活性部21X1)および他端部(反応低活性部21X2)のそれぞれにリチウムが放出されにくくなるようにするためには、その反応低活性部21X1,21X2のそれぞれが僅かでも存在していればよいため、幅L4は小さくて済む。これにより、リチウムの析出に起因する正極21と負極22との短絡を防止可能である範囲内において、正極21と負極22との対向面積がほぼ最大になるため、電池容量が大幅に増加する。
 これらのことから、本実施形態の二次電池では、第1比較例の二次電池に関して説明したトレードオフの関係が打破されるため、短絡の抑制と電池容量の増加とを両立させることができる。
 この場合には、特に、正極活物質を含む正極活物質層21Bを形成したのち、レーザカット時の高温過熱現象を利用した簡単な切断処理を正極活物質層21Bに施すだけで、反応低活性部21X1,21X2および反応活性部21Yのそれぞれが容易かつ安定に形成される。よって、容易かつ安定に短絡の抑制と電池容量の増加とを両立させることができる。
 この他、本実施形態の二次電池では、幅L4が50μm~150μmであれば、位置ずれが十分に発生しにくくなると共に短絡が十分に発生しにくくなるだけでなく、電池容量が担保されながら微小な短絡まで発生しにくくなるため、より高い効果を得ることができる。
 また、上記したように、反応低活性部21X1,21X2を利用して正極21と負極22との短絡が根本的に発生しにくくなるため、セパレータ23の幅L3が負極22の幅L2よりも大きくなければならない必要はなく、そのセパレータ23の幅L3が負極22の幅L2と同じでもよい。この場合には、セパレータ23の幅L3が負極22の幅L2よりも大きいため、電池素子20全体の幅がセパレータ23の幅L3に基づいて決定される場合と比較して、電池素子20全体の幅が負極22の幅L2に基づいて決定される。よって、セパレータ23が負極22の幅L2と同じ幅L3を有していれば、正極21と負極22との対向面積がより増加するため、より高い効果を得ることができる。
 また、電池素子20において正極21および負極22がセパレータ23を介して積層されていれば(積層電極体)、正極21および負極22がセパレータ23を介して巻回されている場合(巻回電極体)と比較して、電池素子20中にデッドスペースが発生しにくくなる。この巻回電極体中に発生するデッドスペースは、巻芯部に形成される空間などである。よって、単位体積当たりのエネルギー密度がより増加するため、より高い効果を得ることができる。
 また、二次電池が扁平かつ柱状であるボタン型の二次電池であれば、サイズの観点において制約が大きい小型の二次電池において単位体積当たりのエネルギー密度が有効に増加するため、より高い効果を得ることができる。
<2.二次電池(第2実施形態)>
 次に、本技術の第2実施形態の二次電池に関して説明する。
 図5は、第2実施形態の二次電池の断面構成を表しており、図2に対応している。この第2実施形態の二次電池は、以下で説明する構成を除いて、第1実施形態の二次電池の構成と同様の構成を有している。図5では、図2に示した構成要素と同一の構成要素に同一の符号を付している。以下の説明では、既に説明した第1実施形態の二次電池の構成要素を随時引用する。
 ここでは、正極活物質層21Bの一端部および他端部のそれぞれにおいて極薄の高抵抗層が形成されている代わりに、正極21が新たに絶縁層24,25を含んでいる。これにより、正極21では、絶縁層24,25の有無を利用して反応低活性部21X1,21X2および反応活性部21Yが形成されている。
 具体的には、正極活物質層21Bは、全体として、第1実施形態において説明した反応活性部21Yの構成と同様の構成を有している。すなわち、正極活物質層21Bの中央部は正極活物質を含んでいるため、その中央部では充放電反応が進行しやすくなっている。また、正極活物質層21Bの一端部および他端部のそれぞれは正極活物質を含んでいるため、その一端部および他端部のそれぞれでも充放電反応が進行しやすくなっている。
 絶縁層24は、負極22に対向する側において、正極活物質層21Bの一端部の表面に配置されている、これにより、絶縁層24が配置されている領域では、その絶縁層24が高抵抗層と同様の役割を果たすため、その正極活物質層21Bの一端部では、充放電反応が進行しにくくなっている。よって、正極活物質層21Bの一端部として、絶縁層24を利用して反応低活性部21X1が形成されている。
 中でも、絶縁層24は、反応低活性部21X1(正極活物質層21Bの一端部)の側面まで配置されていることが好ましい。充放電反応がより進行しにくくなるからである。
 絶縁層25は、負極22に対向する側において、正極活物質層21Bの他端部の表面に配置されている、これにより、絶縁層25が配置されている領域では、その絶縁層25が高抵抗層と同様の役割を果たすため、その正極活物質層21Bの他端部では、充放電反応が進行しにくくなっている。よって、正極活物質層21Bの他端部として、絶縁層25を利用して反応低活性部21X2が形成されている。
 中でも、絶縁層25は、反応低活性部21X2(正極活物質層21Bの他端部)の側面まで配置されていることが好ましい。充放電反応がより進行しにくくなるからである。
 これに対して、絶縁層24,25のそれぞれが配置されていない領域では、正極活物質層21Bが負極22との間において充放電反応が進行しやすくなっている。これにより、正極活物質層21Bの中央部として、反応活性部21Yが形成されている。
 絶縁層24,25のそれぞれは、イオン伝導性(イオン透過性)を有していない絶縁性の樹脂テープである。この絶縁性の樹脂テープは、ポリイミド、ポリエチレンテレフタレート(PET)およびポリオレフィンなどの高分子材料などのうちのいずれか1種類または2種類以上を含んでいる。ただし、絶縁層24の形成材料は、絶縁層25の形成材料と同じでもよいし、絶縁層25の形成材料と異なってもよい。
 絶縁層24,25のそれぞれの幅L6に関する詳細は、幅L4に関する詳細と同様である。
 第2実施形態の二次電池の製造方法は、切断処理を行う変わりに絶縁層24,25のそれぞれを形成することを除いて、第1実施形態の二次電池の製造方法と同様である。
 絶縁層24,25のそれぞれを形成する場合には、正極活物質層21Bの表面に絶縁性の樹脂テープを貼り付ける。
 第2実施形態の二次電池においても、正極21の幅L1が負極22の幅L2と同じであると共に、絶縁層24,25を利用して正極21が反応低活性部21X1,21X2および反応活性部21Yを含んでいる。よって、第1実施形態の二次電池と同様の理由により、短絡の抑制と電池容量の増加とを両立させることができる。
 特に、反応低活性部21X1,21X2および反応活性部21Yのそれぞれは正極活物質を含んでいるが、負極22に対向する側において正極活物質層21Bの表面に絶縁層24,25が配置されていれば、その絶縁層24,25の有無を利用した簡単な構成により、切断処理を行わなくても反応低活性部21X1,21X2および反応活性部21Yのそれぞれが実現される。よって、容易かつ安定に短絡の抑制と電池容量の増加とが両立されるため、より高い効果を得ることができる。
 なお、第2実施形態の二次電池に関する他の作用および効果は、切断処理に関する作用および効果を除いて、第1実施形態の二次電池に関する他の作用および効果と同様である。
<3.二次電池(第3実施形態)>
 次に、本技術の第3実施形態の二次電池に関して説明する。
 図6は、第3実施形態の二次電池の断面構成を表しており、図2に対応している。この第3実施形態の二次電池は、以下で説明する構成を除いて、第1実施形態の二次電池の構成と同様の構成を有している。図6では、図2に示した構成要素と同一の構成要素に同一の符号を付している。以下の説明では、既に説明した第1実施形態の二次電池の構成要素を随時引用する。
 ここでは、正極21の正極活物質層21Bは、新たに非活物質部21M1,21M2および活物質部21Nを含んでいるため、その正極21では、非活物質部21M1,21M2および活物質部21Nを利用して反応低活性部21X1,21X2および反応活性部21Yが形成されている。
 具体的には、正極活物質層21Bの一端部および他端部のそれぞれに切断処理が施されている代わりに、その正極活物質層21Bは、リチウムを吸蔵放出不能である非活物質部21M1,21M2と、リチウムを吸蔵放出可能である活物質部21Nとを含んでいる。このため、正極21では、非活物質部21M1,21M2により反応低活性部21X1,21X2が形成されていると共に、活物質部21Nにより反応活性部21Yが形成されている。
 非活物質部21M1,21M2のそれぞれは、正極活物質を含んでおらずに、酸化アルミニウム(アルミナ)などの絶縁性材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、非活物質部21M1の形成材料は、非活物質部21M2の形成材料と同じでもよいし、非活物質部21M2の形成材料と異なってもよい。なお、非活物質部21M1,21M2のそれぞれは、さらに結着剤などを含んでいてもよい。
 これにより、非活物質部21M1,21M2のそれぞれは、正極活物質を含んでいないため、リチウムを吸蔵放出不能である。よって、正極活物質層21Bの一端部(非活物質部21M1)として反応低活性部21X1が形成されていると共に、正極活物質層21Bの他端部(非活物質部21M2)として反応低活性部21X2が形成されている。
 活物質部21Nは、正極活物質を含んでいる。この活物質部21Nの構成は、切断処理が施されていない正極活物質層21Bの構成と同様である。
 これにより、活物質部21Nは、正極活物質を含んでいるため、リチウムを吸蔵放出可能である。よって、正極活物質層21Bの中央部(活物質部21N)として反応活性部21Yが形成されている。
 非活物質部21M1,21M2のそれぞれの幅L7に関する詳細は、幅L4に関する詳細と同様である。
 第3実施形態の二次電池の製造方法は、切断処理を行う変わりに、非活物質部21M1,21M2および活物質部21Nを含む正極活物質層21Bを形成することを除いて、第1実施形態の二次電池の製造方法と同様である。
 正極活物質層21Bを形成する場合には、最初に、絶縁性材料と、必要に応じて結着剤などとを混合したのち、有機溶剤などに混合物を投入することにより、ペースト状の絶縁スラリーを調製する。続いて、上記した手順により、正極集電体21Aの表面の一部にペースト状の正極合剤スラリーを塗布することにより、活物質部21Nを形成する。最後に、正極集電体21Aの表面の残りの部分にペースト状の絶縁スラリーを塗布することにより、非活物質部21M1,21M2のそれぞれを形成する。
 第3実施形態の二次電池においても、正極21の幅L1が負極22の幅L2と同じであると共に、非活物質部21M1,21M2および活物質部21Nを利用して正極21が反応低活性部21X1,21X2および反応活性部21Yを含んでいる。よって、第1実施形態の二次電池と同様の理由により、短絡の抑制と電池容量の増加とを両立させることができる。
 特に、活物質部21Nは正極活物質を含んでいるが、非活物質部21M1,21M2のそれぞれは正極活物質を含んでおらずに絶縁性材料を含んでいれば、その正極活物質の有無を利用した簡単な構成により、切断処理を行わなくても反応低活性部21X1,21X2および反応活性部21Yのそれぞれが実現される。よって、容易かつ安定に短絡の抑制と電池容量の増加とが両立されるため、より高い効果を得ることができる。
 なお、第3実施形態の二次電池に関する他の作用および効果は、切断処理に関する作用および効果を除いて、第1実施形態の二次電池に関する他の作用および効果と同様である。
<4.変形例>
 次に、上記した二次電池の変形例に関して説明する。二次電池の構成は、以下で説明するように、適宜変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
[変形例1]
 第1実施形態(図2)では、正極21は、切断処理を用いて形成された反応低活性部21X1,21X2の双方を含んでいる。
 しかしながら、図2に対応する図7に示したように、正極21は、反応低活性部21X2を含んでおらずに、反応低活性部21X1だけを含んでいてもよい。または、図2に対応する図8に示したように、正極21は、反応低活性部21X1を含んでおらずに、反応低活性部21X2を含んでいてもよい。
 図7に示した二次電池の製造方法は、正極21の作製工程において、正極活物質層21Bの他端部に切断処理を施さずに、正極活物質層21Bの一端部だけに切断処理を施すことを除いて、図2に示した二次電池の製造方法と同様である。図8に示した二次電池の製造方法は、正極21の作製工程において、正極活物質層21Bの一端部に切断処理を施さずに、正極活物質層21Bの他端部だけに切断処理を施すことを除いて、図2に示した二次電池の製造方法と同様である。
 これらの場合においても、反応低活性部21X1,21X2のうちのいずれかを利用して短絡の抑制と電池容量の増加とが両立されるため、同様の効果を得ることができる。ただし、短絡の発生を十分に抑制すると共に電池容量を十分に増加させるためには、図2に示したように、正極21は反応低活性部21X1,21X2の双方を含んでいることが好ましい。
[変形例2]
 第2実施形態(図5)では、正極21は、絶縁層24,25の双方を含んでいるため、反応低活性部21X1,21X2の双方を含んでいる。
 しかしながら、図5に対応する図9に示したように、正極21は、絶縁層25を含んでおらずに絶縁層24だけを含んでいるため、反応低活性部21X2を含んでおらずに反応低活性部21X1だけを含んでいてもよい。または、図5に対応する図10に示したように、正極21は、絶縁層24を含んでおらずに絶縁層25だけを含んでいるため、反応低活性部21X1を含んでおらずに反応低活性部21X2だけを含んでいてもよい。
 図9に示した二次電池の製造方法は、正極21の作製工程において、絶縁層25を形成せずに絶縁層24だけを形成することを除いて、図2に示した二次電池の製造方法と同様である。図8に示した二次電池の製造方法は、正極21の作製工程において、絶縁層24を形成せずに絶縁層25だけを形成することを除いて、図2に示した二次電池の製造方法と同様である。
 これらの場合においても、反応低活性部21X1,21X2のうちのいずれかを利用して短絡の抑制と電池容量の増加とが両立されるため、同様の効果を得ることができる。ただし、短絡の発生を十分に抑制すると共に電池容量を十分に増加させるためには、図2に示したように、正極21は絶縁層24,25の双方を含んでいることが好ましい。
[変形例3]
 第3実施形態(図6)では、正極21は、非活物質部21M1,21M2の双方を含んでいるため、反応低活性部21X1,21X2の双方を含んでいる。
 しかしながら、図6に対応する図11に示したように、正極21は、非活物質部21M2を含んでおらずに非活物質部21M1だけを含んでいるため、反応低活性部21X2を含んでおらずに反応低活性部21X1だけを含んでいてもよい。または、図6に対応する図12に示したように、正極21は、非活物質部21M1を含んでおらずに非活物質部21M2だけを含んでいるため、反応低活性部21X1を含んでおらずに反応低活性部21X2だけを含んでいてもよい。
 図11に示した二次電池の製造方法は、正極21の作製工程において、非活物質部21M2を形成せずに非活物質部21M1だけを形成することを除いて、図2に示した二次電池の製造方法と同様である。図12に示した二次電池の製造方法は、正極21の作製工程において、非活物質部21M1を形成せずに非活物質部21M2だけを形成することを除いて、図2に示した二次電池の製造方法と同様である。
 これらの場合においても、反応低活性部21X1,21X2のうちのいずれかを利用して短絡の抑制と電池容量の増加とが両立されるため、同様の効果を得ることができる。ただし、短絡の発生を十分に抑制すると共に電池容量を十分に増加させるためには、図2に示したように、正極21は非活物質部21M1,21M2の双方を含んでいることが好ましい。
[変形例4]
 第1実施形態、第2実施形態および第3実施形態のそれぞれ(図1)では、二次電池は、電池缶10の内部に、セパレータ23を介して正極21および負極22が積層された積層電極体である電池素子20を備えている。
 しかしながら、図1に対応する図13に示したように、二次電池は、電池缶10の内部に、積層電極体である電池素子20(正極21、負極22およびセパレータ23)の代わりに、巻回電極体である電池素子70(正極71、負極72およびセパレータ73)を備えていてもよい。この電池素子70は、セパレータ73を介して正極71および負極72が巻回されている。より具体的には、巻回電極体である電池素子70では、セパレータ73を介して正極71および負極72が積層されていると共に、そのセパレータ73を介して交互に積層された状態において正極71および負極72が巻回されている。この電池素子70は、巻芯に正極71、負極72およびセパレータ73のそれぞれが存在していない空間(巻回中心空間70S)を有している。正極71、負極72およびセパレータ73のそれぞれの構成は、正極21、負極22およびセパレータ23のそれぞれの構成と同様である。ただし、巻回電極体である電池素子70を用いた場合の幅方向Rは、図13に示したように、その図13の紙面と交差する方向である。
 図13に示した二次電池の製造方法は、セパレータ73を介して正極71および負極72を交互に積層させたのち、その正極71、負極72およびセパレータ73を巻回させることにより、電池素子70を作製するために用いられる巻回体170を作製することを除いて、図1に示した二次電池の製造方法と同様である。この場合には、電池缶10(収納部11および蓋部12)の内部に巻回体170が封入されたのち、その電池缶10の内部に注液された電解液が巻回体170に含浸されるため、電池素子70が作製される。
 この場合においても、反応低活性部21X1,21X2および反応活性部21Yを用いて短絡の抑制と電池容量の増加とが両立されるため、同様の効果を得ることができる。ただし、上記したように、デッドスペース(巻回中心空間70S)の発生に起因して単位体積当たりのエネルギー密度が減少することを回避するためには、そのデッドスペースが発生する巻回電極体である電池素子70よりも、そのデッドスペースが発生しない積層電極体である電池素子20が好ましい。
[変形例5]
 第1実施形態では、高抵抗層を形成するために、処理時に対象物が高温で加熱されるレーザカットを利用して切断処理を行っている。しかしながら、高抵抗層を形成する方法は、レーザカット以外の他の方法でもよい。一例を挙げると、他の方法は、打ち抜き処理を用いて正極活物質層21Bが形成された正極集電体21Aを打ち抜いたのち、レーザ照射処理(非切断処理)を用いて正極活物質層21Bを局所的に加熱することにより、高抵抗層を形成する方法などである。
 この場合においても、高抵抗層を利用して反応低活性部21X1,21X2のそれぞれが形成されるため、同様の効果を得ることができる。
 本技術の実施例に関して説明する。
<実施例1~5および比較例1>
 二次電池を作製したのち、その二次電池の性能を評価した。
[実施例1~5の二次電池の作製]
 以下で説明する手順により、図1および図2に示したボタン型の二次電池(リチウムイオン二次電池)を作製した。
(正極の作製)
 最初に、正極活物質(LiCoO)91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体21A(アルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成した。続いて、ロールプレス機を用いて正極活物質層21Bを圧縮成型した。
 最後に、レーザ装置(光源=YAGレーザ(波長=1064nm))を用いて、正極活物質層21Bが形成された正極集電体21Aを切断(レーザカット)した。この切断処理により、正極活物質層21Bにおいて、切断箇所の近傍部分(一端部および他端部)では高温加熱を利用して反応低活性部21X1,21X2が形成されたと共に、それ以外の部分では反応活性部21Yが形成された。この場合には、切断条件(加熱温度および加熱時間)を変更することにより、反応低活性部21X1,21X2のそれぞれの幅L4(μm)を変化させた。これにより、正極21(幅L1=16.5mm)が作製された。
 正極21の作成後、顕微ラマン分光法を用いて正極活物質層21B(LiCoO)を分析することにより、ラマンスペクトルを得たのち、そのラマンスペクトルに基づいて、幅L4を特定するために用いられる分析結果(縦軸はA1g半値幅(cm-1)の平均値および横軸は距離(μm))を得た。この分析結果に基づいて幅L4(μm)を調べたところ、表1に示した結果が得られた。なお、幅L4を特定するための詳細な手順は、上記した通りである。
(負極の作製)
 最初に、負極活物質(黒鉛)95質量部と、負極結着剤(ポリフッ化ビニリデン)5質量部とを互いに混合させることにより、負極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体22A(銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22Bを形成した。最後に、ロールプレス機を用いて負極活物質層22Bを圧縮成型した。これにより、負極22(幅L2=16.5mm)が作製された。
(電解液の調製)
 溶媒(有機溶剤である炭酸エチレンおよび炭酸ジエチル)に電解質塩(LiPF)を添加したのち、その溶媒を攪拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸ジエチル=30:70としたと共に、電解質塩の含有量を溶媒に対して1mol/kgとした。これにより、電解液が調製された。
(二次電池の組み立て)
 最初に、抵抗溶接法を用いて、正極21(正極集電体21A)に正極リード50(アルミニウム線)を溶接したと共に、負極22(負極集電体22A)に負極リード60(アルミニウム線)を溶接した。
 続いて、セパレータ23(厚さ=10μmおよび幅L3=16.5mmであるポリエチレンフィルム)を介して、正極リード50が接続されている正極21と、負極リード60が接続されている負極22とを交互に積層させることにより、積層体120を作製した。
 続いて、開口部11Kから収納部11(SUS316)の内部に積層体120を収納した。この場合には、抵抗溶接法を用いて収納部11(底部M2)に負極リード60を溶接した。
 続いて、開口部11Kから収納部11の内部に電解液を注入したのち、レーザ溶接法を用いて収納部11に蓋部12(SUS316)を溶接した。この蓋部12には、電極端子30(アルミニウム板)がガスケット40(ポリプロピレンフィルム)を介して取り付けられている。この場合には、抵抗溶接法を用いて電極端子30に正極リード50を溶接した。
 これにより、積層体120(正極21、負極22およびセパレータ23)に電解液が含浸されたため、電池素子20が作製されたと共に、収納部11に蓋部12が接合されたため、電池缶10が形成された。よって、電池缶10の内部に電池素子20などが封入されたため、二次電池が組み立てられた。
(二次電池の安定化)
 常温環境中(温度=23℃)において、組み立て後の二次電池を1サイクル充放電させた。充電時には、0.1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が3.0Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.05Cとは、電池容量を20時間で放電しきる電流値である。
 これにより、負極22などの表面に被膜が形成されたため、二次電池の状態が電気化学的に安定化した。よって、二次電池が完成した。
[比較例1の二次電池の作製]
 レーザカットを用いずに打ち抜き処理を用いて正極21を作製したことを除いて同様の手順により、二次電池を作製した。この場合において、正極活物質層21Bは、反応低活性部21X1,21X2を含んでいない。
[性能の評価]
 二次電池の性能(電池容量特性および電圧安定性)を評価したところ、表1に示した結果が得られた。
(電池容量特性)
 常温環境中(温度=23℃)において、比較例1および実施例1~5のそれぞれの二次電池を充放電させることにより、電池容量(放電容量)を測定した。この場合には、二次電池の試験数=20個とすることにより、その20個の二次電池に関する電池容量の平均値を算出した。充電時には、0.5Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で総充電時間が3.5時間に到達するまで定電圧充電した。放電時には、0.2Cの電流で電圧が3.0Vに到達するまで定電流放電した。0.5Cとは、電池容量を2時間で放電しきる電流値であると共に、0.2Cとは、電池容量を5時間で放電しきる電流値である。
 最後に、容量減少率(%)=[(比較例1の二次電池の電池容量-実施例1~5のそれぞれの二次電池の電池容量)/比較例1の二次電池の電池容量]×100という計算式に基づいて、電池容量特性を評価するための指標である容量減少率を算出した。
(電圧安定性)
 最初に、常温環境中(温度=23℃)において二次電池を充電させた。充電条件は、充電率(SOC)が25%に到達するまで充電させたことを除いて、上記した二次電池の安定化処理時の充電条件と同様にした。続いて、同環境中において充電状態の二次電池を放置(放置時間=72時間)しながら、その二次電池の開回路電圧(OCV)を測定した。最後に、開回路電圧の測定結果に基づいて、その開回路電圧が0.2mV/h以上低下した二次電池の個数(OCV不良数(個))を調べた。この場合には、二次電池の総試験数=20個とした。
Figure JPOXMLDOC01-appb-T000001
[考察]
 表1に示したように、二次電池の電池容量特性および電圧安定性は、正極21の構成に応じて変動した。
 具体的には、正極活物質層21Bが反応低活性部21X1,21X2を含んでいない場合(比較例1)には、容量減少率がゼロであったため、高い電池容量が得られたが、微小な短絡が発生しやすくなったため、OCV不良数が増加した。この場合には、OCV不良数が約半数に達した。
 これに対して、正極活物質層21Bが反応低活性部21X1,21X2を含んでいる場合(実施例1~5)には、容量減少率が1桁台前半に抑えられたため、電池容量が担保されたと共に、微小な短絡が発生しにくくなったため、OCV不良数が減少した。この場合には、OCV不良数がほぼゼロになった。
 この場合には、特に、幅L4が50μm~150μmであると、容量減少率が十分に抑えられたため、より高い電池容量が得られた。
[まとめ]
 表1に示した結果から、正極21が負極22の幅L2と同じ幅L1を有していると共に、その正極21が反応低活性部21X1,21X2および反応活性部21Yを含んでいると、電池容量特性が担保されながら高い電圧安定性が得られた。よって、短絡の抑制と電池容量の増加とが両立されたため、優れた電池特性を得ることができた。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
 具体的には、液状の電解質(電解液)を用いる場合に関して説明したが、その電解質の種類は、特に限定されないため、ゲル状の電解質(電解質層)を用いてもよいし、固体状の電解質(固体電解質)を用いてもよい。
 また、電池素子の素子構造が巻回型(巻回電極体)および積層型(積層電極体)である場合に関して説明したが、その電池素子の素子構造は、特に限定されないため、電極(正極および負極)がジグザグに折り畳まれた九十九折り型などの他の素子構造でもよい。
 さらに、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (9)

  1.  負極活物質層を含む負極と、
     幅方向において前記負極活物質層の寸法と同じ寸法を有する正極活物質層を含む正極と、
     電解液と、を備え、
     前記正極活物質層は、充放電反応が進行する反応活性部と、前記反応活性部よりも充放電反応が進行しにくい反応低活性部とを含み、
     前記反応低活性部は、前記幅方向における前記正極活物質層の一端部および他端部のうちの少なくとも一方である、
     二次電池。
  2.  前記幅方向における前記反応低活性部の寸法は、50μm以上150μm以下である、
     請求項1記載の二次電池。
  3.  前記反応活性部および前記反応低活性部のそれぞれは、正極活物質を含み、
     前記反応低活性部は、前記負極に対向する側の表面に配置された絶縁層を含む、
     請求項1記載の二次電池。
  4.  前記絶縁層は、前記反応低活性部の側面まで配置されている、
     請求項3記載の二次電池。
  5.  前記反応活性部は、正極活物質を含み、
     前記反応低活性部は、絶縁性材料を含む、
     請求項1記載の二次電池。
  6.  さらに、前記負極と前記正極との間に配置されると共に前記幅方向において前記負極活物質層の寸法と同じ寸法を有するセパレータを備えた、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
  7.  さらに、前記負極と前記正極との間に配置されたセパレータを備え、
     前記負極および前記正極は、前記セパレータを介して積層されている、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
  8.  さらに、前記負極と前記正極との間に配置されたセパレータを備え、
     前記負極および前記正極は、前記セパレータを介して巻回されている、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
  9.  ボタン型の二次電池である、
     請求項1ないし請求項8のいずれか1項に記載の二次電池。
PCT/JP2020/036875 2019-09-30 2020-09-29 二次電池 WO2021065900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080067466.7A CN114514646B (zh) 2019-09-30 2020-09-29 二次电池
JP2021551304A JP7211528B2 (ja) 2019-09-30 2020-09-29 二次電池
EP20870990.7A EP4040524A1 (en) 2019-09-30 2020-09-29 Secondary battery
US17/708,567 US20220223872A1 (en) 2019-09-30 2022-03-30 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019180789 2019-09-30
JP2019-180789 2019-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/708,567 Continuation US20220223872A1 (en) 2019-09-30 2022-03-30 Secondary battery

Publications (1)

Publication Number Publication Date
WO2021065900A1 true WO2021065900A1 (ja) 2021-04-08

Family

ID=75338328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036875 WO2021065900A1 (ja) 2019-09-30 2020-09-29 二次電池

Country Status (5)

Country Link
US (1) US20220223872A1 (ja)
EP (1) EP4040524A1 (ja)
JP (1) JP7211528B2 (ja)
CN (1) CN114514646B (ja)
WO (1) WO2021065900A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210075600A (ko) * 2019-12-13 2021-06-23 삼성에스디아이 주식회사 이차 전지

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223860A (ja) 1993-01-29 1994-08-12 Sanyo Electric Co Ltd 渦巻状電極群の製造方法
JPH11307084A (ja) 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd 有機電解質電池
JP2004055537A (ja) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2016105360A (ja) * 2014-12-01 2016-06-09 株式会社Gsユアサ 蓄電素子
JP2016219327A (ja) 2015-05-22 2016-12-22 株式会社豊田自動織機 蓄電装置
JP2017098178A (ja) * 2015-11-27 2017-06-01 三菱自動車工業株式会社 二次電池
JP2018037308A (ja) 2016-08-31 2018-03-08 三洋電機株式会社 二次電池用電極及びその製造方法、並びに二次電池及びその製造方法
JP2019079708A (ja) * 2017-10-25 2019-05-23 トヨタ自動車株式会社 正極、およびそれを備える非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030742A (ja) * 1998-07-10 2000-01-28 Asahi Chem Ind Co Ltd リチウムイオン二次電池要素
JP2010232145A (ja) * 2009-03-30 2010-10-14 Sanyo Electric Co Ltd 積層式電池およびその製造方法
WO2014156011A1 (ja) * 2013-03-27 2014-10-02 三洋電機株式会社 非水電解質二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06223860A (ja) 1993-01-29 1994-08-12 Sanyo Electric Co Ltd 渦巻状電極群の製造方法
JPH11307084A (ja) 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd 有機電解質電池
JP2004055537A (ja) * 2002-05-30 2004-02-19 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2016105360A (ja) * 2014-12-01 2016-06-09 株式会社Gsユアサ 蓄電素子
JP2016219327A (ja) 2015-05-22 2016-12-22 株式会社豊田自動織機 蓄電装置
JP2017098178A (ja) * 2015-11-27 2017-06-01 三菱自動車工業株式会社 二次電池
JP2018037308A (ja) 2016-08-31 2018-03-08 三洋電機株式会社 二次電池用電極及びその製造方法、並びに二次電池及びその製造方法
JP2019079708A (ja) * 2017-10-25 2019-05-23 トヨタ自動車株式会社 正極、およびそれを備える非水電解質二次電池

Also Published As

Publication number Publication date
EP4040524A1 (en) 2022-08-10
JPWO2021065900A1 (ja) 2021-04-08
US20220223872A1 (en) 2022-07-14
JP7211528B2 (ja) 2023-01-24
CN114514646B (zh) 2023-11-28
CN114514646A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
RU2546654C1 (ru) Аккумуляторная батарея
US11515532B2 (en) Electrode, nonaqueous electrolyte battery and battery pack
KR101847550B1 (ko) 비수 전해액 이차 전지 및 당해 전지의 제조 방법
CN102646844A (zh) 二次电池
JP6408137B2 (ja) 電極、電極群及び非水電解質電池
JP5677271B2 (ja) 電極、非水電解質電池および電池パック
KR101707335B1 (ko) 비수 전해액 2차 전지
JP2012174433A (ja) 電気化学デバイス及び電気化学デバイス用外装体
EP3322024A1 (en) Nonaqueous electrolyte battery and battery pack
JP4539658B2 (ja) 電池
JP2011070932A (ja) リチウム二次電池
JP6946694B2 (ja) リチウムイオン二次電池
JP7247353B2 (ja) 電極、電池、及び電池パック
JP6184200B2 (ja) 非水電解質二次電池及びその製造方法
WO2021065900A1 (ja) 二次電池
JP6054540B2 (ja) 正極活物質、非水電解質電池及び電池パック
JP2007188859A (ja) 電池およびセンターピン
JP6892285B2 (ja) 非水電解質電池
US20210408540A1 (en) Electrode, electrode group, battery, and battery pack
WO2018198168A1 (ja) 二次電池用電池部材、並びに、二次電池及びその製造方法
JPWO2019193690A1 (ja) 非水電解質電池及び電池パック
JP6602050B2 (ja) 電池
CN107112572B (zh) 非水电解质二次电池
JP5776948B2 (ja) リチウム二次電池およびその製造方法
JP2019160724A (ja) 負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020870990

Country of ref document: EP

Effective date: 20220502