WO2021065862A1 - 非水電解質二次電池用負極活物質、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用負極活物質、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2021065862A1
WO2021065862A1 PCT/JP2020/036802 JP2020036802W WO2021065862A1 WO 2021065862 A1 WO2021065862 A1 WO 2021065862A1 JP 2020036802 W JP2020036802 W JP 2020036802W WO 2021065862 A1 WO2021065862 A1 WO 2021065862A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
zinc
secondary battery
active material
electrolyte secondary
Prior art date
Application number
PCT/JP2020/036802
Other languages
English (en)
French (fr)
Inventor
雪尋 沖
藤本 正久
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202080067991.9A priority Critical patent/CN114503306A/zh
Priority to US17/763,969 priority patent/US20220344650A1/en
Priority to JP2021551287A priority patent/JPWO2021065862A1/ja
Publication of WO2021065862A1 publication Critical patent/WO2021065862A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a negative electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses TiZn
  • Patent Document 2 discloses NiZn, CuZn, and FeZn.
  • the negative electrode active material for a non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, contains a zinc-manganese alloy containing Zn, Mn, and Fe having a total mass of Zn and Mn of 1000 ppm or less.
  • the molar ratio of the Zn content to the Mn content is 3 to 13.
  • the non-aqueous electrolyte secondary battery includes a negative electrode containing the negative electrode active material for the non-aqueous electrolyte secondary battery, a positive electrode, and a non-aqueous electrolyte.
  • the discharge capacity can be increased even in the second and subsequent cycles.
  • FIG. 1 is a vertical sectional view of a non-aqueous electrolyte secondary battery which is an example of the embodiment.
  • Patent Document 1 discloses TiZn
  • Patent Document 2 discloses NiZn, CuZn, and FeZn.
  • the secondary battery using the zinc alloy disclosed in Patent Document 1 and Patent Document 2 as the negative electrode mixture layer is sufficient for the charge capacity in the first cycle of charge / discharge.
  • the zinc-manganese alloy according to the present disclosure has a high initial charge / discharge efficiency and the discharge capacity can be increased even after the second cycle, while the discharge capacity cannot be obtained and the initial charge / discharge efficiency is low. did.
  • a zinc-manganese alloy in which the molar ratio of Zn content to Mn content is 3 to 13 absorbs Li during charging to combine Zn and Li to form LiZn, and during discharge, Zn and Mn recombine. Li is released by doing so.
  • the zinc-manganese alloy has a lower melting point than other zinc alloys such as TiZn, NiZn, CuZn, and FeZn, it is considered that Mn easily moves in Zn, and Li absorbed by the negative electrode is discharged in the first cycle. It is presumed that it can be released efficiently. It was also found that the initial efficiency of the zinc-manganese alloy can be further improved by containing 1000 ppm or less of Fe in the zinc-manganese alloy.
  • Fe forms a minute cluster alloy of FeMn, FeZn, or FeMnZn that is not related to the absorption / release of Li in the zinc-manganese alloy, and the cluster alloy functions as a nucleus when Mn and Zn are recrystallized. It is presumed that the separated Mn and Zn can be easily recombined and the initial efficiency is improved.
  • a cylindrical battery in which a wound electrode body is housed in a bottomed cylindrical outer can is illustrated, but the outer body is not limited to the cylindrical outer can, for example, a square outer can. It may be an exterior body made of a laminated sheet including a metal layer and a resin layer. Further, the electrode body may be a laminated electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated via a separator.
  • FIG. 1 is a vertical sectional view of a cylindrical secondary battery 10 which is an example of an embodiment.
  • an electrode body 14 and a non-aqueous electrolyte (not shown) are housed in an exterior body 15.
  • the electrode body 14 has a winding structure in which the positive electrode 11 and the negative electrode 12 are wound via the separator 13.
  • the non-aqueous solvent (organic solvent) of the non-aqueous electrolyte carbonates, lactones, ethers, ketones, esters and the like can be used, and two or more of these solvents can be mixed and used. ..
  • a mixed solvent containing a cyclic carbonate and a chain carbonate For example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used as the cyclic carbonate, and dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (diethyl carbonate) can be used as the chain carbonate. DEC) and the like can be used.
  • DEC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • diethyl carbonate diethyl carbonate
  • electrolyte salt of the non-aqueous electrolyte LiPF 6 , LiBF 4 , LiCF 3 SO 3, etc. and a mixture thereof can be used.
  • the amount of the electrolyte salt dissolved in the non-aqueous solvent can be, for example, 0.5 to 2.0 mol / L.
  • the sealing body 16 side will be referred to as “top” and the bottom side of the exterior body 15 will be referred to as “bottom”.
  • the inside of the secondary battery 10 is sealed by closing the opening end of the exterior body 15 with the sealing body 16.
  • Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively.
  • the positive electrode lead 19 extends upward through the through hole of the insulating plate 17 and is welded to the lower surface of the filter 22 which is the bottom plate of the sealing body 16.
  • the cap 26, which is the top plate of the sealing body 16 electrically connected to the filter 22, serves as the positive electrode terminal.
  • the negative electrode lead 20 extends to the bottom side of the exterior body 15 through the through hole of the insulating plate 18 and is welded to the inner surface of the bottom portion of the exterior body 15.
  • the exterior body 15 serves as a negative electrode terminal.
  • the negative electrode lead 20 passes through the outside of the insulating plate 18 and extends to the bottom side of the exterior body 15 and is welded to the inner surface of the bottom portion of the exterior body 15.
  • the exterior body 15 is, for example, a bottomed cylindrical metal exterior can.
  • a gasket 27 is provided between the exterior body 15 and the sealing body 16 to ensure the internal airtightness of the secondary battery 10.
  • the exterior body 15 has a grooved portion 21 that supports the sealing body 16 and is formed by pressing, for example, a side surface portion from the outside.
  • the grooved portion 21 is preferably formed in an annular shape along the circumferential direction of the exterior body 15, and the sealing body 16 is supported on the upper surface thereof via the gasket 27.
  • the sealing body 16 has a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26, which are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 16 has, for example, a disk shape or a ring shape, and each member except the insulating member 24 is electrically connected to each other.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between the peripheral portions thereof.
  • the positive electrode 11, the negative electrode 12, and the separator 13 constituting the electrode body 14 will be described in detail, and in particular, the negative electrode active material constituting the negative electrode 12 will be described in detail.
  • the positive electrode 11 has a positive electrode core body and a positive electrode mixture layer provided on the surface of the positive electrode core body.
  • a metal foil stable in the potential range of the positive electrode 11 such as aluminum, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the thickness of the positive electrode core is, for example, 10 ⁇ m to 30 ⁇ m.
  • the positive electrode mixture layer contains a positive electrode active material, a binder, and a conductive material, and is preferably provided on both sides of the positive electrode core body excluding the portion to which the positive electrode lead 19 is connected.
  • a positive electrode mixture slurry containing a positive electrode active material, a binder, a conductive material, and the like is applied to the surface of a positive electrode core, the coating film is dried, and then compressed to form a positive electrode mixture layer. It can be manufactured by forming it on both sides of the core body.
  • the positive electrode active material contains lithium transition metal oxide as a main component.
  • the positive electrode active material may be substantially composed of only lithium transition metal oxide, and is one in which inorganic compound particles such as aluminum oxide and lanthanoid-containing compound are adhered to the particle surface of the lithium transition metal oxide. May be good.
  • One type of lithium transition metal oxide may be used, or two or more types may be used in combination.
  • Metal elements contained in the lithium transition metal oxide include nickel (Ni), cobalt (Co), manganese (Mn), aluminum (Al), boron (B), magnesium (Mg), titanium (Ti), and vanadium. (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), gallium (Ga), strontium (Sr), zirconium (Zr), niobium (Nb), indium (In), tin (Sn), tantalum (Ta), tungsten (W) and the like can be mentioned.
  • lithium transition metal oxide is the general formula: Li ⁇ Ni x M (1-x) O 2 (0.1 ⁇ ⁇ ⁇ 1.2, 0.3 ⁇ x ⁇ 1, where M is Co, Mn, Al. It is a composite oxide represented by (including at least one of).
  • Examples of the conductive material contained in the positive electrode mixture layer include carbon materials such as carbon black, acetylene black, ketjen black, carbon nanotubes, carbon nanofibers, and graphite.
  • Examples of the binder contained in the positive electrode mixture layer include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins. .. These resins may be used in combination with cellulose derivatives such as carboxymethyl cellulose (CMC) or salts thereof, polyethylene oxide (PEO) and the like.
  • the negative electrode 12 has a negative electrode core body and a negative electrode mixture layer provided on the surface of the negative electrode core body.
  • a metal foil stable in the potential range of the negative electrode 12 such as copper, a film in which the metal is arranged on the surface layer, or the like can be used.
  • the thickness of the negative electrode core is, for example, 5 ⁇ m to 15 ⁇ m.
  • the negative electrode mixture layer contains a negative electrode active material and a binder, and is preferably provided on both sides of the negative electrode core body excluding the portion to which the negative electrode lead 20 is connected, for example.
  • a negative electrode mixture slurry containing a negative electrode active material and a binder is applied to the surface of the negative electrode core, the coating film is dried, and then compressed to form a negative electrode mixture layer on both sides of the negative electrode core. It can be produced by forming in. Further, a conductive material may be added to the negative electrode mixture slurry. The conductive material can make the conductive path uniform.
  • fluororesin, PAN, polyimide resin, acrylic resin, polyolefin resin and the like can be used as in the case of the positive electrode 11.
  • CMC styrene-butadiene rubber
  • PAA polyacrylic acid
  • the conductive material contained in the negative electrode mixture layer include carbon black, acetylene black, ketjen black, carbon nanotubes, and carbon nanofibers.
  • the negative electrode active material contains a zinc-manganese alloy containing Zn, Mn, and Fe having a total mass of Zn and Mn of 1000 ppm or less.
  • the molar ratio of the Zn content to the Mn content (M Zn / M Mn ) is 3 to 13.
  • M Zn / M Mn is more preferably 6 to 10.
  • the Fe content in the zinc-manganese alloy is preferably 10 ppm or more, more preferably 50 ppm or more.
  • Fe When the Fe content is 10 ppm or more, Fe can form a fine cluster alloy with Mn and / or Zn and function as a nucleus that promotes recombination. Further, if the Fe content in the zinc-manganese alloy exceeds 1000 ppm, a large amount of FeZn intermetallic compounds that do not contribute to the absorption / release of Li are formed, and the discharge capacity of the battery is reduced.
  • the zinc-manganese alloy may contain impurity elements such as Ca, Mg, Si, and Cd that are present in the raw material or mixed in during the manufacturing process.
  • the content of the impurity element is preferably 500 ppm or less, more preferably 100 ppm or less, and particularly preferably 50 ppm or less.
  • Fe may be mixed as an impurity element, and Fe may be contained in the raw material powder of Zn or Mn.
  • the content of each element contained in the negative electrode active material is measured by inductively coupled plasma (ICP) emission spectros
  • the zinc-manganese alloy may have, for example, a ⁇ phase having a structure of MnZn 4 , a ⁇ phase having a structure of MnZn 9 , and a ⁇ phase having a structure of MnZn 13.
  • the ⁇ phase is electrochemically active and particularly contributes to the improvement of charge / discharge efficiency.
  • the zinc-manganese alloy may contain a phase other than the ⁇ phase, the ⁇ phase, and the ⁇ phase, and may contain, for example, an amorphous portion.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the zinc-manganese alloy only one type having M Zn / M Mn and Fe contents may be used, or two or more types having different M Zn / M Mn or Fe contents may be mixed. You may use it.
  • a zinc manganese alloy and a negative electrode active material other than the zinc manganese alloy may be used in combination.
  • the negative electrode active material other than the zinc-manganese alloy is not particularly limited as long as it can reversibly occlude and release lithium ions, for example, graphite (natural graphite, artificial graphite), silicon (Si), tin (Sn) and the like.
  • a metal alloying with lithium or an oxide containing a metal element such as Si or Sn can be used.
  • the zinc-manganese alloy is a particle having a volume-based median diameter (D50) of, for example, 1 ⁇ m or more and 100 ⁇ m or less, preferably 50 ⁇ m or less, and particularly preferably 30 ⁇ m or less.
  • the zinc-manganese alloy D50 is preferably small because the distance that Li moves in the particles is short.
  • the zinc-manganese alloy D50 can be reduced by pulverizing with a ball mill.
  • D50 means a particle size in which the cumulative frequency is 50% from the smallest particle size in the volume-based particle size distribution, and is also called a median diameter.
  • the particle size distribution of the lithium transition metal oxide can be measured using water as a dispersion medium using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.).
  • the zinc-manganese alloy can be produced by mixing Zn, Mn, and Fe in a desired ratio, forming them into pellets, and further pulverizing them after heat treatment.
  • the heat treatment temperature is 200 ° C. to 600 ° C.
  • the heat treatment time is 0.5 hour to 12 hours.
  • the negative electrode active material further contains graphite in addition to the above-mentioned zinc-manganese alloy, and the ratio of the zinc-manganese alloy to the number of moles of graphite is preferably 3 mol% to 30 mol%.
  • the method for producing the negative electrode 12 is not particularly limited as long as it can contain Zn, Mn, and a zinc-manganese alloy containing Fe containing 1000 ppm or less of the total mass of Zn and Mn as the negative electrode active material.
  • a zinc manganese alloy is formed on the surface of the negative electrode core by MnZn alloy plating, and heat treatment is performed if necessary. May be done.
  • the heat treatment temperature is 200 ° C. to 600 ° C.
  • the heat treatment time is 1 minute to 60 minutes.
  • the MnZn alloy plating layer becomes the negative electrode mixture layer.
  • graphite may be laminated on the surface of the MnZn alloy plating layer.
  • a porous sheet having ion permeability and insulating property is used as the separator 13.
  • the porous sheet include a microporous membrane, a woven fabric, a non-woven fabric and the like.
  • olefin resin such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator 13 may have either a single-layer structure or a laminated structure.
  • a heat-resistant layer containing a heat-resistant material may be formed on the surface of the separator 13. Examples of the heat-resistant material include polyamide resins such as aliphatic polyamides and aromatic polyamides (aramid), and polyimide resins such as polyamideimide and polyimide.
  • Mn, Zn, and Fe were used as raw material powders.
  • the mixed powder was pelletized and further heat-treated at 400 ° C. for 6 hours to prepare zinc-manganese alloy pellets.
  • the produced zinc-manganese alloy pellets were pulverized to obtain a zinc-manganese alloy having a volume-based median diameter (D50) of 20 ⁇ m.
  • D50 volume-based median diameter
  • LiPF 6 as an electrolyte salt is dissolved in a non-aqueous solvent in which ethylene carbonate (EC) and ethyl methyl carbonate (EMC) are mixed at a volume ratio of 1: 3 at 1.0 mol / L, which is a liquid non-aqueous electrolyte. It was a water electrolyte.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a coin-type lithium ion secondary battery (hereinafter referred to as a coin-type battery) was manufactured by the following procedure.
  • the circular electrode plate and the disc spring were arranged and housed in this order. Then, the lid was covered and the battery exterior was crimped and sealed to obtain a coin-type battery.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Examples except that MnZn 10 having a diameter (D50) of 20 ⁇ m was obtained.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Examples except that TiZn 10 having a diameter (D50) of 20 ⁇ m was obtained.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Examples except that CoZn 10 having a diameter (D50) of 20 ⁇ m was obtained.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Examples except that NiZn 10 having a diameter (D50) of 20 ⁇ m was obtained.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Examples except that CuZn 10 having a diameter (D50) of 20 ⁇ m was obtained.
  • Table 1 shows the composition of the negative electrode active material together with the evaluation results.
  • the initial efficiency was evaluated by measuring the initial charge capacity and the initial discharge capacity of the coin-type batteries of Examples, Comparative Examples, and Reference Examples 1 to 5.
  • the discharge here refers to a discharge in a battery in which the negative electrode active materials of Examples, Comparative Examples, and Reference Examples 1 to 5 and a commonly used positive electrode exemplified by Linio 2 and the like are combined.
  • the above-mentioned coin-type battery has a negative electrode as a working electrode and metallic lithium (Li) as a counter electrode, it should be charged originally, but the negative electrode in a battery in which a positive electrode and a negative electrode are generally used are used.
  • the opposite charge / discharge direction is expressed according to the charge / discharge behavior. That is, charging means passing a current so as to lower the potential of the negative electrode serving as the working electrode, and discharging means flowing a current so as to raise the potential of the negative electrode serving as the working electrode.
  • the battery was charged with a constant current of 0.05 C until the battery voltage reached 0 V, and then discharged with a constant current of 0.05 C until the battery voltage reached 1 V, and the initial charge capacity and the initial discharge capacity were measured. ..
  • charging means passing a current so as to lower the potential of the working electrode until the battery voltage reaches 0 V
  • discharging means passing a current so as to raise the potential of the working electrode until the battery voltage reaches 1 V. That is.
  • the initial charge is calculated by the following formula.
  • the charge capacity density, the initial discharge capacity density, and the initial efficiency were calculated and evaluated.
  • Initial charge capacity density (mAh / cm 3 ) initial charge capacity (mAh) / mass of zinc alloy contained in the negative electrode mixture layer (g) ⁇ density of zinc alloy in the negative electrode mixture layer (g / cm 3 )
  • Initial discharge capacity density (mAh / cm 3 ) initial discharge capacity (mAh) / mass of zinc alloy contained in the negative electrode mixture layer (g) ⁇ density of zinc alloy in the negative electrode mixture layer (g / cm 3 )
  • Initial efficiency (%) initial discharge capacity / initial charge capacity x 100
  • the batteries of the examples had higher initial efficiencies than the batteries of the comparative examples. From this result, by adding a small amount of Fe to the zinc-manganese alloy as the negative electrode active material, the initial charge / discharge efficiency of the secondary battery can be improved, and the discharge capacity can be increased even in the second and subsequent cycles. I found that I could do it.
  • the batteries of Reference Examples 1 to 5 using a negative electrode active material other than the zinc-manganese alloy had very poor initial efficiencies as compared with the batteries of Examples and Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解質二次電池は、負極、正極、及び非水電解質を備える。負極に含まれる負極活物質は、Znと、Mnと、Zn及びMnの総質量の1000ppm以下のFeと、を含有する、亜鉛マンガン合金を含む。亜鉛マンガン合金において、Mnの含有量に対するZnの含有量のモル比は、3~13である。

Description

非水電解質二次電池用負極活物質、及び非水電解質二次電池
 本開示は、非水電解質二次電池用負極活物質、及び非水電解質二次電池に関する。
 高容量の二次電池の負極活物質として、Si以外の各種合金が検討されている。二次電池の高容量化、充放電サイクル特性の向上を目的として、特許文献1にはTiZnが、特許文献2にはNiZn、CuZn、及びFeZnが開示されている。
特開2012-79470号公報 特開2013-51170号公報
 特許文献1及び特許文献2に開示された亜鉛合金を負極合材層とした二次電池では、充放電の1サイクル目において、充電容量に対して十分な放電容量が得られず、初期の充放電効率が低いことが判明した。
 本開示の一態様である非水電解質二次電池用負極活物質は、Znと、Mnと、Zn及びMnの総質量の1000ppm以下のFeと、を含有する、亜鉛マンガン合金を含む。亜鉛マンガン合金において、Mnの含有量に対するZnの含有量のモル比は、3~13である。
 本開示の一態様である非水電解質二次電池は、上記非水電解質二次電池用負極活物質を含む負極と、正極と、非水電解質とを備える。
 本開示の一態様によれば、二次電池の初期の充放電効率を向上させることができるため、2サイクル目以降においても、放電容量を大きくすることができる。
図1は、実施形態の一例である非水電解質二次電池の縦方向断面図である。
 二次電池の高容量化のために、黒鉛にSiを混合させた負極活物質が使用されている。しかし、Siは高価であり、また、Siを含有することで二次電池のサイクル特性が悪くなることがあることから、Si以外の各種合金が負極活物質として注目されている。例えば、二次電池の高容量化、充放電サイクル特性の向上を目的として、特許文献1にはTiZnが、特許文献2にはNiZn、CuZn、及びFeZnが開示されている。しかし、本発明者らによる検討の結果、特許文献1及び特許文献2に開示された亜鉛合金を負極合材層とした二次電池では、充放電の1サイクル目において充電容量に対して十分な放電容量が得られず初期の充放電効率が低いのに対して、本開示に係る亜鉛マンガン合金は初期の充放電効率が高く、2サイクル目以降においても放電容量を大きくすることができることが判明した。Mnの含有量に対するZnの含有量のモル比が3~13である亜鉛マンガン合金は、充電時には、Liを吸収することでZnとLiが結合してLiZnとなり、放電時にはZnとMnが再結合することでLiを放出する。亜鉛マンガン合金は、他のTiZn、NiZn、CuZn、FeZn等の亜鉛合金に比べて融点が低いことから、Zn中でMnが動きやすいと考えられ、1サイクル目で負極に吸収されたLiが放電によって効率よく放出することができると推察される。また、亜鉛マンガン合金に1000ppm以下のFeを含有することで、亜鉛マンガン合金の初期効率をさらに向上させることができることが判明した。Feが亜鉛マンガン合金中でLiの吸収・放出に関係しない、FeMn、FeZn、又はFeMnZnの微小なクラスター合金を形成し、そのクラスター合金がMnとZnが再結晶化する時に核として機能するため、分離したMnとZnの再結合が容易になり、初期効率が向上すると推察される。
 以下、本開示に係る非水電解質二次電池用負極活物質、及び当該負極活物質を用いた非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体が有底円筒形状の外装缶に収容された円筒形電池を例示するが、外装体は円筒形の外装缶に限定されず、例えば角形の外装缶であってもよく、金属層及び樹脂層を含むラミネートシートで構成された外装体であってもよい。また、電極体は複数の正極と複数の負極がセパレータを介して交互に積層された積層型の電極体であってもよい。
 図1は、実施形態の一例である円筒型の二次電池10の縦方向断面図である。図1に示す二次電池10は、電極体14及び非水電解質(図示せず)が外装体15に収容されている。電極体14は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の構造を有する。非水電解質の非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、ケトン類、エステル類等を用いることができ、これらの溶媒は2種以上を混合して用いることができる。2種以上の溶媒を混合して用いる場合、環状カーボネートと鎖状カーボネートを含む混合溶媒を用いることが好ましい。例えば、環状カーボネートとしてエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等を用いることができ、鎖状カーボネートとしてジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、及びジエチルカーボネート(DEC)等を用いることができる。非水電解質の電解質塩としては、LiPF6、LiBF4、LiCF3SO3等及びこれらの混合物を用いることができる。非水溶媒に対する電解質塩の溶解量は、例えば0.5~2.0mol/Lとすることができる。なお、以下では、説明の便宜上、封口体16側を「上」、外装体15の底部側を「下」として説明する。
 外装体15の開口端部が封口体16で塞がれることで、二次電池10の内部は、密閉される。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極リード19は絶縁板17の貫通孔を通って上方に延び、封口体16の底板であるフィルタ22の下面に溶接される。二次電池10では、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。他方、負極リード20は絶縁板18の貫通孔を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。二次電池10では、外装体15が負極端子となる。なお、負極リード20が終端部に設置されている場合は、負極リード20は絶縁板18の外側を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。
 外装体15は、例えば有底円筒形状の金属製外装缶である。外装体15と封口体16の間にはガスケット27が設けられ、二次電池10の内部の密閉性が確保されている。外装体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する溝入部21を有する。溝入部21は、外装体15の周方向に沿って環状に形成されることが好ましく、その上面でガスケット27を介して封口体16を支持する。
 封口体16は、電極体14側から順に積層された、フィルタ22、下弁体23、絶縁部材24、上弁体25、及びキャップ26を有する。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25とは各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。異常発熱で電池の内圧が上昇すると、例えば、下弁体23が破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26の開口部26aからガスが排出される。
 以下、電極体14を構成する正極11、負極12、及びセパレータ13について、特に負極12を構成する負極活物質について詳説する。
 [正極]
 正極11は、正極芯体と、正極芯体の表面に設けられた正極合材層とを有する。正極芯体には、アルミニウムなどの正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極芯体の厚みは、例えば10μm~30μmである。正極合材層は、正極活物質、結着材、及び導電材を含み、正極リード19が接続される部分を除く正極芯体の両面に設けられることが好ましい。正極11は、例えば正極芯体の表面に正極活物質、結着材、及び導電材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して正極合材層を正極芯体の両面に形成することにより作製できる。
 正極活物質は、リチウム遷移金属酸化物を主成分として含む。正極活物質は、実質的にリチウム遷移金属酸化物のみから構成されていてもよく、リチウム遷移金属酸化物の粒子表面に酸化アルミニウム、ランタノイド含有化合物等の無機化合物粒子などが固着したものであってもよい。リチウム遷移金属酸化物は、1種類を用いてもよく、2種類以上を併用してもよい。
 リチウム遷移金属酸化物に含有される金属元素としては、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)、アルミニウム(Al)、ホウ素(B)、マグネシウム(Mg)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、ジルコニウム(Zr)、ニオブ(Nb)、インジウム(In)、錫(Sn)、タンタル(Ta)、タングステン(W)等が挙げられる。好適なリチウム遷移金属酸化物の一例は、一般式:LiαNix(1―x)2(0.1≦α≦1.2、0.3≦x<1、MはCo、Mn、Alの少なくとも1種を含む)で表される複合酸化物である。
 正極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバー、黒鉛等の炭素材料が例示できる。正極合材層に含まれる結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂などが例示できる。これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩等のセルロース誘導体、ポリエチレンオキシド(PEO)等が併用されてもよい。
 [負極]
 負極12は、負極芯体と、負極芯体の表面に設けられた負極合材層とを有する。負極芯体には、銅などの負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極芯体の厚みは、例えば5μm~15μmである。負極合材層は、負極活物質及び結着材を含み、例えば負極リード20が接続される部分を除く負極芯体の両面に設けられることが好ましい。負極12は、例えば負極芯体の表面に負極活物質及び結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧縮して負極合材層を負極芯体の両面に形成することにより作製できる。また、負極合材スラリーに導電材を添加してもよい。導電材によって、導電パスを均一化することができる。
 負極合材層に含まれる結着材には、正極11の場合と同様に、フッ素樹脂、PAN、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂等を用いることができる。水系溶媒を用いて合材スラリーを調製する場合は、CMC又はその塩、スチレン-ブタジエンゴム(SBR)、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコールなどを用いることが好ましい。負極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、カーボンナノファイバーが例示できる。
 負極活物質は、Znと、Mnと、Zn及びMnの総質量の1000ppm以下のFeと、を含有する亜鉛マンガン合金を含む。亜鉛マンガン合金において、Mnの含有量に対するZnの含有量のモル比(MZn/MMn)は、3~13である。微量のFeを含有しつつMZn/MMnをこの範囲にすることで、二次電池の初期の充放電効率を高くすることができる。MZn/MMnは、6~10であることがさらに好ましい。また、亜鉛マンガン合金におけるFeの含有量は、10ppm以上が好ましく、50ppm以上がさらに好ましい。Feの含有量が10ppm以上であれば、FeがMn及び/又はZnと微小なクラスター合金を形成し、再結合を促す核として機能することができる。また、亜鉛マンガン合金におけるFeの含有量が1000ppmを超えると、Liの吸収・放出に寄与しないFeZnの金属間化合物を多く形成してしまい、電池の放電容量が減少してしまう。なお、亜鉛マンガン合金は、原料中から存在したり製造工程で混入したりするCa、Mg、Si、Cd等の不純物元素を含有してもよい。不純物元素の含有量は、500ppm以下が好ましく、100ppm以下がさらに好ましく、50ppm以下が特に好ましい。また、Feは不純物元素として混入させてもよく、Zn又はMnの原料粉体にFeが含まれていてもよい。負極活物質に含有される各元素の含有量は、誘導結合プラズマ(ICP)発光分光分析により測定される。
 亜鉛マンガン合金は、例えば、MnZn4の構造を有するγ相と、MnZn9の構造を有するδ相と、MnZn13の構造を有するζ相とを有しても良い。ζ相は、電気化学的に活性であり、充放電効率の向上に特に寄与する。亜鉛マンガン合金は、γ相、δ相、ζ相以外を含んでもよく、例えば、非晶質部分を含んでもよい。また、負極活物質は、1種単独で用いてもよく、2種類以上を組み合わせて用いてもよい。例えば、亜鉛マンガン合金として、MZn/MMn及びFeの含有量が1種類のもののみを使用してもよいし、MZn/MMn又はFeの含有量が異なる2種類以上を混合して使用してもよい。また、亜鉛マンガン合金と亜鉛マンガン合金以外の負極活物質を併用してもよい。亜鉛マンガン合金以外の負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば黒鉛(天然黒鉛、人造黒鉛)、ケイ素(Si)、錫(Sn)等のリチウムと合金化する金属、又はSi、Sn等の金属元素を含む酸化物などを用いることができる。
 亜鉛マンガン合金は、体積基準のメジアン径(D50)が、例えば1μm以上100μm以下、好ましくは50μm以下、特に好ましくは30μm以下の粒子である。亜鉛マンガン合金のD50は、粒子内をLiが移動する距離が短くなるので、小さいほうが好ましい。亜鉛マンガン合金のD50は、ボールミルで粉砕することで小さくすることができる。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。リチウム遷移金属酸化物の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 亜鉛マンガン合金は、Zn、Mn、及びFeを所望の割合で混合した後にペレット状にして、さらに熱処理後に粉砕することによって作製することができる。例えば、熱処理の温度は、200℃~600℃であり、熱処理の時間は、0.5時間~12時間である。
 負極活物質は、上述の亜鉛マンガン合金以外に、さらに、黒鉛を含み、黒鉛のモル数に対する亜鉛マンガン合金の割合は、3モル%~30モル%であることが好ましい。黒鉛と亜鉛マンガン合金をこの割合で併用することで、黒鉛により負極合材層に空隙を形成して電解質を負極芯体まで浸透させつつ、亜鉛マンガン合金により電池を高容量化できる。
 負極12の製造方法は、Zn、Mn、並びに、Zn及びMnの総質量の1000ppm以下のFeを含有する亜鉛マンガン合金を負極活物質として含むことができれば特に限定されない。上述のように、負極合材スラリーを塗布、乾燥させて負極合材層を形成する以外に、例えば、MnZn合金メッキにより、負極芯体の表面に亜鉛マンガン合金を形成し、必要であれば熱処理をしてもよい。例えば、熱処理の温度は、200℃~600℃であり、熱処理の時間は、1分~60分である。この場合、MnZn合金メッキ層が負極合材層になる。また、MnZn合金メッキ層の表面に黒鉛を積層させてもよい。
 [セパレータ]
 セパレータ13には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔膜、織布、不織布等が挙げられる。セパレータ13の材質としては、ポリエチレン、ポリプロピレン等のオレフィン樹脂、セルロースなどが好適である。セパレータ13は、単層構造、積層構造のいずれであってもよい。セパレータ13の表面には、耐熱性材料を含む耐熱層が形成されていてもよい。耐熱性材料としては、脂肪族系ポリアミド、芳香族系ポリアミド(アラミド)等のポリアミド樹脂、ポリアミドイミド、ポリイミド等のポリイミド樹脂などが例示できる。
 <実施例>
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例>
 [負極活物質の合成]
 原料粉末としてMn、Zn、及びFeを使用した。Mn及びZnをモル比でMn:Zn=1:10の割合で混合し、さらにZn及びMnの総質量の50ppmのFeを混合した。混合した粉体をペレット化し、さらに400℃で6時間熱処理することで、亜鉛マンガン合金ペレットを作製した。作製した亜鉛マンガン合金ペレットを粉砕することで、体積基準のメジアン径(D50)が20μmである亜鉛マンガン合金を得た。ICPにより亜鉛マンガン合金の組成を分析した結果は、Mnの含有量に対するZnの含有量のモル比が10であり、Feの含有量がZn及びMnの総質量の50ppmであった。
 [負極の作製]
 次に、上記で得られた亜鉛マンガン合金と、導電材としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデンとを質量比で92:5:3となるよう用意し、これとN-メチル-2-ピロリドン(NMP)溶液と練合してスラリーを調製した。このスラリーを厚さ15μmのアルミニウム製の負極芯体上に塗布し、100℃に保持した電気炉内で乾燥させ負極活物質層を形成した。乾燥後、ローラーを用いて圧延し、打ち抜いてペレット状の電極を作製した。
 [対極の作製]
 リチウムイオン二次電池用負極活物質の特性を調べるために、上記正極ではなく金属リチウム(Li)を対極として用いた。一般に、リチウムイオン二次電池では、正極活物質にLiNiO2等のリチウム遷移金属酸化物(Co、Mn、Niなどの遷移金属を含むものが一般的である)を用いる。しかしながら、ここでは、正極活物質に依存しない負極活物質そのものの特性を調べるために、電極に一般に用いられる正極活物質ではなく、リチウム金属箔を打ち抜いて対極として用いた。このような方法は、活物質の評価をするのによく用いられる。
 [非水電解質の作製]
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比1:3で混合させた非水溶媒に、電解質塩としてのLiPF6を1.0mol/L溶解させ液状の非水電解質である非水電解液とした。
 [電池の作製]
 上述のようにして作製した負極、非水電解液を用いて、コイン型リチウムイオン二次電池(以下、コイン型電池とする)を以下の手順で作製した。スチール製で蓋部と底部からなるコイン型の電池外装体の底部の内側に対極となるリチウム金属箔を圧着し、その上に電解液を含浸させたポリエチレンの微多孔膜セパレータ、負極、スチール製の円形のあて板、皿バネの順で配置し収容した。その後、蓋部をかぶせ電池外装体をかしめて密閉し、コイン型電池を得た。
 <比較例>
 原料粉末としてMn及びZnを使用し、モル比でMn:Zn=1:10の割合で混合した後にペレット化し、さらに400℃で6時間熱処理して作製したMnZn10を粉砕して体積基準のメジアン径(D50)が20μmであるMnZn10を得たこと以外は、実施例と同様にして非水電解質二次電池を作製した。
 <参考例1>
 原料粉末としてZnのみを使用し、ペレット化後に400℃で6時間熱処理して作製したZnを粉砕して体積基準のメジアン径(D50)が20μmであるZnを得たこと以外は、実施例と同様にして非水電解質二次電池を作製した。
 <参考例2>
 原料粉末としてTi及びZnを使用し、モル比でTi:Zn=1:10の割合で混合した後にペレット化し、さらに415℃で12時間熱処理して作製したTiZn10を粉砕して体積基準のメジアン径(D50)が20μmであるTiZn10を得たこと以外は、実施例と同様にして非水電解質二次電池を作製した。
 <参考例3>
 原料粉末としてCo及びZnを使用し、モル比でCo:Zn=1:10の割合で混合した後にペレット化し、さらに415℃で12時間熱処理して作製したCoZn10を粉砕して体積基準のメジアン径(D50)が20μmであるCoZn10を得たこと以外は、実施例と同様にして非水電解質二次電池を作製した。
 <参考例4>
 原料粉末としてNi及びZnを使用し、モル比でNi:Zn=1:10の割合で混合した後にペレット化し、さらに415℃で12時間熱処理して作製したNiZn10を粉砕して体積基準のメジアン径(D50)が20μmであるNiZn10を得たこと以外は、実施例と同様にして非水電解質二次電池を作製した。
 <参考例5>
 原料粉末としてCu及びZnを使用し、モル比でCu:Zn=1:10の割合で混合した後にペレット化し、さらに415℃で12時間熱処理して作製したCuZn10を粉砕して体積基準のメジアン径(D50)が20μmであるCuZn10を得たこと以外は、実施例と同様にして非水電解質二次電池を作製した。
 上記各コイン型電池について以下の方法で性能評価を行い、評価結果を表1に示した。表1には、当該評価結果と共に、負極活物質の組成を示す。
 [初期効率の評価]
 実施例、比較例、及び参考例1~5のコイン型電池について、初期充電容量及び初期放電容量を測定することで、初期効率の評価を行った。ここでの放電とは、実施例、比較例、及び参考例1~5の負極活物質とLiNiO2等で例示される一般に用いられる正極とを組み合わせた電池における放電のことをいう。ここでは、上記コイン型電池は負極を作用極とし金属リチウム(Li)を対極としていることから、本来ならば、充電というべきであるが、一般に用いられる正極と負極とを組み合わせた電池における負極の充放電挙動に合わせて、逆の充放電方向の表現をしている。つまり、充電とは作用極となる負極の電位を降下させるように電流を流すことであり、放電とは作用極となる負極の電位を上昇させるように電流を流すことである。
 まず、電池電圧が0Vに達するまで0.05Cの定電流で充電を行った後、0.05Cの定電流で電池電圧が1Vに達するまで放電を行い、初期充電容量及び初期放電容量を測定した。なお、ここでは充放電に関する記載は、上述のように通常とは逆に記載している。すなわち、充電とは電池電圧が0Vになるまで作用極の電位を降下させるように電流を流すことであり、放電とは電池電圧が1Vになるまで作用極の電位を上昇させるように電流を流すことである。上記で測定した初期充電容量及び初期放電容量と、負極合材層中に含まれる負極活物質である亜鉛合金(比較例1においては亜鉛)の質量及び密度をもとに下記の式にて初期充電容量密度、初期放電容量密度、及び初期効率を算出して評価した。
 初期充電容量密度(mAh/cm3)=初期充電容量(mAh)/負極合材層中に含まれる亜鉛合金の質量(g)×負極合材層における亜鉛合金の密度(g/cm3
 初期放電容量密度(mAh/cm3)=初期放電容量(mAh)/負極合材層中に含まれる亜鉛合金の質量(g)×負極合材層における亜鉛合金の密度(g/cm3
 初期効率(%)=初期放電容量/初期充電容量×100
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の電池は、比較例の電池と比べて、初期効率が高かった。この結果から、負極活物質としての亜鉛マンガン合金に微量のFeを含有させることで、二次電池の初期の充放電効率を向上させることができて、2サイクル目以降においても、放電容量を大きくすることができることがわかった。なお、亜鉛マンガン合金以外を負極活物質とした参考例1~5の電池は、実施例、比較例の電池に比べて、初期効率が非常に悪かった。
10  二次電池
11  正極
12  負極
13  セパレータ
14  電極体
15  外装体
16  封口体
17,18  絶縁板
19  正極リード
20  負極リード
21  溝入部
22  フィルタ
23  下弁体
24  絶縁部材
25  上弁体
26  キャップ
26a  開口部
27  ガスケット

Claims (3)

  1.  Znと、Mnと、Zn及びMnの総質量の1000ppm以下のFeと、を含有する、亜鉛マンガン合金を含み、
     前記亜鉛マンガン合金において、Mnの含有量に対するZnの含有量のモル比は、3~13である、非水電解質二次電池用負極活物質。
  2.  さらに、黒鉛を含み、前記黒鉛のモル数に対する、前記亜鉛マンガン合金の割合は、3モル%~30モル%である、請求項1に記載の非水電解質二次電池用負極活物質。
  3.  請求項1又は2に記載の非水電解質二次電池用負極活物質を含む負極と、
     正極と、
     非水電解質と、
     を備えた、非水電解質二次電池。
PCT/JP2020/036802 2019-09-30 2020-09-29 非水電解質二次電池用負極活物質、及び非水電解質二次電池 WO2021065862A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080067991.9A CN114503306A (zh) 2019-09-30 2020-09-29 非水电解质二次电池用负极活性物质、和非水电解质二次电池
US17/763,969 US20220344650A1 (en) 2019-09-30 2020-09-29 Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2021551287A JPWO2021065862A1 (ja) 2019-09-30 2020-09-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019178617 2019-09-30
JP2019-178617 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065862A1 true WO2021065862A1 (ja) 2021-04-08

Family

ID=75336920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036802 WO2021065862A1 (ja) 2019-09-30 2020-09-29 非水電解質二次電池用負極活物質、及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US20220344650A1 (ja)
JP (1) JPWO2021065862A1 (ja)
CN (1) CN114503306A (ja)
WO (1) WO2021065862A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894552B2 (en) * 2021-01-11 2024-02-06 University Of Central Florida Research Foundation, Inc. Zinc-based alloys for stable and high-performance seawater-based aqueous batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151764A (ja) * 1984-08-18 1986-03-14 Matsushita Electric Ind Co Ltd 亜鉛アルカリ電池
JPH05125470A (ja) * 1990-02-08 1993-05-21 Acec Union Miniere Nv:Sa 電気化学的バツテリーカン用亜鉛合金
JP2000228191A (ja) * 1999-02-05 2000-08-15 Toshiba Battery Co Ltd 水素吸蔵合金、水素吸蔵合金の製造方法およびアルカリ二次電池
JP2012079470A (ja) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd 非水電解質二次電池
JP2013051170A (ja) * 2011-08-31 2013-03-14 Sanyo Electric Co Ltd 非水電解質二次電池の負極活物質及び非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657364A (ja) * 1992-08-07 1994-03-01 Mitsubishi Materials Corp 合金電気メッキのアノード用Mn−Zn合金とその製法
CN102347469B (zh) * 2010-07-29 2013-12-11 宁波光华电池有限公司 片状锌阳极及其制备方法和使用该片状锌阳极的叠层锌锰电池
CN110085804A (zh) * 2019-05-16 2019-08-02 珠海冠宇电池有限公司 一种超轻质复合负极及含有该负极的锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151764A (ja) * 1984-08-18 1986-03-14 Matsushita Electric Ind Co Ltd 亜鉛アルカリ電池
JPH05125470A (ja) * 1990-02-08 1993-05-21 Acec Union Miniere Nv:Sa 電気化学的バツテリーカン用亜鉛合金
JP2000228191A (ja) * 1999-02-05 2000-08-15 Toshiba Battery Co Ltd 水素吸蔵合金、水素吸蔵合金の製造方法およびアルカリ二次電池
JP2012079470A (ja) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd 非水電解質二次電池
JP2013051170A (ja) * 2011-08-31 2013-03-14 Sanyo Electric Co Ltd 非水電解質二次電池の負極活物質及び非水電解質二次電池

Also Published As

Publication number Publication date
JPWO2021065862A1 (ja) 2021-04-08
CN114503306A (zh) 2022-05-13
US20220344650A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
WO2022092182A1 (ja) 非水電解質二次電池
CN112751019A (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
WO2021153001A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2021059857A1 (ja) 非水電解質二次電池
WO2021065862A1 (ja) 非水電解質二次電池用負極活物質、及び非水電解質二次電池
CN112751020A (zh) 非水电解质二次电池用正极活性物质和非水电解质二次电池
US20220271284A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20220336795A1 (en) Non-aqueous electrolyte secondary battery
US20220278323A1 (en) Non-aqueous electrolyte secondary battery
WO2021065861A1 (ja) 非水電解質二次電池用負極活物質、及び非水電解質二次電池
CN114503307B (zh) 非水电解质二次电池用负极活性物质、和非水电解质二次电池
CN110402515B (zh) 非水电解质二次电池
JPWO2020066848A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2023026642A1 (ja) 負極活物質、及びリチウムイオン電池
WO2023026635A1 (ja) 負極活物質、及びリチウムイオン電池
WO2023120413A1 (ja) 二次電池用正極活物質、及び二次電池用正極活物質の製造方法
WO2023068229A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2021039750A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024042994A1 (ja) 非水電解質二次電池
US20230082835A1 (en) Positive-electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2022163455A1 (ja) 非水電解質二次電池用活物質、非水電解質二次電池用活物質の製造方法、及び非水電解質二次電池
US20220216470A1 (en) Non-aqueous electrolyte secondary battery
WO2022163531A1 (ja) 非水電解質二次電池用活物質、及び非水電解質二次電池
WO2021049318A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023145443A1 (ja) リチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871962

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871962

Country of ref document: EP

Kind code of ref document: A1