WO2021065543A1 - 情報処理装置、情報処理方法、およびプログラム - Google Patents

情報処理装置、情報処理方法、およびプログラム Download PDF

Info

Publication number
WO2021065543A1
WO2021065543A1 PCT/JP2020/035276 JP2020035276W WO2021065543A1 WO 2021065543 A1 WO2021065543 A1 WO 2021065543A1 JP 2020035276 W JP2020035276 W JP 2020035276W WO 2021065543 A1 WO2021065543 A1 WO 2021065543A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
collision
wind speed
information processing
flight
Prior art date
Application number
PCT/JP2020/035276
Other languages
English (en)
French (fr)
Inventor
浩次 市川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/753,913 priority Critical patent/US20220366801A1/en
Priority to JP2021550607A priority patent/JPWO2021065543A1/ja
Priority to CN202080066690.4A priority patent/CN114521248A/zh
Publication of WO2021065543A1 publication Critical patent/WO2021065543A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0043Traffic management of multiple aircrafts from the ground
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/36Other airport installations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0026Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0039Modification of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0091Surveillance aids for monitoring atmospheric conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls

Definitions

  • the present disclosure relates to information processing devices, information processing methods, and programs, and more particularly to information processing devices, information processing methods, and programs that enable more reliable avoidance of collisions with obstacles.
  • the trajectory of the flight can change significantly due to the influence of the wind.
  • the wind direction and speed are likely to change locally, and even in such an environment, we want to avoid collisions and fly the drone.
  • Patent Document 1 for example, in order for an unmanned aerial vehicle to take a safer flight route, a flight prohibited area having a shape corresponding to the wind speed is provided for an unmanned aerial vehicle flying around a base station equipped with an anemometer. The technology to notify is disclosed.
  • Patent Document 2 discloses a technique of acquiring meteorological information such as wind speed from a meteorological information database and predicting an actual route of an unmanned aerial vehicle based on the planned flight route and the meteorological information.
  • This disclosure was made in view of such a situation, and makes it possible to more reliably avoid a collision with an obstacle.
  • the information processing device of the present disclosure sets an avoidance trajectory in which the flying object can avoid collision with an obstacle based on the position information of the flying object and the wind speed information of the flight position represented by the position information. It is an information processing device provided with an orbit setting unit.
  • the information processing device can avoid collision with an obstacle based on the position information of the flying object and the wind speed information of the flight position represented by the position information. This is an information processing method that sets the trajectory.
  • the program of the present disclosure sets an avoidance trajectory in which the flying object can avoid collision with an obstacle based on the position information of the flying object and the wind speed information of the flight position represented by the position information. It is a program for executing processing.
  • an avoidance trajectory is set in which the flying object can avoid a collision with an obstacle based on the position information of the flying object and the wind speed information of the flight position represented by the position information.
  • FIG. 1 is a diagram illustrating an outline of an air traffic control system to which the technology according to the present disclosure (the present technology) is applied.
  • a plurality of unmanned aerial vehicles (drones) 10 which are flying objects fly under the control of an air traffic control device 20 composed of information processing devices such as a PC (personal computer) and a smartphone. To do.
  • an air traffic control device 20 composed of information processing devices such as a PC (personal computer) and a smartphone.
  • the drone 10 and the air traffic control device 20 exchange information with each other by wireless communication.
  • the drone 10 transmits position information indicating the flight position of its own aircraft and wind speed information of the flight position to the air traffic control device 20.
  • the air traffic control device 20 sets an avoidance trajectory in which the drone 10 can avoid a collision with an obstacle based on the position information and the wind speed information from the drone 10, and transmits an avoidance instruction based on the avoidance trajectory to the drone 10. To do.
  • the drone 10 flies in an avoidance orbit based on an avoidance instruction from the air traffic control device 20 while avoiding a collision with an obstacle.
  • FIG. 2 is a block diagram showing a configuration example of the hardware of the drone 10.
  • the drone 10 includes a control unit 31, a communication unit 32, a storage unit 33, a flight mechanism 34, and a sensor 35.
  • the control unit 31 is composed of a processor such as a CPU (Central Processing Unit), a memory, and the like, and controls the communication unit 32, the storage unit 33, the flight mechanism 34, and the sensor 35 by executing a predetermined program. For example, the control unit 31 controls the flight mechanism 34 based on the information acquired via the communication unit 32 and the information stored in the storage unit 33.
  • a processor such as a CPU (Central Processing Unit), a memory, and the like
  • the control unit 31 controls the flight mechanism 34 based on the information acquired via the communication unit 32 and the information stored in the storage unit 33.
  • the communication unit 32 is composed of a network interface or the like, and performs wireless communication with the air traffic control device 20 that gives instructions to the drone 10 and any other device.
  • the communication unit 32 performs network communication with a device to be a communication partner via a base station such as Wi-Fi (registered trademark), 4G, or 5G, or a repeater.
  • the storage unit 33 is composed of a non-volatile memory such as a flash memory, and stores various information under the control of the control unit 31.
  • the storage unit 33 stores (stores) a flight plan described later.
  • the flight mechanism 34 is a mechanism for flying the drone 10, and is composed of a propeller, a motor for rotating the propeller, and the like.
  • the flight mechanism 34 is driven according to the control of the control unit 31 to fly the drone 10.
  • the sensor 35 is configured to include, for example, a depth sensor such as a camera, a stereo camera, and a ToF (Time of Flight) sensor, as well as an anemometer and the like. Further, the sensor 35 may be configured to include an IMU (Inertial Measurement Unit) sensor and a GPS (Global Positioning System) sensor. The sensor data collected by the sensor 35 is used for flight control of the drone 10.
  • a depth sensor such as a camera, a stereo camera, and a ToF (Time of Flight) sensor, as well as an anemometer and the like.
  • the sensor 35 may be configured to include an IMU (Inertial Measurement Unit) sensor and a GPS (Global Positioning System) sensor.
  • IMU Inertial Measurement Unit
  • GPS Global Positioning System
  • FIG. 3 is a block diagram showing a functional configuration example of the drone 10.
  • the drone 10 in FIG. 3 is composed of an information acquisition unit 41, a communication control unit 42, a flight plan storage unit 43, and a flight control unit 44.
  • the information acquisition unit 41 corresponds to the sensor 35 in FIG. 2, acquires the position information and the wind speed information of the drone 10, and supplies the information to the communication control unit 42.
  • the position information includes the flight position, attitude, and ground speed of the drone 10, as well as the time information when the position information was acquired.
  • the position information may be acquired by the GPS sensor, or may be acquired by estimating the flight position by the IMU sensor. Further, the position information may be acquired by estimating the flight position by SLAM (Simultaneous Localization and Mapping) based on the image acquired by the camera.
  • SLAM Simultaneous Localization and Mapping
  • the wind speed information includes at least the direction and magnitude of the wind speed at the flight position of the drone 10.
  • the wind speed information is acquired by an ultrasonic anemometer provided on the body of the drone 10, and is associated with the position information. Further, the wind speed information may be acquired by calculating the difference between the airspeed measured by the airspeed meter provided on the aircraft and the ground speed acquired as the position information. Further, the wind speed information may be acquired by obtaining the component of the force received by the airflow from the difference between the planned flight path and the flight path actually flew by the drone 10.
  • the communication control unit 42 controls the communication unit 32 of FIG. 2 to transmit the position information and the wind speed information from the information acquisition unit 41 to the air traffic control device 20.
  • the communication control unit 42 receives the avoidance instruction transmitted from the air traffic control device 20 by controlling the communication unit 32 of FIG. 2 and supplies the avoidance instruction to the flight control unit 44.
  • the flight plan storage unit 43 corresponds to the storage unit 33 of FIG. 2 and stores the flight plan of the drone 10.
  • the flight plan includes at least a flight start point and a flight end point, and may further include a waypoint which is a passing point in the middle.
  • the flight plan is created by, for example, a user designating a point on a map by an application installed on a smartphone in advance, and is stored in the flight plan storage unit 43.
  • the flight control unit 44 controls the flight of the drone 10 by controlling the flight mechanism shown in FIG.
  • the flight control unit 44 controls the flight of the drone 10 based on the flight plan stored in the flight plan storage unit 43. Further, when the avoidance instruction is supplied from the communication control unit 42, the flight control unit 44 controls the flight of the drone 10 based on the avoidance trajectory included in the avoidance instruction.
  • FIG. 4 is a block diagram showing a configuration example of the hardware of the air traffic control device 20.
  • the air traffic control device 20 has a built-in CPU 51.
  • the input / output interface 55 is connected to the CPU 51 via the bus 54.
  • the CPU 51 executes a program stored in the ROM (Read Only Memory) 52 accordingly. Further, the CPU 51 loads the program stored in the storage unit 58 composed of the hard disk into the RAM (Random Access Memory) 53 and executes the program.
  • ROM Read Only Memory
  • the CPU 51 performs various processes to make the air traffic control device 20 function as an information processing device having a predetermined function.
  • the CPU 51 outputs the results of various processes from the output unit 57, records them in the storage unit 58, or transmits them from the communication unit 59, for example, via the input / output interface 55, if necessary.
  • the input unit 56 is composed of a keyboard, a mouse, a microphone, and the like.
  • the output unit 57 is composed of an organic EL (Electro-Luminescence) display, a liquid crystal display, a speaker, and the like.
  • the input unit 56 may be composed of a touch panel formed integrally with the display as the output unit 57.
  • the program executed by the CPU 51 can be stored in advance in the ROM 52 or the storage unit 58 as a recording medium built in the air traffic control device 20, or can be stored in the removable media 61 via the drive 60.
  • FIG. 5 is a block diagram showing a functional configuration example of the air traffic control device 20.
  • the air traffic control device 20 of FIG. 5 includes a communication control unit 71, a course prediction unit 72, a possible existence area calculation unit 73, an obstacle map storage unit 74, a three-dimensional map generation / update unit 75, a collision determination unit 76, and an avoidance unit. It is composed of an orbit setting unit 77.
  • each functional block shown in FIG. 5 is realized by executing a predetermined program by the CPU 51.
  • the communication control unit 71 receives the position information and the wind speed information transmitted from the drone 10 by controlling the communication unit 59 in FIG.
  • the position information and the wind speed information transmitted from each drone 10 are received.
  • the received position information is supplied to the course prediction unit 72, and the wind speed information is supplied to the existence possibility region calculation unit 73.
  • the communication control unit 71 controls the communication unit 59 in FIG. 4 to transmit an avoidance instruction from the avoidance trajectory setting unit 77 to the drone 10.
  • the course prediction unit 72 uses the position information from the communication control unit 71 to predict the course of the drone 10 to obtain the predicted position of the drone 10 after a predetermined time.
  • the obtained predicted position is supplied to the existence possibility region calculation unit 73.
  • the existence possibility area calculation unit 73 is an area in which the drone 10 may exist after a predetermined time based on the predicted position from the course prediction unit 72 and the wind speed information from the communication control unit 71. Is calculated. When a plurality of drones 10 exist in the controlled airspace of the air traffic control device 20, the existence possibility areas for the plurality of drones 10 are calculated. The calculated existence possibility region is supplied to the three-dimensional map generation / update unit 75.
  • the obstacle map storage unit 74 stores the obstacle map of the controlled airspace of the air traffic control device 20.
  • FIG. 6 is a diagram showing an example of an obstacle map.
  • the coordinates representing the position and height of the building 101 and the manager of the controlled airspace are determined as the three-dimensional position information of the obstacle existing in the controlled airspace represented by the xyz coordinate system. Includes coordinates representing the location of the no-fly zone 102.
  • the obstacle map may have the same coordinate system as the position information from the drone 10, or may be converted into the same coordinate system as the position information from the drone 10.
  • the obstacle map is input to the obstacle map storage unit 74 by the person in charge of operating the air traffic control system or the manager of the controlled airspace.
  • the obstacle map may be obtained from a map information service via the Internet, for example, or may be constructed based on a satellite photograph.
  • Such an obstacle map is read out by the three-dimensional map generation / update unit 75.
  • the three-dimensional map generation / update unit 75 may exist on the obstacle map based on the existence possibility area from the existence possibility area calculation unit 73 and the obstacle map read from the obstacle map storage unit 74. Generate a 3D map that maps the area.
  • the three-dimensional map reflects the possible existence areas of all the drones 10 existing in the controlled airspace of the air traffic control device 20.
  • the generated three-dimensional map is supplied to the collision determination unit 76 and the avoidance trajectory setting unit 77.
  • the collision determination unit 76 may cause the drone 10 in flight to collide with an obstacle or another drone 10 after a predetermined time based on the 3D map from the 3D map generation / update unit 75 (collision possibility). Judge the presence or absence of. The determination result of the presence or absence of a collision possibility is supplied to the avoidance trajectory setting unit 77.
  • the avoidance trajectory setting unit 77 causes the drone 10 to be an obstacle or another drone 10 based on the three-dimensional map from the three-dimensional map generation / update unit 75. Set an avoidance trajectory that can avoid collision with.
  • the avoidance trajectory setting unit 77 supplies the communication control unit 71 with an avoidance instruction based on the set avoidance trajectory.
  • step S11 the information acquisition unit 41 acquires the position information and the wind speed information of the drone 10. Specifically, the information acquisition unit 41 acquires the position information of the drone 10, and further acquires the wind speed information of the flight position represented by the position information.
  • step S12 the communication control unit 42 transmits the acquired position information and wind speed information to the air traffic control device 20.
  • the position information and the wind speed information may be transmitted in a cycle predetermined by the drone 10 or the air traffic control device 20 in advance, or may be transmitted at the timing requested by the air traffic control device 20. Further, the current position information and the wind speed information may be transmitted when there is a difference of a certain amount or more between the position information acquired before that and the wind speed information.
  • step S13 the communication control unit 42 determines whether or not the avoidance instruction has been received from the air traffic control device 20.
  • step S14 the flight control unit 44 controls the flight of the drone 10 based on the avoidance trajectory included in the avoidance instruction from the air traffic control device 20.
  • step S15 the flight control unit 44 drones based on the flight plan stored in the flight plan storage unit 43.
  • Control 10 flights For example, the flight of the drone 10 is controlled so as to fly at the cruising speed determined by the aircraft in the direction in which the route from the current position to the next waypoint or the end point of the flight is the shortest.
  • step S16 the flight control unit 44 determines whether or not the flight plan is completed. Here, when the current position coincides with the flight end point of the flight plan, it is determined that the flight plan is completed.
  • step S11 If the flight plan is not completed, the process returns to step S11, and the subsequent processes are repeated.
  • the flight control unit 44 ends the flight of the drone 10.
  • step S21 the communication control unit 71 receives the position information and the wind speed information transmitted from the drone 10 existing in the controlled airspace.
  • At least one drone 10 is flying in the controlled airspace. That is, two or more drones 10 may be flying in the controlled airspace.
  • the communication control unit 71 does not have to always receive the position information and the wind speed information from all the drones 10 existing in the controlled airspace. For example, when the position information and the wind speed information from a certain drone 10 are received at a certain time, it is not always necessary to receive the position information and the wind speed information from the drone 10 at the next time.
  • the communication control unit 71 may receive at least the position information of the position information and the wind speed information from the drone 10. For example, when there is a predetermined device capable of acquiring wind speed information in the controlled airspace with a fine mesh, the communication control unit 71 receives only the position information from the drone 10 existing in the controlled airspace, and uses the received position information. The wind speed information of the represented flight position may be received from the predetermined device.
  • step S22 the course prediction unit 72 predicts the course of the drone 10 that has transmitted the position information based on the received position information. Specifically, when the vehicle moves to the future time t with the current velocity vector v based on the flight position and time information represented by the latest position information transmitted from the drone 10 which is the target of the course prediction. The arrival point of is calculated as the predicted position.
  • step S23 the existence possibility area calculation unit 73 calculates the existence possibility area of the drone 10 existing in the controlled airspace based on the predicted position obtained by the course prediction unit 72 and the received wind speed information. When there are a plurality of drones 10 in the controlled airspace, the existence potential areas for the plurality of drones 10 are calculated.
  • the existence possibility area is an area where the drone 10 which is an air vehicle may reach after a predetermined time when it moves from a certain point at a certain speed.
  • the existence possibility region is calculated according to the error of position information acquisition, the error of flight control, and the wind speed information.
  • the error vector constituting the composite vector v' is obtained, for example, from the airframe design information of the airframe, or from the average value of flight control deviations in past flights.
  • the existence possibility region at the time t is changed from 0 to t, where t in the above equation (1) is t'(0 ⁇ t' ⁇ t). It may be a region 111'with diagonal hatching where a point p may exist at the time.
  • the possible existence area is expanded according to the direction of the wind speed, and the expansion rate of the possible existence area is changed according to the magnitude of the wind speed.
  • the expansion rate of the possible existence area is multiplied by 1 when the wind speed is 0 m
  • the expansion rate of the possible existence area is set in the same direction as the direction of the wind speed every time the observed wind speed increases by 1 m / s. To increase linearly by 0.1 times.
  • the wind speed W is expressed by the following equation (2)
  • the velocity vector v of the drone 10 is expressed by the following equation (3).
  • the existence possibility region is transformed by, for example, the affine transformation by the matrix T represented by the following equation (4).
  • the circular region 111 is expanded in the direction of the wind speed W (to the right in the figure) at a predetermined enlargement ratio as shown in FIG. Converted to elliptical region 112.
  • the existence possibility region may be expanded in the direction of the wind speed according to the magnitude of the change in the wind speed.
  • step S24 the three-dimensional map generation / update unit 75 reads the obstacle map from the obstacle map storage unit 74, and maps the possible existence area of the drone 10 existing in the controlled airspace on the obstacle map. Generate a 3D map for time t.
  • the 3D map for time t is generated by updating the 3D map generated for time t-1. That is, for the drone 10 for which the existence possibility region of time t-1 has been calculated, if new position information and wind velocity information are not received from the drone 10 after time t-1, the existence possibility of time t-1 is possible.
  • the existence possibility region at time t is calculated using the information at the time of calculating the region, and is mapped to the three-dimensional map for time t.
  • step S25 the collision determination unit 76 determines whether or not there is a possibility of collision at time t of the drone 10 existing in the controlled airspace, based on the three-dimensional map from the three-dimensional map generation / update unit 75.
  • obstacles buildings and structures included in the obstacle map are included in the existence possibility area of the drone 10 in flight at time t. Whether or not there is a no-fly zone) is determined.
  • the distance between the end of the possible existence area and the obstacle is smaller than the preset distance. It may be determined that there is a possibility of collision in some cases.
  • the existence possibility region 121 of the first air vehicle calculated based on the direction and size of the wind speed W1 and the direction and size of the wind speed W2. It is assumed that the existence possibility region 122 of the first air vehicle calculated based on the above is included.
  • the wind speed W1 and the wind speed W2 have directions facing each other due to, for example, a so-called building wind generated in a narrow area around a large-scale building.
  • the distance between one existence possibility area and the other existence possibility area is set in advance. It may be determined that there is a possibility of collision when the distance is smaller than the above distance.
  • step S25 if it is determined that there is a possibility of collision with respect to the predetermined drone 10, the process proceeds to step S26.
  • step S26 the avoidance trajectory setting unit 77 sets the avoidance trajectory of the drone 10 determined to have a possibility of collision based on the three-dimensional map.
  • avoidance trajectories are set for the plurality of drones 10.
  • a flight path for changing the traveling direction and speed of the drone 10 determined to have a possibility of collision is set.
  • a flight path is set that changes the traveling direction up to time t by 10 degrees clockwise based on the current traveling direction of the drone 10. Further, for the drone 10 determined to have a possibility of collision with another drone 10, a flight path for changing the speed is set in addition to the traveling direction up to the time t.
  • the avoidance trajectory of the drone 10 determined to have the possibility of collision is set.
  • a flight route that changes the traveling direction and speed within the range possible by the drone 10 may be set based on the aircraft information provided by the drone 10.
  • the person in charge of operating the air traffic control system or the manager of the controlled airspace sets a plurality of change patterns of the traveling direction and speed in advance, and the flight route is sequentially selected from these change patterns to avoid the trajectory. May be set.
  • step S27 the three-dimensional map generation / update unit 75 updates the three-dimensional map based on the set avoidance trajectory. Specifically, the existence possibility area calculation unit 73 recalculates the existence possibility area based on the set avoidance trajectory, and the three-dimensional map generation / update unit 75 sets the recalculated existence possibility area. Based on this, the 3D map is updated.
  • step S28 the communication control unit 71 transmits an avoidance instruction based on the set avoidance trajectory to the drone 10.
  • an avoidance instruction based on the avoidance trajectory set for the plurality of drones 10 is transmitted to each of the plurality of drones 10. After that, the process proceeds to step S29.
  • step S25 if it is determined in step S25 that there is no possibility of collision with respect to the predetermined drone 10, steps S26 to S28 are skipped and the process proceeds to step S29.
  • step S29 the air traffic control device 20 determines whether or not the drone 10 is in flight in the controlled airspace.
  • the fact that the drone 10 is not in flight is determined by receiving information indicating the end of flight from the drone 10, or not receiving position information and wind speed information for a predetermined time or longer.
  • step S29 If it is determined in step S29 that the drone 10 is in flight, the process returns to step S21, and the subsequent processes are repeated.
  • step S29 if it is determined in step S29 that the drone 10 is not in flight, the process ends.
  • the wind conditions give the drone flight as compared with the configuration in which the no-fly zone is notified based on the measured value of the anemometer provided in the fixed base station. The effect can be determined accurately.
  • the drone can more reliably avoid collisions with obstacles and other drones.
  • the avoidance trajectory of the drone 10 determined to have a possibility of collision may be set based on the flight plans of all the drones 10 existing in the controlled airspace.
  • the flight plans of all the drones 10 existing in the controlled airspace may be updated at once regardless of the possibility of collision, and may be delivered to each drone 10 as an avoidance instruction, for example.
  • FIG. 15 is a block diagram showing another functional configuration example of the drone 10.
  • the drone 10 of FIG. 15 has an information acquisition unit 211, a course prediction unit 212, an existence possibility area calculation unit 213, an obstacle map storage unit 214, a three-dimensional map generation / update unit 215, a collision determination unit 216, and an avoidance trajectory setting unit. It is composed of 217, a flight plan storage unit 218, and a flight control unit 219.
  • the information acquisition unit 211, the flight plan storage unit 218, and the flight control unit 219 of the drone 10 of FIG. 15 are the information acquisition unit 41, the flight plan storage unit 43, and the flight control unit 44 of the drone 10 of FIG. 3, respectively. It basically has the same function.
  • course prediction unit 212 the existence possibility area calculation unit 213, the obstacle map storage unit 214, the three-dimensional map generation / update unit 215, the collision determination unit 216, and the avoidance trajectory setting unit 217 in the drone 10 of FIG. 15 are
  • course prediction unit 72 the existence possibility area calculation unit 73, the obstacle map storage unit 74, the three-dimensional map generation / update unit 75, the collision determination unit 76, and the avoidance trajectory setting unit 77 in the air traffic control device 20 of FIG.
  • Each has basically the same function.
  • step S51 the information acquisition unit 211 acquires the position information and the wind speed information of the drone 10 (own machine).
  • step S52 the course prediction unit 212 predicts the course of the own machine based on the acquired position information.
  • the course prediction unit 212 obtains the predicted position of the own machine after a predetermined time by predicting only the course of the own machine. In addition to predicting the course using the position information of the own aircraft, the course prediction unit 212 may use the flight route included in the flight plan stored in the flight plan storage unit 218 as the predicted course.
  • step S53 the existence possibility area calculation unit 213 calculates the existence possibility area based on the predicted position obtained by the course prediction unit 212 and the acquired wind speed information.
  • the existence possibility area calculation unit 213 calculates only the existence possibility area of the own machine, unlike the existence possibility area calculation unit 73 that calculates the existence possibility area for a plurality of drones 10.
  • step S54 the three-dimensional map generation / update unit 215 reads the obstacle map from the obstacle map storage unit 214, and generates a three-dimensional map that maps the possible existence area of the own machine on the obstacle map. ..
  • the obstacle map stored in the obstacle map storage unit 214 may be acquired from the map information service before the start of the flight, or may be acquired by communicating with the radio base station during the flight. Further, an obstacle map may be acquired based on the depth sensor provided on the drone 10.
  • the reliability of the obstacle map acquired based on the depth sensor may be lowered.
  • the obstacle map for only a predetermined range in the traveling direction of the drone 10 may be acquired.
  • step S55 the collision determination unit 216 determines whether or not there is a possibility of collision with an obstacle of the own machine based on the three-dimensional map from the three-dimensional map generation / update unit 215.
  • step S55 If it is determined in step S55 that there is a possibility of collision, the process proceeds to step S56, and the avoidance trajectory setting unit 77 sets the avoidance trajectory of the own machine based on the three-dimensional map.
  • the avoidance trajectory setting unit 217 basically has the same function as the avoidance trajectory setting unit 77, but the obstacle map storage unit 214 stores an obstacle map for only a predetermined range in the traveling direction of the drone 10. If so, set an avoidance trajectory limited to that range.
  • step S57 the 3D map generation / update unit 215 updates the 3D map based on the set avoidance trajectory. Specifically, the existence possibility area calculation unit 213 calculates the existence possibility area based on the set avoidance trajectory, and the three-dimensional map generation / update unit 215 is based on the calculated existence possibility area. 3. Update the 3D map.
  • step S58 the flight control unit 219 controls the flight of the drone 10 based on the set avoidance trajectory.
  • step S55 determines whether there is no possibility of collision. If it is determined in step S55 that there is no possibility of collision, the process proceeds to step S59, and the flight control unit 219 flies the drone 10 based on the flight plan stored in the flight plan storage unit 218. To control.
  • step S60 the flight control unit 219 determines whether or not the flight plan is completed.
  • step S51 If the flight plan is not completed, the process returns to step S51, and the subsequent processes are repeated.
  • the flight control unit 219 ends the flight of the drone 10, and the process ends.
  • the drone is an obstacle even when there is no air traffic control device or communication with the air traffic control device is not possible in the airspace where there is a possibility of collision and it is difficult to fly. It becomes possible to avoid the collision with the vehicle more reliably.
  • the presence or absence of a collision possibility may be determined using the result of object detection using a depth sensor.
  • the above-mentioned series of processes can be executed by hardware or software.
  • the programs that make up the software are installed on the computer.
  • the computer includes a computer embedded in dedicated hardware and, for example, a general-purpose personal computer capable of executing various functions by installing various programs.
  • control unit 31 loads and executes the program stored in the storage unit 33, thereby performing the series of processes described above. Further, in the air traffic control device 20, the CPU 51 loads and executes a program stored in the ROM 52 and the storage unit 58, thereby performing the above-mentioned series of processes.
  • the program executed by the computer can be recorded and provided on removable media such as package media, for example. Programs can also be provided via wired or wireless transmission media such as local area networks, the Internet, and digital satellite broadcasting.
  • the program can be installed in the storage unit 33, the ROM 52, and the storage unit 58 by mounting the removable media in the drive. Further, the program can be installed in the storage unit 33, the ROM 52, or the storage unit 58 via a wired or wireless transmission medium.
  • the program executed by the computer may be a program that is processed in chronological order according to the order described in this specification, or may be a program that is processed in parallel or at a necessary timing such as when a call is made. It may be a program in which processing is performed.
  • the steps for describing a program to be recorded on a recording medium are not necessarily processed in chronological order in the order described, but also in parallel or in parallel or not necessarily in chronological order. It also includes processes that are executed individually.
  • An information processing device including an avoidance trajectory setting unit that sets an avoidance trajectory in which the aircraft can avoid a collision with an obstacle based on the position information of the aircraft and the wind speed information of the flight position represented by the position information. ..
  • the information processing device according to (1) further comprising a communication control unit that transmits an avoidance instruction based on the set avoidance trajectory to the flying object.
  • the avoidance trajectory setting unit sets the avoidance trajectory for the plurality of the flying objects based on the position information and the wind speed information of the plurality of the flying objects.
  • the information processing device wherein the communication control unit transmits the avoidance instruction based on the avoidance trajectory set for the plurality of the flying objects to each of the plurality of the flying objects.
  • the avoidance trajectory setting unit sets the avoidance trajectory in which the first flying object can avoid a collision with the obstacle and the second flying object.
  • the communication control unit receives at least the position information of the position information and the wind speed information from the flying object.
  • the communication control unit receives the position information and the wind speed information acquired by the flying object from the flying object.
  • the information processing device receives the wind speed information of the flight position represented by the position information acquired by the flying object from a predetermined device.
  • An information acquisition unit that acquires the position information and the wind speed information,
  • the information processing device according to (1), further including a flight control unit that controls the flight of the flying object based on the set avoidance trajectory.
  • a collision determination unit for determining the presence or absence of a collision with the obstacle based on the position information and the wind speed information is further provided.
  • the information processing device according to any one of (1) to (8), wherein the avoidance trajectory setting unit sets the avoidance trajectory when it is determined that there is a possibility of collision.
  • a region calculation unit that calculates a possible existence region of the aircraft after a predetermined time based on the predicted position of the aircraft after a predetermined time predicted using the position information and the wind speed information.
  • the information processing device according to (9), wherein the collision determination unit determines the presence or absence of the collision possibility after the predetermined time based on the existence possibility region.
  • the region calculation unit calculates the possibility region by deforming a region based on the predicted position according to the direction and magnitude of the wind speed represented by the wind speed information (10). Information processing equipment.
  • the area calculation unit deforms a circular region centered on the predicted position according to the direction and magnitude of the wind speed represented by the wind speed information.
  • the area calculation unit calculates the possible existence areas of the plurality of the flying objects based on the predicted positions of the plurality of the flying objects and the wind speed information.
  • the information according to any one of (10) to (12), wherein the collision determination unit further determines the presence or absence of the collision possibility between the flying objects based on the existence possibility region of the plurality of the flying objects.
  • Processing equipment (14)
  • a map generation unit that generates a three-dimensional map that maps the possible existence region is further provided on the obstacle map including the three-dimensional position information of the obstacle.
  • the information processing apparatus according to any one of (10) to (13), wherein the collision determination unit determines the presence or absence of the possibility of collision after the predetermined time based on the three-dimensional map.
  • the region calculation unit recalculates the possibility region based on the set avoidance trajectory, and recalculates the potential region.
  • the avoidance trajectory setting unit sets at least a flight path for changing the traveling direction of the flying object determined to have a possibility of collision as the avoidance trajectory according to any one of (9) to (15). Information processing equipment.
  • the avoidance trajectory setting unit sets the flight path for changing the traveling direction and speed of the flying object determined to have a possibility of collision as the avoidance trajectory.
  • Information processing device An information processing method for setting an avoidance trajectory in which the vehicle can avoid a collision with an obstacle based on the position information of the vehicle and the wind speed information of the flight position represented by the position information. (19) On the computer A program for executing a process of setting an avoidance trajectory in which the aircraft can avoid a collision with an obstacle based on the position information of the aircraft and the wind speed information of the flight position represented by the position information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)

Abstract

本開示は、障害物との衝突をより確実に回避することができるようにする情報処理装置、情報処理方法、およびプログラムに関する。 回避軌道設定部は、飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する。本開示に係る技術は、航空管制装置やドローンに適用することができる。

Description

情報処理装置、情報処理方法、およびプログラム
 本開示は、情報処理装置、情報処理方法、およびプログラムに関し、特に、障害物との衝突をより確実に回避することができるようにする情報処理装置、情報処理方法、およびプログラムに関する。
 様々な地理条件や気象状況の下であっても、障害物や人と衝突して危害を加えることなく、ドローンを飛行させることが望ましい。
 しかしながら、ドローンは小型であるため、風の影響により飛行の軌道が大きく変化しうる。特に、ビル周辺では、風向きや風速が局所的に変化しやすく、このような環境下であっても、衝突を回避してドローンを飛行させたい。
 これに対して、例えば特許文献1には、無人航空機がより安全な飛行ルートをとるために、風速計を備える基地局周辺を飛行する無人飛行機に対し、風速に応じた形状の飛行禁止領域を通知する技術が開示されている。
 また、特許文献2には、気象情報データベースから風速などの気象情報を取得し、飛行予定経路と気象情報に基づいて、無人航空機の実際の経路を予測する技術が開示されている。
特開2018-34691号公報 特開2018-81675号公報
 しかしながら、上述した技術では、ドローンが基地局から離れた場合や、気象情報データベースからの気象情報と実際の風速に相違がある場合には、障害物との衝突を回避することができないおそれがあった。
 本開示は、このような状況に鑑みてなされたものであり、障害物との衝突をより確実に回避することができるようにするものである。
 本開示の情報処理装置は、飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する回避軌道設定部を備える情報処理装置である。
 本開示の情報処理方法は、情報処理装置が、飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する情報処理方法である。
 本開示のプログラムは、コンピュータに、飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する処理を実行させるためのプログラムである。
 本開示においては、飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道が設定される。
本開示に係る技術を適用した航空管制システムの概要を説明する図である。 ドローンのハードウェアの構成例を示すブロック図である。 ドローンの機能構成例を示すブロック図である。 航空管制装置のハードウェアの構成例を示すブロック図である。 航空管制装置の機能構成例を示すブロック図である。 障害物地図の例を示す図である。 ドローンの動作の流れについて説明するフローチャートである。 航空管制装置の動作の流れについて説明するフローチャートである。 存在可能性領域の例を示す図である。 存在可能性領域の例を示す図である。 存在可能性領域の例を示す図である。 衝突可能性の有無について説明する図である。 衝突可能性の有無について説明する図である。 衝突可能性の有無について説明する図である。 ドローンの他の機能構成例を示すブロック図である。 ドローンの動作の流れについて説明するフローチャートである。
 以下、本開示を実施するための形態(以下、実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.航空管制システムの概要
 2.ドローンの構成
 3.航空管制装置の構成
 4.ドローンの動作
 5.航空管制装置の動作
 6.ドローンの他の構成と動作
<1.航空管制システムの概要>
 図1は、本開示に係る技術(本技術)を適用した航空管制システムの概要を説明する図である。
 図1の航空管制システムにおいては、飛行体である複数の無人航空機(ドローン)10が、例えばPC(パーソナルコンピュータ)やスマートフォンなどの情報処理装置から構成される航空管制装置20の管制の下で飛行する。
 ドローン10と航空管制装置20とは、無線通信により互いに情報を授受する。
 例えば、ドローン10は、飛行中、自機の飛行位置を表す位置情報と、その飛行位置の風速情報を、航空管制装置20に送信する。
 航空管制装置20は、ドローン10からの位置情報と風速情報に基づいて、ドローン10が障害物との衝突を回避可能な回避軌道を設定し、その回避軌道に基づいた回避指示をドローン10に送信する。
 ドローン10は、航空管制装置20からの回避指示に基づいて、回避軌道を飛行することで、障害物との衝突を回避しながら飛行する。
<2.ドローンの構成>
 まず、本技術の航空管制システムを構成するドローン10の構成について説明する。
(ドローンのハードウェア構成)
 図2は、ドローン10のハードウェアの構成例を示すブロック図である。
 ドローン10は、制御部31、通信部32、記憶部33、飛行機構34、およびセンサ35を備えている。
 制御部31は、CPU(Central Processing Unit)などのプロセッサやメモリなどで構成され、所定のプログラムを実行することにより、通信部32、記憶部33、飛行機構34、およびセンサ35を制御する。例えば、制御部31は、通信部32を介して取得された情報や、記憶部33に記憶されている情報に基づいて、飛行機構34を制御する。
 通信部32は、ネットワークインタフェースなどで構成され、ドローン10に対して指示を行う航空管制装置20や、その他の任意の装置との間で、無線通信を行う。例えば、通信部32は、通信相手となる装置と、Wi-Fi(登録商標)や4G,5Gなどの基地局や中継器を介したネットワーク通信を行う。
 記憶部33は、フラッシュメモリなどの不揮発性メモリなどにより構成され、制御部31の制御に従い、各種の情報を記憶する。例えば、記憶部33は、後述する飛行計画を記憶(格納)する。
 飛行機構34は、ドローン10を飛行させるための機構であり、プロペラや、プロペラを回転させるモータなどから構成される。飛行機構34は、制御部31の制御に従って駆動し、ドローン10を飛行させる。
 センサ35は、例えば、カメラやステレオカメラ、ToF(Time of Flight)センサなどのデプスセンサの他、風速計などを含むようにして構成される。また、センサ35は、IMU(Inertial Measurement Unit)センサやGPS(Global Positioning System)センサを含むようにして構成されてもよい。センサ35により収集されたセンサデータは、ドローン10の飛行制御に用いられる。
(ドローンの機能構成)
 図3は、ドローン10の機能構成例を示すブロック図である。
 図3のドローン10は、情報取得部41、通信制御部42、飛行計画記憶部43、および飛行制御部44から構成される。
 情報取得部41は、図2のセンサ35に対応し、ドローン10の位置情報と風速情報を取得し、通信制御部42に供給する。
 位置情報には、ドローン10の飛行位置、姿勢、対地速度の他、位置情報が取得された時の時刻情報が含まれる。位置情報は、GPSセンサにより取得されてもよいし、IMUセンサにより飛行位置が推定されることで取得されてもよい。また、位置情報は、カメラにより取得された画像に基づいたSLAM(Simultaneous Localization and Mapping)により飛行位置が推定されることで取得されてもよい。
 風速情報には、少なくとも、ドローン10の飛行位置における風速の向きと大きさが含まれる。風速情報は、ドローン10の機体に設けられた超音波風速計により取得され、位置情報と対応付けられる。また、風速情報は、機体に設けられた対気速度計により計測された対気速度と、位置情報として取得された対地速度との差分を計算することで取得されてもよい。さらに、風速情報は、飛行予定経路と、ドローン10が実際に飛行した飛行経路の差から、機体が気流によって受けた力の成分を求めることで取得されてもよい。
 通信制御部42は、図2の通信部32を制御することで、情報取得部41からの位置情報と風速情報を、航空管制装置20に送信する。
 また、通信制御部42は、図2の通信部32を制御することで、航空管制装置20から送信されてくる回避指示を受信し、飛行制御部44に供給する。
 飛行計画記憶部43は、図2の記憶部33に対応し、ドローン10の飛行計画を記憶する。
 飛行計画は、少なくとも飛行開始地点と飛行終了地点を含み、さらに、途中の通過地点であるウェイポイントを含んでもよい。飛行計画は、例えば、ユーザがあらかじめ、スマートフォンにインストールされたアプリケーションなどにより、地図上の地点を指定することで作成され、飛行計画記憶部43に記憶される。
 飛行制御部44は、図2の飛行機構を制御することで、ドローン10の飛行を制御する。
 具体的には、飛行制御部44は、飛行計画記憶部43に記憶されている飛行計画に基づいて、ドローン10の飛行を制御する。また、飛行制御部44は、通信制御部42から回避指示が供給された場合、回避指示に含まれる回避軌道に基づいて、ドローン10の飛行を制御する。
<3.航空管制装置の構成>
 続いて、本技術の航空管制システムを構成する航空管制装置20の構成について説明する。
(航空管制装置のハードウェア構成)
 図4は、航空管制装置20のハードウェアの構成例を示すブロック図である。
 航空管制装置20は、CPU51を内蔵している。CPU51には、バス54を介して、入出力インタフェース55が接続される。
 CPU51は、入出力インタフェース55を介して、オペレータなどによって入力部56が操作されることにより指令が入力されると、それに従って、ROM(Read Only Memory)52に格納されているプログラムを実行する。また、CPU51は、ハードディスクからなる記憶部58に格納されたプログラムを、RAM(Random Access Memory)53にロードして実行する。
 CPU51は、各種の処理を行うことで、航空管制装置20を所定の機能を有する情報処理装置として機能させる。CPU51は、各種処理の結果を、必要に応じて、例えば、入出力インタフェース55を介して、出力部57から出力させたり、記憶部58に記録させたり、通信部59から送信させたりする。
 入力部56は、キーボードやマウス、マイクロフォンなどで構成される。出力部57は、有機EL(Electro-Luminescence)ディスプレイや液晶ディスプレイ、スピーカなどで構成される。入力部56は、出力部57としてのディスプレイと一体で形成されるタッチパネルで構成されてもよい。
 CPU51が実行するプログラムは、航空管制装置20に内蔵されている記録媒体としてのROM52や記憶部58にあらかじめ記憶されたり、ドライブ60を介してリムーバブルメディア61に記憶されたりしておくことができる。
(航空管制装置の機能構成)
 図5は、航空管制装置20の機能構成例を示すブロック図である。
 図5の航空管制装置20は、通信制御部71、進路予測部72、存在可能性領域算出部73、障害物地図記憶部74、3次元地図生成・更新部75、衝突判定部76、および回避軌道設定部77から構成される。
 図5に示される各機能ブロックの少なくとも一部は、CPU51により所定のプログラムが実行されることによって実現される。
 通信制御部71は、図4の通信部59を制御することで、ドローン10から送信されてくる位置情報と風速情報を受信する。航空管制装置20の管制下にある空域(管制空域)に複数のドローン10が存在する場合、それぞれのドローン10から送信されてくる位置情報と風速情報が受信される。受信された位置情報は進路予測部72に、風速情報は存在可能性領域算出部73に、それぞれ供給される。
 また、通信制御部71は、図4の通信部59を制御することで、回避軌道設定部77からの回避指示を、ドローン10に送信する。
 進路予測部72は、通信制御部71からの位置情報を用いて、ドローン10の進路を予測することで、ドローン10の所定時間後の予測位置を求める。求められた予測位置は、存在可能性領域算出部73に供給される。
 存在可能性領域算出部73は、進路予測部72からの予測位置と、通信制御部71からの風速情報に基づいて、所定時間後にドローン10が存在する可能性のある領域である存在可能性領域を算出する。航空管制装置20の管制空域に複数のドローン10が存在する場合、複数のドローン10についての存在可能性領域が算出される。算出された存在可能性領域は、3次元地図生成・更新部75に供給される。
 障害物地図記憶部74は、航空管制装置20の管制空域の障害物地図を記憶する。
 図6は、障害物地図の例を示す図である。
 図6の障害物地図には、xyz座標系で表現される管制空域に存在する障害物の3次元位置情報として、建造物101の位置や高さを表す座標や、管制空域の管理者により定められた飛行禁止区域102の位置を表す座標が含まれる。障害物地図は、ドローン10からの位置情報と同一の座標系を有してもよいし、ドローン10からの位置情報と同一の座標系に変換されてもよい。
 障害物地図は、航空管制システムの運用担当者または管制空域の管理者によって、障害物地図記憶部74に入力される。これに限らず、障害物地図は、例えばインターネットを介した地図情報サービスから取得されてもよいし、衛星写真に基づいて構築されてもよい。
 このような障害物地図は、3次元地図生成・更新部75により読み出される。
 3次元地図生成・更新部75は、存在可能性領域算出部73からの存在可能性領域と、障害物地図記憶部74から読み出した障害物地図に基づいて、障害物地図上に、存在可能性領域を写像した3次元地図を生成する。3次元地図には、航空管制装置20の管制空域に存在する全てのドローン10の存在可能性領域が反映される。生成された3次元地図は、衝突判定部76と回避軌道設定部77に供給される。
 衝突判定部76は、3次元地図生成・更新部75からの3次元地図に基づいて、飛行中のドローン10が、所定時間後に障害物または他のドローン10と衝突する可能性(衝突可能性)の有無を判定する。衝突可能性の有無の判定結果は、回避軌道設定部77に供給される。
 回避軌道設定部77は、衝突判定部76によって衝突可能性があると判定された場合、3次元地図生成・更新部75からの3次元地図に基づいて、ドローン10が障害物または他のドローン10との衝突を回避可能な回避軌道を設定する。回避軌道設定部77は、設定された回避軌道に基づいた回避指示を、通信制御部71に供給する。
<4.ドローンの動作>
 次に、図7のフローチャートを参照して、ドローン10の動作の流れについて説明する。
 ステップS11において、情報取得部41は、ドローン10の位置情報と風速情報を取得する。具体的には、情報取得部41は、ドローン10の位置情報を取得し、さらに、位置情報で表される飛行位置の風速情報を取得する。
 ステップS12において、通信制御部42は、取得された位置情報と風速情報を、航空管制装置20に送信する。位置情報と風速情報は、あらかじめドローン10または航空管制装置20において定められた周期で送信されてもよいし、航空管制装置20から要求されたタイミングで送信されてもよい。さらに、現在の位置情報と風速情報が、それ以前に取得された位置情報と風速情報と比較して一定以上の差があった場合に送信されるようにしてもよい。
 位置情報と風速情報の送信後、ステップS13において、通信制御部42は、航空管制装置20から回避指示を受信したか否かを判定する。
 航空管制装置20から回避指示を受信した場合、処理はステップS14に進み、飛行制御部44は、航空管制装置20から回避指示に含まれる回避軌道に基づいて、ドローン10の飛行を制御する。
 一方、航空管制装置20から回避指示を受信していないと判定された場合、処理はステップS15に進み、飛行制御部44は、飛行計画記憶部43に記憶されている飛行計画に基づいて、ドローン10の飛行を制御する。例えば、現在位置から次のウェイポイントまたは飛行終了地点までの経路が最短となる方向に、機体において定められた巡航速度で飛行するように、ドローン10の飛行が制御される。
 ステップS14またはステップS15の後、ステップS16において、飛行制御部44は、飛行計画が完了したか否かを判定する。ここでは、現在位置が、飛行計画の飛行終了地点と一致した場合に、飛行計画が完了したと判定される。
 飛行計画が完了していない場合、処理はステップS11に戻り、これ以降の処理が繰り返される。
 一方、飛行計画が完了した場合、飛行制御部44は、ドローン10の飛行を終了させる。
<5.航空管制装置の動作>
 次に、図8のフローチャートを参照して、航空管制装置20の動作の流れについて説明する。
 ステップS21において、通信制御部71は、管制空域に存在するドローン10から送信されてくる位置情報と風速情報を受信する。
 ここでは、管制空域を、少なくとも1のドローン10が飛行しているものとする。すなわち、管制空域を、2以上のドローン10が飛行していてもよい。
 また、通信制御部71は、管制空域に存在する全てのドローン10からの位置情報と風速情報を、常に受信しなくともよい。例えば、ある時刻において、あるドローン10からの位置情報と風速情報を受信した場合、次の時刻において、そのドローン10からの位置情報と風速情報を必ずしも受信する必要はない。
 なお、通信制御部71は、位置情報と風速情報のうちの少なくとも位置情報をドローン10から受信すればよい。例えば、管制空域における風速情報を、細かいメッシュで取得可能な所定の装置が存在する場合、通信制御部71は、管制空域に存在するドローン10から位置情報のみを受信し、受信された位置情報で表される飛行位置の風速情報を、その所定の装置から受信してもよい。
 ステップS22において、進路予測部72は、受信された位置情報に基づいて、その位置情報を送信してきたドローン10の進路を予測する。具体的には、進路の予測対象となるドローン10から送信されてきた直近の位置情報で表される飛行位置と時刻情報を基準にして、現在の速度ベクトルvで将来の時刻tまで移動した場合の到達地点が、予測位置として求められる。
 ステップS23において、存在可能性領域算出部73は、進路予測部72により求められた予測位置と、受信された風速情報に基づいて、管制空域に存在するドローン10の存在可能性領域を算出する。管制空域に複数のドローン10が存在する場合、複数のドローン10についての存在可能性領域が算出される。
 ここで、存在可能性領域の算出の詳細について説明する。
 存在可能性領域は、飛行体であるドローン10がある地点からある速度で移動した場合に、そのドローン10が所定時間後に到達する可能性のある領域である。存在可能性領域は、位置情報取得の誤差、飛行制御の誤差、および風速情報に応じて算出される。
 図9を参照して、現在の地点Oにおいて速度ベクトルvで飛行する飛行体の、将来の時刻tにおける存在可能性領域の算出について説明する。
 時刻tにおける存在可能性領域は、飛行制御の最大の誤差ベクトルと速度ベクトルvの合成ベクトルをv’とすると、r=|vt-v’t|で表される範囲内、すなわち、以下の式(1)で表される点pが存在しうる、斜線のハッチングが施された円形領域111となる。
Figure JPOXMLDOC01-appb-M000001
                            ・・・(1)
 合成ベクトルv’を構成する誤差ベクトルは、例えば、飛行体の機体設計情報から得られるか、または、過去の飛行における飛行制御の偏差の平均値などから得られる。
 また、図10に示されるように、時刻tにおける存在可能性領域は、上述の式(1)におけるtをt’(0≦t’≦t)として、時刻t’を0からtまで変化させたときに点pが存在しうる、斜線のハッチングが施された領域111’としてもよい。
 さらに、存在可能性領域は、風速の向きに応じて拡大され、その存在可能性領域の拡大率は、風速の大きさに応じて変更される。
 例えば、風速0mの状態での存在可能性領域の拡大率を1倍としたとき、観測された風速が1m/s増加する毎に、存在可能性領域の拡大率を、風速の向きと同じ方向に0.1倍ずつ線形に増加させるようにする。
 ここで、風速Wは、以下の式(2)で表され、ドローン10の速度ベクトルvは、以下の式(3)で表されるものとする。
Figure JPOXMLDOC01-appb-M000002
                            ・・・(2)
Figure JPOXMLDOC01-appb-M000003
                            ・・・(3)
 このとき、存在可能性領域は、例えば以下の式(4)で表される行列Tによるアフィン変換によって変換される。
Figure JPOXMLDOC01-appb-M000004
                            ・・・(4)
 これにより、例えば、図9の円形領域111で表される存在可能性領域は、図11に示されるような、円形領域111が風速Wの向き(図中右向き)に所定の拡大率で拡大した楕円領域112に変換される。
 なお、上述した手法以外にも、風速の変化の大きさに応じて、風速の向きに存在可能性領域が拡大されるようにしてもよい。
 さて、図8のフローチャートに戻り、存在可能性領域が算出されると、処理はステップS24に進む。
 ステップS24において、3次元地図生成・更新部75は、障害物地図記憶部74から障害物地図を読み出し、その障害物地図上に、管制空域に存在するドローン10の存在可能性領域を写像した、時刻tについての3次元地図を生成する。
 時刻tについての3次元地図は、時刻t-1について生成された3次元地図を更新することで生成される。すなわち、時刻t-1の存在可能性領域が算出されたドローン10について、時刻t-1より後にそのドローン10から新たな位置情報と風速情報が受信されなければ、時刻t-1の存在可能性領域の算出時の情報を用いて、時刻tの存在可能性領域が算出され、時刻tについての3次元地図に写像される。
 ステップS25において、衝突判定部76は、3次元地図生成・更新部75からの3次元地図に基づいて、管制空域に存在するドローン10の時刻tにおける衝突可能性があるか否かを判定する。
 具体的には、3次元地図生成・更新部75により生成された3次元地図において、飛行中のドローン10の時刻tの存在可能性領域内に、障害物地図に含まれる障害物(建造物や飛行禁止区域)が存在するか否かが判定される。
 例えば、図12に示されるように、3次元地図上に建造物101が存在するものの、存在可能性領域として算出された楕円領域112内にその建造物101が存在しない場合、衝突可能性はないと判定される。
 また、図13に示されるように、3次元地図上に建造物101が存在し、存在可能性領域として算出された楕円領域112内にその建造物101の少なくとも一部が存在する場合、衝突可能性はあると判定される。
 なお、存在可能性領域内に障害物が存在する場合に衝突可能性があると判定される以外にも、存在可能性領域の端部と障害物との距離が、あらかじめ設定された距離より小さい場合などに衝突可能性があると判定されてもよい。
 ここではさらに、ドローン10同士の衝突可能性についても判定される。
 具体的には、3次元地図上に、複数のドローン10の存在可能性領域が含まれる場合、1のドローン10の存在可能性領域が、他のドローン10の存在可能性領域と重なっているときに、それぞれのドローン10について衝突可能性があると判定される。
 例えば、図14に示されるように、3次元地図上に、風速W1の向きと大きさに基づいて算出された第1の飛行体の存在可能性領域121と、風速W2の向きと大きさに基づいて算出された第1の飛行体の存在可能性領域122が含まれているとする。
 風速W1と風速W2は、例えば、規模の大きな建造物の周辺の狭い範囲で発生するいわゆるビル風により、互いに対向する向きを有している。
 図14の例では、存在可能性領域121と存在可能性領域122が重なっているため、第1の飛行体と第2の飛行体は、それぞれ衝突可能性があると判定される。
 なお、ドローン10同士の存在可能性領域が重なっている場合に衝突可能性があると判定される以外にも、一方の存在可能性領域と他方の存在可能性領域との距離が、あらかじめ設定された距離より小さい場合などに衝突可能性があると判定されてもよい。
 さて、ステップS25において、所定のドローン10について衝突可能性があると判定された場合、処理はステップS26に進む。
 ステップS26において、回避軌道設定部77は、3次元地図に基づいて、衝突可能性があると判定されたドローン10の回避軌道を設定する。衝突可能性があると判定されたドローン10が複数存在する場合、複数のドローン10についての回避軌道が設定される。
 具体的には、衝突可能性があると判定されたドローン10の進行方向と速度を変更する飛行経路が設定される。
 例えば、現在のドローン10の進行方向を基準として、時刻tまでの進行方向を時計回りに10度変更する飛行経路が設定される。また、他のドローン10との衝突可能性があると判定されたドローン10については、時刻tまでの進行方向に加え、速度を変更する飛行経路が設定される。
 このようにして飛行経路が設定された後、再度、そのドローン10についての衝突可能性が判定される。
 これらの処理が、衝突可能性がないと判定されるまで繰り返されることで、衝突可能性があると判定されたドローン10の回避軌道が設定される。
 なお、回避軌道として、ドローン10から提供された機体情報に基づいて、そのドローン10が可能な範囲で進行方向と速度を変更する飛行経路が設定されてもよい。また、航空管制システムの運用担当者または管制空域の管理者が、あらかじめ、進行方向や速度の変更パターンを複数設定し、それらの変更パターンの中から飛行経路が順次選択されることで、回避軌道が設定されてもよい。
 以上のようにして回避軌道が設定されると、ステップS27において、3次元地図生成・更新部75は、設定された回避軌道に基づいて、3次元地図を更新する。具体的には、存在可能性領域算出部73が、設定された回避軌道に基づいて存在可能性領域を再度算出し、3次元地図生成・更新部75は、再度算出された存在可能性領域に基づいて、3次元地図を更新する。
 ステップS28において、通信制御部71は、設定された回避軌道に基づいた回避指示を、ドローン10に送信する。衝突可能性があると判定されたドローン10が複数存在する場合、複数のドローン10について設定された回避軌道に基づいた回避指示が、複数のドローン10それぞれに送信される。その後、処理はステップS29に進む。
 一方、ステップS25において、所定のドローン10について衝突可能性がないと判定された場合、ステップS26乃至S28はスキップされ、処理はステップS29に進む。
 ステップS29において、航空管制装置20は、管制空域でドローン10が飛行中であるか否かを判定する。ドローン10が飛行中でないことは、ドローン10から飛行終了を示す情報が受信されるか、または、所定時間以上、位置情報と風速情報が受信されないことなどによって判定される。
 ステップS29において、ドローン10が飛行中であると判定された場合、処理はステップS21に戻り、それ以降の処理が繰り返される。
 一方、ステップS29において、ドローン10が飛行中でないと判定された場合、処理は終了する。
 以上の処理によれば、航空管制装置の管制空域に存在するドローンが、風の影響により飛行計画の飛行経度から逸脱するような場合であっても、建造物や飛行禁止区域などの障害物、他のドローンへの意図しない接近を防ぐことができる。
 特に、風況が局所的に異なる環境下であっても、固定の基地局が備える風速計の計測値に基づいて飛行禁止領域を通知する構成と比較して、風況がドローンの飛行に与える影響を精度良く求めることができる。
 このように、通常では衝突の可能性があり飛行が困難な空域においても、ドローンが障害物や他のドローンとの衝突をより確実に回避することが可能となる。
 なお、上述した処理において、管制空域に存在する全てのドローン10の飛行計画に基づいて、衝突可能性があると判定されたドローン10の回避軌道が設定されてもよい。この場合、衝突可能性の有無にかかわらず、管制空域に存在する全てのドローン10の飛行計画が一括して更新され、例えば回避指示として、各ドローン10に配信されてもよい。
<6.ドローンの他の構成と動作>
 以上においては、航空管制システムにおいて、航空管制装置20が回避軌道を設定することで、ドローン10が障害物や他のドローン10との衝突を回避しながら飛行する例について説明した。
 以下においては、ドローン10自体が回避軌道を設定することで、障害物との衝突を回避しながら飛行する例について説明する。
(ドローンの機能構成)
 図15は、ドローン10の他の機能構成例を示すブロック図である。
 図15のドローン10は、情報取得部211、進路予測部212、存在可能性領域算出部213、障害物地図記憶部214、3次元地図生成・更新部215、衝突判定部216、回避軌道設定部217、飛行計画記憶部218、および飛行制御部219から構成される。
 図15のドローン10における情報取得部211、飛行計画記憶部218、および飛行制御部219は、図3のドローン10における情報取得部41、飛行計画記憶部43、および飛行制御部44と、それぞれ、基本的には同様の機能を有する。
 また、図15のドローン10における進路予測部212、存在可能性領域算出部213、障害物地図記憶部214、3次元地図生成・更新部215、衝突判定部216、および回避軌道設定部217は、図5の航空管制装置20における進路予測部72、存在可能性領域算出部73、障害物地図記憶部74、3次元地図生成・更新部75、衝突判定部76、および回避軌道設定部77と、それぞれ、基本的には同様の機能を有する。
(ドローンの動作の流れ)
 次に、図16のフローチャートを参照して、図15のドローン10の動作の流れについて説明する。
 ステップS51において、情報取得部211は、ドローン10(自機)の位置情報と風速情報を取得する。
 ステップS52において、進路予測部212は、取得された位置情報に基づいて、自機の進路を予測する。
 進路予測部212は、複数のドローン10についての進路を予測する進路予測部72とは異なり、自機についての進路のみを予測することで、自機の所定時間後の予測位置を求める。進路予測部212は、自機の位置情報を用いて進路を予測する他、飛行計画記憶部218に記憶されている飛行計画に含まれる飛行経路を予測進路としてもよい。
 ステップS53において、存在可能性領域算出部213は、進路予測部212により求められた予測位置と、取得された風速情報に基づいて、存在可能性領域を算出する。
 存在可能性領域算出部213は、複数のドローン10についての存在可能性領域を算出する存在可能性領域算出部73とは異なり、自機の存在可能性領域のみを算出する。
 ステップS54において、3次元地図生成・更新部215は、障害物地図記憶部214から障害物地図を読み出し、その障害物地図上に、自機の存在可能性領域を写像した3次元地図を生成する。
 障害物地図記憶部214に記憶される障害物地図は、飛行開始前に、地図情報サービスから取得されてもよいし、飛行中に無線基地局と通信を行うことにより取得されてもよい。また、ドローン10に設けられたデプスセンサに基づいて、障害物地図が取得されてもよい。
 なお、風速が一定以上の大きくなった場合、機体の大幅な変動によりデプスセンサから正確なデプス値が得られないおそれがある。この場合、デプスセンサに基づいて取得された障害物地図の信頼度を下げるようにしてもよい。
 また、障害物地図が飛行中に取得される場合、ドローン10の進行方向の所定範囲のみについての障害物地図が取得されるようにしてもよい。
 ステップS55において、衝突判定部216は、3次元地図生成・更新部215からの3次元地図に基づいて、自機の障害物との衝突可能性があるか否かを判定する。
 ステップS55において、衝突可能性があると判定された場合、処理はステップS56に進み、回避軌道設定部77は、3次元地図に基づいて、自機の回避軌道を設定する。
 回避軌道設定部217は、基本的には、回避軌道設定部77と同様の機能を有するが、障害物地図記憶部214にドローン10の進行方向の所定範囲のみについての障害物地図が記憶されている場合、その範囲に限られた回避軌道を設定する。
 ステップS57において、3次元地図生成・更新部215は、設定された回避軌道に基づいて、3次元地図を更新する。具体的には、存在可能性領域算出部213が、設定された回避軌道に基づいて存在可能性領域を算出し、3次元地図生成・更新部215は、算出された存在可能性領域に基づいて、3次元地図を更新する。
 ステップS58において、飛行制御部219は、設定された回避軌道に基づいて、ドローン10の飛行を制御する。
 一方、ステップS55において、衝突可能性がないと判定された場合、処理はステップS59に進み、飛行制御部219は、飛行計画記憶部218に記憶されている飛行計画に基づいて、ドローン10の飛行を制御する。
 ステップS58またはステップS59の後、ステップS60において、飛行制御部219は、飛行計画が完了したか否かを判定する。
 飛行計画が完了していない場合、処理はステップS51に戻り、これ以降の処理が繰り返される。
 一方、飛行計画が完了した場合、飛行制御部219は、ドローン10の飛行を終了させ、処理は終了する。
 以上の処理によれば、通常では衝突の可能性があり飛行が困難な空域において、航空管制装置が存在しない場合や、航空管制装置との通信が行えない状況であっても、ドローンが障害物との衝突をより確実に回避することが可能となる。
 なお、図15の構成では、他のドローンの存在可能性領域が取得されないので、他のドローンとの衝突を回避することができない。
 そこで、例えば、デプスセンサを用いた物体検出の結果を用いて、衝突可能性の有無が判断されるようにしてもよい。これにより、他のドローンの存在可能性領域が取得されない場合であっても、他のドローンとの衝突を回避することができる上、ドローン以外の胴体との衝突を回避することも可能となる。
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
 上述したドローン10では、制御部31が、記憶部33に記憶されているプログラムをロードして実行することにより、上述した一連の処理が行われる。また、航空管制装置20では、CPU51が、ROM52や記憶部58に記憶されているプログラムをロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ(制御部31、CPU51)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディアに記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータでは、プログラムは、リムーバブルメディアをドライブに装着することにより、記憶部33、ROM52や記憶部58にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、記憶部33、ROM52や記憶部58にインストールすることができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
 本開示に係る技術の実施の形態は、上述した実施の形態に限定されるものではなく、本開示に係る技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 さらに、本開示に係る技術は以下のような構成をとることができる。
(1)
 飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する回避軌道設定部
 を備える情報処理装置。
(2)
 設定された前記回避軌道に基づいた回避指示を、前記飛行体に送信する通信制御部をさらに備える
 (1)に記載の情報処理装置。
(3)
 前記回避軌道設定部は、複数の前記飛行体の前記位置情報と前記風速情報に基づいて、複数の前記飛行体についての前記回避軌道を設定し、
 前記通信制御部は、複数の前記飛行体について設定された前記回避軌道に基づいた前記回避指示を、複数の前記飛行体それぞれに送信する
 (2)に記載の情報処理装置。
(4)
 前記回避軌道設定部は、第1の飛行体が、前記障害物および第2の飛行体との衝突を回避可能な前記回避軌道を設定する
 (3)に記載の情報処理装置。
(5)
 前記通信制御部は、前記位置情報と前記風速情報のうちの少なくとも前記位置情報を前記飛行体から受信する
 (2)乃至(4)のいずれかに記載の情報処理装置。
(6)
 前記通信制御部は、前記飛行体によって取得された前記位置情報と前記風速情報を、前記飛行体から受信する
 (5)に記載の情報処理装置。
(7)
 前記通信制御部は、前記飛行体によって取得された前記位置情報で表される前記飛行位置の前記風速情報を、所定の装置から受信する
 (5)に記載の情報処理装置。
(8)
 前記位置情報と前記風速情報を取得する情報取得部と、
 設定された前記回避軌道に基づいて、前記飛行体の飛行を制御する飛行制御部とをさらに備える
 (1)に記載の情報処理装置。
(9)
 前記位置情報と前記風速情報に基づいて、前記障害物との衝突可能性の有無を判定する衝突判定部をさらに備え、
 前記回避軌道設定部は、前記衝突可能性があると判定された場合、前記回避軌道を設定する
 (1)乃至(8)のいずれかに記載の情報処理装置。
(10)
 前記位置情報を用いて予測された前記飛行体の所定時間後の予測位置と、前記風速情報に基づいて、前記所定時間後の前記飛行体の存在可能性領域を算出する領域算出部をさらに備え、
 前記衝突判定部は、前記存在可能性領域に基づいて、前記所定時間後の前記衝突可能性の有無を判定する
 (9)に記載の情報処理装置。
(11)
 前記領域算出部は、前記予測位置を基準とした領域を、前記風速情報で表される風速の向きおよび大きさに応じて変形することで、前記存在可能性領域を算出する
 (10)に記載の情報処理装置。
(12)
 前記領域算出部は、前記予測位置を中心とした円形領域を、前記風速情報で表される風速の向きおよび大きさに応じて変形する
 (11)に記載の情報処理装置。
(13)
 前記領域算出部は、複数の前記飛行体の前記予測位置と前記風速情報に基づいて、複数の前記飛行体の前記存在可能性領域を算出し、
 前記衝突判定部は、複数の前記飛行体の前記存在可能性領域に基づいて、前記飛行体同士の前記衝突可能性の有無をさらに判定する
 (10)乃至(12)のいずれかに記載の情報処理装置。
(14)
 前記障害物の3次元位置情報を含む障害物地図上に、前記存在可能性領域を写像した3次元地図を生成する地図生成部をさらに備え、
 前記衝突判定部は、前記3次元地図に基づいて、前記所定時間後の前記衝突可能性の有無を判定する
 (10)乃至(13)のいずれかに記載の情報処理装置。
(15)
 前記領域算出部は、設定された前記回避軌道に基づいて、前記存在可能性領域を再度算出し、
 前記地図生成部は、再度算出された前記存在可能性領域に基づいて、前記3次元地図を更新する
 (14)に記載の情報処理装置。
(16)
 前記回避軌道設定部は、前記回避軌道として、前記衝突可能性があると判定された前記飛行体の、少なくとも進行方向を変更する飛行経路を設定する
 (9)乃至(15)のいずれかに記載の情報処理装置。
(17)
 前記回避軌道設定部は、前記回避軌道として、前記衝突可能性があると判定された前記飛行体の前記進行方向と速度を変更する前記飛行経路を設定する
 (16)に記載の情報処理装置。
(18)
 情報処理装置が、
 飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する
 情報処理方法。
(19)
 コンピュータに、
 飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する
 処理を実行させるためのプログラム。
 10 ドローン, 20 航空管制装置, 41 情報取得部, 42 通信制御部, 43 飛行計画記憶部, 44 飛行制御部, 71 通信制御部, 72 進路予測部, 73 存在可能性領域算出部, 74 障害物地図記憶部, 75 3次元地図生成・更新部, 76 衝突判定部, 77 回避軌道設定部, 211 情報取得部, 212 進路予測部, 213 存在可能性領域算出部, 214 障害物地図記憶部, 215 3次元地図生成・更新部, 216 衝突判定部, 217 回避軌道設定部, 218 飛行計画記憶部, 219 飛行制御部

Claims (19)

  1.  飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する回避軌道設定部
     を備える情報処理装置。
  2.  設定された前記回避軌道に基づいた回避指示を、前記飛行体に送信する通信制御部をさらに備える
     請求項1に記載の情報処理装置。
  3.  前記回避軌道設定部は、複数の前記飛行体の前記位置情報と前記風速情報に基づいて、複数の前記飛行体についての前記回避軌道を設定し、
     前記通信制御部は、複数の前記飛行体について設定された前記回避軌道に基づいた前記回避指示を、複数の前記飛行体それぞれに送信する
     請求項2に記載の情報処理装置。
  4.  前記回避軌道設定部は、第1の飛行体が、前記障害物および第2の飛行体との衝突を回避可能な前記回避軌道を設定する
     請求項3に記載の情報処理装置。
  5.  前記通信制御部は、前記位置情報と前記風速情報のうちの少なくとも前記位置情報を前記飛行体から受信する
     請求項2に記載の情報処理装置。
  6.  前記通信制御部は、前記飛行体によって取得された前記位置情報と前記風速情報を、前記飛行体から受信する
     請求項5に記載の情報処理装置。
  7.  前記通信制御部は、前記飛行体によって取得された前記位置情報で表される前記飛行位置の前記風速情報を、所定の装置から受信する
     請求項5に記載の情報処理装置。
  8.  前記位置情報と前記風速情報を取得する情報取得部と、
     設定された前記回避軌道に基づいて、前記飛行体の飛行を制御する飛行制御部とをさらに備える
     請求項1に記載の情報処理装置。
  9.  前記位置情報と前記風速情報に基づいて、前記障害物との衝突可能性の有無を判定する衝突判定部をさらに備え、
     前記回避軌道設定部は、前記衝突可能性があると判定された場合、前記回避軌道を設定する
     請求項1に記載の情報処理装置。
  10.  前記位置情報を用いて予測された前記飛行体の所定時間後の予測位置と、前記風速情報に基づいて、前記所定時間後の前記飛行体の存在可能性領域を算出する領域算出部をさらに備え、
     前記衝突判定部は、前記存在可能性領域に基づいて、前記所定時間後の前記衝突可能性の有無を判定する
     請求項9に記載の情報処理装置。
  11.  前記領域算出部は、前記予測位置を基準とした領域を、前記風速情報で表される風速の向きおよび大きさに応じて変形することで、前記存在可能性領域を算出する
     請求項10に記載の情報処理装置。
  12.  前記領域算出部は、前記予測位置を中心とした円形領域を、前記風速情報で表される風速の向きおよび大きさに応じて変形する
     請求項11に記載の情報処理装置。
  13.  前記領域算出部は、複数の前記飛行体の前記予測位置と前記風速情報に基づいて、複数の前記飛行体の前記存在可能性領域を算出し、
     前記衝突判定部は、複数の前記飛行体の前記存在可能性領域に基づいて、前記飛行体同士の前記衝突可能性の有無をさらに判定する
     請求項10に記載の情報処理装置。
  14.  前記障害物の3次元位置情報を含む障害物地図上に、前記存在可能性領域を写像した3次元地図を生成する地図生成部をさらに備え、
     前記衝突判定部は、前記3次元地図に基づいて、前記所定時間後の前記衝突可能性の有無を判定する
     請求項10に記載の情報処理装置。
  15.  前記領域算出部は、設定された前記回避軌道に基づいて、前記存在可能性領域を再度算出し、
     前記地図生成部は、再度算出された前記存在可能性領域に基づいて、前記3次元地図を更新する
     請求項14に記載の情報処理装置。
  16.  前記回避軌道設定部は、前記回避軌道として、前記衝突可能性があると判定された前記飛行体の、少なくとも進行方向を変更する飛行経路を設定する
     請求項9に記載の情報処理装置。
  17.  前記回避軌道設定部は、前記回避軌道として、前記衝突可能性があると判定された前記飛行体の前記進行方向と速度を変更する前記飛行経路を設定する
     請求項16に記載の情報処理装置。
  18.  情報処理装置が、
     飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する
     情報処理方法。
  19.  コンピュータに、
     飛行体の位置情報と、前記位置情報で表される飛行位置の風速情報に基づいて、前記飛行体が障害物との衝突を回避可能な回避軌道を設定する
     処理を実行させるためのプログラム。
PCT/JP2020/035276 2019-09-30 2020-09-17 情報処理装置、情報処理方法、およびプログラム WO2021065543A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/753,913 US20220366801A1 (en) 2019-09-30 2020-09-17 Information processing device, information processing method, and program
JP2021550607A JPWO2021065543A1 (ja) 2019-09-30 2020-09-17
CN202080066690.4A CN114521248A (zh) 2019-09-30 2020-09-17 信息处理设备、信息处理方法和程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-179112 2019-09-30
JP2019179112 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065543A1 true WO2021065543A1 (ja) 2021-04-08

Family

ID=75338051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035276 WO2021065543A1 (ja) 2019-09-30 2020-09-17 情報処理装置、情報処理方法、およびプログラム

Country Status (4)

Country Link
US (1) US20220366801A1 (ja)
JP (1) JPWO2021065543A1 (ja)
CN (1) CN114521248A (ja)
WO (1) WO2021065543A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189534A1 (ja) * 2022-03-31 2023-10-05 ソニーグループ株式会社 無人移動体、情報処理方法及びコンピュータプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220309934A1 (en) * 2021-03-23 2022-09-29 Honeywell International Inc. Systems and methods for detect and avoid system for beyond visual line of sight operations of urban air mobility in airspace

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033232A (ja) * 2015-07-31 2017-02-09 セコム株式会社 自律飛行ロボット
JP2017165365A (ja) * 2016-03-18 2017-09-21 株式会社Subaru 飛行障害表示装置、飛行障害表示方法及び飛行障害表示プログラム
US9959771B1 (en) * 2015-12-18 2018-05-01 Amazon Technologies, Inc. Unmanned aerial vehicle routing using real-time weather data
JP2018081675A (ja) * 2016-11-04 2018-05-24 Necソリューションイノベータ株式会社 無人航空機管理装置、無人航空機管理方法、及びプログラム
JP2018165930A (ja) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム ドローンナビゲーション装置、ドローンナビゲーション方法及びドローンナビゲーションプログラム
JP2019137398A (ja) * 2017-02-24 2019-08-22 キヤノンマーケティングジャパン株式会社 情報処理装置、情報処理装置の制御方法、無人航空機、無人航空機の制御方法、およびプログラム
WO2019159420A1 (ja) * 2018-02-15 2019-08-22 株式会社日立国際電気 移動体運行管理システムおよび移動体

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231294B2 (en) * 2003-10-23 2007-06-12 International Business Machines Corporation Navigating a UAV
US7702427B1 (en) * 2004-07-30 2010-04-20 The United States Of America As Represented By The National Aeronautics And Space Administration (Nasa) Air traffic management evaluation tool
US20070078600A1 (en) * 2005-09-20 2007-04-05 Honeywell International Inc. System and method of collision avoidance using an invarient set based on vehicle states and dynamic characteristics
US20100121574A1 (en) * 2006-09-05 2010-05-13 Honeywell International Inc. Method for collision avoidance of unmanned aerial vehicle with other aircraft
AT505798B1 (de) * 2007-09-20 2011-12-15 Naderhirn Michael Verfahren zur automatischen vermeidung von kollisionen eines objektes mit weiteren objekten
US8538673B2 (en) * 2008-10-31 2013-09-17 Czech Technical University In Prague System and method for planning/replanning collision free flight plans in real or accelerated time
FR2939505B1 (fr) * 2008-12-09 2011-02-11 Thales Sa Systeme de gestion de vol a optimisation du plan de vol lateral
US9334052B2 (en) * 2014-05-20 2016-05-10 Verizon Patent And Licensing Inc. Unmanned aerial vehicle flight path determination, optimization, and management
US20150379408A1 (en) * 2014-06-30 2015-12-31 Microsoft Corporation Using Sensor Information for Inferring and Forecasting Large-Scale Phenomena
FR3031808B1 (fr) * 2015-01-16 2017-01-13 Thales Sa Procede d'aide a la navigation en fonction de conditions meteorologiques
FR3031806B1 (fr) * 2015-01-16 2017-01-13 Thales Sa Procede d'aide a la navigation en fonction de conditions meteorologiques
CN104750110A (zh) * 2015-02-09 2015-07-01 深圳如果技术有限公司 一种无人机的飞行方法
EP3304943B1 (en) * 2015-06-01 2019-03-20 Telefonaktiebolaget LM Ericsson (publ) Moving device detection
US10553122B1 (en) * 2016-03-22 2020-02-04 Amazon Technologies, Inc. Unmanned aerial vehicle data collection for routing
US10720066B2 (en) * 2016-06-10 2020-07-21 ETAK Systems, LLC Flying lane management with lateral separations between drones
US11670179B2 (en) * 2016-06-10 2023-06-06 Metal Raptor, Llc Managing detected obstructions in air traffic control systems for passenger drones
US11837098B2 (en) * 2016-06-10 2023-12-05 Metal Raptor, Llc Systems and methods for drone air traffic control utilizing geographic boundaries for management
WO2018106235A1 (en) * 2016-12-07 2018-06-14 Intel Corporation Methods and apparatus for reducing energy consumed by drones during flight
JP6899846B2 (ja) * 2016-12-28 2021-07-07 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 飛行経路表示方法、モバイルプラットフォーム、飛行システム、記録媒体及びプログラム
WO2019075008A1 (en) * 2017-10-10 2019-04-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy METHOD FOR IDENTIFYING OPTIMUM VEHICLE PATHWAYS WHEN ENERGY IS A METRIC OR A KEY STRAIN
US11030906B2 (en) * 2017-11-16 2021-06-08 The Boeing Company System for taking into account micro wind conditions in flight plans for aerial vehicles
US11029709B1 (en) * 2017-12-28 2021-06-08 United States Of America As Represented By The Administrator Of Nasa Adaptive wind estimation, trajectory generation, and flight control for aerial systems using motion data
US10719705B2 (en) * 2018-01-03 2020-07-21 Qualcomm Incorporated Adjustable object avoidance proximity threshold based on predictability of the environment
JP2019164415A (ja) * 2018-03-19 2019-09-26 セコム株式会社 飛行制御システム
US10909864B2 (en) * 2018-06-27 2021-02-02 Intel Corporation Drone obstacle avoidance using real-time wind estimation
JP7215706B6 (ja) * 2018-07-11 2023-02-14 メトロウェザー株式会社 飛行経路算出システム、飛行経路算出プログラム、および無人航空機経路制御方法
WO2020046998A1 (en) * 2018-08-27 2020-03-05 Gulfstream Aerospace Corporation Avoidance of aircraft and aircraft wake during flight
JP7202834B2 (ja) * 2018-10-04 2023-01-12 セコム株式会社 移動計画算出装置及びプログラム
JP7106417B2 (ja) * 2018-10-04 2022-07-26 セコム株式会社 飛行計画算出装置及びプログラム
CN109358633B (zh) * 2018-10-18 2020-07-03 北京航空航天大学 基于最后通牒博弈论的飞行控制方法及装置
FR3087915B1 (fr) * 2018-10-31 2021-09-17 Thales Sa Dispositif anticollision, systeme avionique de protection, procede d'anticollision et programme d'ordinateur associes
JP2020086569A (ja) * 2018-11-16 2020-06-04 株式会社MinD in a Device デバイス制御システム
CN112088344B (zh) * 2018-12-04 2024-02-02 深圳市大疆创新科技有限公司 控制可移动装置的移动的方法及系统
US11217104B2 (en) * 2019-01-22 2022-01-04 Here Global B.V. Airflow modeling for route optimization
US11215630B2 (en) * 2019-01-22 2022-01-04 Here Global B.V. Airflow modeling from aerial vehicle pose
WO2020189493A1 (ja) * 2019-03-18 2020-09-24 株式会社Nttドコモ 情報処理装置及び情報処理方法
CN110243359B (zh) * 2019-05-31 2023-03-24 南京航空航天大学 基于低空风预测模型的安全航迹规划方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033232A (ja) * 2015-07-31 2017-02-09 セコム株式会社 自律飛行ロボット
US9959771B1 (en) * 2015-12-18 2018-05-01 Amazon Technologies, Inc. Unmanned aerial vehicle routing using real-time weather data
JP2017165365A (ja) * 2016-03-18 2017-09-21 株式会社Subaru 飛行障害表示装置、飛行障害表示方法及び飛行障害表示プログラム
JP2018081675A (ja) * 2016-11-04 2018-05-24 Necソリューションイノベータ株式会社 無人航空機管理装置、無人航空機管理方法、及びプログラム
JP2019137398A (ja) * 2017-02-24 2019-08-22 キヤノンマーケティングジャパン株式会社 情報処理装置、情報処理装置の制御方法、無人航空機、無人航空機の制御方法、およびプログラム
JP2018165930A (ja) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム ドローンナビゲーション装置、ドローンナビゲーション方法及びドローンナビゲーションプログラム
WO2019159420A1 (ja) * 2018-02-15 2019-08-22 株式会社日立国際電気 移動体運行管理システムおよび移動体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189534A1 (ja) * 2022-03-31 2023-10-05 ソニーグループ株式会社 無人移動体、情報処理方法及びコンピュータプログラム

Also Published As

Publication number Publication date
CN114521248A (zh) 2022-05-20
US20220366801A1 (en) 2022-11-17
JPWO2021065543A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US11868131B2 (en) Flight path determination
US20200332776A1 (en) Aerial inspection in a movable object environment
WO2018214074A1 (zh) 无人飞行器的返航控制方法、设备及无人飞行器
US11046430B1 (en) Intelligent trajectory adviser system for unmanned aerial vehicles in complex environments
WO2018086141A1 (en) Construction and update of elevation maps
JP2020098567A (ja) 適応検知・回避システム
EP3128386A1 (en) Method and device for tracking a moving target from an air vehicle
WO2021065543A1 (ja) 情報処理装置、情報処理方法、およびプログラム
EP3343305B1 (en) Systems and methods for establishing a flight pattern adjacent to a target for a vehicle to follow
CN116830057A (zh) 无人机(uav)集群控制
JP2019074918A (ja) 制御装置、移動体、及び移動体の分散制御プログラム
WO2021079516A1 (ja) 飛行体の飛行経路作成方法及び管理サーバ
JP2021118364A (ja) 通信制御装置、通信制御方法およびプログラム。
JP2023029358A (ja) 自動管制システム、自動管制方法、及び自動管制装置
EP4235344A1 (en) A system for repositioning uav swarm
CN115602003A (zh) 无人驾驶航空器飞行避障方法、系统和可读存储介质
JP7078601B2 (ja) 情報処理装置、情報処理方法、及びプログラム
JP2023036446A (ja) 飛行体制御システム、飛行体制御サーバ、及び飛行体制御方法
WO2022034278A1 (en) Vehicle controller
WO2020217714A1 (ja) 推定システム、推定装置、推定方法及びコンピュータプログラム
JP2024028683A (ja) 移動体、情報処理方法及びコンピュータプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871673

Country of ref document: EP

Kind code of ref document: A1