WO2019159420A1 - 移動体運行管理システムおよび移動体 - Google Patents

移動体運行管理システムおよび移動体 Download PDF

Info

Publication number
WO2019159420A1
WO2019159420A1 PCT/JP2018/036367 JP2018036367W WO2019159420A1 WO 2019159420 A1 WO2019159420 A1 WO 2019159420A1 JP 2018036367 W JP2018036367 W JP 2018036367W WO 2019159420 A1 WO2019159420 A1 WO 2019159420A1
Authority
WO
WIPO (PCT)
Prior art keywords
checkpoint
information
drone
mobile
weather
Prior art date
Application number
PCT/JP2018/036367
Other languages
English (en)
French (fr)
Inventor
能成 木下
洋一 串岡
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2020500262A priority Critical patent/JPWO2019159420A1/ja
Publication of WO2019159420A1 publication Critical patent/WO2019159420A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems

Definitions

  • This disclosure relates to a mobile operation management system and can be applied to, for example, a drone operation management system.
  • UAV Unmanned Aerial Vehicle
  • Drone Unmanned Aerial Vehicle
  • a drone is an unmanned air vehicle, and one feature is that a pilot can fly to a destination automatically by inputting altitude, latitude, and longitude information without requiring advanced maneuvering techniques.
  • Another feature of drones is that the size of the drone itself, the sensors installed, and the functions for wireless communication differ depending on the intended use.
  • drones are expected to play an active role in logistics, monitoring, infrastructure inspection, disaster response, etc., and it is expected that drones will fly in the sky on a daily basis.
  • a problem of the present disclosure is to provide a mobile operation management system that solves at least one of the above problems.
  • the mobile unit operation management system includes a mobile unit, a checkpoint that communicates wirelessly with the mobile unit, and a database connected to the checkpoint via a network.
  • the database performs operation management of the mobile body, grasps the position of the mobile body via the network and the checkpoint, and further, according to necessity, to the mobile body via the network and the checkpoint. Instructing or changing the travel route.
  • the safety of the mobile object can be improved.
  • FIG. 1 It is a figure which shows the structural example of a drone operation management system. It is a figure explaining the drone of FIG. It is a figure explaining the sensor part of the drone of FIG. It is a figure which shows the case where a weather information acquisition apparatus is installed in the ground part of a flight area. It is a figure which shows the case where the other drone installs the sensor which acquires weather information. It is a block diagram which shows the functional structure of the checkpoint of FIG. It is a figure explaining the sensor part of the checkpoint of FIG. It is a block diagram which shows the functional structure of the database of FIG. It is a figure which shows the flight route of the drone at the time of normal operation. It is a figure which shows the flight route updated by the bad weather on the flight route of FIG. It is a figure explaining the update and stop of the flight route by the traffic jam on the updated flight route of FIG. It is a figure which shows the state at the time of the flight route re-update from the standby state of FIG.
  • FIG. 1 is a diagram illustrating a configuration example of a drone operation management system.
  • operation management is used when the moving body is a flying body
  • operation management is used when the moving body is a vehicle and when the moving body includes a vehicle.
  • the drone operation management system 1 is configured to include a drone 10 that is a plurality of mobile bodies, a plurality of checkpoints 20, and a database (DB) 30, and the drone 10 and each checkpoint. 20 is connected by wireless communication, and each checkpoint 20 and the database 30 are connected via a wireless communication network 40.
  • the drone 10 flies to a destination point through a plurality of predetermined check points. In the following, a case where five checkpoints are used is described as an example, but the number of checkpoints is arbitrary.
  • FIG. 2 is a diagram for explaining the drone of FIG.
  • FIG. 3 is a diagram illustrating a sensor unit of the drone of FIG.
  • the drone 10 includes, for example, four rotors (rotary blades) on one plane, and each rotor 101a to 101d is rotated by a motor driven by a battery. It is a quad-rotor type small unmanned helicopter that flies. Here, the direction of the arrow in the figure is the forward direction. In a quad-rotor type helicopter, counter-torque is canceled by using rotors 101a to 101d that rotate in different directions in front and rear and left and right. For example, when it is desired to rotate the machine body in the yaw direction, a difference is given to the rotational speeds of the front and rear rotors 101a and 101c and the left and right rotors 101b and 101d. Thus, by controlling the rotation speed of each of the rotors 101a to 101d, it is possible to perform various movements and adjustments of postures.
  • the drone 10 includes a storage unit 11, a sensor unit 12, a weather information collection unit 13, a positioning unit 14, a moving body information notification unit 15, a movement route acquisition unit 16, and a first communication.
  • the unit 17, the movement control unit 18, and the control unit 19 are included.
  • the storage unit 11 is composed of a general storage device such as a memory, and stores various data related to the drone 10. As shown in the example of data stored in the storage unit in FIG. 2, the storage unit 11 stores drone information 111, checkpoint information 112, positioning information 113, travel route information 114, and weather information 115.
  • the drone information 111 is information related to the drone 10 such as the ID of the drone 10.
  • the drone information 111 is stored in advance before starting the system.
  • the check point information 112 is information related to the check point 20 that is passed through when flying to the destination point.
  • the checkpoint information 112 stores a checkpoint ID for identifying a checkpoint and the position of the checkpoint in association with each other.
  • the check point information 112 is stored in advance before starting the system.
  • the positioning information 113 is information indicating the position of the own device that the drone 10 has positioned.
  • the positioning information 113 stores the drone ID, the current position of the own device that the drone 10 has positioned, and the current time when the current position is measured in association with each other.
  • the positioning information 113 is updated by the positioning unit 14 as needed.
  • the movement route information 114 is information indicating a flight route from the current position of the drone 10 to the destination point (or the next checkpoint).
  • the movement route information 114 stores the start point position of the movement route that is the current position, the end point position of the movement route that is the position of the destination point, and the ID of the check point that passes between the start point position and the end point position. Yes.
  • the movement route information 114 is set by the movement route acquisition unit 16.
  • the sensor unit 12 is a sensor for acquiring ambient weather information such as a thermometer, a hygrometer, a barometer, an anemometer, a rain gauge, and the like, and causes factors that impair the stability of autonomous flight. It is a sensor for detecting.
  • the weather information collection unit 13 records the weather information acquired by the sensor unit 12 in the weather information 115.
  • FIG. 4 is a diagram showing a case where the weather information acquisition device is installed on the ground portion of the flight area.
  • FIG. 5 is a diagram illustrating a case where another drone installs a sensor that acquires weather information.
  • a weather information collecting unit is obtained when a sensor 51 of a weather information acquisition device 50 installed on a ground portion of a flight area acquires weather information and the drone 10 communicates wirelessly with the weather information acquisition device 50. 13 may collect weather information and record it in the weather information 115. Further, as shown in FIG. 5, the sensor unit 12 of the drone 10a flying around acquires the weather information, and the drone 10 wirelessly communicates with the drone 10a, so that the weather information collection unit 13 collects the weather information.
  • the weather information 115 may be recorded.
  • the weather information 115 includes weather information and positional information of the sensor that acquired the weather information.
  • the positioning unit 14 is a GPS (Global Positioning System) module, for example, and measures the current position of the drone 10 and records the result in the positioning information 113.
  • GPS Global Positioning System
  • the mobile body information notification unit 15 When the mobile body information notification unit 15 arrives at the check point 20, the mobile body information notification unit 15 notifies the check point 20 of mobile body information such as its own ID (drone information 111), positioning information 113, departure point, and destination point. In addition, the moving body information notifying unit 15 notifies the weather information 115 to the check point 20.
  • mobile body information such as its own ID (drone information 111), positioning information 113, departure point, and destination point.
  • the moving body information notifying unit 15 notifies the weather information 115 to the check point 20.
  • the movement route acquisition unit 16 is a processing unit that acquires the movement route information 114 from the database 30 via the checkpoint 20 and determines the direction in which the next checkpoint is located at the current position. Note that the travel route acquisition unit 16 searches for the closest checkpoint from the checkpoint information 112 at the departure point and sets it as the next checkpoint.
  • the movement route acquisition unit 16 moves the movement route information.
  • a checkpoint previously checkpoint or other adjacent checkpoint in a direction avoiding the traveling direction to the next checkpoint acquired from 114 is set as the next checkpoint.
  • the movement route acquisition unit 16 similarly changes the next checkpoint.
  • the first communication unit 17 is a processing unit that performs wireless communication according to a predetermined standard between the drone 10 and each checkpoint 20, between other drones and the weather information acquisition device 50.
  • the movement control unit 18 controls the flight state of the drone 10 so that the drone 10 flies in the direction of the destination point from the next check point direction or the last check point acquired by the movement route acquisition unit 16. Note that the movement control unit 18 controls the flight of the drone 10 by controlling the operation of each unit, such as adjusting the movement and posture of the drone 10 by controlling the rotational speed of each rotor. .
  • the control unit 19 controls the operations of the above-described units constituting the drone 10.
  • FIG. 6 is a block diagram showing a functional configuration of the checkpoint of FIG.
  • FIG. 7 is a view for explaining the sensor unit of the check point in FIG.
  • each of the checkpoints 20 includes a storage unit 21, a sensor unit 22, a weather information collection unit 23, a moving body information acquisition unit 24, a checkpoint information notification unit 25, and a movement route information acquisition notification unit 26.
  • the first communication unit 27, the second communication unit 28, and the control unit 29 are included.
  • the storage unit 21 includes a general storage device such as a memory, and stores various data such as checkpoint information 211, moving body information 212, moving route information 213, and weather information 214.
  • Checkpoint information 211 is information about the checkpoint 20, such as the ID of the checkpoint 20. It is stored in advance before starting this system.
  • the moving body information 212 includes drone information 111 from the drone 10, positioning information 113, a departure point, and a target point.
  • the travel route information 213 is travel route information 314 from the database 30.
  • the weather information 214 is weather information 115 from the drone 10 and weather information acquired from the sensor unit 22.
  • the weather information 214 includes the position information or checkpoint ID of the sensor that acquired the weather information together with the weather information.
  • the sensor unit 22 is a sensor for detecting factors that impair the stability of autonomous flight, such as a sensor for acquiring ambient weather information similar to the sensor unit 12.
  • the meteorological information collection unit 23 collects the weather information 115 notified from the mobile body information notification unit 15 and the weather information acquired by the sensor unit 22, and records it in the weather information 214 of the storage unit 21.
  • the mobile body information acquisition unit 24 acquires the drone information 111 notified from the mobile body information notification unit 15 and records it in the mobile body information 212 of the storage unit 21.
  • the checkpoint information notification unit 25 notifies the database 30 of the moving body information 212 and the weather information 214.
  • the travel route information acquisition notification unit 26 acquires travel route information from the database 30, records it in the travel route information 213 of the storage unit 21, and notifies the drone 10 of the travel route information 213.
  • the first communication unit 27 is a processing unit that performs wireless communication between the checkpoint 20 and the drone 10 in accordance with a predetermined standard.
  • the second communication unit 28 is a processing unit that performs wireless communication between the checkpoint 20 and the database 30 in accordance with a predetermined standard.
  • the control unit 29 controls the operation of each of the above-described units constituting each check point 20.
  • FIG. 8 is a block diagram showing a functional configuration of the database of FIG.
  • the database 30 is a device that manages the operation of the drone 10, and is composed of a general computer. As shown in FIG. 8, the database 30 includes a storage unit 31, a checkpoint information acquisition unit 32, a search unit 33, a movement route notification unit 34, a second communication unit 35, and a control unit 36.
  • the storage unit 31 includes a general storage device such as a memory, and stores various pieces of information related to the moving body information 311, the check point information 312, the environment information 313, and the moving route information 314.
  • the moving body information 311 is the moving body information 212 from the checkpoint information notification unit 25 of the checkpoint 20, that is, the drone information 111, the positioning information 113, the departure point, and the target point.
  • Checkpoint information 312 is checkpoint information of each checkpoint 20, that is, checkpoint ID and position information. It is stored in advance before starting this system.
  • the environment information 313 records weather information acquired by the drain 10 and the checkpoint 20 and the weather information including the position information, and drone traffic information.
  • the travel route information 314 records the flight route (departure point, target point, and check point via) for each drone.
  • the checkpoint information acquisition unit 32 acquires the mobile body information 212 and the weather information 214 notified from the checkpoint information notification unit 25 and records them in the mobile body information 311 and the environment information 313 in the storage unit 31.
  • the search unit 33 searches the flight route information 314 from the current location of each drone to the destination point (a checkpoint through).
  • the search unit 33 creates a weather map and a traffic jam map from the drone information 111, the positioning information 113, the weather information 115, and the weather information of each checkpoint 20 of the drone 10 received by the second communication unit 35 from each checkpoint 20.
  • the travel route information stored in the storage unit 31 is updated based on these maps.
  • a certain degree of weather map can be created using only the weather information at checkpoint 20, if the drone 10 navigates while collecting weather information every time a specific distance is moved, the weather map is created in more detail. be able to.
  • the travel route notification unit 34 notifies the flight route (all flight routes or the next check point) to the drone via the check point based on the travel route information 314.
  • the 2nd communication part 35 transmits / receives the said various information between each checkpoint 20 similarly to the 2nd communication part 28.
  • the control unit 36 controls the operation of each of the above-described units constituting the database 30.
  • the database 30 manages the operation, grasps the position of the drone 10 via the network 40 and the checkpoint 20, and further instructs the drone 10 via the network 40 and the checkpoint 20 to indicate or change the operation route as necessary. Instructions are possible.
  • the database 30 manages the operation, obtains weather information from the drone 10 or other check points 20, generates a weather map from the obtained weather information, and builds an operation route based on the weather map. Through 20, it is possible to instruct an operation route or an instruction to change the drone as needed.
  • Each process performed in the drone 10, the check point 20, and the database 30 is actually realized by the CPU executing a program installed in the drone 10, the check point 20, and the database 30.
  • the program may be provided by being incorporated in advance in a nonvolatile memory such as a ROM, or may be provided by being recorded in a recording medium in a file in an installable or executable format, or distributed.
  • FIG. 9 is a diagram showing the flight route of the drone during normal operation.
  • the flight route FR1 from the starting point (START) to the destination point (DESTINATION) of the drone 10 has five check points C1 to C5.
  • the drone 10 passes through the three checkpoints of the second checkpoint C2, the third checkpoint C3, and the fifth checkpoint C5 as the flight route from the departure point to the destination point, and then the destination. Fly to the point.
  • the drone 10 moves from the departure point to the first check point 20 (second check point C2).
  • the drone 10 Each time the drone 10 reaches the checkpoint 20, it notifies its own ID, and the registration information of the next checkpoint (the drone 10 stores only the route to the next checkpoint and the information of the next checkpoint every time the checkpoint passes) ) Or flight route update information (when drone 10 memorizes the route to the destination and the route is instructed to be updated when a change is required) from checkpoint 20 via wireless communication And move to the next checkpoint based on the information.
  • the drone 10 arrives at the last checkpoint 20 (fifth checkpoint C5) and notifies its own ID, acquires that it is the last checkpoint by wireless communication from the checkpoint 20, and uses the information as a basis. Move to the point.
  • FIG. 10 is a diagram showing a flight route updated on the flight route of FIG. 9 due to bad weather.
  • the database 30 indicates that the weather near the fifth check point C5 is bad based on the weather information from the drone other than the drone 10 and the fifth check point C5 (the rainy weather image RC indicates the bad weather area in the figure). And the fifth checkpoint C5 is difficult to pass, and the updated flight route is notified to the third checkpoint C3.
  • the drone 10 passes the third check point C3, the flight route of the check point that passes through is updated, and a new flight route FR2 is formed so as to fly to the destination point via the fourth check point C4.
  • FIG. 11 is a diagram for explaining the updating and stopping of the flight route due to the traffic jam on the updated flight route of FIG.
  • a drone group DG including a large number of drones 10a to 10e is flying, and if the drone 10 is passed, a safe operation is ensured due to the risk of collision, crosstalk of wireless communication, etc.
  • the database 30 determines that it cannot be performed, and notifies the drone 10 to wait near the third check point C3 via the third check point C3.
  • the drone 10 that has received the standby instruction waits until the flight route is re-updated at the standby location SP near the third checkpoint C3.
  • FIG. 12 is a diagram showing a state when the flight route is re-updated from the standby state of FIG.
  • the drone 10 waiting at the third checkpoint C3 passes through the fourth checkpoint C4.
  • the flight route to the destination point is received from the database 30 via the third check point C3, and the state is shifted from the stop state to the operation state.
  • the drone's flight route is formed by the checkpoints that pass through, and the flight route is updated in a timely manner according to information (weather, traffic jam, etc.) around the checkpoint, thereby avoiding collision between drones and bad weather. It is possible to avoid routes and avoid crosstalk of wireless communication by eliminating drone congestion, and it is possible to fly a drone safely from the departure point to the destination point.
  • an example of a drone is described as a moving body, but the present invention is not limited to this, and the moving body may be an unmanned traveling vehicle. If it is an unmanned vehicle, operation management such as a travel route can be realized in the same manner by managing traffic information as environmental information in addition to weather information.
  • the wireless communication network is described as an example of the network. However, the present invention is not limited to this, and a wired communication network may be used.
  • Checkpoint has the function to calculate the drone information to pass through and the estimated time to pass, and also collects the air volume and rainfall as the weather information of the surroundings, and has the function to judge whether the drone's flight is affected. It has a function of sharing these pieces of information between scattered checkpoints. Based on the above information, the checkpoint considers the safe flight of the drone, updates the checkpoint that passes from the checkpoint to the drone, updates the flight route, or pauses the flight.
  • a display device may be provided in the database to display the flight route, weather information, traffic jam information, etc. shown in FIGS.
  • Drone operation management system 10 Drone 20: Checkpoint 30: Database 40: Network

Abstract

縦横無尽にドローンが空を飛び交う場合、ドローン同士が衝突する恐れ、天候不良箇所の飛行による異常飛行、無線通信の混線などが問題となる。移動体運行管理システムは、移動体と、前記移動体と無線通信するチェックポイントと、前記チェックポイントとネットワークで接続されるデータベースと、を備える。前記データベースは前記移動体の運行管理を行うと共に、前記ネットワークと前記チェックポイントを介して前記移動体の位置を把握し、更に、前記ネットワークと前記チェックポイントを介して前記移動体に必要に応じた移動経路の指示または変更を指示する。

Description

移動体運行管理システムおよび移動体
 本開示は移動体運行管理システムに関し、例えばドローン運航管理システムに適用可能である。
 現在、UAV(Unmanned Aerial Vehicle)、通称ドローン(Drone)による無人飛行体による空のインフラ整備の準備が加速されている。ドローンは無人の飛行体であり、操縦者は、操縦の高度な技術を必要とせず、高度、緯度・経度の情報を入力すれば、自動的に目的地まで飛行できることがひとつの特徴である。また、ドローンは使用用途に応じて、ドローン自体の大きさ、搭載するセンサや無線通信用機能が違うことも特徴である。
 将来近いうちに、ドローンは、物流、監視、インフラ点検、災害対応などでの活躍が期待され、ドローンが日常的に空を飛び交う日がくることが予想される。
特開2017-56899号公報
 縦横無尽にドローンが空を飛び交う場合、ドローン同士が衝突する恐れ、天候不良箇所の飛行による異常飛行、無線通信の混線などが問題となる。  本開示の課題は、前記問題の少なくとも一つの問題を解決する移動体運行管理システムを提供することにある。
 本開示のうち、代表的なものの概要を簡単に説明すれば、下記のとおりである。  すなわち、移動体運行管理システムは、移動体と、前記移動体と無線通信するチェックポイントと、前記チェックポイントとネットワークで接続されるデータベースと、を備える。前記データベースは前記移動体の運行管理を行うと共に、前記ネットワークと前記チェックポイントを介して前記移動体の位置を把握し、更に、前記ネットワークと前記チェックポイントを介して前記移動体に必要に応じた移動経路の指示または変更を指示する。
 上記移動体運行管理システムによれば、移動体の安全性を向上させることができる。
ドローン運航管理システムの構成例を示す図である。 図1のドローンを説明する図である。 図2のドローンのセンサ部を説明する図である。 飛行地域の地上部分に天候情報取得装置を設置する場合を示す図である。 他のドローンが天候情報を取得するセンサを設置する場合を示す図である。 図1のチェックポイントの機能的な構成を示すブロック図である。 図6のチェックポイントのセンサ部を説明する図である。 図1のデータベースの機能的な構成を示すブロック図である。 通常運航時のドローンの飛行ルートを示す図である。 図9の飛行ルート上の天候不良により更新された飛行ルートを示す図である。 図10の更新された飛行ルート上の渋滞による飛行ルートの更新および停止を説明する図である。 図11の待機状態からの飛行ルート再更新時の状態を示す図である。
 以下、実施形態について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。
 まず、移動体運行管理システムの一例であるドローン運航管理システムについて図1を用いて説明する。図1はドローン運航管理システムの構成例を示す図である。なお、移動体が飛行体である場合は運航管理という語句を用い、移動体が車両である場合および移動体が車両を含む場合は運行管理という語句を用いる。
 図1に示すように、ドローン運航管理システム1は、複数の移動体であるドローン10と、複数のチェックポイント20と、データベース(DB)30とを有して構成され、ドローン10と各チェックポイント20とは無線通信で接続され、各チェックポイント20とデータベース30とは無線通信ネットワーク40を介して接続されている。ドローン10は予め定められたチェックポイントを複数経由しながら目的地点まで飛行する。以下では、五つのチェックポイントで構成する場合を例に説明しているが、チェックポイントの数は任意である。
 (ドローン)
 次に、ドローンについて図2、3を用いて説明する。図2は図1のドローンを説明する図である。図3は図2のドローンのセンサ部を説明する図である。
 図2の模式的な斜視図に示すように、ドローン10は、例えば4枚のロータ(回転翼)が一平面上に存在し、各ロータ101a~101dがバッテリにより駆動するモータによって回転することによって飛行するクアッドロータ型の小型無人ヘリコプタである。ここで、図の矢印の方向が前方向である。クアッドロータ型のヘリコプタでは、前後・左右で異なる方向に回転するロータ101a~101dを用いることで反トルクの相殺を行っている。そして、例えば、機体をヨー方向に回転させたいときは、前後のロータ101a,101cと左右ロータ101b,101dの回転数に差を与える。このように、各ロータ101a~101dの回転数を制御することにより、様々な機体の移動や姿勢の調節を行うことができる。
 図2の機能的なブロック図に示すように、ドローン10は記憶部11とセンサ部12と天候情報収集部13と測位部14と移動体情報通知部15と移動経路取得部16と第1通信部17と移動制御部18と制御部19とを有して構成されている。
 記憶部11はメモリ等の一般的な記憶装置から構成され、ドローン10に関する様々なデータを記憶する。図2の記憶部が記憶するデータの例に示すように、記憶部11はドローン情報111とチェックポイント情報112と測位情報113と移動経路情報114と気象情報115とを記憶する。
 ドローン情報111は、ドローン10のID等、ドローン10に関する情報である。ドローン情報111は、本システムの起動前にあらかじめ記憶されている。
 チェックポイント情報112は、目的地点まで飛行する際に経由するチェックポイント20に関する情報である。チェックポイント情報112は、チェックポイントを識別するためのチェックポイントIDと、そのチェックポイントの位置と、が対応付けて記憶されている。チェックポイント情報112は、本システムの起動前にあらかじめ記憶されている。
 測位情報113は、ドローン10が測位した自装置の位置を示す情報である。測位情報113は、ドローンIDと、そのドローン10が測位した自装置の現在位置と、現在位置を測位したときの現在時刻とが対応付けて記憶されている。測位情報113は、測位部14によって随時更新される。
 移動経路情報114は、ドローン10の現在位置から目的地点(または次のチェックポイント)までの飛行ルートを示す情報である。移動経路情報114は、上記現在位置である移動経路の始点位置と、目的地点の位置である移動経路の終点位置と、始点位置から終点位置までの間を経由するチェックポイントのIDが記憶されている。移動経路情報114は、移動経路取得部16によって設定される。
 図3に示すように、センサ部12は、温度計、湿度計、気圧計、風力計、雨量計など周囲の天候情報を取得するためのセンサ等であり、自律飛行の安定性を損なう要因を検知するためのセンサである。
 天候情報収集部13はセンサ部12が取得した天候情報を気象情報115に記録する。
 ここで、ドローン10にセンサ部12を設置することなく、天候情報を取得する方法について図4、5を用いて説明する。図4は飛行地域の地上部分に天候情報取得装置を設置する場合を示す図である。図5は他のドローンが天候情報を取得するセンサを設置する場合を示す図である。
 図4に示すように、飛行地域の地上部分に設置された天候情報取得装置50のセンサ51が天候情報を取得し、ドローン10が天候情報取得装置50と無線通信することで、天候情報収集部13が天候情報を収集して気象情報115に記録してもよい。また、図5に示すように、周囲を飛行するドローン10aのセンサ部12が天候情報を取得し、ドローン10がドローン10aと無線通信することで、天候情報収集部13が天候情報を収集して気象情報115に記録してもよい。なお、気象情報115には天候情報と共にその天候情報を取得したセンサの位置情報も含まれている。
 測位部14は、例えば、GPS(Global Positioning System)モジュールであり、ドローン10の現在位置を測位し、その結果を測位情報113に記録する。
 移動体情報通知部15は、チェックポイント20に到着した際、自身のID(ドローン情報111)、測位情報113、出発地点、目的地点等の移動体情報をチェックポイント20に通知する。また、移動体情報通知部15は、気象情報115をチェックポイント20に通知する。
 移動経路取得部16は、チェックポイント20を介してデータベース30から移動経路情報114を取得し、現在位置において次のチェックポイントが位置する方向を決定する処理部である。なお、移動経路取得部16は、出発地点においてはチェックポイント情報112から最も近いチェックポイントを探索し次のチェックポイントとする。
 天候情報収集部13が特定の条件を上回る(悪い)天候情報を収集した際(例えば、急激な豪雨や雷、雪などの悪天候を読み取った場合)には、移動経路取得部16は移動経路情報114から取得した次のチェックポイントへの進行方向を回避する方向のチェックポイント(前のチェックポイントや、近接する他のチェックポイント)を次のチェックポイントとする。また、ドローン10と次のチェックポイントとの間の無線通信が悪天候またはチェックポイント自体の故障により途切れてしまう場合も、同様に、移動経路取得部16は次のチェックポイントを変更する。
 第1通信部17は、ドローン10が各チェックポイント20との間、他のドローンとの間および天候情報取得装置50との間で、所定の規格に準拠して無線通信する処理部である。
 移動制御部18は、移動経路取得部16が取得した次のチェックポイント方向または最後のチェックポイントから目的地点の方向にドローン10が飛行するように、ドローン10の飛行状態を制御する。なお、移動制御部18は、例えば、各ロータの回転数を制御することにより、ドローン10の移動や姿勢を調節する等、これらの各部の動作を制御することにより、ドローン10の飛行を制御する。
 制御部19は、ドローン10を構成する上記各部の動作を制御する。
 (チェックポイント)
 続いて、チェックポイントについて図6、7を用いて説明する。図6は図1のチェックポイントの機能的な構成を示すブロック図である。図7は図6のチェックポイントのセンサ部を説明する図である。
 図6に示すように、チェックポイント20のそれぞれは、記憶部21とセンサ部22と気象情報収集部23と移動体情報取得部24とチェックポイント情報通知部25と移動経路情報取得通知部26と第1通信部27と第2通信部28と制御部29とを有して構成されている。
 記憶部21はメモリ等の一般的な記憶装置から構成され、チェックポイント情報211、移動体情報212、移動経路情報213、気象情報214等様々なデータを記憶する。
 チェックポイント情報211は、チェックポイント20のID等、チェックポイント20に関する情報である。本システムの起動前にあらかじめ記憶されている。
 移動体情報212はドローン10からのドローン情報111、測位情報113、出発地点および目標地点である。
 移動経路情報213はデータベース30からの移動経路情報314である。
 気象情報214はドローン10からの気象情報115およびセンサ部22から取得した天候情報である。なお、気象情報214には天候情報と共にその天候情報を取得したセンサの位置情報またはチェックポイントIDも含まれている。
 図7に示すように、センサ部22は、センサ部12と同様の周囲の天候情報を取得するためのセンサ等、自律飛行の安定性を損なう要因を検知するためのセンサである。
 気象情報収集部23は、移動体情報通知部15から通知された気象情報115とセンサ部22で取得した天候情報を収集し、記憶部21の気象情報214に記録する。
 移動体情報取得部24は、移動体情報通知部15から通知されたドローン情報111を取得し、記憶部21の移動体情報212に記録する。
 チェックポイント情報通知部25は、移動体情報212および気象情報214をデータベース30に通知する。
 移動経路情報取得通知部26は、データベース30から移動経路情報を取得し、記憶部21の移動経路情報213に記録し、ドローン10に移動経路情報213を通知する。
 第1通信部27は、チェックポイント20がドローン10との間で、所定の規格に準拠して無線通信する処理部である。
 第2通信部28は、チェックポイント20がデータベース30との間で、所定の規格に準拠してネットワーク無線通信する処理部である。
 制御部29は、チェックポイント20のそれぞれを構成する上記各部の動作を制御する。
 (データベース)
 続いて、データベースについて図8を用いて説明する。図8は図1のデータベースの機能的な構成を示すブロック図である。
 データベース30はドローン10の運航を管理する装置であり、一般的なコンピュータから構成される。図8に示すように、データベース30は記憶部31とチェックポイント情報取得部32と探索部33と移動経路通知部34と第2通信部35と制御部36とを有して構成されている。
 記憶部31はメモリ等の一般的な記憶装置から構成され、移動体情報311、チェックポイント情報312、環境情報313、移動経路情報314に関する様々な情報を記憶する。
 移動体情報311は、チェックポイント20のチェックポイント情報通知部25からの移動体情報212、すなわち、ドローン情報111、測位情報113、出発地点および目標地点である。
 チェックポイント情報312は、各チェックポイント20のチェックポイント情報、すなわち、チェックポイントIDおよび位置情報である。本システムの起動前にあらかじめ記憶されている。
 環境情報313は、ドレーン10およびチェックポイント20等が取得した天候情報およびその位置情報を含む気象情報と、ドローンの渋滞情報と、を記録している。
 移動経路情報314は、ドローンごとの飛行ルート(出発地点、目標地点、経由するチェックポイント)を記録している。
 チェックポイント情報取得部32は、チェックポイント情報通知部25から通知された移動体情報212および気象情報214を取得し、記憶部31の移動体情報311および環境情報313に記録する。
 探索部33は各ドローンの現在地から目的地点までの飛行経路(経由するチェックポイント)を探索し、移動経路情報314に記録する。
 また、探索部33は、第2通信部35が各チェックポイント20から受信したドローン10のドローン情報111、測位情報113、気象情報115および各チェックポイント20の気象情報より気象マップおよび渋滞マップを作成し、それらのマップに基づき、記憶部31に記憶されている移動経路情報を更新する。なお、チェックポイント20の気象情報だけでもある程度の気象マップが作成可能であるが、特定の距離を移動するごとに気象情報を収集しながらドローン10が航行すれば、より詳細は気象マップを作成することができる。
 移動経路通知部34は、移動経路情報314に基づいて、チェックポイント経由でドローンに飛行経路(全飛行経路または次のチェックポイント)を通知する。
 第2通信部35は、第2通信部28と同様、各チェックポイント20との間で上記各種情報を送受信する。
 制御部36は、データベース30を構成する上記各部の動作を制御する。
 データベース30は運航管理を行うと共にネットワーク40とチェックポイント20を介してドローン10の位置を把握し、更に、ネットワーク40とチェックポイント20を介してドローン10に必要に応じた運航経路の指示または変更の指示が可能である。データベース30は運航管理を行うと共にドローン10または他のチェックポイント20より気象情報を入手し、入手した気象情報より気象マップを生成し、それを基に運航経路を構築することが可能で、チェックポイント20を介して、該当するドローンに必要に応じた運航経路の指示または変更の指示が可能である。
 ドローン10、チェックポイント20、データベース30で行われる各処理は、実際には、ドローン10、チェックポイント20、データベース30にインストールされたプログラムをCPUが実行することにより実現される。上記プログラムは、ROM等の不揮発性メモリに予め組み込まれて提供されたり、インストール可能な形式又は実行可能な形式のファイルで記録媒体に記録して提供したり、配布してもよい。
 (飛行ルート)
 次に、通常運航時の飛行ルートの例について図9を用いて説明する。図9は通常運航時のドローンの飛行ルートを示す図である。
 図9に示すように、ドローン10の出発地点(START)から目的地点(DESTINATION)までの飛行ルートFR1には、第一チェックポイントC1~第五チェックポイントC5の五つが存在する。通常時運航時においては、例えば、ドローン10は出発地点から目的地点への飛行ルートとして第二チェックポイントC2、第三チェックポイントC3、第五チェックポイントC5の三つのチェックポイントを通過した後、目的地点へ飛行する。
 操縦者がドローン10に目的地点の緯度・経度を設定すると、ドローン10は出発地点から最初のチェックポイント20(第二チェックポイントC2)までの移動を行う。
 ドローン10はチェックポイント20に到達する毎に自身のIDを通知すると共に、次チェックポイントの登録情報(ドローン10が次チェックポイントまでの航路のみを記憶してチェックポイント通過ごとに次チェックポイントの情報を取得する場合)または飛行ルートの更新情報(ドローン10が目的地点までの航路を記憶しており変更が必要になった場合に航路が更新指示される場合)をチェックポイント20より無線通信により取得し、当該情報を基に次チェックポイントまでの移動を行う。
 ドローン10は最後のチェックポイント20(第五チェックポイントC5)に到達し自身のIDを通知すると共に、最後のチェックポイントであることをチェックポイント20より無線通信により取得し、当該情報を基に目的地点までの移動を行う。
 次に、飛行ルート上の天候不良による飛行ルートの更新の例について図10を用いて説明する。図10は図9の飛行ルート上が天候不良により更新された飛行ルートを示す図である。
 データベース30は、ドローン10以外のドローンおよび第五チェックポイントC5からの気象情報に基づいて第五チェックポイントC5付近の天候が不良(図では天候不良域を雨雲イメージRCで示している)であることを情報として捉え、第五チェックポイントC5は通過困難であるとし、第三チェックポイントC3に更新された飛行ルートを知らせる。ドローン10は、第三チェックポイントC3の通過時に、通過するチェックポイントの飛行ルートを更新し、第四チェックポイントC4を経由して、目的地点へ飛行するよう、新規飛行ルートFR2が形成される。
 次に、飛行ルート上のドローンの渋滞による飛行ルートの更新および停止の例について図11を用いて説明する。図11は図10の更新された飛行ルート上の渋滞による飛行ルートの更新および停止を説明する図である。
 第四チェックポイントC4付近では、多数のドローン10a~10eを含むドローン群DGが飛行しており、ドローン10を通過させると、衝突の危険性、無線通信の混線などの影響による安全な運航を確保できないことを、データベース30で判断し、第三チェックポイントC3を介して第三チェックポイントC3付近で待機することをドローン10に通知する。
 待機指示を受け取ったドローン10は、第三チェックポイントC3付近の待機場所SPで、飛行ルートの再更新がされるまで待機する。
 次に、飛行ルート上のドローンの渋滞解消による飛行ルートの再更新について図12を用いて説明する。図12は図11の待機状態からの飛行ルート再更新時の状態を示す図である。
 ドローン群DGの運航が進み、第三チェックポイントC3と第四チェックポイントC4間のドローンの渋滞が解消されると、第三チェックポイントC3で待機していたドローン10は、第四チェックポイントC4経由で目的地点へ向かう飛行ルートをデータベース30から第三チェックポイントC3を介して受信し、停止状態から運航状態へ移行する。
 もし、第五チェックポイントC5の天候が良好になれば、渋滞している第四チェックポイントC4経由ではなく、第五チェックポイントC5経由を選択することも可能である。
 実施形態では、ドローンの飛行ルートを、通過するチェックポイントで形成し、チェックポイント付近の情報(天候、渋滞など)によって、飛行ルートの適時更新を実施することで、ドローン同士の衝突回避、天候不良ルートの回避、ドローンの渋滞解消による無線通信の混線回避が可能となり、ドローンを、出発地点から目的地点まで、安全に飛行させることが可能となる。
 また、悪天候などでドローンの飛行が困難な場合、自律的にその地域を避けることで安定した飛行が可能となる。
 以上、本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は、上記実施形態に限定されるものではなく、種々変更可能であることはいうまでもない。
 例えば、実施形態では、移動体としてドローン(無人飛行体)の例について説明したが、これに限定されるものではなく、移動体は無人走行車両であってもよい。無人走行車両であれば、気象情報の他、渋滞情報を環境情報として管理すれば同様に移動経路等の運行管理を実現することができる。
 また、実施形態では、ネットワークとして無線通信ネットワークを例に説明したが、これに限定されるものではなく、有線通信ネットワークであってもよい。
 また、実施形態では、データベースで運航管理を行う例を説明したが、これに限定されるものではなく、チェックポイントで運航管理を行ってもよい。チェックポイントは、通過するドローンの情報および通過予測時刻を計算する機能を持ち、また、周辺の天候の情報として、風量、雨量を収集し、ドローンの飛行に影響がないか判断する機能を持ち、これらの情報を点在するチェックポイント同士で共有する機能を持つ。上記情報を基に、チェックポイントは、ドローンの安全飛行を考慮し、チェックポイントからドローンへ通過するチェックポイントを更新し、飛行ルートを更新させ、または、飛行を一時停止させる。
 また、データベースに表示装置を設け、図9~12に示した飛行ルート、天候情報、渋滞情報等を表示するようにしてもよい。
1:ドローン運航管理システム10:ドローン20:チェックポイント30:データベース40:ネットワーク

Claims (6)

  1.  移動体と、
     前記移動体と無線通信するチェックポイントと、
     前記チェックポイントとネットワークで接続されるデータベースと、を備え、
     前記データベースは前記移動体の運行管理を行うと共に、前記ネットワークと前記チェックポイントを介して前記移動体の位置を把握し、更に、前記ネットワークと前記チェックポイントを介して前記移動体に必要に応じた移動経路の指示または変更を指示する移動体運行管理システム。
  2.  請求項1において、
     前記データベースは前記移動体または前記チェックポイントより環境情報を入手し、入手した前記環境情報より環境マップを生成し、前記環境マップを基に移動経路を構築し、前記チェックポイントを介して、該当する移動体に必要に応じた移動経路の指示または変更を指示する移動体運行管理システム。
  3.  予め定められたチェックポイントを複数経由しながら目的地域まで移動する移動体であって、
     前記チェックポイントに到達する時に自身のIDを通知する第一手段と、次チェックポイントの登録情報または移動経路更新情報を前記チェックポイントより無線通信により取得する第二手段と、前記次チェックポイントの登録情報または前記移動経路更新情報を基に前記次チェックポイントまでの移動を行う第三手段と、を備える移動体。
  4.  請求項3において、さらに、
     気象情報を収集する第四手段と、前記チェックポイントを通過する時に収集した前記気象情報を無線通信により前記チェックポイントに伝達する第五手段と、を備える移動体。
  5.  請求項4において、
     前記第四手段は、当該移動体のセンサ部または他の移動体のセンサ部または前記チェックポイントのセンサ部により前記気象情報を収集する移動体。
  6.  請求項4において、
     前記第四手段が収集した前記気象情報が特定の条件を上回る場合には、前記第三手段は自動的に進行方向を回避する移動体。
PCT/JP2018/036367 2018-02-15 2018-09-28 移動体運行管理システムおよび移動体 WO2019159420A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020500262A JPWO2019159420A1 (ja) 2018-02-15 2018-09-28 移動体運行管理システムおよび移動体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018024984 2018-02-15
JP2018-024984 2018-02-15

Publications (1)

Publication Number Publication Date
WO2019159420A1 true WO2019159420A1 (ja) 2019-08-22

Family

ID=67618632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036367 WO2019159420A1 (ja) 2018-02-15 2018-09-28 移動体運行管理システムおよび移動体

Country Status (2)

Country Link
JP (1) JPWO2019159420A1 (ja)
WO (1) WO2019159420A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065543A1 (ja) * 2019-09-30 2021-04-08 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
CN112665573A (zh) * 2019-10-15 2021-04-16 本田技研工业株式会社 管理装置
US20220207472A1 (en) * 2020-12-29 2022-06-30 Here Global B.V. Method, apparatus, and system for drone delivery using beacon positioning
WO2023053974A1 (ja) * 2021-10-01 2023-04-06 国立研究開発法人宇宙航空研究開発機構 気象観測システム、移動体及び送信機
WO2023175810A1 (ja) * 2022-03-17 2023-09-21 日本電気株式会社 無人航空機の情報取得システムおよび無人航空機の情報取得方法
WO2023243376A1 (ja) * 2022-06-17 2023-12-21 ソニーグループ株式会社 情報処理装置及び情報処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016205217A1 (en) * 2015-06-15 2016-12-22 Humatics Corporation High-precision time of flight measurement system
JP2017503246A (ja) * 2014-09-15 2017-01-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 航空機の飛行制御方法及び関連装置
WO2017029611A1 (en) * 2015-08-17 2017-02-23 H3 Dynamics Holdings Pte. Ltd. Drone box
WO2017099058A1 (ja) * 2015-12-07 2017-06-15 高木 邦夫 無人飛行体を用いた輸送システム
WO2017115807A1 (ja) * 2015-12-28 2017-07-06 Kddi株式会社 飛行体制御装置、飛行許可空域設定システム、飛行体制御方法及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513881B2 (ja) * 2008-03-07 2010-07-28 株式会社デンソー カーナビゲーション装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017503246A (ja) * 2014-09-15 2017-01-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 航空機の飛行制御方法及び関連装置
WO2016205217A1 (en) * 2015-06-15 2016-12-22 Humatics Corporation High-precision time of flight measurement system
WO2017029611A1 (en) * 2015-08-17 2017-02-23 H3 Dynamics Holdings Pte. Ltd. Drone box
WO2017099058A1 (ja) * 2015-12-07 2017-06-15 高木 邦夫 無人飛行体を用いた輸送システム
WO2017115807A1 (ja) * 2015-12-28 2017-07-06 Kddi株式会社 飛行体制御装置、飛行許可空域設定システム、飛行体制御方法及びプログラム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065543A1 (ja) * 2019-09-30 2021-04-08 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
CN112665573A (zh) * 2019-10-15 2021-04-16 本田技研工业株式会社 管理装置
JP2021064172A (ja) * 2019-10-15 2021-04-22 本田技研工業株式会社 管理装置
JP7041111B2 (ja) 2019-10-15 2022-03-23 本田技研工業株式会社 管理装置
US20220207472A1 (en) * 2020-12-29 2022-06-30 Here Global B.V. Method, apparatus, and system for drone delivery using beacon positioning
WO2023053974A1 (ja) * 2021-10-01 2023-04-06 国立研究開発法人宇宙航空研究開発機構 気象観測システム、移動体及び送信機
WO2023175810A1 (ja) * 2022-03-17 2023-09-21 日本電気株式会社 無人航空機の情報取得システムおよび無人航空機の情報取得方法
WO2023243376A1 (ja) * 2022-06-17 2023-12-21 ソニーグループ株式会社 情報処理装置及び情報処理方法

Also Published As

Publication number Publication date
JPWO2019159420A1 (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2019159420A1 (ja) 移動体運行管理システムおよび移動体
US20210407303A1 (en) Systems and methods for managing energy use in automated vehicles
EP3619591B1 (en) Leading drone
US11189180B2 (en) Unmanned aerial vehicle visual line of sight control
KR101874091B1 (ko) 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체
CN110226143B (zh) 前导无人机的方法
EP3619584B1 (en) Underwater leading drone system
JP6680498B2 (ja) 自律飛行移動体、ターゲット追跡方法
US20210255616A1 (en) Systems and methods for automated cross-vehicle navigation using sensor data fusion
CN105247593A (zh) 飞行禁区的飞行控制
CN110928286A (zh) 用于控制车辆的自动驾驶的方法、设备、介质和系统
CN110300706B (zh) 飞行器-地面车辆协调
JP6721308B2 (ja) 自律飛行移動体、自律飛行移動体システム
US20220343094A1 (en) System and method for ground obstacle detection and database management
US20220335842A1 (en) Systems and methods to display an elevated landing port for an urban air mobility vehicle
WO2021070274A1 (ja) 処理システム、無人航空機、及び飛行経路決定方法
US20230267843A1 (en) System for repositioning UAV swarm
US20220309931A1 (en) Systems and methods for guiding vehicles to charging points
WO2021245844A1 (ja) 着陸情報決定装置、着陸情報決定システム、着陸情報決定方法、及びコンピュータ可読媒体
JP2022129533A (ja) 運航空域管理装置、無人飛行体運航管理装置、無人飛行体遠隔操縦装置、及び、無人飛行体
JP6899606B2 (ja) ルート管理制御サーバ、方法及びシステム並びにこれに用いられる第1飛行体及び第2飛行体
JP6899608B2 (ja) ルート管理制御サーバ、方法及びシステム並びにこれに用いられる第1飛行体及び第2飛行体
EP4063177A1 (en) Systems and methods for guiding vehicles to charging points
US11643202B2 (en) Drone with semi-rigid structure and selectively actuated arms
EP4080481A1 (en) Systems and methods to display an elevated landing port for an urban air mobility vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906148

Country of ref document: EP

Kind code of ref document: A1