WO2021065506A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021065506A1
WO2021065506A1 PCT/JP2020/035034 JP2020035034W WO2021065506A1 WO 2021065506 A1 WO2021065506 A1 WO 2021065506A1 JP 2020035034 W JP2020035034 W JP 2020035034W WO 2021065506 A1 WO2021065506 A1 WO 2021065506A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
oxide semiconductor
gate electrode
region
semiconductor device
Prior art date
Application number
PCT/JP2020/035034
Other languages
English (en)
French (fr)
Inventor
明紘 花田
拓生 海東
創 渡壁
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to CN202080065097.8A priority Critical patent/CN114467184A/zh
Publication of WO2021065506A1 publication Critical patent/WO2021065506A1/ja
Priority to US17/657,168 priority patent/US20220223707A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78609Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing leakage current
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile

Definitions

  • the present invention relates to a semiconductor device including a display device using a TFT made of an oxide semiconductor and an optical sensor device.
  • a TFT (Thin Film Transistor) using an oxide semiconductor can have a larger OFF resistance than a TFT using polysilicon, and can have a higher mobility than a TFT using a-Si (amorphous silicon). It can be used for display devices such as liquid crystal display devices and organic EL display devices, or semiconductor devices such as sensors.
  • Patent Document 1 describes a configuration in which the periphery of the Al wiring is covered with titanium nitride (TiN).
  • ITO Indium Tin Oxide
  • Al is a transparent metal oxide conductive film
  • the comparative example of Patent Document 2 describes a configuration in which the Al wiring has a three-layer structure of Ti, Al, and TiN.
  • Oxide semiconductors become metallic and conductive when oxygen is removed. Further, in a TFT using an oxide semiconductor, when oxygen is removed from the channel region, the TFT becomes conductive and cannot operate as a TFT.
  • metal is used for the gate electrode, drain electrode, source electrode, etc. of the TFT.
  • Metals have the property of depriving oxygen.
  • a gate insulating film is present on the gate electrode, and an oxide semiconductor film is present on the gate insulating film. In such a configuration, a phenomenon occurs in which the metal gate electrode deprives the oxide semiconductor of oxygen through the gate insulating film, and the oxide semiconductor TFT does not operate.
  • An object of the present invention is to prevent a phenomenon in which an oxide semiconductor TFT does not operate due to oxygen being deprived from the oxide semiconductor constituting the channel region in particular.
  • the present invention overcomes the above problems, and specific means are as follows.
  • a semiconductor device having a TFT in which a gate insulating film is formed on a gate electrode and an oxide semiconductor film is formed on the gate insulating film, and the oxide semiconductor film is a channel region and a drain.
  • a metal nitride film is formed on the upper surface of the gate electrode, which has a region and a source region and faces the channel region of the oxide semiconductor film, and is one of the upper surfaces of the gate electrode.
  • the part is a semiconductor device characterized in that the metal nitride film does not exist.
  • the metal nitride film When viewed in a plane, the metal nitride film is not present in the portion of the upper surface of the gate electrode corresponding to the drain region and the source region of the oxide semiconductor film (1).
  • the oxide semiconductor film has an intermediate resistance region between the channel region and the drain region and between the channel region and the source region, and the oxide semiconductor on the upper surface of the gate electrode.
  • the metal nitride film is not formed in a portion of the film corresponding to the intermediate resistance region, and the metal nitride film is formed in a portion of the oxide semiconductor film corresponding to the drain region and the source region.
  • FIG. 1 is a top view of the liquid crystal display device. It is a top view of the display area of a liquid crystal display device. It is sectional drawing of the display area of a liquid crystal display device. It is sectional drawing around the TFT by 1st Embodiment of Example 1.
  • FIG. This is an example of the cross-sectional structure of the gate electrode according to the first embodiment. It is sectional drawing around the TFT by 2nd Embodiment of Example 1. FIG. It is sectional drawing around the TFT by the 3rd Embodiment of Example 1. FIG. It is sectional drawing around the TFT by 4th Embodiment of Example 1. FIG. It is sectional drawing around the TFT by 1st Embodiment of Example 2.
  • FIG. 1st Embodiment of Example 2 is a top view of the display area of a liquid crystal display device. It is sectional drawing of the display area of a liquid crystal display device. It is sectional drawing around the TFT by 1st Embodiment of Example 1.
  • FIG. This is
  • FIG. It is sectional drawing around the TFT by 2nd Embodiment of Example 4.
  • FIG. It is sectional drawing around TFT in the comparative example. It is a detailed cross-sectional view of the comparative example. It is another detailed sectional view of another comparative example.
  • FIG. 1 is a plan view of a liquid crystal display device as an example to which the present invention is applied.
  • the TFT substrate 100 and the opposing substrate 200 are adhered to each other by the sealing material 16, and a liquid crystal layer is sandwiched between the TFT substrate 100 and the opposing substrate 200.
  • a display region 14 is formed in a portion where the TFT substrate 100 and the facing substrate 200 overlap.
  • Scanning lines 11 extend in the horizontal direction (x direction) and are arranged in the vertical direction (y direction) in the display area 14 of the TFT substrate 100. Further, the video signal lines 12 extend in the vertical direction and are arranged in the horizontal direction. The area surrounded by the scanning line 11 and the video signal line 12 is the pixel 13.
  • the TFT substrate 100 is formed larger than the opposing substrate 200, and the portion where the TFT substrate 100 does not overlap the opposing substrate 200 is the terminal region 15.
  • a flexible wiring board 17 is connected to the terminal area 15.
  • the driver IC that drives the liquid crystal display device is mounted on the flexible wiring board 17.
  • a backlight is arranged on the back surface of the TFT substrate 100.
  • the liquid crystal display panel forms an image by controlling the light from the backlight for each pixel.
  • the flexible wiring board 17 is bent to the back surface of the backlight to reduce the outer shape of the liquid crystal display device as a whole.
  • the TFT used for the display region 14 is a TFT using an oxide semiconductor having a small leakage current.
  • a scanning line driving circuit is formed in the frame portion near the sealing material, and a TFT using a polysilicon semiconductor having a high mobility is often used for the scanning line driving circuit.
  • TFTs made of oxide semiconductors can also be used.
  • FIG. 2 is a plan view of pixels in the display area.
  • FIG. 2 is a liquid crystal display device of a system called FFS (Fringe Field Switching) in an IPS (In Plane Switching) system.
  • FFS Flexible Field Switching
  • IPS In Plane Switching
  • a bottom gate type TFT using an oxide semiconductor 106 is used. Since the oxide semiconductor TFT has a small leakage current, it is suitable as a switching TFT.
  • the scanning lines 11 extend in the horizontal direction (x direction) and are arranged in the vertical direction (y direction). Further, the video signal lines 12 extend in the vertical direction and are arranged in the horizontal direction.
  • the pixel electrode 116 is formed in a region surrounded by the scanning line 11 and the video signal line 12.
  • an oxide semiconductor TFT having an oxide semiconductor 106 is formed between the video signal line 12 and the pixel electrode 116.
  • the video signal line 12 constitutes the drain electrode 107
  • the scanning line 11 branches to form the gate electrode 104 of the oxide semiconductor TFT.
  • the source electrode 108 of the oxide semiconductor TFT extends to the pixel electrode 116 side and is connected to the pixel electrode 116 via a through hole 112.
  • the pixel electrode 116 is formed in a comb-tooth shape.
  • the pixel electrode 116 has a slit 1161.
  • a common electrode 113 is formed in a plane on the lower side of the pixel electrode 116 via a capacitive insulating film.
  • the common electrode 113 is continuously and commonly formed in each pixel.
  • FIG. 3 is an example of a cross-sectional view of the liquid crystal display device corresponding to FIG.
  • a bottom gate type TFT using an oxide semiconductor film 106 is used. Since the oxide semiconductor TFT has a small leakage current, it is suitable as a switching TFT.
  • Oxide semiconductors include IGZO (Indium Gallium Zinc Oxide), ITZO (Indium Tin Zinc Oxide), ZnON (Zinc Oxide Nitride), IGO (Indium Gallium Oxide), and the like.
  • IGZO Indium Gallium Zinc Oxide
  • ITZO Indium Tin Zinc Oxide
  • ZnON Zinc Oxide Nitride
  • IGO Indium Gallium Oxide
  • IGZO is used as the oxide semiconductor.
  • the polyimide substrate 100 is formed on the glass substrate 90.
  • the liquid crystal display device becomes a flexible liquid crystal display device.
  • a third base film formed of silicon oxide (SiO) is formed on the polyimide substrate 100.
  • the gate electrode 104 is formed on the third base film 103.
  • the gate electrode 104 has a laminated structure of Ti and Al.
  • the gate insulating film 105 is formed of SiO so as to cover the gate electrode 104, and the oxide semiconductor film 106 is formed on the gate insulating film 105.
  • a drain electrode 107 is laminated on one end of the oxide semiconductor film 106, and a source electrode 108 is laminated on the other end of the oxide semiconductor 106. Both the drain electrode 107 and the source electrode 108 are made of metal or alloy.
  • a first interlayer insulating film 109 made of SiO is formed over the oxide semiconductor 106, a drain electrode 107, and a source electrode 108, and a second interlayer insulating film 110 made of SiN is formed on the first interlayer insulating film 109 made of SiO.
  • the reason why the first interlayer insulating film 109 is formed of SiO is that oxygen is supplied from SiO to the channel region of the oxide semiconductor 106.
  • An organic passivation film 111 is formed on the second interlayer insulating film 110 by, for example, an acrylic resin. Since the organic passivation film 111 has a role as a flattening film, it is formed as thick as about 2 ⁇ m. A through hole 112 is formed in the organic passivation film 111 in order to make the source electrode 108 and the pixel electrode 116 conductive.
  • the common electrode 113 is formed in a plane on the organic passivation film 111, the capacitive insulating film 114 is formed on the common electrode 113, and the pixel electrode 116 is formed on the capacitive insulating film 114.
  • a through hole 115 is formed in the through hole 112 of the organic passivation film 111 in the capacitive insulating film 114.
  • An alignment film 117 for initially aligning the liquid crystal molecules is formed so as to cover the pixel electrode 116.
  • the facing substrate 200 is arranged so as to face the pixel electrode 116 and the like with the liquid crystal layer 300 interposed therebetween.
  • a color filter 201 and a black matrix 202 are formed inside the facing substrate 200.
  • the black matrix 202 covers the TFT and the through hole 112 to prevent light leakage.
  • the overcoat film 203 is formed over the color filter 201 and the black matrix 202, and the alignment film 204 is formed on the overcoat film 203.
  • the gate electrode 104 made of metal faces the oxide semiconductor 106 with the gate insulating film 105 interposed therebetween. Since the gate electrode 104 is a metal, it has an action of extracting oxygen from the oxide semiconductor 106 via the gate insulating film 105. Then, the resistance of the oxide semiconductor 106 decreases, and the TFT does not operate normally.
  • FIG. 19 is a cross-sectional view of the vicinity of the TFT as a comparative example to deal with this.
  • the left side is a cross-sectional view of the vicinity of the TFT using the oxide semiconductor 106
  • the right side is the capacitance wiring 120 and the capacitance electrode 122 for forming the capacitance, which are formed at the same time as the TFT.
  • the layer structure of FIG. 19 is as described in FIG. The difference between FIG. 19 and FIG. 3 is that the gate insulating film 105 between the gate electrode 104 and the oxide semiconductor film 106 is a first gate insulating film 1051 formed of SiN and a second gate insulating film formed of SiO. The 1052 is present. The SiO film 1052 is in contact with the oxide semiconductor film 106.
  • FIG. 20 is a cross-sectional view showing the action of the first gate insulating film 1051 formed of SiN in FIG.
  • the SiN film 1051 has a property of blocking oxygen.
  • the gate electrode 104 made of metal tends to attract oxygen from the SiO film or oxide semiconductor film 106, which is the second gate insulating film 1052, but as shown in FIG. 20, the first gate insulating film is used.
  • the movement of oxygen is blocked by the SiN film, which is the film 1051, and it is possible to prevent oxygen from being extracted from the oxide semiconductor 106.
  • the X mark on the arrow in FIG. 20 indicates that oxygen is blocked by the SiN film 1051.
  • FIG. 21 is a cross-sectional view showing a problem in the configuration of FIG.
  • the SiN film constituting the first gate insulating film 1051 blocks oxygen while releasing hydrogen.
  • this hydrogen reaches the oxide semiconductor film 106, the oxide semiconductor is reduced, that is, oxygen is deprived, and the oxide semiconductor film 106 becomes conductive.
  • Examples 1 to 4 shown below provide a configuration for taking measures against the phenomenon that oxygen is deprived from the oxide semiconductor layer 106 while preventing such a problem from occurring.
  • FIG. 4 is a cross-sectional view showing the first embodiment of the first embodiment.
  • the layer structure of FIG. 4 is the same as that described with reference to FIG.
  • the gate electrode 104 has a configuration in which the Al film 1042 is sandwiched between a Ti film as a base metal 1041 and a Ti film as a cap metal 1043.
  • the feature of FIGS. 4 and 5 is that titanium nitride (TiN), which is a metal nitride film 10, is formed on the gate electrode 104.
  • a gate insulating film 105 made of a SiO film is formed on the titanium nitride film 10, and an oxide semiconductor film 106 is formed on the gate insulating film 106.
  • the titanium nitride film 10 is formed by sputtering, which can be continuously performed in the same chamber as the sputtering of the Ti film which is the cap metal 1043. That is, after forming the Ti film 1043 by sputtering, nitrogen gas can be introduced and the TiN film 10 can be formed by reactive sputtering.
  • the film thickness of the base metal 1041 is, for example, 50 nm
  • the film thickness of the Al film 1042 is, for example, 300 nm
  • the film thickness of the cap metal 1043 is, for example, 50 nm.
  • the film thickness of the TiN film 10 is, for example, 10 nm, but it may be about 5 nm to 30 nm.
  • the film thickness of the gate insulating film 105 formed of SiO is, for example, 300 nm to 500 nm
  • the film thickness of the oxide semiconductor 106 is, for example, 50 nm.
  • the base metal 1041 in FIG. 5 may be omitted.
  • the titanium nitride film 10 formed on the gate electrode 104 can prevent oxygen from being absorbed from the oxide semiconductor 106 into the gate electrode 104. Therefore, it is possible to prevent the characteristics of the oxide semiconductor TFT from changing.
  • the titanium nitride film 10 has holes that are not partially formed on the entire upper surface of the gate electrode 104.
  • This hole is for forming an intermediate resistance region (which is also called an LDD region) 1062 in the oxide semiconductor film 106. That is, in the portion where the hole is formed, oxygen is extracted from the oxide semiconductor film 106 by the gate electrode 104, so that the resistance of the oxide semiconductor 106 decreases in this portion and the intermediate resistance region 1062 is formed.
  • the intermediate resistance region 1062 suppresses the formation of hot carriers and stabilizes the characteristics of the oxide semiconductor TFT.
  • the oxide semiconductors 1063 and 1064 are conductive.
  • oxygen is maintained in the oxide semiconductor 1061 due to the presence of the titanium nitride film 10, so that high resistance can be maintained and the characteristics of the TFT can be maintained. Therefore, the reliability of the oxide semiconductor TFT can be maintained.
  • the titanium nitride film 10 is also formed on the capacitance wiring 120 formed at the same time as the gate electrode 104. However, since the titanium nitride film 10 is conductive, the conductivity between the capacitance wiring 120 and the capacitance electrode 121 is not impaired.
  • FIG. 6 is a cross-sectional view showing a second embodiment of the first embodiment.
  • the difference between FIG. 6 and FIG. 4 is that the titanium nitride film 10 formed on the gate electrode 104 is formed only in the portion corresponding to the channel region 1061 of the oxide semiconductor 106. That is, in the channel region 1061 of the oxide semiconductor 106, oxygen is prevented from being released by the titanium nitride film 10, so that high resistance can be maintained.
  • the resistance of the oxide semiconductor 106 decreases.
  • the drain region 1063 and the source region 1064 a large amount of oxygen is removed by the drain electrode 107 and the source electrode 108, so that resistance is increased. It drops significantly.
  • FIG. 7 is a cross-sectional view showing a third embodiment of the first embodiment.
  • the difference between FIG. 7 and FIG. 4 which is the first embodiment is that the titanium nitride film 10 is also formed on the side surface of the gate electrode 104. Thereby, the absorption of oxygen from the oxide semiconductor 106 by the gate electrode 104 can be blocked more efficiently.
  • the taper on the side surface of the gate electrode 104 should not be steep.
  • the taper angle ⁇ on the side surface of the gate electrode 104 is preferably 40 to 60 degrees.
  • FIG. 8 is a cross-sectional view showing a fourth embodiment of the first embodiment.
  • the difference between FIG. 8 and FIG. 6 which is the second embodiment is that the titanium nitride film 10 is also formed on the side surface of the gate electrode 104. Thereby, the absorption of oxygen from the oxide semiconductor 106 by the gate electrode 104 can be blocked more efficiently.
  • Other configurations of FIG. 8 are similar to those described with reference to FIGS. 6 and 7.
  • titanium nitride has been described as an example of the metal nitride film 10, but the metal nitride film 10 is not limited to this.
  • tantalum nitride (TaNx) or the like can also be used.
  • the configuration of the second embodiment is different from the configuration of the first embodiment in that the substrate of the liquid crystal display device is not the polyimide substrate 100 but the glass substrate 90.
  • FIG. 9 is a cross-sectional view showing the first embodiment of the second embodiment. The difference between FIG. 9 and FIG. 4 of Example 1 is that the polyimide substrate and the first to third base films do not exist, and the gate electrode 104 is formed directly on the glass substrate 90.
  • non-alkali glass is used for the glass substrate 90. Further, the influence of impurities from the glass substrate 90 on the oxide semiconductor 106 is blocked by the gate electrode 104 which is a metal. However, if the influence of impurities from the glass substrate 90 remains, the first to third base films 101, 102, and 103 as described with reference to FIG. 3 may be formed. Since the other layer structures in FIG. 9 are the same as those in FIG. 4, the description thereof will be omitted.
  • FIG. 10 is a cross-sectional view showing a second embodiment of the second embodiment.
  • the difference between FIG. 10 and FIG. 6 of Example 1 is that the polyimide substrate and the first to third base films do not exist, and the gate electrode 104 is formed directly on the glass substrate 90. Since this difference is the same as that described with reference to FIG. 9, it will be omitted.
  • FIG. 11 is a cross-sectional view showing a third embodiment of the second embodiment.
  • the difference between FIG. 11 and FIG. 7 of Example 1 is that the polyimide substrate and the first to third base films do not exist, and the gate electrode 104 is formed directly on the glass substrate 90. Since this difference is the same as that described with reference to FIG. 9, it will be omitted.
  • FIG. 12 is a cross-sectional view showing a fourth embodiment of the second embodiment.
  • the difference between FIG. 12 and FIG. 8 of Example 1 is that the polyimide substrate and the first to third base films do not exist, and the gate electrode 104 is formed directly on the glass substrate 90. Since this difference is the same as that described with reference to FIG. 9, it will be omitted.
  • FIG. 13 is a cross-sectional view showing the first embodiment of the third embodiment.
  • the difference between FIG. 13 and FIG. 4 of Example 1 is that the metal oxide film 20 is formed on the gate electrode 104 instead of the metal nitride film.
  • the metal oxide film 20 can also prevent the gate electrode 104 from removing oxygen from the oxide semiconductor 106. That is, the action of the metal oxide film 20 is the same as that described for the metal nitride film in FIG. 4 of Example 1.
  • Types of metal oxide 20 include various oxide semiconductors described above, metal oxide conductors such as ITO, and insulating metal oxides such as alumina (AlOx). Examples of other metal oxide conductors include AZO (Aluminum Doped Zinc Oxide) and IZO (Indium Zinc Oxide).
  • the film thickness of the metal oxide film 20 is preferably 5 nm to 30 nm, as in the case of the metal nitride film.
  • the metal oxide may be an insulating material
  • a through hole is formed in the portion of the metal oxide film 20 formed on the capacitance wiring 120 at the portion where the capacitance wiring 120 is connected to the capacitance electrode 121. ing.
  • Other configurations and operations of FIG. 13 are the same as those described with reference to FIG. 4 of the first embodiment and will be omitted.
  • FIG. 14 is a cross-sectional view showing a second embodiment of the third embodiment.
  • the difference between FIG. 14 and FIG. 6 of Example 1 is that the metal oxide film 20 is formed instead of the metal nitride film. Since the action of the metal oxide film 20 in FIG. 14 is the same as the action of the metal nitride film 20 in FIG. 6, the description thereof will be omitted.
  • FIG. 15 is a cross-sectional view showing a third embodiment of the third embodiment.
  • the side surface of the gate electrode 104 is covered with the metal oxide film 20.
  • the metal oxide film 20 is formed instead of the metal nitride film. Since the action of the metal oxide film 20 in FIG. 15 is the same as the action of the metal nitride film 20 in FIG. 7, the description thereof will be omitted.
  • FIG. 16 is a cross-sectional view showing a fourth embodiment of the third embodiment.
  • the side surface of the gate electrode 104 is covered with the metal oxide film 20.
  • the metal oxide film 20 is formed instead of the metal nitride film. Since the action of the metal oxide film 20 in FIG. 16 is the same as the action of the metal nitride film in FIG. 8, the description thereof will be omitted.
  • FIG. 17 is a cross-sectional view showing the first embodiment of the fourth embodiment.
  • a metal oxide film 20 which is an insulating film is formed on the gate electrode 104.
  • the metal oxide film 20 as the insulating film include an alumina (AlOx) film.
  • the thickness of the alumina (AlOx) film 30 is 5 nm to 30 nm, which is the same as that of the metal nitride film in Example 1.
  • the action of the alumina (AlOx) film 30 is the same as the action of the metal nitride film described with reference to FIG. 4 or FIG. 7 of Example 1. Since the alumina (AlOx) film 30 is an insulating film, it can cover not only the gate electrode 104 or the capacitive wiring 120 but also the entire surface of the substrate. As a result, the alumina (AlOx) film 30 can be made to act as a block film for blocking impurities from the glass substrate 90, the polyimide substrate 100, and the like.
  • FIG. 18 is a cross-sectional view showing a second embodiment of the fourth embodiment.
  • FIG. 18 is different from FIG. 12 of Example 2 in that an alumina (AlOx) film 30 is formed on the gate electrode 104 instead of a metal nitride film, and that the alumina (AlOx) film 30 is a gate electrode. It is a point formed not only on the 104 and the capacitive wiring 120 but also on the entire surface of the substrate.
  • the action of the alumina (AlOx) film 30 and the like are the same as those described with reference to FIG. 17 and the like, and thus are omitted.
  • the present invention it is possible to effectively prevent the disappearance of oxygen from the oxide semiconductor film, and it is possible to form a stable oxide semiconductor TFT.
  • the present invention uses other display devices such as an organic EL display device and other oxide semiconductors such as a two-dimensional optical sensor. It can also be used for devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Abstract

本発明の課題は、酸化物半導体TFTを用いた半導体装置において、金属電極によって酸化物半導体膜の酸素が奪われることによるTFTの特性変動を防止することである。この課題を解決するために、本発明は次のような構成をとる。ゲート電極104の上にゲート絶縁膜105が形成され、前記ゲート絶縁膜105の上に酸化物半導体膜106が形成されたTFTを有する半導体装置であって、前記酸化物半導体膜106は、チャネル領域1061、ドレイン領域1063、ソース領域1064を有し、平面で視て、前記ゲート電極の上面で、前記酸化物半導体膜106の前記チャネル領域1061と対向する部分には、金属窒化膜10が形成され、前記ゲート電極104の上面の一部は前記金属窒化膜10が存在していないことを特徴とする半導体装置。

Description

半導体装置
 本発明は、酸化物半導体によるTFTを用いた表示装置や光センサ装置を含む半導体装置に関する。
 酸化物半導体を用いたTFT(Thin Film Transistor)は、ポリシリコンを用いたTFTに比べてOFF抵抗を大きくでき、a-Si(アモルファスシリコン)を用いたTFTに比べて移動度を大きくできるので、液晶表示装置や有機EL表示装置等の表示装置、あるいは、センサ等の半導体装置に用いることが出来る。
 TFTを用いた半導体装置では、TFTのドレイン電極、ソース電極、映像信号線、走査線等にAl配線が多用される。配線抵抗を低くできるからである。しかし、Al配線は、エレクトロマイグレーション現象やストレスマイグレーションによって断線等が生じやすい。これを防止するために、特許文献1にはAl配線の周囲を窒化チタン(TiN)で覆う構成が記載されている。
 また、上記のような半導体装置では、Al配線とともに、透明金属酸化物導電膜であるITO(Indium Tin Oxide)が用いられる。ITOとAl配線を直接接続させると、AlがITOの酸素を奪い、Al配線とITOの接続が取れなくなる。これを防止するために、特許文献2の比較例には、Al配線をTi、Al、TiNの三層構造とする構成が記載されている。
特開平6-291119号公報 特開2012-43821号公報
 酸化物半導体は、酸素が抜かれると金属化し、導電化する。また、酸化物半導体を用いたTFTにおいて、チャネル領域から酸素が抜かれるとTFTが導通化し、TFTとしての動作ができなくなる。
 一方、TFTを用いた半導体装置では、TFTのゲート電極、ドレイン電極、ソース電極等に金属が使用される。金属は酸素を奪う性質がある。ボトムゲートタイプの酸化物半導体TFTでは、ゲート電極の上にゲート絶縁膜が存在し、その上に酸化物半導体膜が存在している。このような構成では、金属であるゲート電極がゲート絶縁膜を介して酸化物半導体から酸素を奪い、酸化物半導体TFTが動作しなくなる現象が生ずる。
 本発明の課題は、酸化物半導体TFTにおいて、特にチャネル領域を構成する酸化物半導体から酸素が奪われることによって、酸化物半導体TFTが動作しなくなる現象を防止することである。
 本発明は上記問題を克服するものであり、具体的な手段は次のとおりである。
 (1)ゲート電極の上にゲート絶縁膜が形成され、前記ゲート絶縁膜の上に酸化物半導体膜が形成されたTFTを有する半導体装置であって、前記酸化物半導体膜は、チャネル領域、ドレイン領域、ソース領域を有し、平面で視て、前記ゲート電極の上面で、前記酸化物半導体膜の前記チャネル領域と対向する部分には、金属窒化膜が形成され、前記ゲート電極の上面の一部は前記金属窒化膜が存在していないことを特徴とする半導体装置。
 (2)平面で視て、前記ゲート電極の上面の、前記酸化物半導体膜の前記ドレイン領域、前記ソース領域に対応する部分には、前記金属窒化膜は存在しないことを特徴とする(1)に記載の半導体装置。
 (3)前記酸化物半導体膜は、前記チャネル領域と前記ドレイン領域の間、及び、前記チャネル領域と前記ソース領域の間に中間抵抗領域を有し、前記ゲート電極の上面の、前記酸化物半導体膜の前記中間抵抗領域に対応する部分には前記金属窒化膜は形成されておらず、前記酸化物半導体膜の前記ドレイン領域及び前記ソース領域に対応する部分には、前記金属窒化膜が形成されていることを特徴とする(1)に記載の半導体装置。
 (4)前記ゲート電極の側面にも前記金属窒化膜が形成されていることを特徴とする(1)に記載の半導体装置。
 (5)前記金属窒化膜の代わりに金属酸化膜が形成されていることを特徴とする(1)乃至(4)に記載の半導体装置。
 (6)前記金属窒化膜の代わりに絶縁性金属酸化膜が形成されていることを特徴とする(1)乃至(4)に記載の半導体装置。
液晶表示装置の平面図である。 液晶表示装置の表示領域の平面図である。 液晶表示装置の表示領域の断面図である。 実施例1の第1の形態によるTFT付近の断面図である。 実施例1によるゲート電極の断面構造の例である。 実施例1の第2の形態によるTFT付近の断面図である。 実施例1の第3の形態によるTFT付近の断面図である。 実施例1の第4の形態によるTFT付近の断面図である。 実施例2の第1の形態によるTFT付近の断面図である。 実施例2の第2の形態によるTFT付近の断面図である。 実施例2の第3の形態によるTFT付近の断面図である。 実施例2の第4の形態によるTFT付近の断面図である。 実施例3の第1の形態によるTFT付近の断面図である。 実施例3の第2の形態によるTFT付近の断面図である。 実施例3の第3の形態によるTFT付近の断面図である。 実施例3の第4の形態によるTFT付近の断面図である。 実施例4の第1の形態によるTFT付近の断面図である。 実施例4の第2の形態によるTFT付近の断面図である。 比較例におけるTFT付近の断面図である。 比較例の詳細断面図である。 比較例の他の詳細断面図である。
 以下、液晶表示装置を例にとって本発明の内容を詳細に説明する。図1は、本発明が適用される例としての液晶表示装置の平面図である。図1において、TFT基板100と対向基板200がシール材16によって接着し、TFT基板100と対向基板200の間に液晶層が挟持されている。TFT基板100と対向基板200が重なっている部分に表示領域14が形成されている。
 TFT基板100の表示領域14には、走査線11が横方向(x方向)に延在し、縦方向(y方向)に配列している。また、映像信号線12が縦方向に延在して横方向に配列している。走査線11と映像信号線12に囲まれた領域が画素13になっている。
 TFT基板100は対向基板200よりも大きく形成され、TFT基板100が対向基板200と重なっていない部分は端子領域15となっている。端子領域15にはフレキシブル配線基板17が接続している。液晶表示装置を駆動するドライバICはフレキシブル配線基板17に搭載されている。
 液晶は、自らは発光しないので、TFT基板100の背面にバックライトを配置している。液晶表示パネルはバックライトからの光を画素毎に制御することによって画像を形成する。フレキシブル配線基板17は、バックライトの背面に折り曲げられることによって、液晶表示装置全体としての外形を小さくする。
 本発明の液晶表示装置では、表示領域14に用いるTFTには、リーク電流の少ない酸化物半導体を用いたTFTが使用されている。また、シール材付近の額縁部分には、例えば、走査線駆動回路が形成されており、走査線駆動回路には、移動度の大きい、ポリシリコン半導体を用いたTFTが使用されることが多いが、酸化物半導体によるTFTを使用することも出来る。
 図2は、表示領域における画素の平面図である。図2は、IPS(In Plane Switching)方式における、FFS(Fringe Field Swtiching)と呼ばれる方式の液晶表示装置である。図2では、酸化物半導体106を用いたボトムゲートタイプのTFTが使用されている。酸化物半導体TFTはリーク電流が小さいので、スイッチングTFTとして好適である。
 図2において、走査線11が横方向(x方向)に延在し、縦方向(y方向)に配列している。また、映像信号線12が縦方向に延在し、横方向に配列している。走査線11と映像信号線12に囲まれた領域に画素電極116が形成されている。図2において、映像信号線12と画素電極116との間に酸化物半導体106を有する酸化物半導体TFTが形成されている。酸化物半導体TFTにおいて、映像信号線12がドレイン電極107を構成し、走査線11が分岐して酸化物半導体TFTのゲート電極104を構成している。酸化物半導体TFTのソース電極108は画素電極116側に延在し、スルーホール112を介して画素電極116と接続している。
 画素電極116は櫛歯状に形成されている。画素電極116はスリット1161を有している。画素電極116の下側には、容量絶縁膜を介してコモン電極113が平面状に形成されている。コモン電極113は各画素に連続して共通に形成されている。画素電極116に映像信号が供給されると、画素電極116とコモン電極113との間に液晶層を通過する電気力線が発生し、液晶分子を回転させることによって画像を形成する。
 図3は、図2に対応する液晶表示装置の断面図の例である。図3では、酸化物半導体膜106を用いたボトムゲートタイプのTFTが使用されている。酸化物半導体TFTはリーク電流が小さいので、スイッチングTFTとして好適である。
 酸化物半導体には、IGZO(Indium Gallium Zinc Oxide)、ITZO(Indium Tin Zinc Oxide)、ZnON(Zinc Oxide Nitride)、IGO(Indium Gallium Oxide)等がある。本実施例では、酸化物半導体としてIGZOを使用している。
 図3において、ガラス基板90の上にポリイミド基板100が形成されている。工程の最後において、ガラス基板90がポリイミド基板100から剥離されると、液晶表示装置は、フレキシブル液晶表示装置になる。ポリイミド基板100の上に、酸化シリコン(SiO)で形成された第1下地膜101、窒化シリコン(SiN)で形成された第2下地膜102、酸化シリコン(SiO)で形成された第3下地膜103の3層からなる下地膜が形成されている。
 第3下地膜103の上にゲート電極104が形成されている。ゲート電極104は、Ti及びAlの積層構造である。ゲート電極104を覆ってゲート絶縁膜105がSiOで形成され、ゲート絶縁膜105の上に酸化物半導体膜106が形成されている。酸化物半導体膜106の一方の端にはドレイン電極107が積層し、酸化物半導体106の他方の端にはソース電極108が積層している。ドレイン電極107、ソース電極108のいずれも金属あるいは合金で形成されている。
 酸化物半導体106、ドレイン電極107、ソース電極108を覆って、SiOによる第1層間絶縁膜109が形成され、その上にSiNによる第2層間絶縁膜110が形成されている。第1層間絶縁膜109をSiOで形成する理由は、SiOから酸素を酸化物半導体106のチャネル領域に供給するためである。
 第2層間絶縁膜110の上に有機パッシベーション膜111が例えばアクリル樹脂によって形成される。有機パッシベーション膜111は、平坦化膜としての役割を有しているので2μm程度と厚く形成される。有機パッシベーション膜111には、ソース電極108と画素電極116の導通をとるために、スルーホール112が形成されている。
 有機パッシベーション膜111の上にコモン電極113が平面状に形成され、その上に容量絶縁膜114が形成され、その上に画素電極116が形成されている。画素電極116とソース電極108との導通をとるために、容量絶縁膜114には、有機パッシベーション膜111のスルーホール112内においてスルーホール115が形成されている。画素電極116を覆って液晶分子を初期配向させるための配向膜117が形成されている。
 液晶層300を挟んで、画素電極116等と対向して対向基板200が配置している。対向基板200の内側にはカラーフィルタ201とブラックマトリクス202が形成されている。ブラックマトリクス202は、TFT及びスルーホール112を覆い、光もれを防止している。カラーフィルタ201及びブラックマトリクス202を覆ってオーバーコート膜203が形成され、その上に配向膜204が形成されている。
 図3において、画素電極116に電圧が印加されると液晶層300を通過する電気力線が発生し、これによって液晶分子301が回転し、液晶層300の光透過率を変化させる。画素毎に液晶層300の光透過率を変えることによって画像を形成する。
 図3に示すように、金属で形成されたゲート電極104が、ゲート絶縁膜105を挟んで酸化物半導体106と対向している。ゲート電極104は金属であるために、ゲート絶縁膜105を介して、酸化物半導体106から酸素を抜き取る作用がある。そうすると、酸化物半導体106の抵抗が低下し、TFTが正常に動作しなくなる。
 図19は、これを対策する、比較例としてのTFT付近の断面図である。図19において、左側が酸化物半導体106を用いたTFT付近の断面図であり、右側が、TFTと同時に形成される、容量を形成するための、容量配線120及び容量電極122である。
 図19の層構成は図3で説明したとおりである。図19が図3と異なる点は、ゲート電極104と酸化物半導体膜106の間のゲート絶縁膜105として、SiNで形成された第1ゲート絶縁膜1051とSiOで形成された第2ゲート絶縁膜1052が存在していることである。SiO膜1052が酸化物半導体膜106と接触している。
 図20は、図19におけるSiNで形成された第1ゲート絶縁膜1051の作用を示す断面図である。SiN膜1051は酸素をブロックする性質を有している。図20において、金属で形成されたゲート電極104は、第2ゲート絶縁膜1052であるSiO膜や酸化物半導体膜106から酸素を引き寄せようとするが、図20に示すように、第1ゲート絶縁膜1051であるSiN膜によって酸素の移動がブロックされ、酸化物半導体106から酸素が抜かれることを防止することが出来る。図20における矢印に付されたXのマークは、酸素がSiN膜1051によってブロックされることを示している。
 図21は図19の構成の問題点を示す断面図である。第1ゲート絶縁膜1051を構成するSiN膜は、酸素をブロックする一方、水素を放出する。この水素が酸化物半導体膜106に達すると、酸化物半導体が還元され、すなわち、酸素を奪われ、酸化物半導体膜106が導通してしまう。
 したがって、図19の構成では、十分な対策にならない。以下に示す実施例1乃至4は、このような問題点を生じないようにしつつ、酸化物半導体層106から酸素が奪われる現象を対策する構成を与えるものである。
 図4は実施例1の第1の形態を示す断面図である。図4の層構成は図3で説明したのと同様である。図5に示すように、ゲート電極104は、Al膜1042がベースメタル1041であるTi膜とキャップメタル1043であるTi膜によってサンドイッチされた構成である。図4及び図5の特徴は、ゲート電極104の上に金属窒化膜10である窒化チタン(TiN)を形成している点である。窒化チタン膜10の上にSiO膜によるゲート絶縁膜105が形成され、ゲート絶縁膜106の上に酸化物半導体膜106が形成されている。
 窒化チタン膜10はスパッタリングによって形成するが、これは、キャップメタル1043であるTi膜のスパッタリングと同じチャンバで連続して行うことが出来る。すなわち、Ti膜1043をスパッタリングで形成した後、窒素ガスを導入し、反応性スパッタリングによってTiN膜10を形成することが出来る。
 図5において、ベースメタル1041の膜厚は例えば50nm、Al膜1042の膜厚は例えば300nm、キャップメタル1043の膜厚は例えば50nmである。TiN膜10の膜厚は例えば10nmであるが、5nm乃至30nm程度であればよい。SiOで形成されたゲート絶縁膜105の膜厚は例えば300nm乃至500nm、酸化物半導体106の膜厚は例えば50nmである。なお、図5におけるベースメタル1041は省略されることもある。
 図4において、ゲート電極104の上に形成された窒化チタン膜10によって酸化物半導体106から酸素がゲート電極104に吸収されるのを阻止することが出来る。したがって、酸化物半導体TFTの特性が変化することを防止することが出来る。
 図4において、窒化チタン膜10は、ゲート電極104の上面全面ではなく、一部形成されていない領域であるホール存在している。このホールは、酸化物半導体膜106における中間抵抗領域(これはLDD領域とも呼ばれている)1062を形成するためである。すなわち、ホールが形成されている部分では、酸化物半導体膜106から酸素がゲート電極104によって抜かれるので、この部分では酸化物半導体106の抵抗が低下し、中間抵抗領域1062が形成される。中間抵抗領域1062は、ホットキャリアの生成を抑え、酸化物半導体TFTの特性を安定化させる。
 なお、ドレイン電極107あるいはソース電極108が酸化物半導体106に積層されている領域1063、1064では、酸化物半導体1063、1064から、金属であるドレイン電極107あるいはソース電極108によって酸素が大量に抜かれるので、酸化物半導体1063、1064は導電性となっている。一方、酸化物半導体のチャネル領域1061は窒化チタン膜10の存在によって酸化物半導体1061内に酸素が維持されるので、高抵抗が維持され、TFTの特性を維持することが出来る。したがって、酸化物半導体TFTの信頼性を維持することが出来る。
 図4の右側において、ゲート電極104と同時に形成される容量配線120の上にも窒化チタン膜10が形成されている。しかし、窒化チタン膜10は導電性なので、容量配線120と容量電極121の導通が損なわれることはない。
 図6は実施例1の第2の形態を示す断面図である。図6が図4と異なる点は、ゲート電極104の上に形成された窒化チタン膜10が、酸化物半導体106のチャネル領域1061に対応する部分にのみ形成されていることである。すなわち、酸化物半導体106のチャネル領域1061では、窒化チタン膜10によって酸素が抜かれることを阻止されるので高抵抗を維持することが出来る。
 しかし、ゲート電極104の上に窒化チタン膜10が形成されている部分以外に対応する酸化物半導体106からは、ゲート電極104によって酸素が奪われるので酸化物半導体106の抵抗は低下する。ところで、ドレイン電極107及びソース電極108が積層している酸化物半導体106の領域、すなわち、ドレイン領域1063及びソース領域1064は、ドレイン電極107及びソース電極108によって、大量に酸素が抜かれるので抵抗が大きく低下する。これに対して、チャネル領域1061とドレイン領域1063との間、あるいは、チャネル領域1061とソース領域1064との間はゲート電極104から、ゲート絶縁膜105を介して酸素が抜かれるだけなので、酸化物半導体106の抵抗値はドレイン領域1063やソース領域1064に比べて、大きく低下することは無い。すなわち、図6の構成においても、中間抵抗領域(LDD領域)は形成される。したがって、図6の構成においても、特性の安定した酸化物半導体TFTを形成することが出来る。
 図7は、実施例1の第3の形態を示す断面図である。図7が第1の実施形態である図4と異なる点は、ゲート電極104の側面にも窒化チタン膜10が形成されていることである。これによって、ゲート電極104による、酸化物半導体106からの酸素の吸収をより効率的に阻止することが出来る。
 ゲート電極104の側面にも窒化チタン膜10を形成するために、ゲート電極104の側面のテーパは急峻でないほうがよい。この目的のためには、ゲート電極104の側面のテーパ角θは好ましくは、40度乃至60度である。
 図8は、実施例1の第4の形態を示す断面図である。図8が第2の実施形態である図6と異なる点は、ゲート電極104の側面にも窒化チタン膜10が形成されていることである。これによって、ゲート電極104による、酸化物半導体106からの酸素の吸収をより効率的に阻止することが出来る。図8のその他の構成は図6及び図7で説明したのと同様である。
 以上の説明では、金属窒化膜10として窒化チタンを例にとって説明したが、金属窒化膜10は、これには限らない。例えば窒化タンタル(TaNx)等も使用することが出来る。
 実施例2の構成が実施例1の構成と異なる点は、液晶表示装置の基板がポリイミド基板100ではなく、ガラス基板90であるということである。図9は実施例2の第1の形態を示す断面図である。図9が実施例1の図4と異なる点は、ポリイミド基板と第1乃至第3下地膜が存在せず、ガラス基板90の上に直接ゲート電極104が形成されている点である。
 一般には、ガラス基板90はノンアルカリガラスが使用される。また、酸化物半導体106に対する、ガラス基板90からの不純物の影響は金属であるゲート電極104によって阻止される。しかし、ガラス基板90からの不純物の影響が残る場合は、図3で説明したような第1乃至第3下地膜101、102、103を形成すればよい。図9におけるその他の層構造は、図4と同様であるので、説明を省略する。
 図10は実施例2の第2の形態を示す断面図である。図10が実施例1の図6と異なる点は、ポリイミド基板と第1乃至第3下地膜が存在せず、ガラス基板90の上に直接ゲート電極104が形成されている点である。この差については、図9で説明したのと同じなので省略する。
 図11は実施例2の第3の形態を示す断面図である。図11が実施例1の図7と異なる点は、ポリイミド基板と第1乃至第3下地膜が存在せず、ガラス基板90の上に直接ゲート電極104が形成されている点である。この差については、図9で説明したのと同じなので省略する。
 図12は実施例2の第4の形態を示す断面図である。図12が実施例1の図8と異なる点は、ポリイミド基板と第1乃至第3下地膜が存在せず、ガラス基板90の上に直接ゲート電極104が形成されている点である。この差については、図9で説明したのと同じなので省略する。
 図13は実施例3の第1の形態を示す断面図である。図13が実施例1の図4と異なる点は、ゲート電極104の上に、金属窒化膜ではなく、金属酸化膜20が形成されていることである。金属酸化膜20も、ゲート電極104が酸化物半導体106から酸素を抜くことを阻止することが出来る。つまり、金属酸化膜20の作用は、実施例1の図4において、金属窒化膜について説明したのと同様である。
 金属酸化物20の種類としては、先に説明した種々の酸化物半導体、ITO等の金属酸化物導電体、アルミナ(AlOx)等の絶縁金属酸化物等がある。なお、他の金属酸化物導電体としては、AZO(Aluminum doped Zinc Oxide)、IZO(Indium Zinc Oxide)等がある。金属酸化膜20の膜厚は、金属窒化膜の場合と同様、好ましくは5nm乃至30nmである。
 金属酸化物は絶縁物の場合もあるので、図13において、容量配線120の上に形成された金属酸化膜20には、容量配線120が容量電極121と接続する部分にはスルーホールが形成されている。図13のその他の構成及び作用は実施例1の図4で説明したのと同様であるので省略する。
 図14は実施例3の第2の形態を示す断面図である。図14が実施例1の図6と異なる点は、金属窒化膜の代わりに金属酸化膜20が形成されている点である。図14における金属酸化膜20の作用は図6における金属窒化膜20の作用と同様であるので説明は省略する。
 図15は、実施例3の第3の形態を示す断面図である。図15において、ゲート電極104の側面は金属酸化膜20によって覆われている。図15が実施例1の図7と異なる点は、金属窒化膜の代わりに金属酸化膜20が形成されている点である。図15における金属酸化膜20の作用は図7における金属窒化膜20の作用と同様であるので説明は省略する。
 図16は、実施例3の第4の形態を示す断面図である。図16において、ゲート電極104の側面は金属酸化膜20によって覆われている。図16が実施例1の図8と異なる点は、金属窒化膜の代わりに金属酸化膜20が形成されている点である。図16における金属酸化膜20の作用は図8における金属窒化膜の作用と同様であるので説明は省略する。
 図17は、実施例4の第1の形態を示す断面図である。図17では、ゲート電極104の上に絶縁膜である金属酸化膜20が形成されている。絶縁膜である金属酸化膜20としは、例えば、アルミナ(AlOx)膜を挙げることが出来る。アルミナ(AlOx)膜30の厚さは、実施例1における金属窒化膜と同様5nm乃至30nmである。
 アルミナ(AlOx)膜30の作用も実施例1の図4あるいは図7等で説明した金属窒化膜の作用と同様である。アルミナ(AlOx)膜30は絶縁膜なので、ゲート電極104あるいは容量配線120の上のみでなく、基板全面を覆うことが出来る。これによって、アルミナ(AlOx)膜30に対して、ガラス基板90やポリイミド基板100等からの不純物を阻止するためのブロック膜としての作用を持たせることも出来る。
 図18は実施例4の第2の形態を示す断面図である。図18が実施例2の図12と異なる点は、ゲート電極104の上に、金属窒化膜ではなく、アルミナ(AlOx)膜30が形成されていることと、アルミナ(AlOx)膜30がゲート電極104及び容量配線120の上のみでなく、基板全面に形成されている点である。アルミナ(AlOx)膜30の作用等は、図17等で説明したのと同様であるので省略する。
 以上のように、本発明によれば、酸化物半導体膜からの酸素の消失を効果的に防止することが出来、安定した酸化物半導体TFTを形成することが出来る。
 なお、以上は、酸化物半導体を液晶表示装置に適用した例で説明したが、本発明は、有機EL表示装置等の他の表示装置、2次元光センサ等、他の酸化物半導体を用いた装置にも使用することが出来る。
 10…金属窒化膜、 11…走査線、 12…映像信号線、 13…画素、 14…表示領域、 15…端子領域、 16…シール材、 17…フレキシブル配線基板、 20…金属酸化物、 30…アルミナ(AlOx)膜、 90…ガラス基板、 100…ポリイミド基板、 101…第1下地膜、 102…第2下地膜、 103…第3下地膜、 104…ゲート電極、 105…ゲート絶縁膜、 106…酸化物半導体膜、 107…ドレイン電極、 108…ソース電極、 109…第1層間絶縁膜、 110…第2層間絶縁膜、 111…有機パッシベーション膜、 112…スルーホール、 113…コモン電極、 114…容量絶縁膜、 115…スルーホール、 116…画素電極、 117…配向膜、 120…容量配線、 121…スルーホール、 122…容量電極、 136…スルーホール、 150…下部電極、 151…有機EL層、 152…カソード、 153…保護層、 154…粘着材、 155…偏光板、 160…バンク、 200…対向基板、 201…カラーフィルタ、 202…ブラックマトリクス、 203…オーバーコート膜、 204…配向膜、 300…液晶層、 301…液晶分子、 1041…ベースメタル、 1042…Al膜、 1043…キャップメタル、 1051…SiN膜、 1052…SiO膜、 1061…チャネル領域、 1062…中間抵抗領域(LDD領域)、 1063…ドレイン領域、 1064…ソース領域、 1161…画素電極スリット

Claims (18)

  1.  ゲート電極の上にゲート絶縁膜が形成され、前記ゲート絶縁膜の上に酸化物半導体膜が形成されたTFTを有する半導体装置であって、
     前記酸化物半導体膜は、チャネル領域、ドレイン領域、ソース領域を有し、
     平面で視て、前記ゲート電極の上面で、前記酸化物半導体膜の前記チャネル領域と対向する部分には、金属窒化膜が形成され、
     前記ゲート電極の上面の一部は前記金属窒化膜が存在していないことを特徴とする半導体装置。
  2.  平面で視て、前記ゲート電極の上面の、前記酸化物半導体膜の前記ドレイン領域、前記ソース領域に対応する部分には、前記金属窒化膜は存在しないことを特徴とする請求項1に記載の半導体装置。
  3.  前記酸化物半導体膜は、前記チャネル領域と前記ドレイン領域の間、及び、前記チャネル領域と前記ソース領域の間に中間抵抗領域を有し、
     前記ゲート電極の上面の、前記酸化物半導体膜の前記中間抵抗領域に対応する部分には前記金属窒化膜は形成されておらず、前記酸化物半導体膜の前記ドレイン領域及び前記ソース領域に対応する部分には、前記金属窒化膜が形成されていることを特徴とする請求項1に記載の半導体装置。
  4.  前記ゲート電極の側面にも前記金属窒化膜が形成されていることを特徴とする請求項1に記載の半導体装置。
  5.  前記金属窒化膜は窒化チタン(TiN)であることを特徴とする請求項1に記載の半導体装置。
  6.  前記ゲート電極は、Al層の上にTi層が形成された構成であることを特徴とする請求項1に記載の半導体装置。
  7.  ゲート電極の上にゲート絶縁膜が形成され、前記ゲート絶縁膜の上に酸化物半導体膜が形成されたTFTを有する半導体装置であって、
     前記酸化物半導体膜は、チャネル領域、ドレイン領域、ソース領域を有し、
     平面で視て、前記ゲート電極の上面で、前記酸化物半導体膜の前記チャネル領域と対向する部分には、金属酸化膜が形成され、
     前記ゲート電極の上面の一部は前記金属酸化膜が存在していないことを特徴とする半導体装置。
  8.  平面で視て、前記ゲート電極の上面の、前記酸化物半導体膜の前記ドレイン領域、前記ソース領域に対応する部分には、前記金属酸化膜は存在しないことを特徴とする請求項7に記載の半導体装置。
  9.  前記酸化物半導体膜は、前記チャネル領域と前記ドレイン領域の間、及び、前記チャネル領域と前記ソース領域の間に中間抵抗領域を有し、
     前記ゲート電極の上面の、前記酸化物半導体膜の前記中間抵抗領域に対応する部分には前記金属酸化膜は形成されておらず、前記酸化物半導体膜の前記ドレイン領域及び前記ソース領域に対応する部分には、前記金属酸化膜が形成されていることを特徴とする請求項7に記載の半導体装置。
  10.  前記ゲート電極の側面にも前記金属酸化膜が形成されていることを特徴とする請求項7に記載の半導体装置。
  11.  前記金属酸化膜は導電性の金属酸化膜であることを特徴とする請求項7に記載の半導体装置。
  12.  前記金属酸化膜はITOであることを特徴とする請求項7に記載の半導体装置。
  13.  前記金属酸化膜は、前記酸化物半導体膜とは別に形成された酸化物半導体膜であることを特徴とする請求項7に記載の半導体装置。
  14.  ゲート電極の上にゲート絶縁膜が形成され、前記ゲート絶縁膜の上に酸化物半導体膜が形成されたTFTを有する半導体装置であって、
     前記酸化物半導体膜は、チャネル領域、ドレイン領域、ソース領域を有し、
     平面で視て、前記ゲート電極の上面で、前記酸化物半導体膜の前記チャネル領域と対向する部分には、絶縁性金属酸化膜が形成され、
     前記ゲート電極の上面の一部は前記絶縁性金属酸化膜が存在していないことを特徴とする半導体装置。
  15.  平面で視て、前記ゲート電極の上面の、前記酸化物半導体膜の前記ドレイン領域、前記ソース領域に対応する部分には、前記絶縁性金属酸化膜は存在しないことを特徴とする請求項14に記載の半導体装置。
  16.  前記酸化物半導体膜は、前記チャネル領域と前記ドレイン領域の間、及び、前記チャネル領域と前記ソース領域の間に中間抵抗領域を有し、
     前記ゲート電極の上面の、前記酸化物半導体の前記中間抵抗領域に対応する部分には前記絶縁性金属酸化膜は形成されておらず、前記酸化物半導体膜の前記ドレイン領域及び前記ソース領域に対応する部分には、前記絶縁性金属酸化膜が形成されていることを特徴とする請求項14に記載の半導体装置。
  17.  前記ゲート電極の側面にも前記絶縁性金属酸化膜が形成されていることを特徴とする請求項14に記載の半導体装置。
  18.  前記絶縁性金属酸化膜はアルミナ(AlOx)膜であることを特徴とする請求項14に記載の半導体装置。
PCT/JP2020/035034 2019-10-02 2020-09-16 半導体装置 WO2021065506A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080065097.8A CN114467184A (zh) 2019-10-02 2020-09-16 半导体装置
US17/657,168 US20220223707A1 (en) 2019-10-02 2022-03-30 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019181794A JP7446076B2 (ja) 2019-10-02 2019-10-02 半導体装置
JP2019-181794 2019-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/657,168 Continuation US20220223707A1 (en) 2019-10-02 2022-03-30 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2021065506A1 true WO2021065506A1 (ja) 2021-04-08

Family

ID=75271546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035034 WO2021065506A1 (ja) 2019-10-02 2020-09-16 半導体装置

Country Status (4)

Country Link
US (1) US20220223707A1 (ja)
JP (1) JP7446076B2 (ja)
CN (1) CN114467184A (ja)
WO (1) WO2021065506A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005730A (ja) * 2013-05-18 2015-01-08 株式会社半導体エネルギー研究所 半導体装置
JP2015026831A (ja) * 2013-06-21 2015-02-05 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
JP2015079949A (ja) * 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 トランジスタ、クロックドインバータ回路、順序回路、および順序回路を備えた半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005730A (ja) * 2013-05-18 2015-01-08 株式会社半導体エネルギー研究所 半導体装置
JP2015026831A (ja) * 2013-06-21 2015-02-05 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
JP2015079949A (ja) * 2013-09-13 2015-04-23 株式会社半導体エネルギー研究所 トランジスタ、クロックドインバータ回路、順序回路、および順序回路を備えた半導体装置

Also Published As

Publication number Publication date
JP2021057538A (ja) 2021-04-08
JP7446076B2 (ja) 2024-03-08
CN114467184A (zh) 2022-05-10
US20220223707A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
US10459304B2 (en) Display device
CN107479267B (zh) 液晶显示面板及具有该液晶显示面板的液晶显示装置
JP7370375B2 (ja) 表示装置及び半導体装置
JP6655417B2 (ja) 表示装置
JP5351118B2 (ja) 液晶表示装置
US11309381B2 (en) Liquid crystal display device
JP7350903B2 (ja) Tft回路基板
WO2020021938A1 (ja) 表示装置
JP7250558B2 (ja) 表示装置及び半導体装置
US20220262825A1 (en) Display device and manufacturing method thereof
US9703152B2 (en) Liquid crystal display device
WO2019244636A1 (ja) 半導体装置
JP7274627B2 (ja) 表示装置
WO2021065506A1 (ja) 半導体装置
KR20050054345A (ko) 박막트랜지스터 어레이 기판 및 그 제조 방법
KR100641000B1 (ko) 액정표시소자 및 그 제조방법
JP2019016640A (ja) 表示装置
KR20020039464A (ko) 액정표시장치와 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870974

Country of ref document: EP

Kind code of ref document: A1