WO2021065333A1 - 二次電池用負極および二次電池 - Google Patents

二次電池用負極および二次電池 Download PDF

Info

Publication number
WO2021065333A1
WO2021065333A1 PCT/JP2020/033531 JP2020033531W WO2021065333A1 WO 2021065333 A1 WO2021065333 A1 WO 2021065333A1 JP 2020033531 W JP2020033531 W JP 2020033531W WO 2021065333 A1 WO2021065333 A1 WO 2021065333A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
potential
layer
separator
Prior art date
Application number
PCT/JP2020/033531
Other languages
English (en)
French (fr)
Inventor
雄大 平野
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080068506.XA priority Critical patent/CN114450818A/zh
Priority to JP2021550490A priority patent/JP7452548B2/ja
Publication of WO2021065333A1 publication Critical patent/WO2021065333A1/ja
Priority to US17/708,623 priority patent/US20220223873A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • This technology relates to negative electrodes for secondary batteries and secondary batteries.
  • This secondary battery includes an electrolyte as well as a positive electrode and a negative electrode. Since the configuration of the secondary battery affects the battery characteristics, various studies have been made on the configuration of the secondary battery.
  • a ceramic coat layer containing ceramic particles as a main component is formed on the surface of the negative electrode active material layer (see, for example, Patent Document 1).
  • a coating layer containing filler particles and a binder is formed on the surface of the negative electrode active material layer (see, for example, Patent Document 2).
  • a porous insulating layer containing an inorganic oxide filler and a resin binder is formed on the surface of the active material layer (see, for example, Patent Document 3).
  • an presence / absence composite porous coat layer containing inorganic particles and a binder polymer is formed on the surface of the electrode (see, for example, Patent Document 4).
  • the separator has a coating layer containing an inorganic filler in order to suppress gas generation during high-temperature storage (see, for example, Patent Document 5).
  • This technology was made in view of these problems, and its purpose is to provide negative electrodes and secondary batteries for secondary batteries that can achieve both ensuring electrochemical performance and improving safety. It is in.
  • the negative electrode for a secondary battery of one embodiment of the present technology covers the surface of the negative electrode active material layer and the negative electrode active material layer, contains a plurality of inorganic particles and a binder, and contains the negative electrode active material layer in the thickness direction.
  • the weight ratio of the plurality of inorganic particles to the binder in the second coating portion is the first coating. It is provided with a coating layer larger than the weight ratio of the plurality of inorganic particles to the binder in the portion.
  • the secondary battery of the embodiment of the present technology is arranged between the positive electrode and the negative electrode facing each other via a separator and the negative electrode and the separator, contains a plurality of inorganic particles and a binder, and contains a plurality of inorganic particles and a binder in the thickness direction.
  • the first intermediate portion on the side closer to the negative electrode and the second intermediate portion on the side far from the negative electrode the weight ratio of the plurality of inorganic particles to the binder in the second intermediate portion is in the first intermediate portion. It includes an intermediate layer that is larger than the weight ratio of the plurality of inorganic particles to the binder.
  • a coating layer containing a plurality of inorganic particles and a binder covers the surface of the negative electrode active material layer, and the negative electrode active material layer is formed in the thickness direction.
  • the coating layer is divided into two equal parts, the first coating portion on the near side and the second coating portion on the far side from the negative electrode active material layer, the weight ratio of the plurality of inorganic particles to the binder is higher than that in the first coating portion. Since the second coating portion is large, it is possible to secure the electrochemical performance and improve the safety at the same time.
  • an intermediate layer containing a plurality of inorganic particles and a binder is arranged between the negative electrode and the separator, which is closer to the negative electrode in the thickness direction.
  • the intermediate layer is divided into two equal parts, the first intermediate portion and the second intermediate portion on the side far from the negative electrode, the weight ratio of the plurality of inorganic particles to the binder is larger in the second intermediate portion than in the first intermediate portion. Therefore, it is possible to achieve both ensuring electrochemical performance and improving safety.
  • the effect of the present technology is not necessarily limited to the effect described here, and may be any effect of a series of effects related to the present technology described later.
  • FIG. It is a block diagram which shows the structure of the application example (battery pack: cell) of a secondary battery. It is a block diagram which shows the structure of application example (battery pack: assembled battery) of a secondary battery. It is a block diagram which shows the structure of the application example (electric vehicle) of a secondary battery.
  • the secondary battery described here is a secondary battery in which the battery capacity can be obtained by using the occlusion and release of the electrode reactant, and is provided with an electrolyte together with the positive electrode and the negative electrode.
  • the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode in order to prevent the electrode reactant from depositing on the surface of the negative electrode during charging. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode.
  • the type of electrode reactant is not particularly limited, but is a light metal such as an alkali metal and an alkaline earth metal.
  • Alkali metals include lithium, sodium and potassium, and alkaline earth metals include beryllium, magnesium and calcium.
  • a secondary battery whose battery capacity can be obtained by using the occlusion and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is occluded and released in an ionic state.
  • FIG. 1 shows a perspective configuration of a secondary battery.
  • FIG. 2 shows the cross-sectional structure of the wound electrode body 10 shown in FIG. 1
  • FIG. 3 shows the cross-sectional structure of the main portion of the wound electrode body 10 shown in FIG.
  • FIG. 1 shows a state in which the wound electrode body 10 and the exterior film 20 are separated from each other.
  • FIG. 2 shows only a part of the wound electrode body 10.
  • FIG. 3 shows the negative electrode active material layer 12B, the separator 13, and the intermediate layer 14 of the wound electrode body 10.
  • a winding type battery element (winding electrode body 10) is housed inside the bag-shaped exterior film 20, and the wound electrode body 10 has a positive electrode.
  • the lead 15 and the negative electrode lead 16 are connected.
  • Each of the positive electrode lead 15 and the negative electrode lead 16 is led out from the inside of the exterior film 20 toward the outside in a direction common to each other.
  • the secondary battery described here is a laminated film type secondary battery using a flexible (or flexible) exterior film 20 as an exterior member for accommodating the battery element (wound electrode body 10).
  • the next battery is a laminated film type secondary battery using a flexible (or flexible) exterior film 20 as an exterior member for accommodating the battery element (wound electrode body 10). The next battery.
  • the exterior film 20 is a single film-like member that can be folded in the direction of the arrow R (dashed line).
  • the exterior film 20 is provided with a recessed portion 20U (so-called deep drawing portion) for accommodating the wound electrode body 10.
  • the exterior film 20 is a three-layer laminated film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order from the inside, and when the exterior film 20 is folded, the fusion layer is formed. The outer peripheral edges of the film are fused to each other.
  • the fused layer contains a polymer compound such as polypropylene.
  • the metal layer contains a metallic material such as aluminum.
  • the surface protective layer contains a polymer compound such as nylon.
  • the number of layers of the exterior film 20 which is a laminated film is not limited to three, and may be two or four or more. Further, the exterior film 20 is not limited to the multilayer laminated film, and may be a single layer.
  • the adhesion film 21 is inserted between the exterior film 20 and the positive electrode lead 15, and the adhesion film 22 is inserted between the exterior film 20 and the negative electrode lead 16.
  • the adhesion films 21 and 22 are members for preventing the intrusion of outside air, and include any one or more of a polyolefin resin having adhesion to each of the positive electrode lead 15 and the negative electrode lead 16. There is.
  • the polyolefin resin is polyethylene, polypropylene, modified polyethylene, modified polypropylene and the like. However, one or both of the adhesive films 21 and 22 may be omitted.
  • the wound electrode body 10 includes a positive electrode 11, a negative electrode 12, a separator 13, an intermediate layer 14, and an electrolytic solution which is a liquid electrolyte.
  • the wound electrode body 10 is a structure in which the positive electrode 11 and the negative electrode 12 are laminated with each other via the separator 13 and the intermediate layer 14, and then the positive electrode 11, the negative electrode 12, the separator 13 and the intermediate layer 14 are wound. is there.
  • the electrolytic solution is mainly impregnated in each of the positive electrode 11, the negative electrode 12, and the separator 13. However, in FIG. 2, the illustration of the electrolytic solution is omitted.
  • the positive electrode 11 includes a positive electrode current collector 11A and two positive electrode active material layers 11B provided on both sides of the positive electrode current collector 11A.
  • the positive electrode active material layer 11B may be provided on only one side of the positive electrode current collector 11A.
  • the positive electrode current collector 11A contains any one or more of conductive materials such as aluminum, nickel and stainless steel.
  • the positive electrode active material layer 11B contains one or more of the positive electrode active materials that occlude and release lithium, that is, materials that can occlude and release lithium in an ionic state.
  • the positive electrode active material layer 11B may further contain a positive electrode binder, a positive electrode conductive agent, and the like.
  • the type of positive electrode active material is not particularly limited, but is a lithium-containing compound such as a lithium-containing transition metal compound.
  • This lithium-containing transition metal compound contains one or more kinds of transition metal elements together with lithium, and may further contain one kind or two or more kinds of other elements.
  • the type of the other element is not particularly limited as long as it is an arbitrary element (excluding the transition metal element). Among them, the other elements are preferably elements belonging to groups 2 to 15 in the long periodic table.
  • the lithium-containing transition metal compound may be an oxide, a phosphoric acid compound, a silicic acid compound, a boric acid compound, or the like.
  • oxides are LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 , Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 and Li Mn 2 O 4 .
  • Specific examples of the phosphoric acid compound include LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4, and LiFe 0.3 Mn 0.7 PO 4 .
  • the positive electrode binder contains any one or more of synthetic rubber and polymer compounds.
  • Synthetic rubbers include styrene-butadiene rubbers, fluorine-based rubbers and ethylene propylene dienes.
  • Polymer compounds include polyvinylidene fluoride, polyimide and carboxymethyl cellulose.
  • the positive electrode conductive agent contains any one or more of the conductive materials such as carbon material.
  • the carbon materials include graphite, carbon black, acetylene black and ketjen black.
  • the positive electrode conductive agent may be a metal material, a conductive polymer, or the like as long as it has conductivity.
  • the negative electrode 12 includes a negative electrode current collector 12A and negative electrode active material layers 12B provided on both sides of the negative electrode current collector 12A.
  • the negative electrode active material layer 12B may be provided on only one side of the negative electrode current collector 12A.
  • the negative electrode current collector 12A contains any one or more of conductive materials such as copper, aluminum, nickel and stainless steel.
  • the negative electrode active material layer 12B contains one or more of the negative electrode active materials that occlude and release lithium, that is, materials that can occlude and release lithium in an ionic state.
  • the negative electrode active material layer 12B may further contain a negative electrode binder, a negative electrode conductive agent, and the like. The details regarding each of the negative electrode binder and the negative electrode conductive agent are the same as the details regarding each of the positive electrode binder and the positive electrode conductive agent described above.
  • the type of negative electrode active material is not particularly limited, but is carbon material, metal-based material, or the like.
  • Carbon materials include graphitizable carbon, non-graphitizable carbon and graphite.
  • the metal-based material is a material containing one or more of metal elements and metalloid elements capable of forming an alloy with lithium, and specifically contains silicon, tin, and the like as constituent elements. ..
  • the metal-based material may be a simple substance, an alloy, a compound, or a mixture of two or more of them.
  • metallic materials include SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2 or 0.2 ⁇ v ⁇ 1.4), LiSiO, SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO, Mg 2 Sn, and the like.
  • the separator 13 is interposed between the positive electrode 11 and the negative electrode 12. Therefore, the positive electrode 11 and the negative electrode 12 face each other via the separator 13.
  • the separator 13 is an insulating porous film that allows lithium to pass through while preventing contact (short circuit) between the positive electrode 11 and the negative electrode 12, and may be a single layer or multiple layers.
  • This porous membrane contains any one or more of polymer compounds such as polytetrafluoroethylene, polypropylene and polyethylene.
  • the air permeability of the separator 13 described here is not the air permeability of the separator 13 (separator 13 before being brought into close contact with the negative electrode 12) used in the manufacturing process of the secondary battery, but the air permeability of the separator 13 after completion. It is the air permeability of the separator 13 (separator 13 after being brought into close contact with the negative electrode 12) recovered from the next battery.
  • the procedure for measuring this air permeability is as described below. First, the separator 13 is recovered by disassembling the secondary battery. Subsequently, the air permeability of the separator 13 is measured at 10 different locations using an air permeability tester (GURLEY TYPE DENSOMETER manufactured by Toyo Seiki Co., Ltd.). Finally, the air permeability of the separator 13 is obtained by calculating the average value of the air permeability of the 10 pieces measured at 10 points.
  • the air permeability of the separator 13 can be adjusted by changing conditions such as the treatment temperature during the activation treatment in the secondary battery manufacturing process (activation step described later).
  • the thickness of the separator 13 is not particularly limited, but is preferably 3 ⁇ m to 12 ⁇ m. This is because the energy density of the secondary battery and the physical strength of the separator 13 are compatible with each other. This thickness is the average value of 10 thicknesses measured at 10 different points.
  • the intermediate layer 14 Since the intermediate layer 14 is arranged between the negative electrode 12 and the separator 13, it is in close contact with each of the negative electrode 12 and the separator 13.
  • the intermediate layer 14 contains a plurality of inorganic particles and an intermediate binder, and the intermediate binder is a binder contained in the intermediate layer 14.
  • the details regarding the intermediate binder are the same as those regarding the positive electrode binder.
  • the intermediate layer 14 may further contain any one or more of any additives and the like, if necessary.
  • the distribution of the plurality of inorganic particles is optimized, and more specifically, the dispersed state of the plurality of inorganic particles is such that the weight ratio RN is larger than the weight ratio RM. It is set. As a result, the safety of the secondary battery is improved while ensuring the electrochemical performance of the secondary battery. Details of the advantages based on the optimization of the distribution of the plurality of inorganic particles described here will be described later.
  • the plurality of inorganic particles contain any one or more of the inorganic materials.
  • the type of the inorganic material is not particularly limited, and includes metal oxides, metal nitrides, metal hydroxides, and the like.
  • metal oxides are aluminum oxide, silicon oxide, titanium oxide, magnesium oxide, zirconium oxide and the like.
  • metal nitrides are aluminum nitride and the like.
  • metal hydroxide is magnesium hydroxide and the like.
  • the inorganic material preferably contains any one or more of metal oxides and metal hydroxides, and any one or two of aluminum oxide and magnesium hydroxide. It is more preferable to include the above. This is because the safety is further improved while the electrochemical performance is guaranteed.
  • the thickness of the intermediate layer 14 is not particularly limited, but is preferably 0.1 ⁇ m to 5 ⁇ m. This is because the storage and release of lithium is less likely to be inhibited at the negative electrode 12, so that the above-mentioned advantages can be obtained while ensuring the storage and release of lithium.
  • the thickness of the intermediate layer 14 is the dimension in the Z-axis direction in FIGS. 2 and 3, that is, the dimension in the direction in which the positive electrode 11 and the negative electrode 12 face each other via the separator 13.
  • the procedure for calculating the thickness of the intermediate layer 14 is as follows. First, the negative electrode 12 is recovered by disassembling the secondary battery. Subsequently, the cross section (FIG. 3) of the negative electrode 12 is observed using a microscope such as a scanning electron microscope (SEM (Scanning Electron Microscope). Conditions such as magnification at the time of observation can be arbitrarily set. Then, based on the observation result (microscopic photograph) of the cross section of the negative electrode 12, the thickness of the intermediate layer 14 is measured at 10 different points. Finally, the average value of the 10 thicknesses measured at the 10 points is measured. By calculation, it is the thickness of the intermediate layer 14.
  • SEM scanning Electron Microscope
  • the distribution of the above-mentioned plurality of inorganic particles will be described in detail.
  • the distribution of the plurality of inorganic particles that is, the dispersed state (weight ratio R) of the plurality of inorganic particles is optimized.
  • the intermediate layer 14 is bisected in the thickness direction (Z-axis direction) of the intermediate layer 14. Thereby, the intermediate layer 14 is classified into the lower layer 14M and the upper layer 14N.
  • the lower layer 14M is a first intermediate portion located on the side closer to the negative electrode 12 (negative electrode active material layer 12B), that is, a lower portion of the intermediate layer 14.
  • the upper layer 14N is a second intermediate portion located on the side far from the negative electrode 12, that is, an upper portion of the intermediate layer 14.
  • a boundary line L (broken line) is shown at the boundary between the lower layer 14M and the upper layer 14N.
  • Each of the lower layer 14M and the upper layer 14N contains a plurality of inorganic particles and an intermediate binder.
  • the weight ratio R (RM) is defined in the lower layer 14M
  • the weight ratio RN is set to be larger than the weight ratio RM. That is, the distribution amount (dispersion amount) of the plurality of inorganic particles is larger in the upper layer 14N than in the lower layer 14M. As a result, the distribution of the plurality of inorganic particles in the intermediate layer 14 is optimized, so that the safety of the secondary battery is improved while ensuring the electrochemical performance of the secondary battery as described above.
  • the intermediate layer 14 As a method of forming the intermediate layer 14 so that the weight ratio RN is larger than the weight ratio RM, several forming methods can be considered. Details of the method for forming the intermediate layer 14 will be described later.
  • the respective ranges of the weight ratios RM and RN are not particularly limited. Among them, the weight ratio RM is preferably 0.1 to 10, and the weight ratio RN is preferably 0.2 to 20. This is because the respective ranges of the weight ratios RM and RN are optimized, so that the safety of the secondary battery is sufficiently improved while the electrochemical performance of the secondary battery is guaranteed.
  • the procedure for calculating the weight ratio RN is as follows. First, the intermediate layer 14 is recovered by disassembling the secondary battery. Subsequently, by cutting a part of the intermediate layer 14 using a cutting device (diagonal cutting device SAICAS NN (Surface And Interfacial Cutting Analysis System: SAICAS is a registered trademark) manufactured by Daipla Wintes Co., Ltd.), the lower layer 14M to the upper layer The 14N is separated. Subsequently, the upper layer 14N is analyzed using a differential thermothermal weight simultaneous measuring device (TG-DTA (Thermogravimeter-Differential Thermal Analyzer) STA7000 manufactured by Hitachi High-Tech Science Co., Ltd.) to analyze the intermediate binder.
  • TG-DTA Thermogravimeter-Differential Thermal Analyzer
  • each of the weight M3 and the weight M4 of the plurality of inorganic particles is measured.
  • the weight ratio RN of the upper layer 14N is calculated based on the weight M3 of the intermediate binder and the weight M4 of the plurality of inorganic particles.
  • the procedure for calculating the weight ratio RM is the same as the procedure for calculating the weight ratio RN described above, except that the lower layer 14M is used instead of the upper layer 14N.
  • the electrolyte contains a solvent and an electrolyte salt.
  • the type of the solvent may be only one type or two or more types.
  • the type of the electrolyte salt may be only one type or two or more types.
  • the solvent contains a non-aqueous solvent (organic solvent), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
  • Non-aqueous solvents are esters, ethers, and the like, and more specifically, carbonic acid ester compounds, carboxylic acid ester compounds, lactone compounds, and the like.
  • Carbonate ester compounds include cyclic carbonates and chain carbonates. Cyclic carbonates are ethylene carbonate, propylene carbonate and the like, and chain carbonates are dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate and the like. Carboxylate ester compounds include ethyl acetate, ethyl propionate and ethyl trimethylacetate. Lactone compounds include ⁇ -butyrolactone and ⁇ -valerolactone. Ethers include 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane and the like, in addition to the above-mentioned lactone-based compounds.
  • the non-aqueous solvent is an unsaturated cyclic carbonate ester, a halogenated carbonate ester, a sulfonic acid ester, a phosphoric acid ester, an acid anhydride, a nitrile compound, an isocyanate compound, or the like. This is because the chemical stability of the electrolytic solution is improved.
  • the unsaturated cyclic carbonate is vinylene carbonate, vinyl acetate ethylene, methylene carbonate, or the like.
  • Halogenated carbonic acid esters include ethylene fluorocarbonate and ethylene difluorocarbonate.
  • the sulfonic acid ester is 1,3-propane sultone or the like.
  • the phosphoric acid ester is trimethyl phosphate or the like.
  • Acid anhydrides include cyclic carboxylic acid anhydrides, cyclic disulfonic acid anhydrides and cyclic carboxylic acid sulfonic acid anhydrides.
  • Cyclic carboxylic acid anhydrides include succinic anhydride, glutaric anhydride and maleic anhydride.
  • Cyclic disulfonic acid anhydrides include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • Cyclic carboxylic acid sulfonic acid anhydrides include sulfobenzoic acid anhydride, sulfopropionic anhydride and sulfobutyric anhydride.
  • Nitrile compounds include acetonitrile and succinonitrile.
  • the isocyanate compound is hexamethylene diisocyanate or the like.
  • the electrolyte salt is any one or more of light metal salts such as lithium salt.
  • This lithium salt includes lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and bis (fluorosulfonyl) imide lithium (LiN (FSO)).
  • the content of the electrolyte salt is not particularly limited, but is 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. This is because high ionic conductivity can be obtained.
  • the positive electrode lead 15 is connected to the positive electrode 11 (positive electrode current collector 11A), and the negative electrode lead 16 is connected to the negative electrode 12 (negative electrode current collector 12A).
  • the material for forming the positive electrode lead 15 is the same as the material for forming the positive electrode current collector 11A, and the material for forming the negative electrode lead 16 is the same as the material for forming the negative electrode current collector 12A.
  • the shape of each of the positive electrode lead 15 and the negative electrode lead 16 is a thin plate shape, a mesh shape, or the like.
  • FIG. 4 shows the cross-sectional configuration of the negative electrode 12 shown in FIG. 2, and corresponds to FIG. However, FIG. 4 shows the negative electrode 12 used in the manufacturing process of the secondary battery. In the following, reference will be made to FIGS. 2 and 3 from time to time.
  • the intermediate layer 14 is formed on the surface of the negative electrode 12 (negative electrode active material layer 12B) on the side facing the separator 13. As a result, since the intermediate layer 14 is connected to the negative electrode 12, it functions as a coating layer that covers the surface of the negative electrode active material layer 12B. As described above, the intermediate layer 14 that functions as the coating layer includes the lower layer 14M (first coating portion) and the upper layer 14N (second coating portion).
  • the intermediate layer 14 is integrated with the negative electrode 12, the adhesion of the intermediate layer 14 to the negative electrode 12 is ensured. Further, since the negative electrode 12 and the intermediate layer 14 are one member as a whole, the negative electrode 12 and the intermediate layer 14 are separated from each other (the negative electrode 12 and the intermediate layer 14 are two members). As a result, the handling of the negative electrode 12 and the intermediate layer 14 is improved, so that the secondary battery can be easily manufactured.
  • the coverage of the intermediate layer 14 with respect to the surface of the negative electrode active material layer 12B is not particularly limited, but is preferably 20% to 100%. This is because the negative electrode 12 is sufficiently adhered to the separator 13 so that the electrochemical performance of the secondary battery is sufficiently improved and the safety of the secondary battery is also sufficiently improved.
  • This coverage can be adjusted by changing the solid content concentration of each of the first intermediate mixture slurry and the second intermediate mixture slurry, which will be described later, in the step of forming the intermediate layer 14.
  • the procedure for measuring the coverage of the intermediate layer 14 is as follows. First, the negative electrode 12 provided with the intermediate layer 14 is recovered by disassembling the secondary battery. Subsequently, using an energy dispersive X-ray spectrometer (EDX), the surface of the negative electrode active material layer 12B within a predetermined analysis range (analysis area) is subjected to elements at 10 different locations. By analyzing, the formation range (formation area) of the intermediate layer 14 is specified. In this elemental analysis, elemental analysis is performed on the constituent elements of the plurality of inorganic particles contained in the intermediate layer 14. Specifically, when a plurality of inorganic particles contain magnesium hydroxide, elemental analysis on magnesium is performed.
  • EDX energy dispersive X-ray spectrometer
  • the coverage (%) (formation area of the intermediate layer 14 / analysis area of the negative electrode active material layer 12B) ⁇ 100 is calculated.
  • this EDX an energy dispersive fluorescent X-ray analyzer EDX-7000 manufactured by Shimadzu Corporation can be used.
  • the analysis conditions are not particularly limited, but the degree of vacuum is 10 -5 to 10 -6 .
  • the average value of the 10 covering rates calculated at the 10 locations is calculated to obtain the covering rate of the intermediate layer 14.
  • the value of this coverage shall be the value rounded to the first decimal place.
  • the negative electrode 12 When the intermediate layer 14 is formed on the surface of the negative electrode 12, the negative electrode 12 is in close contact with the separator 13 via the intermediate layer 14.
  • the adhesion strength of the negative electrode 12 to the separator 13 is not particularly limited, but is preferably 3 mN / mm to 30 mN / mm. This is because the negative electrode 12 is uniformly adhered to the separator 13, so that the distance between the negative electrode 12 and the separator 13 is less likely to vary, and the electrical resistance of the negative electrode 12 is also less likely to vary.
  • the procedure for measuring the adhesion strength of the negative electrode 12 is as follows. First, by disassembling the secondary battery, a laminate in which the negative electrode 12, the separator 13, and the intermediate layer 14 are laminated to each other is recovered. Subsequently, using a tensile tester (A & D Co., Ltd. Tencilon universal tester RTF), the intermediate layer 14 is peeled off in the direction of 180 ° with respect to the separator 13, so that the negative electrode with respect to the separator 13 is obtained. The adhesion strength of 12 is measured. Finally, the average value of the 10 adhesion strengths calculated at the 10 locations is calculated to obtain the adhesion strength of the negative electrode 12. The value of this coverage shall be the value rounded to the first decimal place.
  • Suitable physical properties of the negative electrode> It is preferable that the negative electrode 12 satisfies the predetermined constitutional conditions and physical property conditions described below in order to enable charging / discharging of the secondary battery under the condition of high charging voltage.
  • FIGS. 5 and 6 represents a capacity potential curve for the secondary battery of the reference example for the secondary battery of the present embodiment, and each of FIGS. 7 and 8 relates to the secondary battery of the present embodiment. It represents a capacitance potential curve.
  • the horizontal axis represents the capacitance C (mAh) and the vertical axis represents the potential E (V).
  • This potential E is an open circuit potential measured with the lithium metal as a reference electrode, that is, a potential based on the lithium metal.
  • the capacitance potential curve L1 of the positive electrode 11 and the capacitance potential curve L2 of the negative electrode 12 are shown. The position of the broken line indicated as “charged” indicates the fully charged state, and the position of the broken line indicated as "discharged” indicates the fully discharged state.
  • the charging voltage Ec (V) and the discharging voltage Ed (V) are as follows.
  • the secondary battery is charged until the battery voltage (closed circuit voltage) reaches the charging voltage Ec, and then discharged until the battery voltage reaches the discharging voltage Ed.
  • the positive electrode active material (lithium-containing transition metal compound) of the positive electrode 11 is a lithium cobalt composite oxide having a layered rock salt type crystal structure represented by the following formula (1) (hereinafter, “layered rock salt type lithium cobalt). It contains any one or more of the above (referred to as “composite oxide”). This is because a high energy density can be stably obtained.
  • M is titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), sodium (Na), magnesium (Mg), aluminum.
  • Al silicon (Si), tin (Sn), potassium (K), calcium (Ca), zinc (Zn), gallium (Ga), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), yttrium (Ba), lantern (La), tungsten (W) and boron (B).
  • X is fluorine (F), chlorine (Cl), At least one of bromine (Br), iodine (I) and sulfur (S).
  • X, y and z are 0.8 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.15 and 0 ⁇ . z ⁇ 0.05 is satisfied.
  • composition of lithium differs depending on the charge / discharge state.
  • the value of x shown in the formula (1) is a value in a state in which the positive electrode 11 is discharged until the potential reaches 3.0 V (lithium metal standard) after the positive electrode 11 is taken out from the secondary battery.
  • this layered rock salt type lithium cobalt composite oxide is a cobalt-based lithium composite oxide.
  • the layered rock salt type lithium cobalt composite oxide may further contain any one or more of the first additional element (M), or the second additional element (X). Any one type or two or more types may be included. Details regarding each of the first additional element (M) and the second additional element (X) are as described above.
  • the layered rock salt type lithium cobalt composite oxide does not have to contain the first additional element (M).
  • the layered rock salt type lithium cobalt composite oxide does not have to contain the second additional element (X).
  • the type of the layered rock salt type lithium cobalt composite oxide is not particularly limited as long as it is a compound represented by the formula (1).
  • Specific examples of the layered rock salt type lithium cobalt composite oxide are LiCoO 2 , LiCo 0.98 Al 0.02 O 2 , LiCo 0.98 Mn 0.02 O 2 and LiCo 0.98 Mg 0.02 O 2 .
  • the negative electrode active material (carbon material) of the negative electrode 12 contains graphite. Since the type of graphite is not particularly limited, it may be artificial graphite, natural graphite, or both.
  • the charging voltage Ec (so-called charging) is required. It is conceivable to increase the final voltage).
  • the charging voltage Ec is increased, the potential E of the positive electrode 11 rises at the end of charging and eventually at the end of charging, so that the range of use of the potential E, that is, the potential range used in the positive electrode 11 during charging is raised.
  • the positive electrode active material there is a constant potential region P2 associated with a phase transition (O3 / H1-3 transition).
  • the potential E of the positive electrode 11 also increases at the end of charging, so that the potential E of the positive electrode 11 reaches the region of the constant potential region P2 described above.
  • the capacitance potential curve L1 of the positive electrode 11 has a potential change region P1 and a constant potential region P2 as shown in FIGS. 5 to 8.
  • the potential change region P1 is a region in which the potential E also changes when the capacitance C changes.
  • the constant potential region P2 is a region located on the left side of the constant potential region P1 in the capacitance potential curve, and is a region in which the potential E hardly changes even if the capacitance C changes due to the phase transition.
  • the potential E of the positive electrode 11 reaches within the region of the constant potential region P2 associated with the phase transition, or the potential E of the positive electrode 11 is constant with the potential associated with the phase transition.
  • the charging voltage Ec becomes 4.38 V or higher
  • the potential E of the positive electrode 11 easily reaches the potential constant region P2 associated with the phase transition, or the potential E of the positive electrode 11 passes through the potential constant region P2 associated with the phase transition. It will be easier to do.
  • the capacitance potential curve L2 of the negative electrode 12 has a constant potential region P3 as shown in FIGS. 5 to 8.
  • This constant potential region P3 is a region in which the potential E hardly changes even if the capacitance C changes due to the two-phase coexistence reaction.
  • the potential E of the negative electrode 12 in the constant potential region P3 is about 90 mV to 100 mV.
  • the capacitance potential curve L2 of the negative electrode 12 has a potential change region P4 as shown in FIGS. 5 to 8. doing.
  • the potential change region P4 is a region located on the left side of the constant potential region P3 in the capacitance potential curve, and is a region in which the potential E suddenly changes (decreases) when the capacitance C changes. ..
  • the potential E of the negative electrode 12 in the potential change region P4 is less than about 90 mV.
  • the potential E of the negative electrode 12 becomes high at the end of charging.
  • the potential E of the positive electrode 11 reaches 4.50 V or more.
  • the potential E of the positive electrode 11 when the charging voltage Ec is increased to 4.38 V or more, the potential E of the positive electrode 11 easily reaches the potential constant region P2 accompanying the phase transition, or the potential E of the positive electrode 11 becomes higher. It becomes easy to pass through the potential constant region P2 accompanying the phase transition. As a result, capacity loss tends to occur and gas tends to be generated, so that the battery characteristics tend to deteriorate. As described above, the tendency of the battery characteristics to be easily deteriorated becomes remarkable when the secondary battery is used and stored in a high temperature environment.
  • the battery capacity is easily affected by the active material ratio (the ratio between the amount of the positive electrode active material and the amount of the negative electrode active material) and the charging voltage Ec.
  • the battery capacity is likely to fluctuate due to variations in the amount) and an error in setting the charging voltage Ec by the charging device.
  • the capacitance C of the positive electrode 11 fluctuates, the potential E of the positive electrode 11 easily reaches the potential constant region P2 associated with the phase transition, or the potential E of the positive electrode 11 easily passes through the potential constant region P2 associated with the phase transition. Therefore, the battery capacity is liable to fluctuate, and the operable time of the device and the device operating by using the secondary battery as a power source is shortened due to the decrease in the battery capacity. Further, when the battery capacity fluctuates, lithium metal is likely to be generated in the negative electrode 12.
  • the potential E of the positive electrode 11 reaches the potential constant region P2 accompanying the phase transition, or the positive electrode 11
  • the potential E of the negative electrode 12 is set in order to prevent the potential E from passing through the constant potential region P2 accompanying the phase transition and also to suppress the precipitation of lithium metal at the negative electrode 12.
  • the potential E of the negative electrode 12 at the end of charging also decreases, the potential E of the positive electrode 11 at the end of charging also decreases.
  • the secondary battery of the present embodiment even if the charging voltage Ec is increased to 4.38 V or more, it becomes difficult for the potential E of the positive electrode 11 to reach the potential constant region P2 accompanying the phase transition, or the potential of the positive electrode 11 Since E is less likely to pass through the potential constant region P2 associated with the phase transition, capacity loss is less likely to occur and gas is less likely to be generated. Further, even if the charging voltage Ec is increased to 4.38 V or more, lithium metal is less likely to precipitate on the negative electrode 12, so that the battery capacity is also less likely to decrease.
  • the battery capacity is less likely to be affected by the active material ratio, the charging voltage Ec, etc., so that the battery capacity is less likely to fluctuate, and the device operating using the secondary battery as a power source and the device.
  • the operating time of the equipment is also guaranteed. Further, even if the battery capacity fluctuates, lithium metal is less likely to be generated in the negative electrode 12.
  • the state in which the secondary battery is constantly charged at a constant voltage for 24 hours at a closed circuit voltage (OCV (Open Circuit Voltage)) of 4.38 V or higher is regarded as a fully charged state.
  • the potential E (negative electrode potential Ef) of the negative electrode 12 measured in the fully charged secondary battery is 19 mV to 86 mV.
  • the current value for charging the secondary battery until the closed circuit voltage reaches 4.38 V or higher is not particularly limited and can be set arbitrarily.
  • the potential E of the negative electrode 12 is set so that charging is completed in the potential change region P4 without completing charging in the potential constant region P3.
  • the negative electrode potential Ef becomes lower when charging is completed in the potential change region P4 than when charging is completed in the potential constant region P3. Therefore, the negative electrode potential Ef becomes less than about 90 mV, and more specifically, 19 mV to 86 mV as described above.
  • the secondary battery stays at a constant voltage for 24 hours at the closed circuit voltage of 3.00 V.
  • the discharge capacity obtained when discharged is defined as the maximum discharge capacity (mAh).
  • the fluctuation amount of the potential E of the negative electrode 12 represented by the following formula (2) (negative electrode).
  • the potential fluctuation amount Ev) is 1 mV or more.
  • the negative electrode potential fluctuation amount Ev is the difference between the potential E1 (first negative electrode potential) and the potential E2 (second negative electrode potential).
  • the current value when discharging the secondary battery from the fully charged state until the closed circuit voltage reaches 3.00 V is within the general range because the secondary battery is discharged at a constant voltage for 24 hours. If it is, it is not particularly limited and can be set arbitrarily.
  • Negative potential fluctuation amount Ev (mV) potential E2 (mV) -potential E1 (mV) ... (2)
  • the potential E1 is the open circuit potential (lithium metal reference) of the negative electrode 12 measured in the fully charged secondary battery.
  • the potential E2 is from the fully charged state by the capacity corresponding to 1% of the maximum discharge capacity. It is the open circuit potential (lithium metal standard) of the negative electrode 12 measured in the state where the secondary battery is discharged.)
  • the secondary when the potential E of the negative electrode 12 is set so that charging is completed in the potential change region P4, the secondary is in a fully charged state by a capacity corresponding to 1% of the maximum discharge capacity.
  • the potential E of the negative electrode 12 is rapidly increased.
  • the potential E (E2) of the negative electrode 12 after discharge is sufficiently increased from the potential E (E1) of the negative electrode 12 before discharge (fully charged state). Therefore, the negative electrode potential fluctuation amount Ev, which is the difference between the potentials E1 and E2, becomes 1 mV or more as described above.
  • This secondary battery operates as described below.
  • lithium is released from the positive electrode 11 in the wound electrode body 10, and the lithium is occluded in the negative electrode 12 via the electrolytic solution.
  • lithium is released from the negative electrode 12 in the wound electrode body 10, and the lithium is occluded in the positive electrode 11 via the electrolytic solution.
  • lithium is occluded and released in an ionic state.
  • a positive electrode 11 manufacturing step a negative electrode 12 manufacturing step, an intermediate layer 14 forming step, an electrolytic solution preparation step, and a secondary battery manufacturing step are performed according to the procedure described below. An assembly process and an activation process are performed.
  • the positive electrode active material is mixed with a positive electrode binder, a positive electrode conductive agent, and the like, if necessary, to obtain a positive electrode mixture.
  • a paste-like positive electrode mixture slurry is prepared by adding the positive electrode mixture to an organic solvent or the like.
  • the positive electrode active material layer 11B is formed by applying the positive electrode mixture slurry on both sides of the positive electrode current collector 11A.
  • the positive electrode active material layer 11B may be compression-molded using a roll press or the like. In this case, the positive electrode active material layer 11B may be heated, or compression molding may be repeated a plurality of times. As a result, the positive electrode active material layers 11B are formed on both sides of the positive electrode current collector 11A, so that the positive electrode 11 is produced.
  • the negative electrode active material layers 12B are formed on both sides of the negative electrode current collector 12A by the same procedure as the procedure for producing the positive electrode 11 described above. Specifically, the negative electrode active material is mixed with a negative electrode binder, a negative electrode conductive agent, etc. as necessary to obtain a negative electrode mixture, and then the negative electrode mixture is added to an organic solvent or the like. Prepare a paste-like negative electrode mixture slurry. Subsequently, the negative electrode active material layer 12B is formed by applying the negative electrode mixture slurry on both sides of the negative electrode current collector 12A. After that, the negative electrode active material layer 12B may be compression-molded. As a result, the negative electrode active material layers 12B are formed on both sides of the negative electrode current collector 12A, so that the negative electrode 12 is produced.
  • Intermediate layer forming process First, an intermediate mixture slurry in which a plurality of inorganic particles are dispersed in an organic solvent or the like and an intermediate binder is dissolved is prepared, and then the intermediate mixture slurry is applied to the surface of the negative electrode 12 (negative electrode active material layer 12B). By coating, an intermediate layer 14 that functions as a coating layer of the negative electrode active material layer 12B is formed.
  • the weight ratio RN of the upper layer 14N is made larger than the weight ratio RM of the lower layer 14M.
  • first intermediate mixture slurry two types of paste-like intermediate mixture slurries containing a plurality of inorganic particles and intermediate binders and having different solid content concentrations (first intermediate mixture slurry and second intermediate mixture slurry) are used. ) Is used.
  • a plurality of inorganic particles and an intermediate binder are mixed so as to have a mixing ratio corresponding to the weight ratio RM, and then the mixture is added to an organic solvent or the like to make the mixture relatively small.
  • a first intermediate mixture slurry having a solid content concentration is prepared.
  • a plurality of inorganic particles and an intermediate binder are mixed so as to have a mixing ratio corresponding to the weight ratio RN, and then the mixture is added to an organic solvent or the like to obtain a relatively large solid content concentration.
  • the lower layer 14M is formed by applying the first intermediate mixture slurry to the surface of the negative electrode 12 (negative electrode active material layer 12B).
  • the upper layer 14N is formed by applying the second intermediate mixture slurry to the surface of the lower layer 14M.
  • the lower layer 14M and the upper layer 14N are laminated in this order on the surface of the negative electrode 12, so that the intermediate layer 14 is formed. Since the lower layer 14M and the upper layer 14N formed here are physically separated from each other as is clear from the above-mentioned formation procedure, the intermediate layer 14 is formed into a two-layer structure including the lower layer 14M and the upper layer 14N. Is formed. If the weight ratio RN of the upper layer 14N is larger than the weight ratio RM of the lower layer 14M, the thickness of the lower layer 14M and the thickness of the upper layer 14N may be the same as or different from each other.
  • the weight ratio R changes intermittently in the thickness direction of the intermediate layer 14. Specifically, the weight ratio R increases intermittently from the weight ratio RM to the weight RN with the boundary line L as the boundary in the direction from the negative electrode 12 (negative electrode active material layer 12B) to the separator 13.
  • one kind of paste-like precursor mixture slurry containing only the intermediate binder without containing a plurality of inorganic particles is used.
  • a precursor mixture slurry is prepared by adding an intermediate binder to an organic solvent or the like.
  • the negative electrode 12 is continuously supplied to the surface of the negative electrode 12 (negative electrode active material layer 12B) by using a coating device provided with a tank capable of accommodating the precursor mixture slurry.
  • the precursor mixture slurry is applied to the surface of the above.
  • a plurality of inorganic particles are added to the mixture slurry in the tank in the process of applying the precursor mixture slurry so that the amount added is gradually increased. Added.
  • an intermediate layer 14 containing a plurality of inorganic particles is formed on the surface of the negative electrode 12 together with the intermediate binder.
  • the intermediate layer 14 is formed so as to have a single-layer structure because it is not physically separated in the middle.
  • the weight ratio RN of the upper layer 14N is larger than the weight ratio RM of the lower layer 14M, conditions such as the addition amount and the addition rate of the plurality of inorganic particles can be arbitrarily set.
  • the weight ratio R continuously changes in the thickness direction of the intermediate layer 14. Specifically, the weight ratio R continuously increases from the weight ratio RM to the weight RN in the direction from the negative electrode 12 to the separator 13.
  • the electrolyte salt is added to a solvent such as an organic solvent.
  • a solvent such as an organic solvent.
  • the electrolyte salt is dispersed or dissolved in the solvent, so that an electrolytic solution is prepared.
  • the positive electrode lead 15 is connected to the positive electrode 11 (positive electrode current collector 11A) and the negative electrode lead 16 is connected to the negative electrode 12 (negative electrode current collector 12A) by using a welding method or the like.
  • the positive electrode 11 and the negative electrode 12 are laminated with each other via the separator 13 and the intermediate layer 14, and then the positive electrode 11, the negative electrode 12, the separator 13 and the intermediate layer 14 are wound to prepare a wound body. ..
  • the wound body is housed inside the recess 20U, the exterior film 20 is folded, and then the outer peripheral edges of the two sides of the exterior film 20 (fused layer) are overlapped with each other by using a heat fusion method or the like.
  • the wound body is housed inside the bag-shaped exterior film 20 by adhering the wound bodies to each other. Finally, after injecting the electrolytic solution into the bag-shaped exterior film 20, the outer peripheral edges of the remaining one side of the exterior film 20 (fused layer) are adhered to each other by a heat fusion method or the like. Let me. In this case, the adhesion film 21 is inserted between the exterior film 20 and the positive electrode lead 15, and the adhesion film 22 is inserted between the exterior film 20 and the negative electrode lead 16. As a result, the wound body is impregnated with the electrolytic solution, so that the wound electrode body 10 is manufactured. Therefore, since the wound electrode body 10 is enclosed inside the bag-shaped exterior film 20, a laminated film type secondary battery is assembled.
  • Conditions such as the processing temperature and the number of charge / discharge cycles during the activation process can be set arbitrarily.
  • the treatment temperature is not particularly limited, but is preferably 50 ° C. to 95 ° C., more preferably 70 ° C. to 85 ° C.
  • the number of charge / discharge cycles is not particularly limited as long as it is once or more.
  • an intermediate layer 14 containing a plurality of inorganic particles and an intermediate binder is arranged between the negative electrode 12 (negative electrode active material layer 12B) and the separator 13. Further, when the intermediate layer 14 is bisected into the lower layer 14M and the upper layer 14N in the thickness direction, the weight ratio RN of the upper layer 14N is larger than the weight ratio RM of the lower layer 14M.
  • the negative electrode 12 since the distribution (dispersed state) of the plurality of inorganic particles in the intermediate layer 14 is optimized, the negative electrode 12 easily adheres to the separator 13 via the intermediate layer 14. As a result, the negative electrode 12 is firmly fixed to the separator 13, so that the negative electrode 12 is less likely to be displaced with respect to the separator 13 even if the secondary battery receives an external load such as vibration or dropping. Therefore, the facing state of the positive electrode 11 and the negative electrode 12 via the separator 13 is easily maintained, and the physical stability (rigidity) of the wound electrode body 10 is improved.
  • the negative electrode 12 is arranged with respect to the separator 13 at a substantially uniform distance, the distance between the positive electrode 11 and the negative electrode 12 is less likely to vary, and the electrical resistance between the positive electrode 11 and the negative electrode 12 is less likely to vary. Is less likely to vary. Therefore, the precipitation of lithium due to the local increase in overvoltage during charging / discharging is suppressed, and the operation (charging / discharging) of the wound electrode body 10 is stabilized.
  • the safety of the secondary battery is improved while the electrochemical performance of the secondary battery is guaranteed. Therefore, it is possible to achieve both ensuring electrochemical performance and improving safety.
  • the electrochemical performance of the secondary battery is ensured, and the safety of the secondary battery is further improved, so that a higher effect can be obtained. it can.
  • the metal oxide contains aluminum oxide or the like
  • the metal nitride contains aluminum nitride or the like
  • the metal hydroxide contains magnesium hydroxide or the like
  • the thickness of the intermediate layer 14 is 0.1 ⁇ m to 5 ⁇ m, the above-mentioned advantages can be obtained while the occlusion and release of lithium are guaranteed, so that a higher effect can be obtained.
  • the intermediate layer 14 is formed on the surface of the negative electrode 12 on the side facing the separator 13, the adhesion of the intermediate layer 14 to the negative electrode 12 is ensured, so that a higher effect can be obtained.
  • the coverage of the intermediate layer 14 is 20% to 100%, the negative electrode 12 is sufficiently adhered to the separator 13, so that a higher effect can be obtained.
  • the air permeability of the separator 13 is 100 seconds / cm 3 to 1000 seconds / cm 3 , the mobility of lithium during occlusion and release is improved, so that a higher effect can be obtained.
  • the negative electrode potential Ef is 19 mV to 86 mV and the negative electrode potential fluctuation amount. If Ev is 1 mV or more, even if the charging voltage Ec is increased to 4.38 V or more, it becomes difficult for the potential E of the positive electrode 11 to reach the potential constant region P2 accompanying the phase transition, or the potential E of the positive electrode 11 is in phase. It becomes difficult to pass through the potential constant region P2 accompanying the transition, and it becomes difficult for lithium metal to precipitate at the negative electrode 12. Therefore, while the electrochemical performance of the secondary battery is ensured, the safety of the secondary battery is sufficiently improved, so that a higher effect can be obtained.
  • the secondary battery is a lithium ion secondary battery, a higher effect can be obtained because a sufficient battery capacity can be stably obtained by utilizing the occlusion and release of lithium.
  • the intermediate layer 14 that functions as a coating layer covers the surface of the negative electrode active material layer 12B, and the above conditions regarding the configuration of the intermediate layer 14 (weight ratio RN of the upper layer 14N> lower layer). Since the weight ratio RM of 14M) is satisfied, excellent battery characteristics can be obtained in the secondary battery using the negative electrode 12 for the above reason.
  • the intermediate layer 14 is formed on the surface of the negative electrode 12. As a result, since the intermediate layer 14 is connected to the negative electrode 12, it is integrated with the negative electrode 12. However, the intermediate layer 14 may be formed on the surface of the separator 13 instead of the negative electrode 12.
  • the intermediate layer 14 may be formed on the surface of the separator 13 on the side facing the negative electrode 12.
  • FIG. 9 shows the separator 13 used in the manufacturing process of the secondary battery.
  • the intermediate layer 14 is connected to the separator 13, it is integrated with the separator 13.
  • the configuration of the intermediate layer 14 connected to the separator 13 is the same as the configuration of the intermediate layer 14 connected to the negative electrode 12 except that the intermediate layer 14 is connected to the separator 13 instead of the negative electrode 12. Therefore, the above condition (weight ratio RN of the upper layer 14N> weight ratio RM of the lower layer 14M) is also satisfied for the intermediate layer 14 connected to the separator 13. In this case, the upper layer 14N and the lower layer 14M are formed on the separator 13 in this order.
  • the procedure for forming the intermediate layer 14 connected to the separator 13 is the procedure for forming the intermediate layer 14 connected to the negative electrode 12 except that the intermediate layer 14 is formed on the surface of the separator 13 instead of the surface of the negative electrode 12.
  • the procedure is the same as the forming procedure. That is, the intermediate layer 14 is prepared by preparing an intermediate mixture slurry in which a plurality of inorganic particles are dispersed in an organic solvent or the like and an intermediate binder is dissolved, and then the intermediate mixture slurry is applied to the surface of the separator 13. To form.
  • the first forming method may be used, or the second forming method may be used.
  • the second intermediate mixture slurry and the first intermediate mixture slurry are applied to the surface of the separator 13 in this order, so that the upper layer 14N and the lower layer 14M are applied to the surface of the separator 13 in this order.
  • Laminate When the second forming method is used, a plurality of inorganic particles are added to the precursor mixture slurry in the tank in the process of applying the precursor mixture slurry so that the amount of the particles added gradually decreases, thereby forming an upper layer on the surface of the separator 13. 14N and the lower layer 14M are laminated in this order.
  • one positive electrode lead 15 is connected to the wound electrode body 10.
  • the number of positive electrode leads 15 is not limited to one, and may be two or more. As the number of positive electrode leads 15 increases, the electrical resistance of the wound electrode body 10 decreases, so that a higher effect can be obtained. What has been described about the positive electrode lead 15 here is the same for the negative electrode lead 16. That is, for the same reason as described with respect to the positive electrode lead 15, the number of the negative electrode leads 16 is not limited to one, and may be two or more.
  • FIG. 2 a separator 13 which is a porous membrane was used.
  • a laminated separator containing a polymer compound layer may be used instead of the separator 13 which is a porous film.
  • the laminated type separator includes the above-mentioned porous film base material layer and the polymer compound layer provided on one side or both sides of the base material layer. This is because the adhesion of the separator to each of the positive electrode 11 and the negative electrode 12 is improved, so that the positional deviation of the wound electrode body 10 is less likely to occur. As a result, the secondary battery is less likely to swell even if a decomposition reaction of the electrolytic solution occurs.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable.
  • the base material layer and the polymer compound layer may contain any one or more of a plurality of inorganic particles and a plurality of resin particles. This is because the heat resistance and safety of the secondary battery are improved because a plurality of inorganic particles and the like dissipate heat when the secondary battery generates heat.
  • the type of the inorganic particles is not particularly limited, and includes aluminum oxide (alumina), aluminum nitride, boehmite, silicon oxide (silica), titanium oxide (titania), magnesium oxide (magnesia), and zirconium oxide (zirconia).
  • a precursor solution containing a polymer compound, an organic solvent, etc. When producing a laminated separator, prepare a precursor solution containing a polymer compound, an organic solvent, etc., and then apply the precursor solution to one or both sides of the base material layer.
  • the positive electrode 11 and the negative electrode 12 are laminated with each other via the separator 13, the intermediate layer 14, and the electrolyte layer, and then the positive electrode 11, the negative electrode 12, the separator 13, the intermediate layer 14 and the like are laminated.
  • the electrolyte layer is wound around. This electrolyte layer is interposed between the positive electrode 11 and the separator 13 and is interposed between the intermediate layer 14 and the separator 13.
  • the electrolyte layer contains a polymer compound together with the electrolyte solution, and the electrolyte solution is held by the polymer compound in the electrolyte layer.
  • the structure of the electrolytic solution is as described above.
  • the polymer compound contains polyvinylidene fluoride and the like.
  • Secondary batteries are mainly used for machines, devices, appliances, devices and systems (aggregates of multiple devices, etc.) in which the secondary battery can be used as a power source for driving or a power storage source for storing power. If so, it is not particularly limited.
  • the secondary battery used as a power source may be a main power source or an auxiliary power source.
  • the main power source is a power source that is preferentially used regardless of the presence or absence of another power source.
  • the auxiliary power supply may be a power supply used in place of the main power supply, or may be a power supply that can be switched from the main power supply as needed.
  • the type of main power source is not limited to the secondary battery.
  • Secondary batteries Specific examples of applications for secondary batteries are as follows.
  • Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, cordless phones, headphone stereos, portable radios, portable TVs and portable information terminals.
  • It is a portable living appliance such as an electric shaver.
  • a storage device such as a backup power supply and a memory card.
  • Electric tools such as electric drills and electric saws.
  • It is a battery pack that is installed in notebook computers as a removable power source. Medical electronic devices such as pacemakers and hearing aids.
  • It is an electric vehicle such as an electric vehicle (including a hybrid vehicle).
  • It is a power storage system such as a household battery system that stores power in case of an emergency.
  • the battery structure of the secondary battery may be the above-mentioned laminated film type or cylindrical type, or may be another battery structure other than these. Further, a plurality of secondary batteries may be used as the battery pack, the battery module, and the like.
  • the battery pack and the battery module are applied to relatively large equipment such as electric vehicles, electric power storage systems and electric tools.
  • a single battery or an assembled battery may be used.
  • the electric vehicle is a vehicle that operates (runs) using a secondary battery as a driving power source, and may be a vehicle (hybrid vehicle or the like) that also has a drive source other than the secondary battery as described above.
  • a power storage system is a system that uses a secondary battery as a power storage source. In a household electric power storage system, since electric power is stored in a secondary battery which is an electric power storage source, it is possible to use the electric power for household electric products and the like.
  • FIG. 10 shows a block configuration of a battery pack using a cell.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is mounted on an electronic device represented by a smartphone.
  • this battery pack includes a power supply 61 and a circuit board 62.
  • the circuit board 62 is connected to the power supply 61 and includes a positive electrode terminal 63, a negative electrode terminal 64, and a temperature detection terminal (so-called T terminal) 65.
  • the power supply 61 includes one secondary battery.
  • the positive electrode lead is connected to the positive electrode terminal 63
  • the negative electrode lead is connected to the negative electrode terminal 64. Since the power supply 61 can be connected to the outside via the positive electrode terminal 63 and the negative electrode terminal 64, it can be charged and discharged via the positive electrode terminal 63 and the negative electrode terminal 64.
  • the circuit board 62 includes a control unit 66, a switch 67, a PTC element 68, and a temperature detection unit 69. However, the PTC element 68 may be omitted.
  • the control unit 66 includes a central processing unit (CPU: Central Processing Unit), a memory, and the like, and controls the operation of the entire battery pack.
  • the control unit 66 detects and controls the usage state of the power supply 61 as needed.
  • the control unit 66 disconnects the switch 67 so that the charging current does not flow in the current path of the power supply 61. To do so. Further, when a large current flows during charging or discharging, the control unit 66 cuts off the charging current by disconnecting the switch 67.
  • the overcharge detection voltage and the overdischarge detection voltage are not particularly limited. As an example, the overcharge detection voltage is 4.2V ⁇ 0.05V, and the overdischarge detection voltage is 2.4V ⁇ 0.1V.
  • the switch 67 includes a charge control switch, a discharge control switch, a charging diode, a discharging diode, and the like, and switches whether or not the power supply 61 is connected to an external device according to an instruction from the control unit 66.
  • This switch 67 includes a field effect transistor (MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor) using a metal oxide semiconductor, and the charge / discharge current is detected based on the ON resistance of the switch 67. ..
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the temperature detection unit 69 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 61 using the temperature detection terminal 65, and outputs the measurement result of the temperature to the control unit 66.
  • the temperature measurement result measured by the temperature detection unit 69 is used when the control unit 66 performs charge / discharge control at the time of abnormal heat generation, when the control unit 66 performs correction processing at the time of calculating the remaining capacity, and the like.
  • FIG. 11 shows a block configuration of a battery pack using an assembled battery.
  • the components of the battery pack (FIG. 10) using a cell will be quoted from time to time.
  • this battery pack includes a positive electrode terminal 81 and a negative electrode terminal 82.
  • the battery pack contains a control unit 71, a power supply 72, a switch 73, a current measurement unit 74, a temperature detection unit 75, a voltage detection unit 76, and a switch control unit inside the housing 70. It includes 77, a memory 78, a temperature detection element 79, and a current detection resistor 80.
  • the power supply 72 includes an assembled battery in which two or more secondary batteries are connected to each other, and the connection form of the two or more secondary batteries is not particularly limited. Therefore, the connection method may be in series, in parallel, or a mixed type of both. As an example, the power supply 72 includes six secondary batteries connected to each other so as to be in two parallels and three series.
  • the configuration of the control unit 71, the switch 73, the temperature detection unit 75, and the temperature detection element 79 is the same as the configuration of the control unit 66, the switch 67, and the temperature detection unit 69 (temperature detection element).
  • the current measuring unit 74 measures the current using the current detection resistor 80, and outputs the measurement result of the current to the control unit 71.
  • the voltage detection unit 76 measures the battery voltage of the power source 72 (secondary battery) and supplies the measurement result of the analog-to-digital converted voltage to the control unit 71.
  • the switch control unit 77 controls the operation of the switch 73 according to the signals input from the current measurement unit 74 and the voltage detection unit 76.
  • the switch control unit 77 disconnects the switch 73 (charge control switch) so that the charge current does not flow in the current path of the power supply 72. ..
  • the switch control unit 77 cuts off the charging current or the discharging current when a large current flows during charging or discharging.
  • control unit 71 may also function as the switch control unit 77.
  • the overcharge detection voltage and the overdischarge detection voltage are not particularly limited, but are the same as those described for the battery pack using a single battery.
  • the memory 78 includes an EEPROM (Electrically Erasable Programmable Read-Only Memory) which is a non-volatile memory, and the memory 78 includes a numerical value calculated by the control unit 71 and a secondary battery measured in the manufacturing process. Information (initial resistance, full charge capacity, remaining capacity, etc.) is stored.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • the positive electrode terminal 81 and the negative electrode terminal 82 are terminals connected to an external device (such as a notebook personal computer) that operates using the battery pack and an external device (such as a charger) that is used to charge the battery pack. is there.
  • the power supply 72 (secondary battery) can be charged and discharged via the positive electrode terminal 81 and the negative electrode terminal 82.
  • FIG. 12 shows a block configuration of a hybrid vehicle which is an example of an electric vehicle.
  • this electric vehicle includes a control unit 84, an engine 85, a power supply 86, a motor 87, a differential device 88, a generator 89, and a transmission 90 inside the housing 83. It also includes a clutch 91, inverters 92 and 93, and various sensors 94. Further, the electric vehicle includes a front wheel drive shaft 95 and a pair of front wheels 96 connected to the differential device 88 and the transmission 90, and a rear wheel drive shaft 97 and a pair of rear wheels 98.
  • the engine 85 is a main power source such as a gasoline engine.
  • the driving force (rotational force) of the engine 85 is transmitted to the front wheels 96 and the rear wheels 98 via the differential device 88, the transmission 90, and the clutch 91, which are the driving units. Since the rotational force of the engine 85 is transmitted to the generator 89, the generator 89 uses the rotational force to generate AC power, and the AC power is converted into DC power via the inverter 93. Therefore, the DC power is stored in the power source 86.
  • the motor 87 which is a conversion unit
  • the electric power (DC power) supplied from the power source 86 is converted into AC power via the inverter 92, and the AC power is used to convert the motor. 87 is driven.
  • the driving force (rotational force) converted from the electric power by the motor 87 is transmitted to the front wheels 96 and the rear wheels 98 via the differential device 88, the transmission 90, and the clutch 91, which are the driving units.
  • the motor 87 may generate AC power by using the rotational force. Since this AC power is converted into DC power via the inverter 92, the DC regenerative power is stored in the power supply 86.
  • the control unit 84 includes a CPU and the like, and controls the operation of the entire electric vehicle.
  • the power supply 86 includes one or more secondary batteries and is connected to an external power source. In this case, the power supply 86 may store electric power by being supplied with electric power from an external power source.
  • the various sensors 94 are used to control the rotation speed of the engine 85 and to control the opening degree (throttle opening degree) of the throttle valve.
  • the various sensors 94 include any one type or two or more types of a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power supply 86 and the motor 87 without using the engine 85.
  • the secondary battery is applicable to the power storage system.
  • This power storage system includes a control unit, a power source including one or more secondary batteries, a smart meter, and a power hub inside a house such as a general house or a commercial building.
  • the power supply is connected to an electric device such as a refrigerator installed inside the house, and can also be connected to an electric vehicle such as a hybrid car parked outside the house.
  • the power supply is connected to a private power generator such as a solar power generator installed in a house via a power hub, and is also connected to a centralized power system such as an external thermal power plant via a smart meter and a power hub. Has been done.
  • the secondary battery can be applied to electric tools such as electric drills and electric saws.
  • This power tool includes a control unit and a power supply including one or more secondary batteries inside a housing to which a movable portion such as a drill portion and a saw blade portion is attached.
  • a secondary battery was manufactured by the following procedure.
  • Layer 11B was formed.
  • the positive electrode active material layer 11B was compression molded using a roll press machine. As a result, the positive electrode active material layers 11B were formed on both sides of the positive electrode current collector 11A, so that the positive electrode 11 was produced.
  • an organic solvent N-methyl-2-pyrrolidone
  • the negative electrode potential Ef (mV) and the negative electrode potential fluctuation amount ev (mV) when the charging voltage Ec is set to 4.45 V are as shown in Table 1.
  • the maximum discharge capacity is set to 1950 mAh to 2050 mAh.
  • magnesium hydroxide (Mg (OH) 2 ), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), and aluminum nitride (AlN) are used as materials (forming materials) of a plurality of inorganic particles.
  • Mg (OH) 2 magnesium hydroxide
  • Al 2 O 3 aluminum oxide
  • SiO 2 silicon oxide
  • AlN aluminum nitride
  • the first intermediate mixture slurry was applied to the surface of the negative electrode 12 (negative electrode active material layer 12B) using a coating device, and then the first intermediate mixture slurry was dried to form the lower layer 14M.
  • the second intermediate mixture slurry was applied to the surface of the lower layer 14M using a coating device, and then the second intermediate mixture slurry was dried to form the upper layer 14N.
  • the lower layer 14M and the upper layer 14N are laminated in this order on the surface of the negative electrode 12, so that the intermediate layer 14 having a two-layer structure has the negative electrode 12 so that the weight ratio RN of the upper layer 14N is larger than the weight RM of the lower layer 14M. Formed on the surface of.
  • the thickness ( ⁇ m) and coverage (%) of the intermediate layer 14 are as shown in Table 1.
  • the thickness of the lower layer 14M and the thickness of the upper layer 14N were made equal to each other.
  • the intermediate layer 14 when the intermediate layer 14 is formed, the same procedure is followed except that the second intermediate mixture slurry and the first intermediate mixture slurry are applied in this order on the surface of the separator 13 instead of the surface of the negative electrode 12. , An intermediate layer 14 was formed on the surface of the separator 13.
  • the place where the intermediate layer 14 is formed described here may be a place where the intermediate layer 14 is formed in advance at the stage of manufacturing the secondary battery, that is, in a state before the completion of the secondary battery, or after the completion of the secondary battery. That is, it may be a place where the intermediate layer 14 is formed at the time of disassembling the completed secondary battery.
  • the intermediate layer 14 was not formed. Further, for comparison, the intermediate layer 14 was formed on the surface of the negative electrode 12 by the same procedure except that the order of use of the first intermediate mixture slurry and the second intermediate mixture slurry was reversed. In this case, the intermediate layer 14 having a two-layer structure was formed so that the weight ratio RN of the upper layer 14N was smaller than the weight RM of the lower layer 14M.
  • the positive electrode lead 15 made of aluminum was welded to the positive electrode current collector 11A, and the negative electrode lead 16 made of copper was welded to the negative electrode current collector 12A.
  • a wound body was produced by winding it.
  • the exterior film 20 is folded so as to sandwich the wound body accommodated in the recessed portion 20U, and then the outer peripheral edges of the two sides of the exterior film 20 are heat-sealed to each other to form a bag.
  • the wound body was housed inside the exterior film 20 of the above.
  • An aluminum laminated film laminated in order was used.
  • the outer peripheral edges of the remaining one side of the exterior film 20 were heat-sealed in a reduced pressure environment.
  • the adhesive film 22 polypropylene film
  • Thickness 5 ⁇ m
  • the state (durability) of the secondary battery after the collision test was visually judged by conducting a collision test using the secondary battery.
  • the drop height of the weight 61 cm.
  • the discharge capacity discharge capacity in the first cycle
  • the discharge capacity discharge capacity at the 400th cycle
  • the capacity retention rate (%) discharge capacity in the 400th cycle / discharge capacity in the 1st cycle
  • the durability is further improved by using magnesium hydroxide and aluminum oxide as the materials of the plurality of inorganic particles.
  • Example 4 As shown in Table 4, a secondary battery was produced and the battery characteristics were evaluated by the same procedure except that the air permeability of the separator 13 was changed.
  • the temperature during the activation treatment was adjusted within the range of 50 ° C. to 95 ° C. In this case, the air permeability of the separator 13 tends to increase as the temperature during the activation treatment increases.
  • Example 5 As shown in Table 5, a secondary battery was produced and the battery characteristics were evaluated by the same procedure except that the negative electrode potential Ef and the negative electrode potential fluctuation amount Ev were changed. In order to change each of the negative electrode potential Ef and the negative electrode potential fluctuation amount Ev, the mixing ratio (weight ratio) of the positive electrode active material and the negative electrode active material was adjusted.
  • the battery structure of the secondary battery is a laminated film type
  • the battery structure is not particularly limited, and other battery structures such as a cylindrical type, a square type, a coin type, and a button type may be used.
  • the element structure of the battery element is a winding type
  • each of the laminated type and the positive electrode and the negative electrode in which the positive electrode and the negative electrode are alternately laminated is used.
  • Other element structures such as a ninety-nine fold type that is folded in a zigzag manner may be used.
  • the electrode reactant is lithium has been described, but the electrode reactant is not particularly limited. Specifically, as described above, the electrode reactant may be another alkali metal such as sodium and potassium, or an alkaline earth metal such as beryllium, magnesium and calcium. In addition, the electrode reactant may be another light metal such as aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、セパレータを介して互いに対向する正極および負極と、その負極とセパレータとの間に配置され、複数の無機粒子および結着剤を含み、厚さ方向において負極に近い側の第1中間部と負極から遠い側の第2中間部とに二等分された際、第2中間部における結着剤に対する複数の無機粒子の重量比が第1中間部における結着剤に対する複数の無機粒子の重量比よりも大きい中間層とを備える。

Description

二次電池用負極および二次電池
 本技術は、二次電池用負極および二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高いエネルギー密度が得られる電源として、二次電池の開発が進められている。この二次電池は、正極および負極と共に電解質を備えている。二次電池の構成は、電池特性に影響を及ぼすため、その二次電池の構成に関しては、様々な検討がなされている。
 具体的には、充放電時の耐久性を向上させるために、セラミック粒子を主成分とするセラミックコート層が負極活物質層の表面に形成されている(例えば、特許文献1参照。)。高温サイクル特性などを改善するために、フィラー粒子およびバインダを含む被覆層が負極活物質層の表面に形成されている(例えば、特許文献2参照。)。安全性を向上させるために、無機酸化物フィラーおよび樹脂バインダを含む多孔質絶縁層が活物質層の表面に形成されている(例えば、特許文献3参照。)。安全性を向上させるために、無機物粒子およびバインダ高分子を含む有無機複合多孔性コート層が電極の表面に形成されている(例えば、特許文献4参照。)。高温保存時のガス発生を抑制するために、セパレータが無機フィラーを含むコーティング層を有している(例えば、特許文献5参照。)。
特開2008-159333号公報 特開2008-053206号公報 特開2005-174792号公報 特表2007-520867号公報 特開2015-115105号公報
 二次電池の課題を解決するために様々な検討がなされているが、その二次電池の電気化学的性能および安全性は未だ十分でないため、未だ改善の余地がある。
 本技術はかかる問題点に鑑みてなされたもので、その目的は、電気化学的性能の確保と安全性の向上とを両立させることが可能な二次電池用負極および二次電池を提供することにある。
 本技術の一実施形態の二次電池用負極は、負極活物質層と、その負極活物質層の表面を被覆し、複数の無機粒子および結着剤を含み、厚さ方向において負極活物質層に近い側の第1被覆部と負極活物質層から遠い側の第2被覆部とに二等分された際、第2被覆部における結着剤に対する複数の無機粒子の重量比が第1被覆部における結着剤に対する複数の無機粒子の重量比よりも大きい被覆層とを備えたものである。
 本技術の一実施形態の二次電池は、セパレータを介して互いに対向する正極および負極と、その負極とセパレータとの間に配置され、複数の無機粒子および結着剤を含み、厚さ方向において負極に近い側の第1中間部と負極から遠い側の第2中間部とに二等分された際、第2中間部における結着剤に対する複数の無機粒子の重量比が第1中間部における結着剤に対する複数の無機粒子の重量比よりも大きい中間層とを備えたものである。
 本技術の一実施形態の二次電池用負極によれば、複数の無機粒子および結着剤を含む被覆層が負極活物質層の表面を被覆しており、厚さ方向において負極活物質層に近い側の第1被覆部と負極活物質層から遠い側の第2被覆部とに被覆層が二等分された際、結着剤に対する複数の無機粒子の重量比が第1被覆部よりも第2被覆部において大きいので、電気化学的性能の確保と安全性の向上とを両立させることができる。
 また、本技術の一実施形態の二次電池によれば、複数の無機粒子および結着剤を含む中間層が負極とセパレータとの間に配置されており、厚さ方向において負極に近い側の第1中間部と負極から遠い側の第2中間部とに中間層が二等分された際、結着剤に対する複数の無機粒子の重量比が第1中間部よりも第2中間部において大きいので、電気化学的性能の確保と安全性の向上とを両立させることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態における二次電池の構成を表す斜視図である。 図1に示した巻回電極体の構成を表す断面図である。 図2に示した巻回電極体の主要部の構成を表す断面図である。 図2に示した負極の構成を表す断面図である。 参考例の二次電池に関する容量電位曲線(充電電圧Ec=4.30V)である。 参考例の二次電池に関する他の容量電位曲線(充電電圧Ec=4.45V)である。 本技術の一実施形態の二次電池に関する容量電位曲線(充電電圧Ec=4.38V)である。 本技術の一実施形態の二次電池に関する他の容量電位曲線(充電電圧Ec=4.45V)である。 変形例1の二次電池におけるセパレータの構成を表す断面図である。 二次電池の適用例(電池パック:単電池)の構成を表すブロック図である。 二次電池の適用例(電池パック:組電池)の構成を表すブロック図である。 二次電池の適用例(電動車両)の構成を表すブロック図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池および二次電池用負極
   1-1.構成
   1-2.負極の好適な構成
   1-3.負極の好適な物性
   1-4.動作
   1-5.製造方法
   1-6.作用および効果
 2.変形例
 3.二次電池の用途
  3-1.電池パック(単電池)
  3-2.電池パック(組電池)
  3-3.電動車両
  3-4.その他
<1.二次電池および二次電池用負極>
 まず、本技術の一実施形態の二次電池に関して説明する。なお、本技術の一実施形態の二次電池用負極(以下、単に「負極」と呼称する。)は、二次電池の一部(一構成要素)であるため、その負極に関しては、以下で併せて説明する。
 ここで説明する二次電池は、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池であり、正極および負極と共に電解質を備えている。この二次電池では、充電途中において負極の表面に電極反応物質が析出することを防止するために、その負極の充電容量は、正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。
 電極反応物質の種類は、特に限定されないが、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵および放出される。
<1-1.構成>
 図1は、二次電池の斜視構成を表している。図2は、図1に示した巻回電極体10の断面構成を表していると共に、図3は、図2に示した巻回電極体10の主要部の断面構成を表している。
 ただし、図1では、巻回電極体10と外装フィルム20とが互いに分離された状態を示している。図2では、巻回電極体10の一部だけを示している。図3では、巻回電極体10のうちの負極活物質層12B、セパレータ13および中間層14を示している。
 この二次電池では、図1に示したように、袋状の外装フィルム20の内部に巻回型の電池素子(巻回電極体10)が収納されており、その巻回電極体10に正極リード15および負極リード16が接続されている。正極リード15および負極リード16のそれぞれは、外装フィルム20の内部から外部に向かって互いに共通する方向に導出されている。
 すなわち、ここで説明する二次電池は、電池素子(巻回電極体10)を収納するための外装部材として、可撓性(または柔軟性)を有する外装フィルム20を用いたラミネートフィルム型の二次電池である。
[外装フィルム]
 外装フィルム20は、図1に示したように、矢印R(一点鎖線)の方向に折り畳み可能な1枚のフィルム状の部材である。この外装フィルム20には、巻回電極体10を収容するための窪み部20U(いわゆる深絞り部)が設けられている。
 具体的には、外装フィルム20は、融着層、金属層および表面保護層が内側からこの順に積層された3層のラミネートフィルムであり、その外装フィルム20が折り畳まれた状態では、融着層のうちの外周縁部同士が互いに融着されている。融着層は、ポリプロピレンなどの高分子化合物を含んでいる。金属層は、アルミニウムなどの金属材料を含んでいる。表面保護層は、ナイロンなどの高分子化合物を含んでいる。ただし、ラミネートフィルムである外装フィルム20の層数は、3層に限定されないため、2層または4層以上でもよい。また、外装フィルム20は、多層のラミネートフィルムに限られず、単層でもよい。
 外装フィルム20と正極リード15との間には、密着フィルム21が挿入されていると共に、外装フィルム20と負極リード16との間には、密着フィルム22が挿入されている。密着フィルム21,22は、外気の侵入を防止する部材であり、正極リード15および負極リード16のそれぞれに対して密着性を有するポリオレフィン樹脂などのうちのいずれか1種類または2種類以上を含んでいる。このポリオレフィン樹脂は、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンなどである。ただし、密着フィルム21,22のうちの一方または双方は、省略されてもよい。
[巻回電極体]
 巻回電極体10は、図1および図2に示したように、正極11と、負極12と、セパレータ13と、中間層14と、液状の電解質である電解液とを備えている。この巻回電極体10は、セパレータ13および中間層14を介して正極11および負極12が互いに積層されたのち、その正極11、負極12、セパレータ13および中間層14が巻回された構造体である。電解液は、主に、正極11、負極12およびセパレータ13のそれぞれに含浸されている。ただし、図2では、電解液の図示を省略している。
(正極)
 正極11は、図2に示したように、正極集電体11Aと、その正極集電体11Aの両面に設けられた2つの正極活物質層11Bとを含んでいる。ただし、正極活物質層11Bは、正極集電体11Aの片面だけに設けられていてもよい。
 正極集電体11Aは、アルミニウム、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。正極活物質層11Bは、リチウムを吸蔵放出する正極活物質、すなわちリチウムをイオン状態で吸蔵放出可能である材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層11Bは、さらに正極結着剤および正極導電剤などを含んでいてもよい。
 正極活物質の種類は、特に限定されないが、リチウム含有遷移金属化合物などのリチウム含有化合物である。このリチウム含有遷移金属化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を含んでおり、さらに1種類または2種類以上の他元素を含んでいてもよい。他元素の種類は、任意の元素(ただし、遷移金属元素を除く。)であれば、特に限定されない。中でも、他元素は、長周期型周期表における2族~15族に属する元素であることが好ましい。なお、リチウム含有遷移金属化合物は、酸化物でもよいし、リン酸化合物、ケイ酸化合物およびホウ酸化合物などでもよい。
 酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 、Li1.15(Mn0.65Ni0.22Co0.13)OおよびLiMnなどである。リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。
 正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、正極導電剤は、導電性を有していれば、金属材料および導電性高分子などでもよい。
(負極)
 負極12は、図2に示したように、負極集電体12Aと、その負極集電体12Aの両面に設けられた負極活物質層12Bとを含んでいる。ただし、負極活物質層12Bは、負極集電体12Aの片面だけに設けられていてもよい。
 負極集電体12Aは、銅、アルミニウム、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。負極活物質層12Bは、リチウムを吸蔵放出する負極活物質、すなわちリチウムをイオン状態で吸蔵放出可能である材料のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層12Bは、さらに負極結着剤および負極導電剤などを含んでいてもよい。負極結着剤および負極導電剤のそれぞれに関する詳細は、上記した正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。
 負極活物質の種類は、特に限定されないが、炭素材料および金属系材料などである。炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。金属系材料は、リチウムと合金を形成可能な金属元素および半金属元素のうちのいずれか1種類または2種類以上を含む材料であり、具体的にはケイ素およびスズなどを構成元素として含んでいる。ただし、金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよい。
 金属系材料の具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2または0.2<v<1.4)、LiSiO、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。
(セパレータ)
 セパレータ13は、図2に示したように、正極11と負極12との間に介在している。このため、正極11および負極12は、セパレータ13を介して互いに対向している。
 このセパレータ13は、正極11と負極12との接触(短絡)を防止しながらリチウムを通過させる絶縁性の多孔質膜であり、単層でも多層でもよい。この多孔質膜は、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどの高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。
 セパレータ13の透気度は、特に限定されないが、中でも、100秒/cm(=100秒/ml)~1000秒/cm(=1000秒/ml)であることが好ましい。リチウムの透過性が担保されるため、正極11と負極12との間においてリチウムの吸蔵放出時の移動性が向上するからである。
 ただし、ここで説明するセパレータ13の透気度は、二次電池の製造工程において用いられるセパレータ13(負極12に対して密着される前のセパレータ13)の透気度ではなく、完成後の二次電池から回収されるセパレータ13(負極12に対して密着された後のセパレータ13)の透気度である。この透気度を測定する手順は、以下で説明する通りである。最初に、二次電池を解体することにより、セパレータ13を回収する。続いて、透気度試験機(東洋精機株式会社製のGURLEY TYPE DENSOMETER)を用いて、互いに異なる10箇所においてセパレータ13の透気度を測定する。最後に、10箇所において測定された10個の透気度の平均値を算出することにより、セパレータ13の透気度とする。
 セパレータ13の透気度は、二次電池の製造工程(後述する活性化工程)において、活性化処理時の処理温度などの条件を変更することにより、調整可能である。
 なお、セパレータ13の厚さは、特に限定されないが、中でも、3μm~12μmであることが好ましい。二次電池のエネルギー密度とセパレータ13の物理的強度とが両立されるからである。この厚さは、互いに異なる10箇所において測定された10個の厚さの平均値である。
(中間層)
 中間層14は、負極12とセパレータ13との間に配置されているため、負極12およびセパレータ13のそれぞれに密着されている。この中間層14は、複数の無機粒子および中間結着剤を含んでおり、その中間結着剤は、中間層14に含まれている結着剤である。中間結着剤に関する詳細は、正極結着剤に関する詳細と同様である。ただし、中間層14は、必要に応じて、さらに任意の添加剤などのうちのいずれか1種類または2種類以上を含んでいてもよい。
 この中間層14では、後述するように、複数の無機粒子の分布が適正化されており、より具体的には重量比RNが重量比RMよりも大きくなるように複数の無機粒子の分散状態が設定されている。これにより、二次電池の電気化学的性能が担保されながら、その二次電池の安全性が向上する。ここで説明した複数の無機粒子の分布の適正化に基づく利点の詳細に関しては、後述する。
 複数の無機粒子は、無機材料のうちのいずれか1種類または2種類以上を含んでいる。無機材料の種類は、特に限定されないが、金属酸化物、金属窒化物および金属水酸化物などである。
 金属酸化物の具体例は、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどである。金属窒化物の具体例は、窒化アルミニウムなどである。金属水酸化物の具体例は、水酸化マグネシウムなどである。
 中でも、無機材料は、金属酸化物および金属水酸化物のうちのいずれか1種類または2種類以上を含んでいることが好ましく、酸化アルミニウムおよび水酸化マグネシウムなどのうちのいずれか1種類または2種類以上を含んでいることがより好ましい。電気化学的性能が担保されながら、安全性がより向上するからである。
 中間層14の厚さは、特に限定されないが、中でも、0.1μm~5μmであることが好ましい。負極12においてリチウムの吸蔵放出が阻害されにくくなるため、そのリチウムの吸蔵放出が担保されながら、上記した利点が得られるからである。この中間層14の厚さとは、図2および図3中におけるZ軸方向の寸法であり、すなわち正極11および負極12がセパレータ13を介して互いに対向する方向の寸法である。
 中間層14の厚さを算出する手順は、以下の通りである。最初に、二次電池を解体することにより、負極12を回収する。続いて、走査型電子顕微鏡(SEM(Scanning Electron Microscope)などの顕微鏡を用いて、負極12の断面(図3)を観察する。観察時の倍率などの条件は、任意に設定可能である。続いて、負極12の断面の観察結果(顕微鏡写真)に基づいて、互いに異なる10箇所において中間層14の厚さを測定する。最後に、10箇所において測定された10個の厚さの平均値を算出することにより、中間層14の厚さとする。
 ここで、上記した複数の無機粒子の分布に関して詳細に説明する。ここで説明する中間層14では、以下で説明するように、複数の無機粒子の分布、すなわち複数の無機粒子の分散状態(重量比R)が適正化されている。
 具体的には、図3に示したように、中間層14の厚さ方向(Z軸方向)において、その中間層14を二等分する。これにより、中間層14は、下層14Mおよび上層14Nに分類される。下層14Mは、負極12(負極活物質層12B)に近い側に位置する第1中間部であり、すなわち中間層14のうちの下側部分である。上層14Nは、負極12から遠い側に位置する第2中間部であり、すなわち中間層14のうちの上側部分である。図3では、下層14Mと上層14Nとの境界に境界線L(破線)を示している。
 下層14Mおよび上層14Nのそれぞれは、複数の無機粒子および中間結着剤を含んでいる。これにより、下層14Mにおいて重量比R(RM)が定義されると共に、上層14Nにおいて重量比R(RN)が定義される。この重量比RMは、下層14Mにおいて、中間結着剤の重量M1に対する複数の無機粒子の重量M2の比であるため、RM=M2/M1という計算式により算出される。一方、重量比RNは、上層14Nにおいて、中間結着剤の重量M3に対する複数の無機粒子の重量M4の比であるため、RN=M4/M3という計算式により算出される。
 この場合において、重量比RNは、重量比RMよりも大きくなるように設定されている。すなわち、複数の無機粒子の分布量(分散量)は、下層14Mよりも上層14Nにおいて大きくなっている。これにより、中間層14中において複数の無機粒子の分布が適正化されるため、上記したように、二次電池の電気化学的性能が担保されながら、その二次電池の安全性が向上する。
 なお、重量比RNが重量比RMよりも大きくなるように中間層14を形成する方法としては、いくつかの形成方法が考えられる。中間層14の形成方法の詳細に関しては、後述する。
 重量比RM,RNのそれぞれの範囲は、特に限定されない。中でも、重量比RMは、0.1~10であることが好ましいと共に、重量比RNは、0.2~20であることが好ましい。重量比RM,RNのそれぞれの範囲が適正化されるため、二次電池の電気化学的性能が担保されながら、その二次電池の安全性が十分に向上するからである。
 重量比RNを算出する手順は、以下の通りである。最初に、二次電池を解体することにより、中間層14を回収する。続いて、切削機器(ダイプラ・ウィンテス株式会社製の斜め切削装置 SAICAS NN(Surface And Interfacial Cutting Analysis System :SAICASは登録商標)を用いて中間層14の一部を切削することにより、下層14Mから上層14Nを分離する。続いて、示差熱熱重量同時測定装置(株式会社日立ハイテクサイエンス製のTG-DTA(Thermogravimeter-Differential Thermal Analyzer) STA7000)を用いて上層14Nを分析することにより、中間結着剤の重量M3および複数の無機粒子の重量M4のそれぞれを測定する。この場合には、昇温速度=10℃/分として、室温(温度=23℃)~1000℃の範囲内において温度を変化させる。最後に、中間結着剤の重量M3および複数の無機粒子の重量M4とに基づいて、上層14Nの重量比RNを算出する。
 なお、重量比RMを算出する手順は、上層14Nの代わりに下層14Mを用いることを除いて、上記した重量比RNを算出する手順と同様である。
(電解液)
 電解液は、溶媒および電解質塩を含んでいる。ただし、溶媒の種類は、1種類だけでもよいし、2種類以上でもよい。また、電解質塩の種類は、1種類だけでもよいし、2種類以上でもよい。
 溶媒は、非水溶媒(有機溶剤)を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。
 非水溶媒は、エステル類およびエーテル類などであり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などである。
 炭酸エステル系化合物は、環状炭酸エステルおよび鎖状炭酸エステルなどである。環状炭酸エステルは、炭酸エチレンおよび炭酸プロピレンなどであると共に、鎖状炭酸エステルは、炭酸ジメチル、炭酸ジエチルおよび炭酸メチルエチルなどである。カルボン酸エステル系化合物は、酢酸エチル、プロピオン酸エチルおよびトリメチル酢酸エチルなどである。ラクトン系化合物は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。エーテル類は、上記したラクトン系化合物の他、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキソランおよび1,4-ジオキサンなどである。
 また、非水溶媒は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、リン酸エステル、酸無水物、ニトリル化合物およびイソシアネート化合物などである。電解液の化学的安定性が向上するからである。
 具体的には、不飽和環状炭酸エステルは、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。ハロゲン化炭酸エステルは、フルオロ炭酸エチレンおよびジフルオロ炭酸エチレンなどである。スルホン酸エステルは、1,3-プロパンスルトンなどである。リン酸エステルは、リン酸トリメチルなどである。酸無水物は、環状カルボン酸無水物、環状ジスルホン酸無水物および環状カルボン酸スルホン酸無水物などである。環状カルボン酸無水物は、無水コハク酸、無水グルタル酸および無水マレイン酸などである。環状ジスルホン酸無水物は、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。環状カルボン酸スルホン酸無水物は、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。ニトリル化合物は、アセトニトリルおよびスクシノニトリルなどである。イソシアネート化合物は、ヘキサメチレンジイソシアネートなどである。
 電解質塩は、リチウム塩などの軽金属塩のいずれか1種類または2種類以上である。このリチウム塩は、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)およびビス(オキサラト)ホウ酸リチウム(LiB(C)などである。電解質塩の含有量は、特に限定されないが、溶媒に対して0.3mol/kg~3.0mol/kgである。高いイオン伝導性が得られるからである。
(正極リードおよび負極リード)
 正極リード15は、正極11(正極集電体11A)に接続されていると共に、負極リード16は、負極12(負極集電体12A)に接続されている。正極リード15の形成材料は、正極集電体11Aの形成材料と同様であると共に、負極リード16の形成材料は、負極集電体12Aの形成材料と同様である。正極リード15および負極リード16のそれぞれの形状は、薄板状および網目状などである。
<1-2.負極の好適な構成>
 中間層14は、負極12とセパレータ13との間に介在していればよいため、その中間層14と他の構成要素との連結関係は、特に限定されない。
 図4は、図2に示した負極12の断面構成を表しており、図3に対応している。ただし、図4では、二次電池の製造工程において用いられる負極12を示している。以下では、随時、図2および図3を参照する。
 ここでは、中間層14は、セパレータ13に対向する側における負極12(負極活物質層12B)の表面に形成されている。これにより、中間層14は、負極12に連結されているため、負極活物質層12Bの表面を被覆する被覆層として機能する。この被覆層として機能する中間層14は、上記したように、下層14M(第1被覆部)および上層14N(第2被覆部)を含んでいる。
 この場合には、中間層14が負極12と一体化されるため、その負極12に対する中間層14の密着性が担保される。また、負極12および中間層14が全体で1個の部材となるため、負極12および中間層14が互いに分離されている(負極12および中間層14が2個の部材である)場合と比較して、負極12および中間層14の取り扱いが向上するため、二次電池が容易に製造可能になる。
 負極活物質層12Bの表面に対する中間層14の被覆率は、特に限定されないが、中でも、20%~100%であることが好ましい。負極12がセパレータ13に対して十分に密着するため、二次電池の電気化学的性能が十分に向上すると共に、その二次電池の安全性も十分に向上するからである。
 この被覆率は、中間層14の形成工程において、後述する第1中間合剤スラリーおよび第2中間合剤スラリーのそれぞれの固形分濃度などを変更することにより、調整可能である。
 中間層14の被覆率を測定する手順は、以下の通りである。最初に、二次電池を解体することにより、中間層14が設けられた負極12を回収する。続いて、エネルギー分散型X線分析装置(EDX(Energy dispersive X-ray spectrometer))を用いて、互いに異なる10箇所において、所定の分析範囲(分析面積)内における負極活物質層12Bの表面を元素分析することにより、中間層14の形成範囲(形成面積)を特定する。この元素分析では、中間層14に含まれている複数の無機粒子の構成元素に関する元素分析が行われる。具体的には、複数の無機粒子が水酸化マグネシウムを含んでいる場合には、マグネシウムに関する元素分析が行われる。続いて、被覆率(%)=(中間層14の形成面積/負極活物質層12Bの分析面積)×100を算出する。このEDXとしては、株式会社島津製作所製のエネルギー分散型蛍光X線分析装置 EDX-7000などを使用可能である。分析条件は、特に限定されないが、真空度=10-5~10-6とする。最後に、10箇所において算出された10個の被覆率の平均値を算出することにより、中間層14の被覆率とする。この被覆率の値は、小数点第一位の値が四捨五入された値とする。
 中間層14が負極12の表面に形成されている場合には、その負極12が中間層14を介してセパレータ13に密着されている。セパレータ13に対する負極12の密着強度は、特に限定されないが、中でも、3mN/mm~30mN/mmであることが好ましい。負極12がセパレータ13に対して均一に密着されるため、負極12とセパレータ13との間の距離がばらつきにくくなると共に、その負極12の電気抵抗もばらつきにくくなるからである。
 負極12の密着強度を測定する手順は、以下の通りである。最初に、二次電池を解体することにより、負極12、セパレータ13および中間層14が互いに積層された積層体を回収する。続いて、引っ張り試験機(株式会社エー・アンド・デイ製のテンシロン万能試験機 RTF)を用いて、セパレータ13に対して180°の方向に中間層14を剥離させることにより、そのセパレータ13に対する負極12の密着強度を測定する。最後に、10箇所において算出された10個の密着強度の平均値を算出することにより、負極12の密着強度とする。この被覆率の値は、小数点第一位の値が四捨五入された値とする。
<1-3.負極の好適な物性>
 負極12では、高充電電圧の条件において二次電池を充放電可能とするために、以下で説明する所定の構成条件および物性条件が満たされていることが好ましい。
 図5および図6のそれぞれは、本実施形態の二次電池に対する参考例の二次電池に関する容量電位曲線を表していると共に、図7および図8のそれぞれは、本実施形態の二次電池に関する容量電位曲線を表している。
 図5~図8のそれぞれにおいて、横軸は容量C(mAh)を示していると共に、縦軸は電位E(V)を示している。この電位Eは、リチウム金属を参照極として測定される開回路電位であり、すなわちリチウム金属基準の電位である。また、図5~図8のそれぞれでは、正極11の容量電位曲線L1および負極12の容量電位曲線L2を示している。なお、「充電」と示された破線の位置は、満充電状態を表していると共に、「放電」と示された破線の位置は、完全放電状態を表している。
 充電電圧Ec(V)および放電電圧Ed(V)は、以下の通りである。図5では、充電電圧Ec=4.30Vおよび放電電圧Ed=3.00Vである。図6では、充電電圧Ec=4.45Vおよび放電電圧Ed=3.00Vである。図7では、充電電圧Ec=4.38Vおよび放電電圧Ed=3.00Vである。図8では、充電電圧Ec=4.45Vおよび放電電圧Ed=3.00Vである。充放電時において、二次電池は、電池電圧(閉回路電圧)が充電電圧Ecに到達するまで充電されたのち、その電池電圧が放電電圧Edに到達するまで放電される。
 以下では、本実施形態の二次電池の充放電原理および物性条件を説明するための前提事項(構成条件)に関して説明したのち、その充放電原理に関して説明すると共に、その充放電原理を実現するために必要な物性条件に関して説明する。
[前提事項(構成条件)]
 ここでは、正極11の正極活物質(リチウム含有遷移金属化合物)は、下記の式(1)で表される層状岩塩型の結晶構造を有するリチウムコバルト複合酸化物(以下、「層状岩塩型リチウムコバルト複合酸化物」と呼称する。)のうちのいずれか1種類または2種類以上を含んでいる。高いエネルギー密度が安定に得られるからである。
 LiCo1-y 2-z  ・・・(1)
(Mは、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、スズ(Sn)、カリウム(K)、カルシウム(Ca)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、バリウム(Ba)、ランタン(La)、タングステン(W)およびホウ素(B)のうちの少なくとも1種である。Xは、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)および硫黄(S)のうちの少なくとも1種である。x、yおよびzは、0.8<x<1.2、0≦y<0.15および0≦z<0.05を満たす。)
 ただし、リチウムの組成は、充放電状態に応じて異なる。式(1)に示したxの値は、二次電池から正極11を取り出したのち、電位が3.0V(リチウム金属基準)に到達するまで正極11が放電された状態の値である。
 この層状岩塩型リチウムコバルト複合酸化物は、式(1)から明らかなように、コバルト系のリチウム複合酸化物である。ただし、層状岩塩型リチウムコバルト複合酸化物は、さらに、第1追加元素(M)のうちのいずれか1種類または2種類以上を含んでいてもよいし、第2追加元素(X)のうちのいずれか1種類または2種類以上を含んでいてもよい。第1追加元素(M)および第2追加元素(X)のそれぞれに関する詳細は、上記した通りである。
 言い替えれば、yが取り得る値の範囲から明らかなように、層状岩塩型リチウムコバルト複合酸化物は、第1追加元素(M)を含んでいなくてもよい。同様に、zが取り得る値の範囲から明らかなように、層状岩塩型リチウムコバルト複合酸化物は、第2追加元素(X)を含んでいなくてもよい。
 層状岩塩型リチウムコバルト複合酸化物の種類は、式(1)により表される化合物であれば、特に限定されない。層状岩塩型リチウムコバルト複合酸化物の具体例は、LiCoO、LiCo0.98Al0.02、LiCo0.98Mn0.02およびLiCo0.98Mg0.02などである。
 また、負極12の負極活物質(炭素材料)は、黒鉛を含んでいる。黒鉛の種類は、特に限定されないため、人造黒鉛でもよいし、天然黒鉛でもよいし、双方でもよい。
 上記した正極11(正極活物質=層状岩塩型リチウムコバルト複合酸化物)および負極12(負極活物質=黒鉛)を備えた二次電池においてエネルギー密度を向上させるためには、充電電圧Ec(いわゆる充電終止電圧)を増大させることが考えられる。充電電圧Ecを増大させると、充電末期、ひいては充電終止時において正極11の電位Eが上昇するため、その電位Eの使用範囲、すなわち充電時の正極11において使用される電位域が引き上げられる。
 一般的に、正極活物質として層状岩塩型リチウムコバルト複合酸化物を用いた場合には、相転移(O3/H1-3転移)に伴う電位一定領域P2が存在する。充電電圧Ecを増大させると、充電末期において正極11の電位Eも増大するため、上記した電位一定領域P2の領域内に正極11の電位Eが到達することになる。これにより、正極11の容量電位曲線L1は、図5~図8に示したように、電位変化領域P1および電位一定領域P2を有している。電位変化領域P1は、容量Cが変化すると電位Eも変化する領域である。電位一定領域P2は、容量電位曲線中において電位一定領域P1よりも左側に位置する領域であり、相転移に起因して容量Cが変化しても電位Eがほとんど変化しない領域である。
 層状岩塩型リチウムコバルト複合酸化物を用いた二次電池では、正極11の電位Eが相転移に伴う電位一定領域P2の領域内に到達し、または正極11の電位Eが相転移に伴う電位一定領域P2を通過するように充放電されると、容量損失が発生しやすくなると共にガスも発生しやすくなる傾向がある。このような傾向は、高温環境中において二次電池が使用および保存された際に顕著になる。特に、充電電圧Ecが4.38V以上になると、正極11の電位Eが相転移に伴う電位一定領域P2に到達しやすくなり、または正極11の電位Eが相転移に伴う電位一定領域P2を通過しやすくなる。
 一方、負極活物質として黒鉛を用いた場合において充電電圧Ecを増大させると、その黒鉛において、層間化合物ステージ1と層間化合物ステージ2との二相共存反応が進行する。これにより、負極12の容量電位曲線L2は、図5~図8に示したように、電位一定領域P3を有している。この電位一定領域P3は、二相共存反応に起因して容量Cが変化しても電位Eがほとんど変化しない領域である。電位一定領域P3における負極12の電位Eは、約90mV~100mVである。
 なお、充電電圧Ecをさらに増大させると、負極12の電位Eが電位一定領域P3を越えるため、その電位Eが急激に変化する。この電位Eが電位一定領域P3を越えた状態に至る充電電圧Ecの増大に起因して、負極12の容量電位曲線L2は、図5~図8に示したように、電位変化領域P4を有している。図5~図8において、電位変化領域P4は、容量電位曲線中において電位一定領域P3よりも左側に位置する領域であり、容量Cが変化すると電位Eが急激に変化(低下)する領域である。電位変化領域P4における負極12の電位Eは、約90mV未満である。
[充放電原理]
 正極11が正極活物質(層状岩塩型リチウムコバルト複合酸化物)を含んでいると共に、負極12が負極活物質(黒鉛)を含んでいる本実施形態の二次電池では、上記した前提事項を踏まえた上で、以下で説明するように充放電が行われる。以下では、参考例の二次電池の充放電原理(図5および図6)と比較しながら、本実施形態の二次電池の充放電原理(図7および図8)に関して説明する。
 参考例の二次電池では、負極12においてリチウム金属が析出することに起因して電池容量が減少することを防止するために、図5に示したように、充電終止時(充電電圧Ec=4.30V)における負極12の電位Eは、電位一定領域P3において充電が完了するように設定されている。
 しかしながら、参考例の二次電池では、充電電圧Ecを4.38V以上、より具体的には4.45Vまで増大させると、充電終止時において負極12の電位Eが高くなることに起因して、図6に示したように、正極11の電位Eが4.50V以上まで到達してしまう。これにより、充電終止時(充電電圧Ec=4.45V)における正極11の電位Eは、相転移に伴う電位一定領域P2に到達し、または相転移に伴う電位一定領域P2を通過してしまう。
 よって、参考例の二次電池では、充電電圧Ecを4.38V以上まで増大させると、正極11の電位Eが相転移に伴う電位一定領域P2に到達しやすくなり、または正極11の電位Eが相転移に伴う電位一定領域P2を通過しやすくなる。これにより、容量損失が発生しやすくなると共にガスも発生しやすくなる傾向が生じるため、電池特性が低下しやすくなる。このように電池特性が低下しやすくなる傾向は、上記したように、高温環境中において二次電池が使用および保存された際に顕著となる。
 しかも、参考例の二次電池では、電池容量が活物質比(正極活物質の量と負極活物質の量との比)および充電電圧Ecなどの影響を受けやすくなるため、活物質比(目付量)のばらつきおよび充電装置による充電電圧Ecの設定誤差などに起因して電池容量が変動しやすくなる。これにより、正極11の容量Cが変動すると、その正極11の電位Eが相転移に伴う電位一定領域P2に到達し、または正極11の電位Eが相転移に伴う電位一定領域P2を通過しやすくなるため、電池容量が変動しやすくなると共に、二次電池を電源として稼働する機器および装置などの稼働可能時間が電池容量の減少に起因して短くなる。また、電池容量が変動すると、負極12においてリチウム金属が発生しやすくなる。
 これに対して、本実施形態の二次電池では、正極11(層状岩塩型リチウムコバルト複合酸化物)において、その正極11の電位Eが相転移に伴う電位一定領域P2に到達し、または正極11の電位Eが相転移に伴う電位一定領域P2を通過することを抑制しながら、負極12においてリチウム金属が析出することも抑制するために、その負極12の電位Eが設定されている。具体的には、図7に示したように、充電終止時(充電電圧Ec=4.38V)における負極12の電位Eは、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように設定されている。また、図8に示したように、充電終止時(充電電圧Ec=4.45V)における負極12の電位Eも同様に、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように設定されている。
 この場合には、充電終止時における負極12の電位Eが低下するため、その充電終止時における正極11の電位Eも低下する。具体的には、本実施形態の二次電池では、充電終止時における負極12の電位Eが低くなることに起因して、充電電圧Ecを4.38V以上、より具体的には4.45Vまで増大させても、図7および図8に示したように、正極11の電位Eが4.50V以上まで到達しない。これにより、充電終止時(充電電圧Ec=4.38Vまたは4.45V)における正極11の電位Eは、相転移に伴う電位一定領域P2に到達せず、または相転移に伴う電位一定領域P2を通過しないように設定される。
 また、充電時には、図7および図8から明らかなように、4.38V以上の充電電圧Ecまで二次電池が充電されると、電位変化領域P4において負極12の電位Eが急激に減少するため、充電反応が完了する。これにより、上記したように、充電末期において正極11の電位Eが制御されるため、その正極11の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極11の電位Eが相転移に伴う電位一定領域P2を通過しにくくなる。しかも、電位変化領域P4において負極12の電位Eが急激に減少すると、充電反応が直ちに終了するため、その負極12においてリチウム金属が析出するまで充電反応が進行しにくくなる。
 よって、本実施形態の二次電池では、充電電圧Ecを4.38V以上まで増大させても、正極11の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極11の電位Eが相転移に伴う電位一定領域P2を通過しにくくなるため、容量損失が発生しにくくなると共に比較的にガスも発生しにくくなる傾向が生じる。また、充電電圧Ecを4.38V以上まで増大させても、負極12においてリチウム金属が析出しにくくなるため、電池容量も減少しにくくなる。
 しかも、本実施形態の二次電池では、電池容量が活物質比および充電電圧Ecなどの影響を受けにくくなるため、その電池容量が変動しにくくなると共に、二次電池を電源として稼働する機器および装置などの稼働可能時間も担保される。また、電池容量が変動しても、負極12においてリチウム金属が発生しにくくなる。
[物性条件]
 本実施形態の二次電池では、上記した充放電原理を実現するために、以下で説明する2つの物性条件が満たされている。
 第1に、4.38V以上の閉回路電圧(OCV(Open Circuit Voltage))において24時間に渡って二次電池が定電圧充電された状態を満充電状態とする。この満充電状態の二次電池において測定される負極12の電位E(負極電位Ef)は、19mV~86mVである。なお、閉回路電圧が4.38V以上に到達するまで二次電池を充電させる際の電流値は、特に限定されないため、任意に設定可能である。
 すなわち、上記したように、電位一定領域P3において充電が完了せずに、電位変化領域P4において充電が完了するように負極12の電位Eが設定されている。これにより、満充電状態となるまで二次電池を充電させると、負極電位Efは、電位一定領域P3において充電が完了する場合よりも、電位変化領域P4において充電が完了する場合において低くなる。よって、負極電位Efは、上記したように、約90mV未満になり、より具体的には19mV~86mVになる。
 第2に、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池が定電流放電されたのち、その3.00Vの閉回路電圧において24時間に渡って二次電池が定電圧放電された際に得られる放電容量を最大放電容量(mAh)とする。この場合において、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された際に、下記の式(2)で表される負極12の電位Eの変動量(負極電位変動量Ev)は、1mV以上である。この負極電位変動量Evは、式(2)から明らかなように、電位E1(第1負極電位)と電位E2(第2負極電位)との差異である。なお、満充電状態から閉回路電圧が3.00Vに到達するまで二次電池を放電させる際の電流値は、24時間に渡って二次電池が定電圧放電されるため、一般的な範囲内であれば特に限定されず、任意に設定可能である。
 負極電位変動量Ev(mV)=電位E2(mV)-電位E1(mV) ・・・(2)
(電位E1は、満充電状態の二次電池において測定される負極12の開回路電位(リチウム金属基準)である。電位E2は、最大放電容量の1%に相当する容量分だけ満充電状態から二次電池が放電された状態において測定される負極12の開回路電位(リチウム金属基準)である。)
 すなわち、上記したように、電位変化領域P4において充電が完了するように負極12の電位Eが設定されている場合には、最大放電容量の1%に相当する容量分だけ満充電状態の二次電池を放電させると、図7および図8から明らかなように、その負極12の電位Eが急激に増加する。これにより、放電後における負極12の電位E(E2)は、放電前(満充電状態)における負極12の電位E(E1)よりも十分に増加する。よって、電位E1,E2の差異である負極電位変動量Evは、上記したように、1mV以上になる。
<1-4.動作>
 この二次電池は、以下で説明するように動作する。充電時には、巻回電極体10において正極11からリチウムが放出されると共に、そのリチウムが電解液を介して負極12に吸蔵される。また、放電時には、巻回電極体10において負極12からリチウムが放出されると共に、そのリチウムが電解液を介して正極11に吸蔵される。充放電時には、リチウムがイオン状態で吸蔵および放出される。
<1-5.製造方法>
 二次電池を製造する場合には、以下で説明する手順により、正極11の作製工程と、負極12の作製工程と、中間層14の形成工程と、電解液の調製工程と、二次電池の組み立て工程と、活性化工程とを行う。
[正極の作製工程]
 最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を投入することにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体11Aの両面に正極合剤スラリーを塗布することにより、正極活物質層11Bを形成する。こののち、ロールプレス機などを用いて正極活物質層11Bを圧縮成型してもよい。この場合には、正極活物質層11Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極集電体11Aの両面に正極活物質層11Bが形成されるため、正極11が作製される。
[負極の作製工程]
 上記した正極11の作製手順と同様の手順により、負極集電体12Aの両面に負極活物質層12Bを形成する。具体的には、負極活物質と、必要に応じて負極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤などに負極合剤を投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体12Aの両面に負極合剤スラリーを塗布することにより、負極活物質層12Bを形成する。こののち、負極活物質層12Bを圧縮成型してもよい。これにより、負極集電体12Aの両面に負極活物質層12Bが形成されるため、負極12が作製される。
[中間層の形成工程]
 最初に、有機溶剤などに複数の無機粒子が分散されると共に中間結着剤が溶解された中間合剤スラリーを準備したのち、負極12(負極活物質層12B)の表面に中間合剤スラリーを塗布することにより、その負極活物質層12Bの被覆層として機能する中間層14を形成する。
 この中間層14を形成する場合には、上記したように、上層14Nの重量比RNが下層14Mの重量比RMよりも大きくなるようにする。具体的な中間層14の形成方法の一例としては、以下で説明する2通りの形成方法が挙げられる。
 第1形成方法では、複数の無機粒子および中間結着剤を含んでいると共に固形分濃度が互いに異なる2種類のペースト状の中間合剤スラリー(第1中間合剤スラリーおよび第2中間合剤スラリー)を用いる。
 この場合には、最初に、重量比RMに対応する混合比となるように複数の無機粒子と中間結着剤とを混合したのち、有機溶剤などに混合物を投入することにより、相対的に小さい固形分濃度を有する第1中間合剤スラリーを調製する。続いて、重量比RNに対応する混合比となるように複数の無機粒子と中間結着剤とを混合としたのち、有機溶剤などに混合物を投入することにより、相対的に大きい固形分濃度を有する第2中間合剤スラリーを調製する。続いて、負極12(負極活物質層12B)の表面に第1中間合剤スラリーを塗布することにより、下層14Mを形成する。最後に、下層14Mの表面に第2中間合剤スラリーを塗布することにより、上層14Nを形成する。
 これにより、負極12の表面において下層14Mおよび上層14Nがこの順に積層されるため、中間層14が形成される。ここで形成された下層14Mおよび上層14Nは、上記した形成手順から明らかなように、互いに物理的に分離されているため、その下層14Mおよび上層14Nを含む2層構造となるように中間層14が形成される。上層14Nの重量比RNが下層14Mの重量比RMよりも大きくなれば、下層14Mの厚さおよび上層14Nの厚さは、互いに同じでもよいし、互いに異なってもよい。
 上記した2種類の中間合剤スラリーを用いて中間層14を形成した場合には、その中間層14の厚さ方向において重量比Rが断続的に変化する。具体的には、重量比Rは、負極12(負極活物質層12B)からセパレータ13に向かう方向において、境界線Lを境界として重量比RMから重量RNに断続的に増加する。
 第2形成方法では、複数の無機粒子を含んでおらずに中間結着剤だけを含んでいる1種類のペースト状の前駆合剤スラリーを用いる。
 この場合には、最初に、有機溶剤などに中間結着剤を投入することにより、前駆合剤スラリーを調製する。続いて、前駆合剤スラリーを収容可能であるタンクを備えたコーティング装置を用いて、負極12(負極活物質層12B)の表面に前駆合剤スラリーを連続的に供給することにより、その負極12の表面に前駆合剤スラリーを塗布する。この場合には、タンクに収容されている前駆合剤スラリーを撹拌しながら、その前駆合剤スラリーの塗布過程においてタンク中の前記合剤スラリーに添加量が次第に増加するように複数の無機粒子を添加する。これにより、中間結着剤と共に複数の無機粒子を含む中間層14が負極12の表面に形成される。この中間層14は、上記した形成手順から明らかなように、途中で物理的に分離されていないため、単層構造となるように形成される。上層14Nの重量比RNが下層14Mの重量比RMよりも大きくなれば、複数の無機粒子の添加量および添加速度などの条件は、任意に設定可能である。
 上記した1種類の前駆合剤スラリーを用いて中間層14を形成した場合には、その中間層14の厚さ方向において重量比Rが連続的に変化する。具体的には、重量比Rは、負極12からセパレータ13に向かう方向において、重量比RMから重量RNに連続的に増加する。
[電解液の調製工程]
 有機溶剤などの溶媒に電解質塩を投入する。これにより、溶媒中において電解質塩が分散または溶解されるため、電解液が調製される。
[二次電池の組み立て工程]
 最初に、溶接法などを用いて、正極11(正極集電体11A)に正極リード15を接続させると共に、負極12(負極集電体12A)に負極リード16を接続させる。続いて、セパレータ13および中間層14を介して正極11および負極12を互いに積層させたのち、その正極11、負極12、セパレータ13および中間層14を巻回させることにより、巻回体を作製する。続いて、窪み20Uの内部に巻回体を収容すると共に、外装フィルム20を折り畳んだのち、熱融着法などを用いて外装フィルム20(融着層)のうちの2辺の外周縁部同士を互いに接着させることにより、袋状の外装フィルム20の内部に巻回体を収納する。最後に、袋状の外装フィルム20の内部に電解液を注入したのち、熱融着法などを用いて外装フィルム20(融着層)のうちの残りの1辺の外周縁部同士を互いに接着させる。この場合には、外装フィルム20と正極リード15との間に密着フィルム21を挿入すると共に、外装フィルム20と負極リード16との間に密着フィルム22を挿入する。これにより、巻回体に電解液が含浸されるため、巻回電極体10が作製される。よって、袋状の外装フィルム20の内部に巻回電極体10が封入されるため、ラミネートフィルム型の二次電池が組み立てられる。
[活性化工程]
 恒温槽などを用いて、高温環境中において二次電池を充放電させることにより、その二次電池に活性化処理を施す。この活性化処理により、負極12などの表面にSEI(Solid Electrolyte Interphase)膜が形成されることに起因して巻回電極体10の電気化学的な状態が安定化するため、二次電池が完成する。
 活性化処理時における処理温度および充放電回数などの条件は、任意に設定可能である。処理温度は、特に限定されないが、中でも、50℃~95℃であることが好ましく、70℃~85℃であることがより好ましい。充放電回数は、1回以上であれば、特に限定されない。
<1-6.作用および効果>
 この二次電池によれば、複数の無機粒子および中間結着剤を含む中間層14が負極12(負極活物質層12B)とセパレータ13との間に配置されている。また、厚さ方向において中間層14が下層14Mおよび上層14Nに二等分された際、その上層14Nの重量比RNが下層14Mの重量比RMよりも大きくなっている。
 この場合には、中間層14中において複数の無機粒子の分布(分散状態)が適正化されるため、その中間層14を介して負極12がセパレータ13に密着しやすくなる。これにより、負極12がセパレータ13に対して強固に固定されるため、二次電池が振動および落下などの外的負荷を受けても負極12がセパレータ13に対して位置ずれしにくくなる。よって、セパレータ13を介した正極11および負極12の対向状態が維持されやすくなるため、巻回電極体10の物理的安定性(剛性)が向上する。また、負極12がセパレータ13に対してほぼ均一な距離を介して配置されるため、正極11と負極12との間の距離がばらつきにくくなると共に、その正極11と負極12との間の電気抵抗もばらつきにくくなる。よって、充放電時における局所的な過電圧の上昇に起因したリチウムの析出が抑制されるため、巻回電極体10の動作(充放電)が安定化する。
 これらのことから、二次電池の電気化学的性能が担保されながら、その二次電池の安全性が向上する。よって、電気化学的性能の確保と安全性の向上とを両立させることができる。
 特に、複数の無機粒子が金属酸化物などを含んでいれば、二次電池の電気化学的性能が担保されながら、その二次電池の安全性がより向上するため、より高い効果を得ることができる。この場合には、金属酸化物が酸化アルミニウムなどを含んでおり、金属窒化物が窒化アルミニウムなどを含んでおり、金属水酸化物が水酸化マグネシウムなどを含んでいれば、安全性がさらに向上するため、さらに高い効果を得ることができる。
 また、中間層14の厚さが0.1μm~5μmであれば、リチウムの吸蔵放出が担保されながら、上記した利点が得られるため、より高い効果を得ることができる。
 また、セパレータ13に対向する側における負極12の表面に中間層14が形成されていれば、その負極12に対する中間層14の密着性が担保されるため、より高い効果を得ることができる。この場合には、中間層14の被覆率が20%~100%であれば、負極12がセパレータ13に対して十分に密着するため、より高い効果を得ることができる。
 また、セパレータ13の透気度が100秒/cm~1000秒/cmであれば、リチウムの吸蔵放出時の移動性が向上するため、より高い効果を得ることができる。
 また、正極11が層状岩塩型の結晶構造を有するリチウムコバルト複合酸化物を含んでいると共に、負極12が黒鉛を含んでいる場合において、負極電位Efが19mV~86mVであると共に、負極電位変動量Evが1mV以上であれば、充電電圧Ecを4.38V以上まで増大させても、正極11の電位Eが相転移に伴う電位一定領域P2に到達しにくくなり、または正極11の電位Eが相転移に伴う電位一定領域P2を通過しにくくなると共に、負極12においてリチウム金属が析出しにくくなる。よって、二次電池の電気化学的性能が担保されながら、その二次電池の安全性が十分に向上するため、より高い効果を得ることができる。
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定して得られるため、より高い効果を得ることができる。
 この他、負極12によれば、被覆層として機能する中間層14が負極活物質層12Bの表面を被覆しており、その中間層14の構成に関して上記した条件(上層14Nの重量比RN>下層14Mの重量比RM)が満たされているので、上記した理由により、その負極12を用いた二次電池において優れた電池特性を得ることができる。
<2.変形例>
 次に、上記した二次電池の変形例に関して説明する。二次電池の構成は、以下で説明するように、適宜変更可能である。ただし、以下で説明する一連の変形例のうちの任意の2種類以上は、互いに組み合わされてもよい。
[変形例1]
 図4では、中間層14が負極12の表面に形成されている。これにより、中間層14は、負極12に連結されているため、その負極12と一体化されている。しかしながら、中間層14が負極12の代わりにセパレータ13の表面に形成されていてもよい。
 具体的には、図4に対応する図9に示したように、中間層14は、負極12に対向する側におけるセパレータ13の表面に形成されていてもよい。図9では、二次電池の製造工程において用いられるセパレータ13を示している。
 これにより、中間層14は、セパレータ13に連結されているため、そのセパレータ13と一体化されている。セパレータ13に連結されている中間層14の構成は、負極12の代わりにセパレータ13に連結されていることを除いて、その負極12に連結されている中間層14の構成と同様である。このため、セパレータ13に連結されている中間層14に関しても、上記した条件(上層14Nの重量比RN>下層14Mの重量比RM)が満たされている。この場合には、セパレータ13の上に上層14Nおよび下層14Mがこの順に形成されている。
 このセパレータ13に連結されている中間層14の形成手順は、負極12の表面の代わりにセパレータ13の表面に中間層14を形成することを除いて、負極12に連結されている中間層14の形成手順と同様である。すなわち、有機溶剤などに複数の無機粒子が分散されると共に中間結着剤が溶解された中間合剤スラリーを準備したのち、セパレータ13の表面に中間合剤スラリーを塗布することにより、中間層14を形成する。この場合には、上記したように、第1形成方法を用いてもよいし、第2形成方法を用いてもよい。
 第1形成方法を用いる場合には、セパレータ13の表面に第2中間合剤スラリーおよび第1中間合剤スラリーをこの順に塗布することにより、そのセパレータ13の表面に上層14Nおよび下層14Mをこの順に積層させる。第2形成方法を用いる場合には、前駆合剤スラリーの塗布過程においてタンク中の前駆合剤スラリーに添加量が次第に減少するように複数の無機粒子を添加することにより、セパレータ13の表面に上層14Nおよび下層14Mをこの順に積層させる。
 この場合においても、完成後の二次電池では負極12とセパレータ13との間に中間層14が介在するため、同様の効果を得ることができる。
[変形例2]
 図1では、巻回電極体10に1本の正極リード15が接続されている。しかしながら、正極リード15の本数は、1本に限られず、2本以上でもよい。正極リード15の本数が多くなると、巻回電極体10の電気抵抗が減少するため、より高い効果を得ることができる。ここで正極リード15に関して説明したことは、負極リード16に関しても同様である。すなわち、正極リード15に関して説明した場合と同様の理由により、負極リード16の本数は、1本に限られず、2本以上でもよい。
[変形例3]
 図2では、多孔質膜であるセパレータ13を用いた。しかしながら、ここでは具体的に図示しないが、多孔質膜であるセパレータ13の代わりに、高分子化合物層を含む積層型のセパレータを用いてもよい。
 具体的には、積層型のセパレータは、上記した多孔質膜である基材層と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいる。正極11および負極12のそれぞれに対するセパレータの密着性が向上するため、巻回電極体10の位置ずれが発生しにくくなるからである。これにより、電解液の分解反応などが発生しても、二次電池が膨れにくくなる。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。
 なお、基材層および高分子化合物層のうちの一方または双方は、複数の無機粒子および複数の樹脂粒子などのうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の発熱時において複数の無機粒子などが放熱するため、二次電池の耐熱性および安全性が向上するからである。無機粒子の種類は、特に限定されないが、酸化アルミニウム(アルミナ)、窒化アルミニウム、ベーマイト、酸化ケイ素(シリカ)、酸化チタン(チタニア)、酸化マグネシウム(マグネシア)および酸化ジルコニウム(ジルコニア)などである。
 積層型のセパレータを作製する場合には、高分子化合物および有機溶剤などを含む前駆溶液を調製したのち、基材層の片面または両面に前駆溶液を塗布する。
 この積層型のセパレータを用いた場合においても、正極11と負極12との間においてリチウムが移動可能になるため、同様の効果を得ることができる。
[変形例4]
 図1では、液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、電解液の代わりに、ゲル状の電解質である電解質層を用いてもよい。
 電解質層を用いた巻回電極体10では、セパレータ13、中間層14および電解質層を介して正極11および負極12が互いに積層されたのち、その正極11、負極12、セパレータ13、中間層14および電解質層が巻回されている。この電解質層は、正極11とセパレータ13との間に介在していると共に、中間層14とセパレータ13との間に介在している。
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解質層中では、電解液が高分子化合物により保持されている。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および有機溶剤などを含む前駆溶液を調製したのち、正極11および負極12の両面に前駆溶液を塗布する。
 この電解質層を用いた場合においても、正極11と負極12との間において電解質層を介してリチウムが移動可能になるため、同様の効果を得ることができる。
<3.二次電池の用途>
 次に、上記した二次電池の用途(適用例)に関して説明する。
 二次電池の用途は、主に、駆動用の電源または電力蓄積用の電力貯蔵源などとして二次電池を利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。
 二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む。)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。なお、二次電池の電池構造は、上記したラミネートフィルム型および円筒型でもよいし、それら以外の他の電池構造でもよい。また、電池パックおよび電池モジュールなどとして、複数の二次電池が用いられてもよい。
 中でも、電池パックおよび電池モジュールは、電動車両、電力貯蔵システムおよび電動工具などの比較的大型の機器などに適用されることが有効である。電池パックは、後述するように、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などを使用可能である。
 ここで、二次電池のいくつかの適用例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。
<3-1.電池パック(単電池)>
 図10は、単電池を用いた電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。
 この電池パックは、図10に示したように、電源61と、回路基板62とを備えている。この回路基板62は、電源61に接続されていると共に、正極端子63、負極端子64および温度検出端子(いわゆるT端子)65を含んでいる。
 電源61は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子63に接続されていると共に、負極リードが負極端子64に接続されている。この電源61は、正極端子63および負極端子64を介して外部と接続可能であるため、その正極端子63および負極端子64を介して充放電可能である。回路基板62は、制御部66と、スイッチ67と、PTC素子68と、温度検出部69とを含んでいる。ただし、PTC素子68は省略されてもよい。
 制御部66は、中央演算処理装置(CPU:Central Processing Unit )およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部66は、必要に応じて電源61の使用状態の検出および制御を行う。
 なお、制御部66は、電源61(二次電池)の電池電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ67を切断させることにより、電源61の電流経路に充電電流が流れないようにする。また、制御部66は、充電時または放電時において大電流が流れると、スイッチ67を切断させることにより、充電電流を遮断する。過充電検出電圧および過放電検出電圧は、特に限定されない。一例を挙げると、過充電検出電圧は、4.2V±0.05Vであると共に、過放電検出電圧は、2.4V±0.1Vである。
 スイッチ67は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部66の指示に応じて電源61と外部機器との接続の有無を切り換える。このスイッチ67は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET:Metal-Oxide-Semiconductor Field-Effect Transistor )などを含んでおり、充放電電流は、スイッチ67のON抵抗に基づいて検出される。
 温度検出部69は、サーミスタなどの温度検出素子を含んでおり、温度検出端子65を用いて電源61の温度を測定すると共に、その温度の測定結果を制御部66に出力する。温度検出部69により測定される温度の測定結果は、異常発熱時において制御部66が充放電制御を行う場合および残容量の算出時において制御部66が補正処理を行う場合などに用いられる。
<3-2.電池パック(組電池)>
 図11は、組電池を用いた電池パックのブロック構成を表している。以下の説明では、随時、単電池を用いた電池パック(図10)の構成要素を引用する。
 この電池パックは、図11に示したように、正極端子81および負極端子82を含んでいる。具体的には、電池パックは、筐体70の内部に、制御部71と、電源72と、スイッチ73と、電流測定部74と、温度検出部75と、電圧検出部76と、スイッチ制御部77と、メモリ78と、温度検出素子79と、電流検出抵抗80とを備えている。
 電源72は、2個以上の二次電池が互いに接続された組電池を含んでおり、その2個以上の二次電池の接続形式は、特に限定されない。このため、接続方式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源72は、2並列3直列となるように互いに接続された6個の二次電池を含んでいる。
 制御部71、スイッチ73、温度検出部75および温度検出素子79の構成は、制御部66、スイッチ67および温度検出部69(温度検出素子)の構成と同様である。電流測定部74は、電流検出抵抗80を用いて電流を測定すると共に、その電流の測定結果を制御部71に出力する。電圧検出部76は、電源72(二次電池)の電池電圧を測定すると共に、アナログ-デジタル変換された電圧の測定結果を制御部71に供給する。
 スイッチ制御部77は、電流測定部74および電圧検出部76から入力される信号に応じてスイッチ73の動作を制御する。このスイッチ制御部77は、電池電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ73(充電制御スイッチ)を切断させることにより、電源72の電流経路に充電電流が流れないようにする。これにより、電源72では、放電用ダイオードを介して放電だけが可能になり、または充電用ダイオードを介して充電だけが可能になる。また、スイッチ制御部77は、充電時または放電時において大電流が流れると、充電電流または放電電流を遮断する。
 なお、スイッチ制御部77を省略することにより、制御部71がスイッチ制御部77の機能を兼ねてもよい。過充電検出電圧および過放電検出電圧は、特に限定されないが、単電池を用いた電池パックに関して説明した場合と同様である。
 メモリ78は、不揮発性メモリであるEEPROM(Electrically Erasable Programmable Read-Only Memory )などを含んでおり、そのメモリ78には、制御部71により演算された数値および製造工程において測定された二次電池の情報(初期状態の内部抵抗、満充電容量および残容量など)などが記憶されている。
 正極端子81および負極端子82は、電池パックを用いて稼働する外部機器(ノート型のパーソナルコンピュータなど)および電池パックを充電するために用いられる外部機器(充電器など)などに接続される端子である。電源72(二次電池)は、正極端子81および負極端子82を介して充放電可能である。
<3-3.電動車両>
 図12は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。この電動車両は、図12に示したように、筐体83の内部に、制御部84と、エンジン85と、電源86と、モータ87と、差動装置88と、発電機89と、トランスミッション90およびクラッチ91と、インバータ92,93と、各種センサ94とを備えている。また、電動車両は、差動装置88およびトランスミッション90に接続された前輪用駆動軸95および一対の前輪96と、後輪用駆動軸97および一対の後輪98とを備えている。
 この電動車両は、エンジン85およびモータ87のうちのいずれか一方を駆動源として用いて走行可能である。エンジン85は、ガソリンエンジンなどの主要な動力源である。エンジン85を動力源とする場合には、駆動部である差動装置88、トランスミッション90およびクラッチ91を介してエンジン85の駆動力(回転力)が前輪96および後輪98に伝達される。なお、エンジン85の回転力が発電機89に伝達されるため、その回転力を利用して発電機89が交流電力を発生させると共に、その交流電力がインバータ93を介して直流電力に変換されるため、その直流電力が電源86に蓄積される。一方、変換部であるモータ87を動力源とする場合には、電源86から供給された電力(直流電力)がインバータ92を介して交流電力に変換されるため、その交流電力を利用してモータ87が駆動する。モータ87により電力から変換された駆動力(回転力)は、駆動部である差動装置88、トランスミッション90およびクラッチ91を介して前輪96および後輪98に伝達される。
 なお、制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ87に回転力として伝達されるため、その回転力を利用してモータ87が交流電力を発生させてもよい。この交流電力は、インバータ92を介して直流電力に変換されるため、その直流回生電力は、電源86に蓄積される。
 制御部84は、CPUなどを含んでおり、電動車両全体の動作を制御する。電源86は、1個または2個以上の二次電池を含んでおり、外部電源と接続されている。この場合には、電源86は、外部電源から電力を供給されることにより、電力を蓄積させてもよい。各種センサ94は、エンジン85の回転数を制御すると共に、スロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ94は、速度センサ、加速度センサおよびエンジン回転数センサなどのうちのいずれか1種類または2種類以上を含んでいる。
 なお、電動車両がハイブリッド自動車である場合を例に挙げたが、その電動車両は、エンジン85を用いずに電源86およびモータ87だけを用いて作動する車両(電気自動車)でもよい。
<3-4.その他>
 ここでは具体的に図示しないが、二次電池の適用例としては他の適用例も考えられる。
 具体的には、二次電池は、電力貯蔵システムに適用可能である。この電力貯蔵システムは、一般住宅および商業用ビルなどの家屋の内部に、制御部と、1個または2個以上の二次電池を含む電源と、スマートメータと、パワーハブとを備えている。
 電源は、家屋の内部に設置された冷蔵庫などの電気機器に接続されていると共に、その家屋の外部に停車されたハイブリッド自動車などの電動車両に接続可能である。また、電源は、家屋に設置された太陽光発電機などの自家発電機にパワーハブを介して接続されていると共に、スマートメータおよびパワーハブを介して外部の火力発電所などの集中型電力系統に接続されている。
 または、二次電池は、電動ドリルおよび電動鋸などの電動工具に適用可能である。この電動工具は、ドリル部および鋸刃部などの可動部が取り付けられた筐体の内部に、制御部と、1個または2個以上の二次電池を含む電源とを備えている。
 本技術の実施例に関して説明する。
(実験例1-1~1-11)
 以下で説明するように、図1~図3に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製したのち、その二次電池の電池特性を評価した。
[二次電池の作製]
 以下の手順により、二次電池を作製した。
(正極の作製工程)
 最初に、正極活物質(層状岩塩型リチウムコバルト複合酸化物であるコバルト酸リチウム(LiCoO))91質量部と、正極結着剤(ポリフッ化ビニリデン(PVDF))3質量部と、正極導電剤(黒鉛)6質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体11A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層11Bを形成した。最後に、ロールプレス機を用いて正極活物質層11Bを圧縮成型した。これにより、正極集電体11Aの両面に正極活物質層11Bが形成されたため、正極11が作製された。
(負極の作製工程)
 最初に、負極活物質(人造黒鉛)93質量部と、正極結着剤(PVDF)7質量部とを混合することにより、負極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体12A(帯状の銅箔,厚さ=15μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層12Bを形成した。最後に、ロールプレス機を用いて負極活物質層12Bを圧縮成型した。これにより、負極集電体12Aの両面に負極活物質層12Bが形成されたため、負極12が作製された。
 充電電圧Ecを4.45Vに設定した場合における負極電位Ef(mV)および負極電位変動量Ev(mV)は、表1に示した通りである。ここでは、最大放電容量を1950mAh~2050mAhとした。
(中間層の形成工程)
 上記した第1形成方法を用いることにより、2層構造(下層14Mおよび上層14N)を有する中間層14を形成した。
 具体的には、最初に、複数の無機粒子と中間結着剤(PVDF)とが混合された混合物を有機溶剤(N-メチル-2-ピロリドン)に投入したのち、その有機溶剤を撹拌した。これにより、有機溶剤中において複数の無機粒子が分散されると共に中間結着剤が溶解されたため、相対的に小さい固形分濃度を有する第1中間合剤スラリーが調製された。この場合には、複数の無機粒子と中間結着剤との混合比(重量比)を複数の無機粒子;中間結着剤=10:20とした。また、複数の無機粒子の材質(形成材料)として、水酸化マグネシウム(Mg(OH))と、酸化アルミニウム(Al)と、酸化ケイ素(SiO)と、窒化アルミニウム(AlN)とを用いた。
 続いて、複数の無機粒子と中間結着剤との混合比(重量比)を複数の無機粒子;中間結着剤=10:2に変更したことを除いて、上記した第1中間合剤スラリーの調製手順と同様の手順により、相対的に大きい固形分濃度を有する第2中間合剤スラリーを調製した。
 続いて、コーティング装置を用いて負極12(負極活物質層12B)の表面に第1中間合剤スラリーを塗布したのち、その第1中間合剤スラリーを乾燥させることにより、下層14Mを形成した。
 最後に、コーティング装置を用いて下層14Mの表面に第2中間合剤スラリーを塗布したのち、その第2中間合剤スラリーを乾燥させることにより、上層14Nを形成した。これにより、負極12の表面において下層14Mおよび上層14Nがこの順に積層されため、上層14Nの重量比RNが下層14Mの重量RMよりも大きくなるように、2層構造を有する中間層14が負極12の表面に形成された。
 中間層14の厚さ(μm)および被覆率(%)は、表1に示した通りである。中間層14を形成する場合には、下層14Mの厚さと上層14Nの厚さとを互いに等しくした。
 また、中間層14を形成する場合には、負極12の表面の代わりにセパレータ13の表面に第2中間合剤スラリーおよび第1中間合剤スラリーをこの順に塗布することを除いて同様の手順により、そのセパレータ13の表面に中間層14を形成した。表1中の「形成場所」の欄には、中間層14が形成されている場所(負極12またはセパレータ13)を示している。ここで説明した中間層14の形成場所は、二次電池の製造段階、すなわち二次電池の完成前の状態において中間層14があらかじめ形成されている場所でもよいし、二次電池の完成後、すなわち完成した二次電池の解体時において中間層14が形成されている場所でもよい。
 なお、比較のために、中間層14を形成しなかった。また、比較のために、第1中間合剤スラリーおよび第2中間合剤スラリーの使用順を逆にしたことを除いて同様の手順により、負極12の表面に中間層14を形成した。この場合には、上層14Nの重量比RNが下層14Mの重量RMよりも小さくなるように、2層構造を有する中間層14が形成された。
(電解液の調製工程)
 溶媒(環状炭酸エステルである炭酸エチレンおよび鎖状炭酸エステルである炭酸ジエチル)に電解質塩(六フッ化リン酸リチウム(LiPF))を加えたのち、その溶媒を撹拌した。溶媒の混合比(重量比)は、炭酸エチレン:炭酸ジエチル=50:50とした。電解質塩の含有量は、溶媒に対して1mol/kgとした。
(二次電池の組み立て工程)
 最初に、正極集電体11Aにアルミニウム製の正極リード15を溶接したと共に、負極集電体12Aに銅製の負極リード16を溶接した。続いて、セパレータ13(微多孔性ポリエチレンフィルム,厚さ=15μm)および中間層14を介して正極11および負極12を互いに積層させたのち、その正極11、負極12、セパレータ13および中間層14を巻回させることにより、巻回体を作製した。
 続いて、窪み部20Uに収容された巻回体を挟むように外装フィルム20を折り畳んだのち、その外装フィルム20のうちの2辺の外周縁部同士を互いに熱融着することにより、袋状の外装フィルム20の内部に巻回体を収納した。外装フィルム20としては、融着層(ポリプロピレンフィルム,厚さ=30μm)と、金属層(アルミニウム箔,厚さ=40μm)と、表面保護層(ナイロンフィルム,厚さ=25μm)とが内側からこの順に積層されたアルミラミネートフィルムを用いた。
 最後に、袋状の外装フィルム20の内部に電解液を注入したのち、減圧環境中において外装フィルム20のうちの残りの1辺の外周縁部同士を熱融着した。この場合には、外装フィルム20と正極リード15との間に密着フィルム21(ポリプロピレンフィルム,厚さ=5μm)を挿入したと共に、外装フィルム20と負極リード16との間に密着フィルム22(ポリプロピレンフィルム,厚さ=5μm)を挿入した。これにより、巻回体に電解液が含浸されたため、巻回電極体10が形成された。よって、外装フィルム20の内部に巻回電極体10が封入されたため、ラミネートフィルム型の二次電池が組み立てられた。
(活性化工程)
 最後に、恒温槽(温度=80℃)中において組み立て後の二次電池を1サイクル充放電させることにより、その二次電池に活性化処理を施した。充電時には、0.1Cの電流において電圧が4.43Vに到達するまで定電流充電したのち、その電圧において電流が0.05Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が2.50Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.05Cとは、上記した電池容量を20時間で放電しきる電流値である。
 これにより、巻回電極体10の電気化学的な状態が安定化したため、ラミネートフィルム型の二次電池が完成した。
[電池特性の評価]
 二次電池の電池特性(安全特性、サイクル特性および電気抵抗特性)を評価したところ、表1に示した結果が得られた。
 安全特性を調べる場合には、二次電池を用いて衝突試験を行うことにより、衝突試験後における二次電池の状態(耐久性)を目視で判定した。この衝突試験では、床の上に二次電池を置いたのち、SUS製の円柱状の錘(外径=15.8mm,長さ=340mm)を二次電池に向けて落下させた。この場合には、錘の落下高さ(落下前の錘と二次電池との間の距離)=61cmとした。
 衝突試験の結果、発煙も発火も発生しなかった場合には、十分な耐久性が得られたため、「A」と判定した。発煙は発生したが発火は発生しなかった場合には、許容可能な程度の耐久性が得られたため、「B」と判定した。発火が発生した場合には、許容可能な程度の耐久性が得られなかったため、「C」と判定した。
 サイクル特性を調べる場合には、最初に、常温環境中(温度=23℃)において二次電池を充放電させることにより、放電容量(1サイクル目の放電容量)を測定した。続いて、同環境中において総サイクル数が400サイクルに到達するまで二次電池を繰り返して充放電させることにより、放電容量(400サイクル目の放電容量)を測定した。最後に、容量維持率(%)=(400サイクル目の放電容量/1サイクル目の放電容量)×100を算出した。充放電条件は、上記した活性化工程における充放電条件と同様にした。
 電気抵抗特性を調べる場合には、上記したサイクル特性を調べる際に、1サイクル目の充放電後において、バッテリテスタを用いて二次電池の電気抵抗(1サイクル目の電気抵抗)を測定したのち、400サイクル目の充放電後において、バッテリテスタを用いて二次電池の電気抵抗(400サイクル目の電気抵抗)を測定した。これにより、抵抗増加率(%)=[(400サイクル目の電気抵抗-1サイクル目の電気抵抗)/1サイクル目の電気抵抗]×100を算出した。
Figure JPOXMLDOC01-appb-T000001
[考察]
 表1に示したように、耐久性、容量維持率および抵抗増加率のそれぞれは、二次電池の構成(中間層14の有無および構成)に応じて大きく変動した。
 具体的には、重量比RNが重量比RMよりも大きい場合(実験例1-1~1-6)には、中間層14を形成しなかった場合(実験例1-7)および重量比RNが重量RMよりも小さい場合(実験例1-8~1-11)とは異なり、高い容量維持率が得られると共に抵抗増加率が低く抑えられながら、良好な耐久性が得られた。この有利な傾向は、中間層14の形成場所(負極12またはセパレータ13)に依存せずに得られた。
 特に、重量比RNが重量RMよりも大きい場合には、複数の無機粒子の材質として水酸化マグネシウムおよび酸化アルミニウムを用いると、耐久性がより向上した。
(実験例2-1~2-5)
 表2に示したように、中間層14の厚さを変更したことを除いて同様の手順により、二次電池を作製したと共に電池特性を評価した。中間層14の厚さを変更するためには、第1中間合剤スラリーおよび第2中間合剤スラリーのそれぞれの塗布量を調整した。
Figure JPOXMLDOC01-appb-T000002
 表2に示したように、中間層14の厚さを変更しても、高い容量維持率が得られると共に抵抗増加率が低く抑えられながら、良好な耐久性が得られた。この場合には、特に、中間層14の厚さが0.1μm~5μmであると、容量維持率がより増加すると共に抵抗増加率がより低下しながら、耐久性がより向上した。
(実験例3-1~3-4)
 表3に示したように、中間層14の被覆率を変更したことを除いて同様の手順により、二次電池を作製したと共に電池特性を評価した。中間層14の被覆率を変更するためには、第1中間合剤スラリーおよび第2中間合剤スラリーのそれぞれの固形分濃度を調整した。
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、中間層14の被覆率を変更しても、高い容量維持率が得られると共に抵抗増加率が低く抑えられながら、良好な耐久性が得られた。この場合には、特に、中間層14の被覆率が20%~100%であると、高い容量維持率および低い抵抗増加率が維持されながら、耐久性がより向上した。
(実験例4-1~4-4)
 表4に示したように、セパレータ13の透気度を変更したことを除いて同様の手順により、二次電池を作製したと共に電池特性を評価した。セパレータ13の透気度を変更するためには、50℃~95℃の範囲内において活性化処理時の温度を調整した。この場合には、活性化処理時の温度が高くなると、セパレータ13の透気度が増加する傾向を示した。
Figure JPOXMLDOC01-appb-T000004
 表4に示したように、セパレータ13の透気度を変更しても、高い容量維持率が得られると共に抵抗増加率が低く抑えられながら、良好な耐久性が得られた。この場合には、特に、セパレータ13の透気度が100秒/cm~1000秒/cmであると、容量維持率がより増加すると共に抵抗増加率がより低下しながら、耐久性がより向上した。
(実験例5-1~5-6)
 表5に示したように、負極電位Efおよび負極電位変動量Evのそれぞれを変更したことを除いて同様の手順により、二次電池を作製したと共に電池特性を評価した。負極電位Efおよび負極電位変動量Evのそれぞれを変更するためには、正極活物質と負極活物質との混合比(重量比)を調整した。
Figure JPOXMLDOC01-appb-T000005
 表5に示したように、負極電位Efおよび負極電位変動量Evのそれぞれを変更しても、高い容量維持率が得られると共に抵抗増加率が低く抑えられながら、良好な耐久性が得られた。この場合には、特に、負極電位Efが19mV~86mVであると共に負極電位変動量Evが1mV以上であると、高い耐久性が維持されながら、容量維持率がより増加すると共に抵抗増加率がより低下した。
[まとめ]
 表1~表5に示した結果から、負極12とセパレータ13との間に中間層14(複数の無機粒子および中間結着剤)が介在しており、その中間層14において上層14Nの重量比RNが下層14Mの重量比RMよりも大きいと、サイクル特性および電気抵抗特性が担保されながら安全特性が向上した。よって、二次電池において優れた電池特性が得られた。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
 具体的には、液状の電解質(電解液)およびゲル状の電解質(電解質層)を用いる場合に関して説明したが、その電解質の種類は、特に限定されないため、固体状の電解質(固体電解質)を用いてもよい。
 また、二次電池の電池構造がラミネートフィルム型である場合に関して説明したが、その電池構造は、特に限定されないため、円筒型、角型、コイン型およびボタン型などの他の電池構造でもよい。
 また、電池素子の素子構造が巻回型である場合に関して説明したが、その電池素子の素子構造は、特に限定されないため、正極および負極が交互に積層された積層型および正極および負極のそれぞれがジグザグに折り畳まれた九十九折り型などの他の素子構造でもよい。
 さらに、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (11)

  1.  セパレータを介して互いに対向する正極および負極と、
     前記負極と前記セパレータとの間に配置され、複数の無機粒子および結着剤を含み、厚さ方向において前記負極に近い側の第1中間部と前記負極から遠い側の第2中間部とに二等分された際、前記第2中間部における前記結着剤に対する前記複数の無機粒子の重量比が前記第1中間部における前記結着剤に対する前記複数の無機粒子の重量比よりも大きい中間層と
     を備えた、二次電池。
  2.  前記複数の無機粒子は、金属酸化物、金属窒化物および金属水酸化物のうちの少なくとも1種を含む、
     請求項1記載の二次電池。
  3.  前記金属酸化物は、酸化アルミニウム、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムのうちの少なくとも1種を含み、
     前記金属窒化物は、窒化アルミニウムを含み、
     前記金属水酸化物は、水酸化マグネシウムを含む、
     請求項2記載の二次電池。
  4.  前記中間層の厚さは、0.1μm以上5μm以下である、
     請求項1ないし請求項3のいずれか1項に記載の二次電池。
  5.  前記中間層は、前記セパレータに対向する側における前記負極の表面に形成されている、
     請求項1ないし請求項4のいずれか1項に記載の二次電池。
  6.  前記負極の表面に対する前記中間層の被覆率は、20%以上100%以下である、
     請求項5記載の二次電池。
  7.  前記中間層は、前記負極に対向する側における前記セパレータの表面に形成されている、
     請求項1ないし請求項4のいずれか1項に記載の二次電池。
  8.  前記セパレータの透気度は、100秒/cm以上1000秒/cm以下である、
     請求項1ないし請求項7のいずれか1項に記載の二次電池。
  9.  前記正極は、下記の式(1)で表される層状岩塩型の結晶構造を有するリチウムコバルト複合酸化物を含み、
     前記負極は、黒鉛を含み、
    4.38V以上の閉回路電圧において24時間に渡って定電圧充電された状態を満充電状態として、前記満充電状態において測定される前記負極の開回路電位(リチウム金属基準)は、19mV以上86mV以下であり、
     前記満充電状態から前記閉回路電圧が3.00Vに到達するまで定電流放電されたのちに3.00Vの前記閉回路電圧において24時間に渡って定電圧放電された際に得られる放電容量を最大放電容量として、前記最大放電容量の1%に相当する容量分だけ前記満充電状態から放電された際に、下記の式(2)で表される前記負極の電位変動量は、1mV以上である、
     請求項1ないし請求項8のいずれか1項に二次電池。
     LiCo1-y 2-z  ・・・(1)
    (Mは、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、銅(Cu)、ナトリウム(Na)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、スズ(Sn)、カリウム(K)、カルシウム(Ca)、亜鉛(Zn)、ガリウム(Ga)、ストロンチウム(Sr)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、バリウム(Ba)、ランタン(La)、タングステン(W)およびホウ素(B)のうちの少なくとも1種である。Xは、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)および硫黄(S)のうちの少なくとも1種である。x、yおよびzは、0.8<x<1.2、0≦y<0.15および0≦z<0.05を満たす。)
     負極の電位変動量(mV)=第2負極電位(mV)-第1負極電位(mV) ・・・(2)
    (第1負極電位は、満充電状態において測定される負極の開回路電位(リチウム金属基準)である。第2負極電位は、最大放電容量の1%に相当する容量分だけ満充電状態から放電された状態において測定される負極の開回路電位(リチウム金属基準)である。)
  10.  リチウムイオン二次電池である、
     請求項1ないし請求項9のいずれか1項に記載の二次電池。
  11.  負極活物質層と、
     前記負極活物質層の表面を被覆し、複数の無機粒子および結着剤を含み、厚さ方向において前記負極活物質層に近い側の第1被覆部と前記負極活物質層から遠い側の第2被覆部とに二等分された際、前記第2被覆部における前記結着剤に対する前記複数の無機粒子の重量比が前記第1被覆部における前記結着剤に対する前記複数の無機粒子の重量比よりも大きい被覆層と
     を備えた、二次電池用負極。
PCT/JP2020/033531 2019-09-30 2020-09-04 二次電池用負極および二次電池 WO2021065333A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080068506.XA CN114450818A (zh) 2019-09-30 2020-09-04 二次电池用负极以及二次电池
JP2021550490A JP7452548B2 (ja) 2019-09-30 2020-09-04 二次電池用負極および二次電池
US17/708,623 US20220223873A1 (en) 2019-09-30 2022-03-30 Negative electrode for secondary battery, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019178789 2019-09-30
JP2019-178789 2019-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/708,623 Continuation US20220223873A1 (en) 2019-09-30 2022-03-30 Negative electrode for secondary battery, and secondary battery

Publications (1)

Publication Number Publication Date
WO2021065333A1 true WO2021065333A1 (ja) 2021-04-08

Family

ID=75337235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033531 WO2021065333A1 (ja) 2019-09-30 2020-09-04 二次電池用負極および二次電池

Country Status (4)

Country Link
US (1) US20220223873A1 (ja)
JP (1) JP7452548B2 (ja)
CN (1) CN114450818A (ja)
WO (1) WO2021065333A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280918A (ja) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池
JP2008226605A (ja) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009070797A (ja) * 2007-08-22 2009-04-02 Sanyo Electric Co Ltd 非水電解質電池
WO2018064365A1 (en) * 2016-09-28 2018-04-05 Sepion Technologies, Inc. Electrochemical cells with ionic sequestration provided by porous separators

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100463280C (zh) * 2003-07-29 2009-02-18 松下电器产业株式会社 锂离子二次电池
WO2010081150A1 (en) * 2009-01-12 2010-07-15 A123 Systems, Inc. Laminated battery cell and methods for creating the same
JP2010250968A (ja) * 2009-04-10 2010-11-04 Panasonic Corp リチウムイオン二次電池
JP5676173B2 (ja) * 2010-08-09 2015-02-25 日本電気株式会社 二次電池用負極の製造方法
KR20140015841A (ko) * 2012-07-25 2014-02-07 에너테크인터내셔널 주식회사 이중 코팅층이 형성된 전극을 포함하는 리튬이차전지
JP2015005553A (ja) * 2013-06-19 2015-01-08 Jmエナジー株式会社 蓄電デバイス
JP6862752B2 (ja) 2016-10-14 2021-04-21 日産自動車株式会社 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
US11961992B2 (en) * 2017-09-07 2024-04-16 Aesc Japan Ltd. Electrode and secondary battery
JP7047217B2 (ja) * 2017-11-06 2022-04-05 エルジー エナジー ソリューション リミテッド リチウム二次電池
JP2020140896A (ja) 2019-02-28 2020-09-03 積水化学工業株式会社 リチウムイオン二次電池用電極及びリチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280918A (ja) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd 非水電解質電池
JP2008226605A (ja) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2009070797A (ja) * 2007-08-22 2009-04-02 Sanyo Electric Co Ltd 非水電解質電池
WO2018064365A1 (en) * 2016-09-28 2018-04-05 Sepion Technologies, Inc. Electrochemical cells with ionic sequestration provided by porous separators

Also Published As

Publication number Publication date
JPWO2021065333A1 (ja) 2021-04-08
CN114450818A (zh) 2022-05-06
JP7452548B2 (ja) 2024-03-19
US20220223873A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
KR101988071B1 (ko) 정극 활물질, 정극, 이차 전지, 전지 팩, 전동 차량, 전력 저장 시스템, 전동 공구 및 전자 기기
US9153815B2 (en) Cathode active material, cathode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
CN108232155B (zh) 二次电池、二次电池用电极和活性物质、电池组
JP6801722B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US11329277B2 (en) Secondary battery, battery pack, electrically driven vehicle, electric power storage system, electric tool, and electronic device
WO2016136132A1 (ja) 電解質、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
US10868327B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
US20220246979A1 (en) Negative electrode for secondary battery, and secondary battery
US20190348670A1 (en) Anode for secondary battery, secondary battery, battery pack, electric motor vehicle, power storage system, electric tool, and electronic device
CN108292781B (zh) 二次电池、电池组、电动车辆、电力储存系统、电动工具以及电子设备
WO2021065333A1 (ja) 二次電池用負極および二次電池
WO2021010085A1 (ja) 二次電池
JP6849066B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP7044174B2 (ja) 二次電池
WO2021187068A1 (ja) 二次電池
WO2021079842A1 (ja) 二次電池
JP7004089B2 (ja) 二次電池
JP7380898B2 (ja) 二次電池
CN114514634B (zh) 活性物质及其制造方法、电极以及二次电池
US11532821B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
WO2021192402A1 (ja) 二次電池
JP7156393B2 (ja) 二次電池
WO2021044859A1 (ja) 二次電池用電解液および二次電池
WO2021153044A1 (ja) 二次電池用正極活物質、二次電池用正極および二次電池
WO2021220745A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872998

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872998

Country of ref document: EP

Kind code of ref document: A1