WO2021064989A1 - ヒートパイプ及び電子デバイス - Google Patents
ヒートパイプ及び電子デバイス Download PDFInfo
- Publication number
- WO2021064989A1 WO2021064989A1 PCT/JP2019/039327 JP2019039327W WO2021064989A1 WO 2021064989 A1 WO2021064989 A1 WO 2021064989A1 JP 2019039327 W JP2019039327 W JP 2019039327W WO 2021064989 A1 WO2021064989 A1 WO 2021064989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- general formula
- structural unit
- unit represented
- temperature
- Prior art date
Links
- 0 C*CC(*)C(NCCNC(C(*)C*)=O)=O Chemical compound C*CC(*)C(NCCNC(C(*)C*)=O)=O 0.000 description 2
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/14—Solid materials, e.g. powdery or granular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Definitions
- the present invention relates to a heat pipe and an electronic device having a heat storage material.
- a heat pipe having a heat storage material is known.
- a heat pipe is a metal pipe body having high thermal conductivity such as a copper pipe in which a working liquid such as water is sealed.
- the heat pipe is used for heat removal or heating of equipment by utilizing the latent heat when the working liquid undergoes a phase change to liquid, gas and liquid in the system.
- heat pipes are used for heat exchange of electronic devices such as personal computers, and for local heating of stations, roads, railroad tracks, vehicles, etc. in cold regions.
- As a medium for transporting heat in a heat pipe it is capable of transporting heat at about 120 ° C. or lower, has good heat transfer performance, has a large amount of critical heat transport, is non-toxic, and is nonflammable. Things are required.
- Patent Document 1 discloses a heat pipe using water containing 0.5 to 10% by weight of glycols as a heat transport medium.
- the melting point of the heat storage material is preferably 100 ° C. or lower.
- the inorganic heat storage material include inorganic hydrated salts such as barium hydroxide octahydrate having a melting point of 78 ° C. and magnesium nitrate hexahydrate having a melting point of 89 ° C.
- barium hydroxide octahydrate is designated as a deleterious substance, and magnesium nitrate hexahydrate has a problem of corroding metals. Therefore, none of them have been put into practical use.
- examples of the organic heat storage material include paraffin, fatty acid, sugar alcohol and the like.
- these paraffins, fatty acids, sugar alcohols and the like have not been put into practical use because the heat storage density derived from the heat of fusion is small.
- Patent Document 2 describes an inorganic or water-based heat storage material retained in the first gelling material and the second gelling material, and the first gelling material and the second gelling material.
- a heat storage material having a material is disclosed.
- the first gelling material is produced by cross-linking at least one polymer selected from a polyacrylamide derivative, polyvinyl alcohol, sodium polyacrylate or sodium polymethacrylate.
- the second gelling material is a polysaccharide, agar or gelatin.
- the heat pipe disclosed in Patent Document 1 requires an internal region for the working liquid to evaporate and vaporize. Therefore, the position where the working liquid exists is limited, and the heat pipe becomes large. Further, when the heat storage material disclosed in Patent Document 2 is used as a heat transport medium for a heat pipe, it has a relatively low heat storage operating temperature, but has a low heat storage density. Therefore, the heat pipe may become large.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a heat pipe and an electronic device whose upsizing is suppressed.
- the heat pipe according to the present invention contains a heat storage material having a temperature-sensitive polymer gel composed of a solvent selected from the group consisting of water, an organic solvent, and a compound of water or an organic solvent, and a temperature-sensitive polymer.
- the heat storage material is a thermosensitive polymer gel in which hydrophilicity and hydrophobicity change reversibly with the lower limit critical solution temperature as a boundary, and in the process of change between hydrophilicity and hydrophobicity.
- the solvent contained in the above maintains a liquid state.
- the heat storage material reversibly changes between hydrophilicity and hydrophobicity with the lower limit critical solution temperature as a boundary, and is a temperature-sensitive polymer gel in the process of changing between hydrophilicity and hydrophobicity.
- the solvent contained in is maintained in a liquid state. Therefore, the increase in size is suppressed.
- FIG. 1 It is sectional drawing which shows the heat pipe which concerns on Embodiment 1.
- FIG. It is a figure which shows the operation of the heat pipe which concerns on Embodiment 1.
- FIG. It is sectional drawing which shows the heat pipe which concerns on the modification of Embodiment 1.
- FIG. 1 is a cross-sectional view showing the heat pipe 1 according to the first embodiment.
- the heat pipe 1 is used for heat removal or heating of equipment by utilizing the latent heat when the working liquid undergoes a phase change to a liquid, a gas, or a liquid in the system.
- the heat pipe 1 is used for heat exchange of electronic devices such as personal computers, and is used for local heating of stations, roads, railroad tracks, vehicles, etc. in cold regions.
- the heat pipe 1 includes a tubular metal container 3 having a hollow portion extending in the vertical direction.
- the container 3 contains a heat storage material 4 for storing heat.
- the heat storage material 4 has a temperature-sensitive polymer gel composed of a temperature-sensitive polymer 8 and a solvent selected from the group consisting of water 10, an organic solvent, and a compound of water 10 or an organic solvent (see FIG. 2). ).
- the heat storage material 4 dissipates heat or absorbs heat when the temperature-sensitive polymer 8 adsorbs or desorbs water 10.
- the density of the hydrophobicized temperature-sensitive polymer 8 is higher than the density of water 10
- the density of the temperature-sensitive polymer 8 containing the hydrophobic bubbles is lower than the density of water 10.
- the heat pipe 1 is called a top heat type in which the lower portion of the container 3 is the heat radiating portion 7 and the upper portion of the container 3 is the heating portion 6.
- a plurality of fins 3a are provided in the lower portion of the container 3.
- the heat storage material 4 may contain a gas in the temperature-sensitive polymer gel.
- FIG. 2 is a diagram showing the operation of the heat pipe 1 according to the first embodiment.
- the heat pipe 1 absorbs heat from the outside of the heat pipe 1 in the heating unit 6 which is the upper part of the heat pipe 1.
- the hydrophobized temperature-sensitive polymer 8 moves to the heat radiating portion 7 which is the lower part of the heat pipe 1.
- the heat pipe 1 dissipates heat to the outside of the heat pipe 1 via the fins 3a in the heat radiating portion 7 which is the lower part of the heat pipe 1.
- the heat pipe 1 repeats these operations.
- the heat pipe 1 can efficiently absorb the heat generated by the heat source because the heat-absorbing temperature-sensitive polymer 8 spontaneously separates from the heat source.
- external power such as a pump can be used in addition to the density difference with water 10, gravity and convection of water 10.
- FIG. 3 is a cross-sectional view showing a heat pipe 1a according to a modified example of the first embodiment.
- the heat pipe 1a of the modified example is called a bottom heat type in which the lower part of the container 3 is the heating part 6 and the upper part of the container 3 is the heat radiating part 7. ..
- a plurality of fins 3a are provided on the upper portion of the container 3.
- FIG. 4 is a diagram showing the operation of the heat pipe 1a according to the modified example of the first embodiment.
- the heat pipe 1a absorbs heat from the outside of the heat pipe 1a in the heating unit 6 which is the lower part of the heat pipe 1a.
- the hydrophobicized temperature-sensitive polymer 8 contained in the air 9 as bubbles moves to the heat radiating portion 7 which is the upper part of the heat pipe 1a.
- the heat pipe 1a dissipates heat to the outside of the heat pipe 1a via the fins 3a in the heat radiating portion 7 which is the upper part of the heat pipe 1a.
- the heat pipe 1a repeats these operations.
- the heat pipe 1a can efficiently absorb the heat generated by the heat source because the heat-absorbing temperature-sensitive polymer 8 spontaneously separates from the heat source.
- FIG. 5 is a perspective view showing an example of the electronic device 2 according to the first embodiment
- FIG. 6 is a perspective view showing an example of the electronic device 2 according to the first embodiment
- the heat pipe 1 is used for an electronic device 2 such as a motherboard for a personal computer.
- the heat pipe 1 may be used as a thin loop heat pipe that dissipates heat generated from a heat generating component 11 of a smartphone, which is an example of an electronic device 2a.
- both ends of the heat pipe 1 are an evaporator 12 and a condenser 13, respectively.
- the heat pipe 1 may be used for a tablet, an AC adapter, or the like.
- the heat storage material 4 In the heat storage material 4, hydrophilicity and hydrophobicity change reversibly with the lower limit critical solution temperature as a boundary, and the solvent contained in the temperature-sensitive polymer gel is contained in the process of change between hydrophilicity and hydrophobicity. It maintains a liquid state.
- the temperature-sensitive polymer 8 include polyvinyl alcohol partial vinegar, polyvinyl methyl ether, methyl cellulose, polyethylene oxide, polyvinyl methyl oxazolidinone, poly N-ethyl acrylamide, poly N-ethylmethacrylate, and poly Nn-.
- the organic solvent is selected from polar organic solvents, preferably alcohols such as methanol, ethanol, propanol, isopropanol, isopentanol and 2-methoxyethanol, acetone, methyl ethyl ketone, methyl n-propyl ketone, methyl isopropyl ketone and Ketones such as methyl isoamyl ketone, ethers such as ethylene glycol monobutyl ether and propylene glycol monomethyl ether, methyl acetate, ethyl acetate, propyl acetate, n-butyl acetate, chloroform, acetonitrile, glycerol, dimethyl sulfoxide, N, N-dimethylformamide, It is selected from the group consisting of tetrahydrofuran, pyridine, 1,4-dioxane, dimethylacetamide, N-methylpyrrolidone, propylene carbonate and mixtures thereof.
- the organic solvent is selected from non-polar organic solvents, preferably benzene, chlorobenzene, o-dichlorobenzene, toluene, o-xylene, dichloromethane, 1,1,2-trichlorotrifluoroethane, pentane, cyclopentane, It is selected from the group consisting of hexane, cyclohexane, heptane, isooctane, diethyl ether, petroleum ether, pyridine, carbon tetrachloride, fatty acids, fatty acid esters and mixtures thereof.
- the organic solvent is selected from oils, preferably from the group consisting of vegetable oils, essential oils, petrochemical oils, synthetic oils and mixtures thereof.
- the organic solvent may be referred to as a lipophilic solvent. Otherwise, the organic solvent is a mixture of at least one polar organic solvent or a non-polar organic solvent and at least one oil.
- the temperature-sensitive polymer 8 has the following general formula (1).
- R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
- R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
- R 1 and R 2 may be the same or different
- R 3 represents a hydrogen atom or a methyl group
- X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
- (2) represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
- the temperature-sensitive polymer 8 has a lower limit critical solution temperature with respect to water 10.
- the lower critical solution temperature is referred to as Lower Critical Solution Temperature: LCST.
- the temperature-sensitive polymer 8 exhibits hydrophilicity on the lower temperature side than LCST and hydrophobicity on the higher temperature side than LCST. That is, the temperature-sensitive polymer 8 has a reversible change in hydrophilicity and hydrophobicity with the lower limit critical solution temperature as a boundary.
- the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is 99: 0.5: It is 0.5 to 70:23: 7.
- the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is 98: 1: 1. It is preferably 1 to 77:18: 5. If the proportion of the structural units represented by the general formula (1) is too large, the heat storage density becomes small.
- the ratio of the structural unit represented by the general formula (1) is large, for example, the structural unit represented by the general formula (1), the functional group X, and the configuration represented by the general formula (2) are used.
- the ratio of the constituent units represented by the general formula (1) exceeds 99 mol%.
- the ratio of the structural units represented by the general formula (1) is too small, LCST will not be shown.
- the ratio of the structural unit represented by the general formula (1) is small, for example, the structural unit represented by the general formula (1), the functional group X, and the configuration represented by the general formula (2) are used.
- the total with the units is 100 mol%, the ratio of the constituent units represented by the general formula (1) is less than 70 mol%.
- the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is the amount of the raw material charged. It is a theoretical value calculated from.
- the heat storage material 4 of the first embodiment has a structural unit represented by the general formula (1), an X as a functional group, and a structural unit represented by the general formula (2) in the above molar ratio. It may be included, and the number of repetitions of the structural units represented by the general formula (1) or the order in which the respective structural units are combined is not limited. The number of repetitions of the structural unit represented by the general formula (1) is usually an integer in the range of 5 to 500.
- the LCST can be set in a wide range of 5 to 80 ° C. , mainly depending on the types of R 1 and R 2 in the general formula (1).
- R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature responsiveness.
- R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness.
- R 3 in the general formula (1) is preferably a hydrogen atom from the viewpoint of facilitating the production of the temperature-sensitive polymer 8.
- X in the general formula (1) is a functional group selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above molar ratio.
- an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties.
- the q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
- the covalent bond in the general formula (1) and the general formula (2) not only connects the same structural units or different types of structural units, but also partially forms a branched structure. Good.
- the branch structure is not limited to this.
- the heat storage material 4 has the following general formula (5).
- R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
- R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
- R 1 and R 2 may be the same or different
- R 3 represents a polymerizable monomer represented by a hydrogen atom or a methyl group), which is represented by the following general formula (6).
- q represents an integer of 1 to 3
- a type selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide. It can be produced by radical polymerization in the presence of the above polymerization initiator.
- the polymerizable monomer represented by the general formula (5) is a polymerizable monomer giving a structural unit represented by the general formula (1).
- Specific examples of the polymerizable monomer represented by the general formula (5) include N-ethyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, and N-cyclopropyl.
- N-alkyl (1 to 3 carbon atoms) (meth) acrylamide is preferable, and N-isopropyl (meth) acrylamide is more preferable.
- (meth) acrylic means methacrylic or acrylic.
- the cross-linking agent represented by the general formula (6) is a cross-linking agent that gives a structural unit represented by the general formula (2).
- Specific examples of the cross-linking agent represented by the general formula (6) include N, N'-methylenebisacrylamide, N, N'-ethylenebisacrylamide and N, N'-(trimethylene) bisacrylamide.
- the radical polymerization method a known method such as a bulk polymerization method, a solution polymerization method or an emulsion polymerization method can be used.
- the above-mentioned polymerization initiators potassium persulfate and ammonium persulfate are preferable as the polymerization initiators from the viewpoint of good reactivity.
- a polymerization accelerator such as N, N, N', N'-tetramethylethylenediamine, N, N-dimethylparatoluidine in combination with the above polymerization initiator, rapid radical polymerization at low temperature can be performed. It will be possible.
- Solvents used for radical polymerization include water, methanol, ethanol, n-propanol, isopropanol, 1-butanol, isobutanol, hexanol, benzene, toluene, xylene, chlorobenzene, dichloromethane, chloroform, carbon tetrachloride, acetone, methyl ethyl ketone, Examples thereof include tetrahydrofuran, dioxane, acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
- water is preferable as the solvent from the viewpoint of further increasing the heat storage density.
- the radical polymerization reaction is usually carried out at a temperature of 0 ° C. to 100 ° C. for 30 minutes to 24 hours.
- the total concentration of the polymerizable monomer represented by the general formula (5), the cross-linking agent represented by the general formula (6), and the polymerization initiator is 2 mol. It is particularly preferable to set it to / L to 3 mol / L from the viewpoint of further increasing the livestock heat density. If the total concentration is less than 2 mol / L, the heat storage density of the obtained heat storage material 4 may decrease. On the other hand, if the total concentration exceeds 3 mol / L, the obtained heat storage material 4 may not exhibit LCST.
- the reason why the heat storage material 4 of the first embodiment can achieve a relatively low heat storage operating temperature (100 ° C. or lower) and a large heat storage density is considered as follows.
- the temperature-sensitive polymer 8 having LCST exhibits hydrophilicity on the lower temperature side than LCST and hydrophobicity on the higher temperature side than LCST.
- the temperature-sensitive polymer 8 constituting the heat storage material 4 of the first embodiment has a high crosslink density and a highly dense structure in which the ends of the polymer are branched. Therefore, the water adsorbed on the temperature-sensitive polymer 8 has a high arrangement as in the conventional temperature-sensitive polymer 8, but the arrangement is lowered at a higher temperature than the LCST.
- the temperature-sensitive polymer 8 constituting the heat storage material 4 of the first embodiment has a large change in the arrangement, it not only exhibits a low heat storage operating temperature as in the conventional temperature-sensitive polymer 8 but also exhibits a low heat storage operating temperature. It is considered that a large heat storage density can be achieved.
- the heat storage material 4 has a reversible change in hydrophilicity and hydrophobicity with the lower limit critical solution temperature as a boundary, and is temperature sensitive in the process of the change between hydrophilicity and hydrophobicity.
- the solvent contained in the sex polymer gel maintains a liquid state. Therefore, the increase in size is suppressed.
- the first embodiment can provide a heat storage material 4 having a relatively low heat storage operating temperature and a high heat storage density, and a method for manufacturing the same. Since the heat storage material 4 according to the first embodiment has a relatively low heat storage operating temperature and a high heat storage density, the heat pipe 1 filled with the heat storage material 4 as a heat transport medium can be miniaturized. Suitable for carrying electrical equipment.
- the temperature-sensitive polymer 8 of the heat storage material 4 is one or more selected from the group consisting of a crosslinked structure and a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group at the polymer terminal.
- the molar ratio of the repeating unit having the functional group of the above and constituting the temperature-sensitive crosslinked polymer, the functional group, and the crosslinked structural unit is 99: 0.5: 0.5 to 70: 23: 7.
- the ratio of repeating units is too large, the heat storage density will decrease.
- the case where the ratio of the repeating unit is large is, for example, a case where the ratio of the repeating unit exceeds 99 mol% when the total of the repeating unit, the functional group and the crosslinked structural unit is 100 mol%.
- the proportion of repeating units is too small, LCST will not be shown.
- the case where the ratio of the repeating unit is small is, for example, a case where the ratio of the repeating unit is less than 70 mol% when the total of the repeating unit, the functional group and the crosslinked structural unit is 100 mol%.
- the cross-linked structural unit is a structural unit introduced by a cross-linking agent used in the production of the temperature-sensitive polymer 8, and examples of the cross-linked structural unit include N, N'-methylenebisacrylamide and N, N'-diallyl.
- Embodiment 2 the configuration of the heat storage material 4 is different from that of the first embodiment.
- the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
- the heat storage material 4 has the following general formula (1).
- R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
- R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
- R 1 and R 2 may be the same or different
- R 3 represents a hydrogen atom or a methyl group
- X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
- (2) represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
- R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group
- R 5 represents a hydrogen atom or a methyl group
- X represents a covalent bond or a hydroxy group or a sulfone. It represents one or more functional groups selected from the group consisting of an acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group, where * represents a covalent bond and p represents an integer of 1 to 3).
- R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group
- R 5 represents a hydrogen atom or a methyl group
- X represents a covalent bond or a hydroxy group or a sulfone.
- * represents a covalent bond
- p represents an integer of 1 to 3).
- the molar ratio of the structural unit represented by the general formula (1) to the structural unit represented by the general formula (3) or the general formula (4) is 95: 5 to It is 20:80, preferably 85:15 to 25:75. If the proportion of the structural units represented by the general formula (1) is too large, the heat storage density becomes small. When the ratio of the structural unit represented by the general formula (1) is large, for example, the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) When the total of is 100 mol%, the ratio of the structural units represented by the general formula (1) exceeds 95 mol%. On the other hand, if the ratio of the structural units represented by the general formula (1) is too small, LCST is not shown.
- the ratio of the structural unit represented by the general formula (1) is small, for example, the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) When the total of is 100 mol%, the ratio of the structural units represented by the general formula (1) is less than 20 mol%.
- the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group X The molar ratio with the structural unit represented by the general formula (2) is 99: 0.5: 0.5 to 70: 23: 7, preferably 98: 1: 1 to 77: 18: 5. is there. If the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is too large, the heat storage density becomes small.
- the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is large, for example, the structural unit represented by the general formula (1) and the structural unit represented by the general formula (1)
- the total of the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the total of the structural units represented by the general formula (2) are 100 mol%.
- the total ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) exceeds 99 mol%.
- the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is too small, LCST is not shown.
- the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is small, for example, the structural unit represented by the general formula (1)
- the functional group X, and the total of the structural units represented by the general formula (2) is 100 mol%.
- the total ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is less than 70 mol%.
- the molar ratio with the structural unit represented by the formula (2) is a theoretical value calculated from the amount of raw materials charged.
- the heat storage material 4 of the second embodiment includes a structural unit represented by the general formula (1), a structural unit represented by the general formula (3) or the general formula (4), an X which is a functional group, and the like. It suffices to include the structural unit represented by the general formula (2) in the above molar ratio, and is represented by the structural unit represented by the general formula (1) and the general formula (3) or the general formula (4).
- the number of repetitions of the structural units and the order in which the respective structural units are combined are not particularly limited.
- the number of repetitions of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is usually an integer in the range of 5 to 500.
- the LCST is mainly a molar ratio of the structural unit represented by the general formula (1) to the structural unit represented by the general formula (3) or the general formula (4).
- R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature responsiveness.
- R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness.
- X in the general formula (1), the general formula (3) and the general formula (4) is a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above molar ratio. It is a functional group selected from the group consisting of. Among these functional groups, an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties.
- R 4 in the general formulas (3) and (4) is preferably a hydroxy group or a sulfonic acid group from the viewpoint of further increasing the heat storage density.
- P in the general formula (3) and the general formula (4) is preferably 1 or 2 from the viewpoint of further increasing the heat storage density.
- the q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
- the covalent bond in the general formulas (1) to (4) not only connects the same structural units or different types of structural units, but also partially forms a branched structure. Good.
- the branch structure is not limited to this.
- the heat storage material 4 of the second embodiment has the following general formula (5).
- R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
- R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
- R 1 and R 2 may be the same or different
- R 3 represents a polymerizable monomer represented by a hydrogen atom or a methyl group
- R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group
- R 5 represents a hydrogen atom or a methyl group
- p represents an integer of 1 to 3 or the following.
- R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group
- R 5 represents a hydrogen atom or a methyl group
- p represents an integer of 1 to 3
- q represents an integer of 1 to 3
- a type selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide. It can be produced by radical polymerization in the presence of the above polymerization initiator.
- the polymerizable monomer represented by the general formula (5), the cross-linking agent represented by the general formula (6), and the polymerization initiator are the same as those described in the first embodiment, and thus the description thereof will be omitted. Further, the radical polymerization method, the radical polymerization conditions, and the like are the same as those described in the first embodiment, and thus the description thereof will be omitted.
- the polymerizable monomer represented by the general formula (7) is a polymerizable monomer giving a structural unit represented by the general formula (3).
- Specific examples of the polymerizable monomer represented by the general formula (7) include 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-carboxymethyl acrylate, and acrylic acid.
- 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate are preferable.
- the polymerizable monomer represented by the general formula (8) is a polymerizable monomer giving a structural unit represented by the general formula (4).
- Specific examples of the polymerizable monomer represented by the general formula (8) include N- (1,1-dimethyl-2-hydroxyethyl) acrylamide and N- (1,1-dimethyl-2-hydroxypropyl).
- the polymerizable monomer represented by the general formula (5) and the polymerization represented by the general formula (7) or the general formula (8) are polymerized.
- the total concentration of the sex monomer, the cross-linking agent represented by the general formula (6), and the polymerization initiator is preferably 2 mol / L to 3 mol / L. If the total concentration is less than 2 mol / L, the heat storage density of the obtained heat storage material 4 may decrease. On the other hand, if the total concentration exceeds 3 mol / L, the obtained heat storage material 4 may not exhibit LCST.
- the water content of the heat storage material 4 according to the first and second embodiments is not particularly limited, but is preferably 70% by mass to 99% by mass.
- the water content was determined by measuring the weight of the heat storage material containing water at room temperature and then placing it in a constant temperature bath to evaporate the water at a drying temperature of 60 to 120 ° C. By the way, the weight of the heat storage material 4 can be measured, and the amount of decrease in weight can be obtained by assuming that it is water. This is a technique called the dry weight loss method.
- the heat storage material 4 according to the first and second embodiments may be made porous. By making the heat storage material 4 porous, there is an advantage that the temperature responsiveness is further enhanced.
- a mixed solution containing the above-mentioned polymerizable monomer, cross-linking agent, polymerization initiator and porogen (pore-forming agent) is prepared, a cross-linked structure is formed by a radical polymerization reaction, and then a cross-linked structure is formed. Examples thereof include a method of removing radicals by washing.
- porogens are water-soluble carbohydrates such as sucrose, maltose, cerbiose, lactose, sorbitol, xylitol, glucose and fructose.
- a pologene composition containing these water-soluble carbohydrates and polyethylene glycol, polyvinylpyrrolidone, polyvinyl alcohol or a mixture thereof may be used.
- another method for making the heat storage material 4 porous there is a method of removing water from the temperature-sensitive polymer 8 containing water by freeze-drying.
- the temperature-sensitive polymer 8 in the first and second embodiments is subjected to radical polymerization by applying a mixed solution containing at least the above-mentioned polymerizable monomer, cross-linking agent and polymerization initiator to the metal surface in the heat pipe 1. It can also be manufactured by.
- the metal is, for example, stainless steel, copper or aluminum.
- the mixed solution may contain a metal surface activator, a coupling agent, and the like.
- the temperature-sensitive polymer 8 can also be produced by irradiating the coating film of the above-mentioned mixed solution with radiation.
- Examples 1 to 5 and Comparative Examples 1 to 5 In Examples, the aqueous raw material solution having the formulation shown in Table 1 was heated from room temperature to 50 ° C. over 1 hour under a nitrogen atmosphere to obtain a temperature-sensitive polymer 8. After drying, the mixture was equilibrium-swelled with distilled water to obtain a temperature-sensitive polymer gel, which was then sealed in a closed aluminum container, and the endothermic peak temperature and heat storage density were measured with a differential scanning calorimeter.
- Table 1 indicate the following items.
- NIPAM N-isopropylacrylamide
- HMA 2-hydroxyethyl acrylate
- MBA N, N'-methylenebisacrylamide
- KPS potassium persulfate
- TEMED N, N, N', N'-tetramethylethylenediamine. Is.
- the temperature-sensitive polymer gels obtained in Examples 1 to 5 have a low endothermic peak temperature of 36 ° C. to 77 ° C. and a heat storage density of 512 J / g to 844 J / g. It was big. That is, the temperature-sensitive polymer gels obtained in Examples 1 to 5 were able to exhibit a high heat storage density of 512 J / g to 844 J / g at a low heat storage operating temperature of 36 ° C. to 77 ° C. .. Further, in the reversible change between the hydrophilicity and the hydrophobicity of the temperature-sensitive polymer gel developed at the heat storage operating temperature, the water temperature was 36 ° C.
- the temperature-sensitive polymer gels obtained in Comparative Examples 1 to 5 have a low endothermic peak temperature of 32 ° C. to 68 ° C., similar to the conventional heat storage material 4 such as paraffin, fatty acid, and sugar alcohol.
- the heat storage density was extremely small, 31 J / g to 42 J / g.
- the heat storage materials 4 obtained in Examples 1 to 5 were able to obtain a high heat storage density at a low operating temperature, unlike the conventional heat storage materials 4.
- the heat pipes 1 using the temperature-sensitive polymer gels obtained in Examples 1 to 5 could be downsized by about 10 to 90%, respectively, depending on the heat storage density. Further, when the heat pipe 1 using the temperature-sensitive polymer gel obtained in Examples 1 to 5 was used for a personal computer, a smartphone, a tablet or an AC adapter, it was generally more than a product using the conventional heat pipe 1. It was possible to reduce the size.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
ヒートパイプは、水、有機溶媒、及び水又は有機溶媒の化合物からなる群から選択される溶媒と、感温性高分子とからなる感温性高分子ゲルを有する蓄熱材が封入された容器を備え、蓄熱材は、下限臨界溶液温度を境界として親水性と疎水性とが可逆的に変化するものであり、親水性と疎水性との変化の過程において感温性高分子ゲルに含まれる溶媒が液体状態を維持するものである。
Description
本発明は、蓄熱材を有するヒートパイプ及び電子デバイスに関する。
従来、蓄熱材を有するヒートパイプが知られている。ヒートパイプは、銅パイプ等といった熱伝導性が高い金属管体の内部に水等の作動液体が封入されたものである。ヒートパイプは、作動液体が系内で液体、気体及び液体に相変化する際の潜熱を利用して、機器の除熱又は暖房等に利用される。例えば、ヒートパイプは、パソコンといった電子機器の熱交換に利用されたり、寒冷地における駅、道路、線路のポイント又は車両の局地暖房等に利用されたりしている。ヒートパイプにおける熱を輸送する媒体として、120℃程度以下の熱輸送が可能であること、伝熱性能が良好であること、限界熱輸送量が多いこと、無毒性であること及び不燃性であること等が要求される。これらの要求を満足することを目的として、特許文献1には、熱輸送媒体としてグリコール類を0.5~10重量%含有する水を用いるヒートパイプが開示されている。
また、これらの要求を満足するために、蓄熱材が使用される場合、熱媒体として常圧下の水を使用することが、利便性が高く好ましい。このため、蓄熱材の融点は、100℃以下であることが好ましい。無機系蓄熱材としては、融点78℃の水酸化バリウム八水塩及び融点89℃の硝酸マグネシウム六水塩等の無機水和塩が挙げられる。しかし、水酸化バリウム八水塩は劇物に指定されており、硝酸マグネシウム六水塩は金属を腐食させる問題がある。このため、いずれも実用化されていない。一方、有機系蓄熱材としては、パラフィン、脂肪酸及び糖アルコール等が挙げられる。しかし、これらのパラフィン、脂肪酸及び糖アルコール等は、融解熱に由来する蓄熱密度が小さいため、実用化されていない。
近年、ハイドロゲルを利用した蓄熱材が知られている。ハイドロゲルを利用した蓄熱材は、相転移温度以上の温度域においても非流動性を保持し、相転移温度を挟んで冷却と加熱とを繰り返しても、安定的に非流動性を保持することができる。このような蓄熱材として、特許文献2には、第一のゲル化材料と第二のゲル化材料と、第一のゲル化材料と第二のゲル化材料とに保持された無機又は水系蓄熱材料とを有する蓄熱材が開示されている。このうち、第一のゲル化材料は、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸ナトリウム又はポリメタクリル酸ナトリウムから選択される少なくとも一種のポリマーを架橋して生成されたものである。また、第二のゲル化材料は、多糖類、寒天又はゼラチンである。
しかしながら、特許文献1に開示されたヒートパイプは、作動液体が蒸発して気化するための領域が内部に必要である。このため、作動液体が存在する位置が限定されてしまい、ヒートパイプが大型化する。また、特許文献2に開示された蓄熱材が、ヒートパイプの熱輸送媒体として使用される場合、比較的低い蓄熱動作温度を有するものの、蓄熱密度が小さい。このため、ヒートパイプが大型化するおそれがある。
本発明は、上記のような課題を解決するためになされたものであり、大型化が抑制されるヒートパイプ及び電子デバイスを提供することを目的とする。
本発明に係るヒートパイプは、水、有機溶媒、及び水又は有機溶媒の化合物からなる群から選択される溶媒と、感温性高分子とからなる感温性高分子ゲルを有する蓄熱材が封入された容器を備え、蓄熱材は、下限臨界溶液温度を境界として親水性と疎水性とが可逆的に変化するものであり、親水性と疎水性との変化の過程において感温性高分子ゲルに含まれる溶媒が液体状態を維持するものである。
本発明によれば、蓄熱材は、下限臨界溶液温度を境界として親水性と疎水性とが可逆的に変化するものであり、親水性と疎水性との変化の過程において感温性高分子ゲルに含まれる溶媒が液体状態を維持する。このため、大型化が抑制される。
以下、本発明のヒートパイプ及び電子デバイスの実施の形態について、図面を参照しながら説明する。なお、本発明は、以下に説明する実施の形態によって限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、本発明の理解を容易にするために方向を表す用語を適宜用いるが、これは本発明を説明するためのものであって、これらの用語は本発明を限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。
実施の形態1.
図1は、実施の形態1に係るヒートパイプ1を示す断面図である。ヒートパイプ1は、作動液体が系内で液体、気体及び液体に相変化する際の潜熱を利用して、機器の除熱又は暖房等に利用される。例えば、ヒートパイプ1は、パソコンといった電子機器の熱交換に利用されたり、寒冷地における駅、道路、線路のポイント又は車両の局地暖房等に利用されたりしている。図1に示すように、ヒートパイプ1は、上下方向に延びる中空部が形成された筒状の金属製の容器3を備えている。容器3は、熱を蓄える蓄熱材4が内部に封入されたものである。蓄熱材4は、感温性高分子8と、水10、有機溶媒、及び水10又は有機溶媒の化合物からなる群から選択される溶媒とからなる感温性高分子ゲルを有する(図2参照)。
図1は、実施の形態1に係るヒートパイプ1を示す断面図である。ヒートパイプ1は、作動液体が系内で液体、気体及び液体に相変化する際の潜熱を利用して、機器の除熱又は暖房等に利用される。例えば、ヒートパイプ1は、パソコンといった電子機器の熱交換に利用されたり、寒冷地における駅、道路、線路のポイント又は車両の局地暖房等に利用されたりしている。図1に示すように、ヒートパイプ1は、上下方向に延びる中空部が形成された筒状の金属製の容器3を備えている。容器3は、熱を蓄える蓄熱材4が内部に封入されたものである。蓄熱材4は、感温性高分子8と、水10、有機溶媒、及び水10又は有機溶媒の化合物からなる群から選択される溶媒とからなる感温性高分子ゲルを有する(図2参照)。
蓄熱材4は、感温性高分子8が水10を吸着又は脱着することによって、放熱又は吸熱する。ここで、疎水化した感温性高分子8の密度は、水10の密度よりも高く、疎水化した気泡を内包する感温性高分子8の密度は、水10の密度よりも低い。ヒートパイプ1は、容器3の下部が放熱部7となっており、容器3の上部が加熱部6となっているトップヒート型と呼称されるものである。容器3の下部には、複数のフィン3aが設けられている。なお、蓄熱材4は、感温性高分子ゲル中に気体が含まれているものであってもよい。
図2は、実施の形態1に係るヒートパイプ1の動作を示す図である。図2に示すように、ヒートパイプ1は、ヒートパイプ1の上部である加熱部6において、ヒートパイプ1の外部から吸熱する。これにより、疎水化した感温性高分子8がヒートパイプ1の下部である放熱部7に移動する。そして、ヒートパイプ1は、ヒートパイプ1の下部である放熱部7において、フィン3aを介して、ヒートパイプ1の外部に放熱する。ヒートパイプ1は、これらの動作を繰り返す。このように、ヒートパイプ1は、吸熱した感温性高分子8が自発的に熱源から離れるため、熱源の発熱を効率よく吸収することができる。感温性高分子8の加熱部6から放熱部7への移動は、水10との密度差、重力及び水10の対流のほかに、ポンプ等の外的動力を用いることもできる。
図3は、実施の形態1の変形例に係るヒートパイプ1aを示す断面図である。図3に示すように、変形例のヒートパイプ1aは、容器3の下部が加熱部6となっており、容器3の上部が放熱部7となっているボトムヒート型と呼称されるものである。容器3の上部には、複数のフィン3aが設けられている。
図4は、実施の形態1の変形例に係るヒートパイプ1aの動作を示す図である。図4に示すように、ヒートパイプ1aは、ヒートパイプ1aの下部である加熱部6において、ヒートパイプ1aの外部から吸熱する。これにより、空気9が気泡となって内包されている疎水化した感温性高分子8がヒートパイプ1aの上部である放熱部7に移動する。そして、ヒートパイプ1aは、ヒートパイプ1aの上部である放熱部7において、フィン3aを介して、ヒートパイプ1aの外部に放熱する。ヒートパイプ1aは、これらの動作を繰り返す。このように、ヒートパイプ1aは、吸熱した感温性高分子8が自発的に熱源から離れるため、熱源の発熱を効率よく吸収することができる。
図5は、実施の形態1に係る電子デバイス2の一例を示す斜視図であり、図6は、実施の形態1に係る電子デバイス2の一例を示す斜視図である。図5に示すように、ヒートパイプ1は、パソコン用のマザーボードといった電子デバイス2に使用される。また、図6に示すように、ヒートパイプ1は、電子デバイス2aの一例であるスマートフォンの発熱部品11から発生する熱を放散する薄型ループヒートパイプとして使用されてもよい。この場合、ヒートパイプ1の両端は、それぞれ蒸発器12と凝縮器13となっている。更に、ヒートパイプ1は、タブレット又はACアダプタ等に使用されてもよい。
次に、蓄熱材4について詳細に説明する。蓄熱材4は、下限臨界溶液温度を境界として親水性と疎水性とが可逆的に変化するものであり、親水性と疎水性との変化の過程において感温性高分子ゲルに含まれる溶媒が液体状態を維持するものである。感温性高分子8として、例えば、ポリビニルアルコール部分酢化物、ポリビニルメチルエーテル、メチルセルロース、ポリエチレンオキシド、ポリビニルメチルオキサゾリディノン、ポリN-エチルアクリルアミド、ポリN-エチルメタクリルアミド、ポリN-n-プロピルアクリルアミド、ポリN-n-プロピルメタクリルアミド、ポリN-イソプロピルアクリルアミド、ポリN-イソプロピルメタクリルアミド、ポリN-シクロプロピルアクリルアミド、ポリN-シクロプロピルメタクリルアミド、ポリN-メチル-N-エチルアクリルアミド、ポリN、N-ジエチルアクリルアミド、ポリN-メチル-N-イソプロピルアクリルアミド、ポリN-メチル-N-n-プロピルアクリルアミド、ポリN-アクリロイルピロリジン、ポリN-アクリロイルピペリジン、ポリN-2-エトキシエチルアクリルアミド、ポリN-2-エトキシエチルメタクリルアミド、ポリN-3-メトキシプロピルアクリルアミド、ポリN-3-メトキシプロピルメタクリルアミド、ポリN-3-エトキシプロピルアクリルアミド、ポリN-3-エトキシプロピルメタクリルアミド、ポリN-3-イソプロキシプロピルアクリルアミド、ポリN-3-イソプロキシプロピルメタクリルアミド、ポリN-3-(2-メトキシエトキシ)プロピルアクリルアミド、ポリN-3-(2-メトキシエトキシ)プロピルメタクリルアミド、ポリN-テトラヒドロフルフリルアクリルアミド、ポリN-テトラヒドロフルフリルメタクリルアミド、ポリN-1-メチル-2-メトキシエチルアクリルアミド、ポリN-1-メチル-2-メトキシエチルメタクリルアミド、ポリN-1-メトキシメチルプロピルアクリルアミド、ポリN-1-メトキシメチルプロピルメタクリルアミド、ポリN-(2、2-ジメトキシエチル)-N-メチルアクリルアミド、ポリN-(1、3-ジオキソラン-2-イルメチル)-N-メチルアクリルアミド、ポリN-8-アクリロイル-1、4-ジオキサ-8-アザ-スピロ[4,5]デカン、ポリN-2-メトキシエチル-N-エチルアクリルアミド、ポリN-2-メトキシエチル-N-n-プロピルアクリルアミド、ポリN-2-メトキシエチル-N-イソプロピルアクリルアミド、ポリN、N-ジ(2-メトキシエチル)アクリルアミドを用いることができる。
また、有機溶媒は、極性有機溶媒から選択され、好ましくは、メタノール、エタノール、プロパノール、イソプロパノール、イソペンタノール及び2-メトキシエタノールなどのアルコール、アセトン、メチルエチルケトン、メチルn-プロピルケトン、メチルイソプロピルケトン及びメチルイソアミルケトンなどのケトン、エチレングリコールモノブチルエーテル及びプロピレングリコールモノメチルエーテル等のエーテル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸n-ブチル、クロロホルム、アセトニトリル、グリセロール、ジメチルスルホキシド、N,N-ジメチルホルムアミド、テトラヒドロフラン、ピリジン、1,4-ジオキサン、ジメチルアセトアミド、N-メチルピロリドン、炭酸プロピレン及びその混合物からなる群から選択される。
なお、有機溶媒は、非極性有機溶媒から選択され、好ましくは、ベンゼン、クロロベンゼン、o-ジクロロベンゼン、トルエン、o-キシレン、ジクロロメタン、1,1,2-トリクロロトリフルオロエタン、ペンタン、シクロペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ジエチルエーテル、石油エーテル、ピリジン、四塩化炭素、脂肪酸、脂肪酸エステル及びその混合物からなる群から選択される。更に、有機溶媒は、油から選択され、好ましくは、植物油、精油、石油化学油、合成油及びその混合物からなる群から選択される。有機溶媒として油が用いられる場合、有機溶媒は親油性溶媒と呼称される場合がある。それ以外に、有機溶媒は、少なくとも1種の極性有機溶媒又は非極性有機溶媒及び少なくとも1種の油の混合物である。
感温性高分子8は、下記一般式(1)
(式中、R1は、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R2は、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R1及びR2は、同一であっても異なっていてもよく、R3は、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2)
(式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位と、を含み、一般式(1)で表される構成単位の共有結合手と一般式(2)で表される構成単位の共有結合手とが結合した架橋構造を有するものである。ここで、感温性高分子8は、水10に対する下限臨界溶液温度を有する。下限臨界溶液温度は、Lower Critical Solution Temperature:LCSTと呼称される。感温性高分子8は、LCSTより低温側では親水性を示し、LCSTより高温側では疎水性を示す。即ち、感温性高分子8は、下限臨界溶液温度を境界として親水性と疎水性とが可逆的に変化するものである。
感温性高分子は、一般式(1)で表される構成単位と、官能基であるXと、一般式(2)で表される構成単位とのモル比が、99:0.5:0.5~70:23:7である。なお、感温性高分子は、一般式(1)で表される構成単位と、官能基であるXと、一般式(2)で表される構成単位とのモル比が、98:1:1~77:18:5であることが好ましい。一般式(1)で表される構成単位の割合が多過ぎる場合、蓄熱密度が小さくなる。一般式(1)で表される構成単位の割合が多い場合とは、例えば一般式(1)で表される構成単位と、官能基であるXと、一般式(2)で表される構成単位との合計を100モル%としたときに、一般式(1)で表される構成単位の割合が99モル%を超える場合である。
一方、一般式(1)で表される構成単位の割合が少な過ぎる場合、LCSTを示さなくなる。一般式(1)で表される構成単位の割合が少ない場合とは、例えば一般式(1)で表される構成単位と、官能基であるXと、一般式(2)で表される構成単位との合計を100モル%としたときに、一般式(1)で表される構成単位の割合が70モル%未満である場合である。なお、本実施の形態1において、一般式(1)で表される構成単位と、官能基であるXと、一般式(2)で表される構成単位とのモル比は、原料の仕込み量から計算した理論値である。
本実施の形態1の蓄熱材4は、一般式(1)で表される構成単位と、官能基であるXと、一般式(2)で表される構成単位とを、上記のモル比で含んでいればよく、一般式(1)で表される構成単位の繰り返し数又はそれぞれの構成単位が結合する順番は限定されない。一般式(1)で表される構成単位の繰り返し数は、通常、5~500の範囲の整数である。
本実施の形態1の蓄熱材4において、LCSTは、主に、一般式(1)中のR1及びR2の種類に応じて、5~80℃の広い範囲に設定することができる。一般式(1)中のR1は、温度応答性をより高めるという観点から、水素原子又はメチル基であることが好ましい。一般式(1)中のR2は、温度応答性をより高めるという観点から、エチル基、メチル基又はイソプロピル基であることが好ましい。また、一般式(1)中のR3は、感温性高分子8の製造が容易になるという観点から、水素原子であることが好ましい。
一般式(1)中のXは、上記のモル比を満たすように、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される官能基である。これらの官能基の中でも、ラジカル重合性をより高めるという観点から、オキシスルホン酸基であることが好ましい。一般式(2)中のqは、蓄熱密度をより高めるという観点から、1であることが好ましい。一般式(1)及び一般式(2)における共有結合手は、同じ構成単位同士を結合させたり、異種の構成単位を結合させたりするだけでなく、一部が分岐構造を形成していてもよい。分岐構造としては、これに限定されることはない。
また、蓄熱材4は、下記一般式(5)
(式中、R1は、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R2は、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R1及びR2は、同一であっても異なっていてもよく、R3は、水素原子又はメチル基を表す)で表される重合性モノマーを、下記一般式(6)
(式中、qは、1~3の整数を表す)で表される架橋剤と、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム及び過酸化水素からなる群から選択される一種以上の重合開始剤との存在下でラジカル重合することにより製造されることができる。
一般式(5)で表される重合性モノマーは、一般式(1)で表される構成単位を与える重合性モノマーである。一般式(5)で表される重合性モノマーの具体例としては、例えば、N-エチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-シクロプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル-N-メチル(メタ)アクリルアミド、N-メチル-N-n-プロピル(メタ)アクリルアミド、N-イソプロピル-N-メチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-エチル-N-メトキシエチル(メタ)アクリルアミド、N-メトキシプロピル(メタ)アクリルアミド、N-エトキシプロピル(メタ)アクリルアミド、N-イソプロポキシプロピル(メタ)アクリルアミド、N-メトキシエトキシプロピル(メタ)アクリルアミド、N-1-メチル-2-メトキシエチル(メタ)アクリルアミド、N-1-メトキシメチルプロピル(メタ)アクリルアミド、N-(2,2-ジメトキシエチル)-N-メチル(メタ)アクリルアミド、N,N-ジメトキシエチル(メタ)アクリルアミド等が挙げられる。これらの中でも、N-アルキル(炭素原子数1~3)(メタ)アクリルアミドが好ましく、N-イソプロピル(メタ)アクリルアミドが更に好ましい。なお、本実施の形態1において、「(メタ)アクリル」は、メタクリル又はアクリルを意味する。
一般式(6)で表される架橋剤は、一般式(2)で表される構成単位を与える架橋剤である。一般式(6)で表される架橋剤の具体例としては、N,N’-メチレンビスアクリルアミド、N,N’-エチレンビスアクリルアミド及びN,N’-(トリメチレン)ビスアクリルアミドが挙げられる。
ラジカル重合法としては、バルク重合法、溶液重合法又は乳化重合法等の公知の方法を用いることができる。上記の重合開始剤の中でも、反応性が良好であるという観点から、重合開始剤は過硫酸カリウム及び過硫酸アンモニウムが好ましい。また、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジメチルパラトルイジン等の重合促進剤を、上記の重合開始剤と組み合わせて用いることにより、低温での迅速なラジカル重合が可能となる。
ラジカル重合に用いられる溶媒としては、水、メタノール、エタノール、n-プロパノール、イソプロパノール、1-ブタノール、イソブタノール、ヘキサノール、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロメタン、クロロホルム、四塩化炭素、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、アセトニトリル、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。これらの溶媒の中でも、蓄熱密度をより高めるという観点から、溶媒は水が好ましい。ラジカル重合反応は、通常、0℃~100℃の温度で30分~24時間行えばよい。
また、溶媒として水10を用いてラジカル重合を行う場合、一般式(5)で表される重合性モノマーと一般式(6)で表される架橋剤と重合開始剤との合計濃度は、2mol/L~3mol/Lとすることが畜熱密度をより高めるという観点から特に好ましい。合計濃度が2mol/L未満であると、得られる蓄熱材4の蓄熱密度が小さくなる場合がある。一方、合計濃度が3mol/Lを超えると、得られる蓄熱材4がLCSTを示さなくなる場合がある。
本実施の形態1の蓄熱材4が、比較的低い蓄熱動作温度(100℃以下)と大きい蓄熱密度とを達成できる理由は、次のように考えられる。LCSTを有する感温性高分子8は、LCSTより低温側では親水性を示し、LCSTより高温側では疎水性を示す。本実施の形態1の蓄熱材4を構成する感温性高分子8は、架橋密度が高く、且つ高分子の末端が分岐した高度の密集構造を有する。このため、感温性高分子8への吸着水は、従来の感温性高分子8と同様に高配列となっているが、LCSTより高温時に低配列化する。本実施の形態1の蓄熱材4を構成する感温性高分子8では、この配列性の変化が大きいため、従来の感温性高分子8と同様に低い蓄熱動作温度を示すだけでなく、大きい蓄熱密度を達成できると考えられる。
本実施の形態1によれば、蓄熱材4は、下限臨界溶液温度を境界として親水性と疎水性とが可逆的に変化するものであり、親水性と疎水性との変化の過程において感温性高分子ゲルに含まれる溶媒が液体状態を維持する。このため、大型化が抑制される。また、本実施の形態1は、比較的低い蓄熱動作温度を有し且つ蓄熱密度が大きい蓄熱材4及びその製造方法を提供することができる。本実施の形態1による蓄熱材4は、比較的低い蓄熱動作温度を有し且つ蓄熱密度が大きいため、熱輸送媒体として蓄熱材4が充填されたヒートパイプ1を小型化することができ、可搬する電気機器に適している。
なお、蓄熱材4の感温性高分子8は、架橋構造と、高分子末端にヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を有し、感温性架橋高分子を構成する繰り返し単位と、官能基と、架橋構造単位とのモル比が、99:0.5:0.5~70:23:7であり、好ましくは98:1:1~77:18:5である感温性高分子ゲルからなるものでもよい。
繰り返し単位の割合が多過ぎる場合、蓄熱密度が小さくなる。繰り返し単位の割合が多い場合とは、例えば繰り返し単位と、官能基と、架橋構造単位との合計を100モル%としたときに、繰り返し単位割合が99モル%を超える場合である。一方、繰り返し単位の割合が少な過ぎる場合、LCSTを示さなくなる。繰り返し単位の割合が少ない場合とは、例えば繰り返し単位と、官能基と、架橋構造単位との合計を100モル%としたときに、繰り返し単位割合が70モル%未満である場合である。
架橋構造単位は、感温性高分子8の製造に使用する架橋剤により導入される構造単位であり、この架橋剤としては、例えば、N、N’-メチレンビスアクリルアミド、N、N’-ジアリルアクリルアミド、N、N’-ジアクリロイルイミド、N、N’-ジメタクリロイルイミド、トリアリルホルマール、ジアリルナフタレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、各種ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジアクリレート、プロピレングリコールジメタクリレート、各種ポリプロピレングリコールジ(メタ)アクリレート、1、3-ブチレングリコールジアクリレート、1、3-ブチレングリコールジメタクリレート、1、4-ブチレングリコールジメタクリレート、各種ブチレングリコールジ(メタ)アクリレート、グリセロールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ジビニルベンゼン等のジビニル誘導体、等の架橋性単量体等が挙げられるが、特にこれらに限定されるものではない。
実施の形態2.
本実施の形態2は、蓄熱材4の構成が実施の形態1と相違する。本実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
本実施の形態2は、蓄熱材4の構成が実施の形態1と相違する。本実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
蓄熱材4は、下記一般式(1)
(式中、R1は、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R2は、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R1及びR2は、同一であっても異なっていてもよく、R3は、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2)
(式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位と、下記一般式(3)
(式中、R4は、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、R5は、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表し、pは、1~3の整数を表す)又は、下記一般式(4)
(式中、R4は、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、R5は、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表し、pは、1~3の整数を表す)で表される構成単位と、を含み、且つ一般式(1)で表される構成単位の共有結合手と一般式(2)で表される構成単位の共有結合手と、一般式(3)又は一般式(4)で表される構成単位の共有結合手とが結合した架橋構造を有する感温性高分子ゲルからなるものである。
本実施の形態2の蓄熱材4において、一般式(1)で表される構成単位と一般式(3)又は一般式(4)で表される構成単位とのモル比は、95:5~20:80であり、好ましくは85:15~25:75である。一般式(1)で表される構成単位の割合が多過ぎる場合、蓄熱密度が小さくなる。一般式(1)で表される構成単位の割合が多い場合とは、例えば一般式(1)で表される構成単位と一般式(3)又は一般式(4)で表される構成単位との合計を100モル%としたときに、一般式(1)で表される構成単位の割合が95モル%を超える場合である。一方、一般式(1)で表される構成単位の割合が少な過ぎる場合、LCSTを示さなくなる。一般式(1)で表される構成単位の割合が少ない場合とは、例えば一般式(1)で表される構成単位と一般式(3)又は一般式(4)で表される構成単位との合計を100モル%としたときに、一般式(1)で表される構成単位の割合が20モル%未満である場合である。
本実施の形態2の蓄熱材4において、一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の合計と、官能基であるXと、一般式(2)で表される構成単位とのモル比は、99:0.5:0.5~70:23:7であり、好ましくは98:1:1~77:18:5である。一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の割合が多過ぎる場合、蓄熱密度が小さくなる。一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の割合が多い場合とは、例えば一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の合計と、官能基であるXと、一般式(2)で表される構成単位との合計を100モル%としたときに、一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の合計割合が99モル%を超える場合である。
一方、一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の割合が少な過ぎる場合、LCSTを示さなくなる。一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の割合が少ない場合とは、例えば、一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の合計と、官能基であるXと、一般式(2)で表される構成単位との合計を100モル%としたときに、一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の合計割合が70モル%未満である場合である。
なお、本実施の形態2において、一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の合計と、官能基であるXと、一般式(2)で表される構成単位とのモル比は、原料の仕込み量から計算した理論値である。
本実施の形態2の蓄熱材4は、一般式(1)で表される構成単位と、一般式(3)又は一般式(4)で表される構成単位と、官能基であるXと、一般式(2)で表される構成単位とを上記のモル比で含んでいればよく、一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の繰り返し数並びにそれぞれの構成単位が結合する順番は特に限定されない。一般式(1)で表される構成単位及び一般式(3)又は一般式(4)で表される構成単位の繰り返し数は、通常、5~500の範囲の整数である。
本実施の形態2の蓄熱材4において、LCSTは、主に、一般式(1)で表される構成単位と一般式(3)又は一般式(4)で表される構成単位とのモル比と、一般式(1)中のR1及びR2の種類及び一般式(3)又は一般式(4)中のR4及びR5の種類とに応じて、5~80℃の広い範囲に設定することができる。一般式(1)中のR1は、温度応答性をより高めるという観点から、水素原子又はメチル基であることが好ましい。一般式(1)中のR2は、温度応答性をより高めるという観点から、エチル基、メチル基又はイソプロピル基であることが好ましい。
また、一般式(1)中のR3及び一般式(3)又は一般式(4)中のR5は、感温性高分子8の製造が容易になるという観点から、水素原子であることが好ましい。一般式(1)、一般式(3)及び一般式(4)中のXは、上記のモル比を満たすように、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される官能基である。これらの官能基の中でも、ラジカル重合性をより高めるという観点から、オキシスルホン酸基であることが好ましい。一般式(3)及び(4)中のR4は、畜熱密度をより高めるという観点から、ヒドロキシ基又はスルホン酸基であることが好ましい。
一般式(3)及び一般式(4)中のpは、畜熱密度をより高めるという観点から、1又は2であることが好ましい。一般式(2)中のqは、蓄熱密度をより高めるという観点から、1であることが好ましい。一般式(1)~一般式(4)における共有結合手は、同じ構成単位同士を結合させたり、異種の構成単位を結合させたりするだけでなく、一部が分岐構造を形成していてもよい。分岐構造としては、これに限定されることはない。
本実施の形態2の蓄熱材4は、下記一般式(5)
(式中、R1は、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R2は、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R1及びR2は、同一であっても異なっていてもよく、R3は、水素原子又はメチル基を表す)で表される重合性モノマーと、下記一般式(7)
(式中、R4は、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、R5は、水素原子又はメチル基を表し、pは、1~3の整数を表す)又は、下記一般式(8)
(式中、R4は、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、R5は、水素原子又はメチル基を表し、pは、1~3の整数を表す)で表される重合性モノマーと、を、下記一般式(6)
(式中、qは、1~3の整数を表す)で表される架橋剤と、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム及び過酸化水素からなる群から選択される一種以上の重合開始剤との存在下でラジカル重合することにより製造することができる。
一般式(5)で表される重合性モノマー、一般式(6)で表される架橋剤及び重合開始剤は、実施の形態1で説明したものと同様であるので説明を省略する。更に、ラジカル重合方法及びラジカル重合条件等は、実施の形態1で説明したものと同様であるので説明を省略する。
一般式(7)で表される重合性モノマーは、一般式(3)で表される構成単位を与える重合性モノマーである。一般式(7)で表される重合性モノマーの具体例としては、例えば、アクリル酸2-ヒドロキシメチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸2-カルボキシメチル、アクリル酸2-カルボキシエチル、アクリル酸2-カルボキシプロピル、アクリル酸2-スルホメチル、アクリル酸2-スルホエチル、アクリル酸2-スルホプロピル、アクリル酸2-ホスホメチル、アクリル酸2-ホスホエチル、アクリル酸2-ホスホプロピル等が挙げられる。これらの中でも、アクリル酸2-ヒドロキシメチル、アクリル酸2-ヒドロキシエチル及びアクリル酸2-ヒドロキシプロピルが好ましい。
一般式(8)で表される重合性モノマーは、一般式(4)で表される構成単位を与える重合性モノマーである。一般式(8)で表される重合性のモノマーの具体例としては、例えば、N-(1,1-ジメチル-2-ヒドロキシエチル)アクリルアミド、N-(1,1-ジメチル-2-ヒドロキシプロピル)アクリルアミド、N-(1,1-ジメチル-2-ヒドロキシブチル)アクリルアミド、2-アクリルアミド-2-メチルプロパンカルボン酸、2-アクリルアミド-2-メチルブタンカルボン酸、2-アクリルアミド-2-メチルペンタンカルボン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルブタンスルホン酸、2-アクリルアミド-2-メチルペンタンスルホン酸、2-アクリルアミド-2-メチルプロパンリン酸、2-アクリルアミド-2-メチルブタンリン酸、2-アクリルアミド-2-メチルペンタンリン酸等が挙げられる。これらの中でも、2-アクリルアミド-2-メチルプロパンスルホン酸及び2-アクリルアミド-2-メチルペンタンスルホン酸が好ましい。
実施の形態1と同様に、溶媒として水10を用いてラジカル重合を行う場合、一般式(5)で表される重合性モノマーと一般式(7)又は一般式(8)で表される重合性モノマーと一般式(6)で表される架橋剤と重合開始剤との合計濃度は、2mol/L~3mol/Lとすることが好ましい。合計濃度が2mol/L未満であると、得られる蓄熱材4の蓄熱密度が小さくなる場合がある。一方、合計濃度が3mol/Lを超えると、得られる蓄熱材4がLCSTを示さなくなる場合がある。
なお、実施の形態1及び2に係る蓄熱材4の含水率は、特に限定されるものではないが、70質量%~99質量%であることが好ましい。含水率は、水分を含む畜熱材の重量を室温で測定した後、恒温槽内に入れて60~120℃の乾燥温度で水分を蒸発させ、水分が無くなった、即ち重量が減少しなくなったところで蓄熱材4の重量を測定し、重量の減少分を水分と仮定して求めることができる。これは、乾燥減量法と呼ばれる手法である。また、実施の形態1及び2に係る蓄熱材4を多孔化してもよい。蓄熱材4を多孔化することにより、温度応答性をより高めるという利点がある。蓄熱材4を多孔化する方法としては、上記の重合性モノマー、架橋剤、重合開始剤及びポロゲン(細孔形成剤)を含む混合溶液を調製し、ラジカル重合反応によって架橋構造を形成し、次いで洗浄によりポロゲンを除去する方法が挙げられる。
溶媒として水10を用いてラジカル重合反応を行う場合、好ましいポロゲンは、水溶性の炭水化物、例えば、スクロース、マルトース、セルビオース、ラクトース、ソルビトール、キシリトール、グルコース、フルクトース等である。これらの水溶性の炭水化物と、ポリエチレングリコール、ポリビニルピロリドン、ポリビニルアルコール又はこれらの混合物とを含むポロゲン組成物としてもよい。また、蓄熱材4を多孔化する別の方法としては、水分を含む感温性高分子8から凍結乾燥により水分を除去する方法が挙げられる。
また、実施の形態1及び2における感温性高分子8は、上記の重合性モノマー、架橋剤及び重合開始剤を少なくとも含む混合溶液を、ヒートパイプ1内の金属表面に塗布し、ラジカル重合することにより製造することもできる。金属は、例えば、ステンレス鋼、銅又はアルミニウムである。混合溶液は、金属表面の活性化剤、カップリング剤等を含んでもよい。また、感温性高分子8は、上記の混合溶液の塗膜へ放射線を照射することにより製造することもできる。
以下、実施例を示して実施の形態1及び2を具体的に説明するが、実施の形態1及び2は下記の実施例に限定されるものではない。
〔実施例1~5及び比較例1~5〕
実施例において、表1に示す配合の原料水溶液を、窒素雰囲気下、室温から50℃まで1時間かけて昇温させ、感温性高分子8を得た。これを乾燥後、蒸留水で平衡膨潤させ、感温性高分子ゲルを得た後、アルミ製の密閉容器に封入し、示差走査熱量計で吸熱ピーク温度と蓄熱密度を測定した。なお、表1中の略号は、それぞれ以下の事項を示す。即ち、NIPAM:N-イソプロピルアクリルアミド、HMA:アクリル酸2-ヒドロキシエチル、MBA:N,N’-メチレンビスアクリルアミド、KPS:過硫酸カリウム、TEMED:N,N,N’,N’-テトラメチルエチレンジアミンである。
実施例において、表1に示す配合の原料水溶液を、窒素雰囲気下、室温から50℃まで1時間かけて昇温させ、感温性高分子8を得た。これを乾燥後、蒸留水で平衡膨潤させ、感温性高分子ゲルを得た後、アルミ製の密閉容器に封入し、示差走査熱量計で吸熱ピーク温度と蓄熱密度を測定した。なお、表1中の略号は、それぞれ以下の事項を示す。即ち、NIPAM:N-イソプロピルアクリルアミド、HMA:アクリル酸2-ヒドロキシエチル、MBA:N,N’-メチレンビスアクリルアミド、KPS:過硫酸カリウム、TEMED:N,N,N’,N’-テトラメチルエチレンジアミンである。
測定結果を表2に示す。
表2の結果から分かるように、実施例1~5で得られた感温性高分子ゲルは、吸熱ピーク温度が36℃~77℃と低い上に、蓄熱密度が512J/g~844J/gと大きかった。即ち、実施例1~5で得られた感温性高分子ゲルは、36℃~77℃という低い畜熱動作温度で、512J/g~844J/gという高い蓄熱密度を発現することができた。また、畜熱動作温度において発現する感温性高分子ゲルの親水性と疎水性との可逆的変化において、水温が36℃~77℃であり、液体状態であった。これに対し、比較例1~5で得られた感温性高分子ゲルは、パラフィン、脂肪酸、糖アルコール等の従来の蓄熱材4と同様に、吸熱ピーク温度が32℃~68℃と低いものの、蓄熱密度が31J/g~42J/gと著しく小さかった。
以上説明したように、実施例1~5で得られた蓄熱材4は、従来の蓄熱材4とは異なり、低い動作温度で高い蓄熱密度を得ることができた。そして、実施例1~5で得られた感温性高分子ゲルを用いたヒートパイプ1は、蓄熱密度に応じてそれぞれ約10~90%程度の小型化が可能であった。また、実施例1~5で得られた感温性高分子ゲルを用いたヒートパイプ1を、パソコン、スマートフォン、タブレット又はACアダプタに使用したところ、総じて従来のヒートパイプ1を用いた製品よりも小型化が可能であった。
1 ヒートパイプ、1a ヒートパイプ、2 電子デバイス、2a 電子デバイス、3 容器、3a フィン、4 蓄熱材、5 空気、6 加熱部、7 放熱部、8 感温性高分子、9 空気、10 水、11 発熱部品、12 蒸発器、13 凝縮器。
Claims (6)
- 水、有機溶媒、及び水又は有機溶媒の化合物からなる群から選択される溶媒と、感温性高分子とからなる感温性高分子ゲルを有する蓄熱材が封入された容器を備え、
前記蓄熱材は、
下限臨界溶液温度を境界として親水性と疎水性とが可逆的に変化するものであり、親水性と疎水性との変化の過程において前記感温性高分子ゲルに含まれる前記溶媒が液体状態を維持するものである
ヒートパイプ。 - 前記蓄熱材は、
前記感温性高分子ゲル中に気体が含まれている
請求項1記載のヒートパイプ。 - 前記感温性高分子は、架橋構造を有すると共に、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を分子末端に有し、
前記感温性高分子を構成する繰り返し単位と、前記官能基と、前記架橋構造の単位とのモル比が、99:0.5:0.5~70:20:10である
請求項1又は2記載のヒートパイプ。 - 前記感温性高分子ゲルは、
下記一般式(1)
下記一般式(2)
前記一般式(1)で表される構成単位の共有結合手と前記一般式(2)で表される構成単位の共有結合手とが結合した架橋構造を有し、
前記一般式(1)で表される構成単位と、前記官能基であるXと、前記一般式(2)で表される構成単位とのモル比が、99:0.5:0.5~70:23:7である
請求項1~3のいずれか1項に記載のヒートパイプ。 - 前記感温性高分子ゲルは、
下記一般式(1)
下記一般式(2)
下記一般式(3)
下記一般式(4)
前記一般式(1)で表される構成単位の共有結合手と前記一般式(2)で表される構成単位の共有結合手と前記一般式(3)又は前記一般式(4)で表される構成単位の共有結合手とが結合した架橋構造を有し、
前記一般式(1)で表される構成単位と、前記一般式(3)又は前記一般式(4)で表される構成単位とのモル比が、95:5~20:80であり、
前記一般式(1)で表される構成単位及び前記一般式(3)又は前記一般式(4)で表される構成単位の合計と、前記官能基であるXと、前記一般式(2)で表される構成単位とのモル比が、99:0.5:0.5~70:23:7である
請求項1~4のいずれか1項に記載のヒートパイプ。 - 請求項1~5のいずれか1項に記載のヒートパイプを備える
電子デバイス。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020502495A JP6704545B1 (ja) | 2019-10-04 | 2019-10-04 | ヒートパイプ及び電子デバイス |
PCT/JP2019/039327 WO2021064989A1 (ja) | 2019-10-04 | 2019-10-04 | ヒートパイプ及び電子デバイス |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/039327 WO2021064989A1 (ja) | 2019-10-04 | 2019-10-04 | ヒートパイプ及び電子デバイス |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021064989A1 true WO2021064989A1 (ja) | 2021-04-08 |
Family
ID=70858084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/039327 WO2021064989A1 (ja) | 2019-10-04 | 2019-10-04 | ヒートパイプ及び電子デバイス |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6704545B1 (ja) |
WO (1) | WO2021064989A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7092397B2 (ja) * | 2020-10-13 | 2022-06-28 | 株式会社モナテック | 平板状ヒートパイプ用冷媒及び平板状ヒートパイプ |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006232940A (ja) * | 2005-02-23 | 2006-09-07 | Matsushita Electric Ind Co Ltd | 蓄熱材及びこれを用いた太陽電池パネル |
JP2007044673A (ja) * | 2005-08-12 | 2007-02-22 | Kurita Water Ind Ltd | 吸着型ヒートポンプ用水蒸気吸着材及び該吸着材を用いた吸着型ヒートポンプ装置 |
CN101117572A (zh) * | 2007-07-25 | 2008-02-06 | 中南大学 | 以凝胶为载体的复合相变蓄热材料及其制备方法 |
JP2017222742A (ja) * | 2016-06-13 | 2017-12-21 | 白元アース株式会社 | ゲル状蓄熱剤およびそれを封入した保温具 |
JP6501990B1 (ja) * | 2018-06-18 | 2019-04-17 | 三菱電機株式会社 | 蓄熱器、蓄熱システム及び蓄熱方法 |
WO2019159514A1 (ja) * | 2018-02-16 | 2019-08-22 | 矢崎エナジーシステム株式会社 | 潜熱蓄熱体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017201739A (ja) * | 2016-05-02 | 2017-11-09 | 富士通株式会社 | 電子機器 |
US10159165B2 (en) * | 2017-02-02 | 2018-12-18 | Qualcomm Incorporated | Evaporative cooling solution for handheld electronic devices |
WO2019104145A1 (en) * | 2017-11-21 | 2019-05-31 | Worcester Polytechnic Institute | Thermal storage system |
-
2019
- 2019-10-04 WO PCT/JP2019/039327 patent/WO2021064989A1/ja active Application Filing
- 2019-10-04 JP JP2020502495A patent/JP6704545B1/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006232940A (ja) * | 2005-02-23 | 2006-09-07 | Matsushita Electric Ind Co Ltd | 蓄熱材及びこれを用いた太陽電池パネル |
JP2007044673A (ja) * | 2005-08-12 | 2007-02-22 | Kurita Water Ind Ltd | 吸着型ヒートポンプ用水蒸気吸着材及び該吸着材を用いた吸着型ヒートポンプ装置 |
CN101117572A (zh) * | 2007-07-25 | 2008-02-06 | 中南大学 | 以凝胶为载体的复合相变蓄热材料及其制备方法 |
JP2017222742A (ja) * | 2016-06-13 | 2017-12-21 | 白元アース株式会社 | ゲル状蓄熱剤およびそれを封入した保温具 |
WO2019159514A1 (ja) * | 2018-02-16 | 2019-08-22 | 矢崎エナジーシステム株式会社 | 潜熱蓄熱体 |
JP6501990B1 (ja) * | 2018-06-18 | 2019-04-17 | 三菱電機株式会社 | 蓄熱器、蓄熱システム及び蓄熱方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6704545B1 (ja) | 2020-06-03 |
JPWO2021064989A1 (ja) | 2021-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications | |
Qiu et al. | Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage | |
JP7244122B2 (ja) | ガス吸収材料、そのガス吸収への使用、ガス吸収体およびガス吸収方法、並びに、酸性ガス吸収装置、酸性ガス回収装置、水蒸気吸収装置、水蒸気回収装置、熱交換器および熱回収装置 | |
Qiu et al. | Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shells | |
JP4697413B2 (ja) | 吸着型ヒートポンプ用水蒸気吸着材及び該吸着材を用いた吸着型ヒートポンプ装置 | |
CN111138689A (zh) | 温敏相变水凝胶的制备方法 | |
Harikrishnan et al. | Experimental investigation of improved thermal characteristics of SiO2/myristic acid nanofluid as phase change material (PCM) | |
WO2021064989A1 (ja) | ヒートパイプ及び電子デバイス | |
JP2005009703A (ja) | 吸放出体及びそれを用いた冷温熱システム | |
WO2021064990A1 (ja) | 蓄熱装置 | |
Wang et al. | Sponge-like form-stable phase change materials with embedded graphene oxide for enhancing the thermal storage efficiency and the temperature response in transport packaging applications | |
Qiu et al. | Fabrication, thermal property and thermal reliability of microencapsulated paraffin with ethyl methacrylate-based copolymer shell | |
JPWO2019194022A1 (ja) | 蓄熱材、その製造方法及び蓄熱槽 | |
CN113528094A (zh) | 一种常温无渗漏的有机无机耦合相变材料 | |
WO2021064992A1 (ja) | ヒートポンプ装置及び電気機器 | |
CN107868191A (zh) | 一种石墨烯的改性方法 | |
WO2021064991A1 (ja) | 蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム | |
WO2021064993A1 (ja) | 熱輸送コンテナ及び熱輸送システム | |
Hu et al. | Shape-stable hydrated salt phase change hydrogels for solar energy storage and conversion | |
Clark et al. | Salt hydrate-based composite materials for thermochemical energy storage | |
WO2015178335A1 (ja) | 吸湿性粒子 | |
JP6765573B1 (ja) | 給湯暖房装置 | |
Chang et al. | Preparation of High‐capacity, Monodisperse Polymeric Weak Cation Exchange Packings Using Surface‐initiated Atom Transfer Radical Polymerization and Its Chromatographic Properties | |
Aristov et al. | Dynamics of water vapor sorption in a CaCl 2/silica gel/binder bed: The effect of the bed pore structure | |
Bakass et al. | Adsorption–desorption phenomena of water vapor on a superabsorbent polymer partially crosslinked with potassium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020502495 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19947560 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19947560 Country of ref document: EP Kind code of ref document: A1 |