WO2021064991A1 - 蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム - Google Patents

蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム Download PDF

Info

Publication number
WO2021064991A1
WO2021064991A1 PCT/JP2019/039329 JP2019039329W WO2021064991A1 WO 2021064991 A1 WO2021064991 A1 WO 2021064991A1 JP 2019039329 W JP2019039329 W JP 2019039329W WO 2021064991 A1 WO2021064991 A1 WO 2021064991A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
group
general formula
storage tank
temperature
Prior art date
Application number
PCT/JP2019/039329
Other languages
English (en)
French (fr)
Inventor
拓海 於保
英治 信時
寺井 護
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020503075A priority Critical patent/JP6704547B1/ja
Priority to PCT/JP2019/039329 priority patent/WO2021064991A1/ja
Publication of WO2021064991A1 publication Critical patent/WO2021064991A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a heat storage device provided with a heat storage material, a method using the heat storage device, and an internal combustion engine warm-up system equipped with the heat storage device.
  • the melting point of the heat storage material is preferably 100 ° C. or lower.
  • the inorganic heat storage material include inorganic hydrated salts such as barium hydroxide octahydrate (melting point 78 ° C.) and magnesium nitrate hexahydrate (melting point 89 ° C.).
  • examples of the organic heat storage material include paraffin, fatty acid, sugar alcohol and the like. However, these organic heat storage materials have not been put into practical use because the heat storage density derived from the heat of fusion is small.
  • Patent Document 1 describes a first gelling material produced by cross-linking at least one selected from a polyacrylamide derivative, polyvinyl alcohol, sodium polyacrylate, and sodium polymethacrylate. And a heat storage material having a second gelling material which is a polysaccharide, agar or gelatin, and an inorganic or aqueous heat storage material retained in the first gelling material and the second gelling material.
  • Patent Document 1 Although the heat storage device described in Patent Document 1 has a relatively low heat storage operating temperature, it has a low heat storage density, so it is necessary to increase the amount of heat storage material in order to secure the required amount of heat storage, which increases the size. There was a challenge.
  • the present invention has been made to solve the above problems, and provides a heat storage device, a method of using the heat storage device, and a heat storage device that can suppress the increase in size while securing the required amount of heat storage.
  • the purpose is to provide a complete internal combustion engine warm-up system.
  • the heat storage device has a lower heat storage tank, an upper heat storage tank installed above the lower heat storage tank, one end at the upper part of the lower heat storage tank, and the other end at the lower part of the upper heat storage tank.
  • the on-off valve to be connected and the heat storage material stored in the upper heat storage tank and the lower heat storage tank are provided, and the heat storage material is made of a temperature-sensitive polymer, water, an organic solvent, and a mixture thereof. It is a temperature-sensitive polymer gel composed of a solvent selected from the above group, and hydrophilicity and hydrophobicity change reversibly with the lower limit critical solution temperature as a boundary, and in the process of the change, the temperature-sensitive polymer gel.
  • the solvent contained in the sex polymer gel is maintained in a liquid state without being vaporized, and when the heat storage material becomes equal to or higher than the lower limit critical solution temperature in a state where the on-off valve is open, the temperature is sensitive.
  • the sex polymer gel is hydrophobized, the hydrophobized temperature-sensitive polymer gel is stored in the upper heat storage tank, and the solvent is stored in the lower heat storage tank.
  • the method using the heat storage device according to the present invention is the method using the above heat storage device, in which the on-off valve is opened at the lower limit critical solution temperature or higher to make the hydrophobic polymer gel hydrophobic.
  • the solvent was stored in the lower heat storage tank, and then the on-off valve was closed to maintain the heat storage state, and the on-off valve was released below the lower limit critical solution temperature.
  • This is a method of releasing the heat storage state and starting heat dissipation.
  • the internal combustion engine warm-up system includes the above-mentioned heat storage device.
  • the heat storage device can use a heat storage material having a relatively low heat storage operating temperature and a high heat storage density. Since it is provided, it is possible to suppress the increase in size while securing the required amount of heat storage.
  • the heat storage material according to the first example of the embodiment is a temperature-sensitive polymer gel composed of a temperature-sensitive polymer and water or an organic solvent, or a mixed solvent of water and an organic solvent, and has a lower limit. It is composed of a temperature-sensitive polymer gel whose hydrophilicity and hydrophobicity change reversibly with respect to the critical solution temperature.
  • the temperature-sensitive polymer is not particularly limited as long as hydrophilicity and hydrophobicity change reversibly with respect to the lower limit critical solution temperature, and polyvinyl alcohol partial vinegared product and polyvinyl methyl ether.
  • Methyl cellulose polyethylene oxide, polyvinyl methyl oxazolidinone, poly N-ethyl acrylamide, poly N-ethyl methacrylic amide, poly Nn-propyl acrylamide, poly N n-propyl methacrylic amide, poly N-isopropyl acrylamide, poly N-Isopropyl Methacrylate, Poly N-Cyclopropyl acrylamide, Poly N-Cyclopropyl Methulamide, Poly N-Methyl-N-Ethylacrylamide, Poly N, N-Diethylacrylamide, Poly N-Methyl-N-Isopropylacrylamide, Poly N-Methyl-Nn-propylacrylamide, Poly
  • the organic solvent is selected from polar organic solvents, preferably alcohols such as methanol, ethanol, propanol, isopropanol, isopentanol and 2-methoxyethanol, acetone, methyl ethyl ketone, methyl n-propyl ketone and methyl isopropyl.
  • alcohols such as methanol, ethanol, propanol, isopropanol, isopentanol and 2-methoxyethanol, acetone, methyl ethyl ketone, methyl n-propyl ketone and methyl isopropyl.
  • Ketones and methyl isoamyl Ketones such as ketones, ethers such as ethylene glycol monobutyl ether and propylene glycol monomethyl ether, methyl acetate, ethyl acetate, propyl acetate, n-butyl acetate, chloroform, acetonitrile, glycerol, dimethyl sulfoxide, N, N-dimethyl It is selected from the group consisting of formamide, tetrahydrofuran, pyridine, 1,4-dioxane, dimethylacetamide, N-methylpyrrolidone, propylene carbonate and mixtures thereof.
  • the organic solvent is selected from non-polar organic solvents, preferably benzene, chlorobenzene, o-dichlorobenzene, toluene, o-xylene, dichloromethane, 1,1,2-trichlorotrifluoroethane, pentane, cyclopentane. , Hexane, cyclohexane, heptane, isooctane, diethyl ether, petroleum ether, pyridine, carbon tetrachloride, fatty acids, fatty acid esters and mixtures thereof.
  • non-polar organic solvents preferably benzene, chlorobenzene, o-dichlorobenzene, toluene, o-xylene, dichloromethane, 1,1,2-trichlorotrifluoroethane, pentane, cyclopentane.
  • Hexane, cyclohexane, heptane isooctan
  • the organic solvent is selected from oils, preferably from the group consisting of vegetable oils, essential oils, petrochemical oils, synthetic oils and mixtures thereof.
  • the organic solvent may also be referred to as a lipophilic solvent.
  • the organic solvent is a mixture of at least one polar or non-polar organic solvent defined above and at least one oil defined above.
  • the temperature-sensitive polymer has a crosslinked structure and a hydroxy group, a sulfonic acid group, and an oxysulfonic acid group at the polymer terminal.
  • a repeating unit having one or more functional groups selected from the group consisting of a phosphoric acid group and an oxyphosphate group and constituting a temperature-sensitive crosslinked polymer, and a molar ratio of the functional group to the crosslinked structural unit.
  • the ratio of the repeating unit When the ratio of the repeating unit is too large, that is, when the ratio of the repeating unit exceeds 99 mol% when the total of the repeating unit, the functional group, and the crosslinked structural unit is 100 mol%. The heat storage density becomes smaller. On the other hand, when the ratio of the repeating unit is too small, that is, when the total of the repeating unit, the functional group, and the crosslinked structural unit is 100 mol%, the ratio of the repeating unit is less than 70 mol%. In some cases, the LCST described below is not shown.
  • the crosslinked structural unit is a structural unit introduced by a crosslinking agent used in the production of the temperature-sensitive polymer, and examples of the crosslinking agent include N, N'-methylenebisacrylamide, N, N'-. Diallylacrylamide, N, N'-diacryloylimide, N, N'-dimethacryloylimide, triallylformal, diallylnaphthalate, ethylene glycol diacrylate, ethylene glycol dimethacrylate, various polyethylene glycol di (meth) acrylates, propylene glycol Diacrylate, propylene glycol dimethacrylate, various polypropylene glycol di (meth) acrylates, 1,3-butylene glycol diacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate, various butylene glycol di (meth) ) Crosslinkable monomers such as acrylate, glycerol dimethacrylate, neopentyl glyco
  • the heat storage material according to the first example of the embodiment is the following general formula (1).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a hydrogen atom or a methyl group
  • X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • (2) represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • the "temperature-sensitive polymer” has a lower critical solution temperature with respect to water (Lower Critical Solution Temperature: LCST), exhibits hydrophilicity on the lower temperature side than LCST, and is hydrophobic on the higher temperature side than LCST. It means a polymer showing.
  • the "temperature-sensitive polymer” means a polymer whose hydrophilicity and hydrophobicity change reversibly with respect to the lower limit critical solution temperature.
  • the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) In the heat storage material according to the first example of the embodiment, the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2).
  • the molar ratio is 99: 0.5: 0.5 to 70: 23: 7, preferably 98: 1: 1 to 77: 18: 5.
  • the proportion of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1), the functional group X, and the general formula (2) are represented.
  • the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 99 mol%).
  • the proportion of the structural unit represented by the general formula (1) is too small (the structural unit represented by the general formula (1), the functional group X, and the general formula (2)
  • the molar ratio of the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2) is the preparation of raw materials. It is a theoretical value calculated from the quantity.
  • the heat storage material according to the first example of the embodiment includes the structural unit represented by the general formula (1), the functional group X, and the structural unit represented by the general formula (2). It may be included in the above molar ratio, and the number of repetitions of the structural units represented by the general formula (1) and the order in which the respective structural units are combined are not particularly limited. The number of repetitions of the structural unit represented by the general formula (1) is usually an integer in the range of 5 to 500.
  • the LCST is mainly set in a wide range of 5 to 80 ° C. according to the types of R 1 and R 2 in the general formula (1).
  • R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response.
  • R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness.
  • R 3 in the general formula (1) is preferably a hydrogen atom from the viewpoint of facilitating the production of a temperature-sensitive polymer.
  • X in the general formula (1) is a functional group selected from the group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above molar ratio. be able to.
  • an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties.
  • the q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
  • the covalent bond in the general formulas (1) and (2) not only connects the same structural units or different types of structural units, but also partially forms a branched structure. Good.
  • the branch structure is not particularly limited.
  • the heat storage material according to the first example of the embodiment is the following general formula (5).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a polymerizable monomer represented by a hydrogen atom or a methyl group), which is represented by the following general formula (6).
  • q represents an integer of 1 to 3
  • a type selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide. It can be produced by radical polymerization in the presence of the above polymerization initiator.
  • polymerizable monomer represented by the general formula (5) (a polymerizable monomer giving a structural unit represented by the general formula (1)) include, for example, N-ethyl (meth) acrylamide and N-. n-propyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-cyclopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-ethyl-N-methyl (meth) acrylamide, N-methyl -Nn-propyl (meth) acrylamide, N-isopropyl-N-methyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, N-ethyl-N-methoxyethyl (Meta) acrylamide, N-methoxypropyl (meth) acrylamide, N-ethoxypropyl (meth
  • N-alkyl (1 to 3 carbon atoms) (meth) acrylamide is preferable, and N-isopropyl (meth) acrylamide is more preferable.
  • (meth) acrylic means methacrylic or acrylic.
  • cross-linking agent represented by the general formula (6) cross-linking agent giving a structural unit represented by the general formula (2)
  • cross-linking agent giving a structural unit represented by the general formula (2) include N, N'-methylenebisacrylamide, N, N'-. Ethylene bisacrylamide and N, N'-(trimethylene) bisacrylamide can be mentioned.
  • the radical polymerization method is not particularly limited, and known methods such as a bulk polymerization method, a solution polymerization method, and an emulsion polymerization method can be used.
  • a polymerization initiators potassium persulfate and ammonium persulfate are preferable from the viewpoint of good reactivity.
  • a polymerization accelerator such as N, N, N', N'-tetramethylethylenediamine, N, N-dimethylparatoluidine in combination with the above-mentioned polymerization initiator, rapid radical polymerization at low temperature can be performed. It will be possible.
  • the solvent used for radical polymerization is not particularly limited, and water, methanol, ethanol, n-propanol, isopropanol, 1-butanol, isobutanol, hexanol, benzene, toluene, xylene, chlorobenzene, dichloromethane, chloroform, etc.
  • Examples thereof include carbon tetrachloride, acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • water is preferable from the viewpoint of further increasing the heat storage density.
  • the radical polymerization reaction is usually carried out at a temperature of 0 ° C. to 100 ° C. for 30 minutes to 24 hours.
  • the total concentration of the polymerizable monomer represented by the general formula (5), the cross-linking agent represented by the general formula (6), and the polymerization initiator is 2, 2 mol / L to 3 mol / L is particularly preferable from the viewpoint of further increasing the livestock heat density. If the total concentration is less than 2 mol / L, the heat storage density of the obtained heat storage material may decrease. On the other hand, if the total concentration exceeds 3 mol / L, the obtained heat storage material may not show LCST.
  • the reason why the heat storage material according to the first example of the embodiment can achieve a relatively low heat storage operating temperature (100 ° C. or lower) and a large heat storage density is not clear, but it is considered as follows.
  • the temperature-sensitive polymer having LCST exhibits hydrophilicity on the lower temperature side than LCST and hydrophobicity on the higher temperature side than LCST. Since the temperature-sensitive polymer constituting the heat storage material according to the first example of the embodiment has a high crosslink density and a highly dense structure in which the ends of the polymer are branched, the temperature-sensitive polymer can be used.
  • the adsorbed water has a high arrangement like the conventional temperature-sensitive polymer, but has a lower arrangement at a higher temperature than the LCST.
  • the temperature-sensitive polymer constituting the heat storage material according to the first example of the embodiment has a large change in the arrangement, it not only exhibits a low heat storage operating temperature as in the conventional temperature-sensitive polymer. , It is considered that a large heat storage density can be achieved.
  • the first example of the embodiment it is possible to provide a heat storage material having a relatively low heat storage operating temperature and a high heat storage density, and a method for producing the same. Since the heat storage material according to the first example of the embodiment has a relatively low heat storage operating temperature and a high heat storage density, the heat storage device filled with the heat storage material can be miniaturized, and the internal combustion engine warms up. Suitable for systems.
  • the heat storage material according to the second example of the embodiment is the following general formula (1).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a hydrogen atom or a methyl group
  • X represents a covalent bond or a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphorus. It represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • (2) represents one or more functional groups selected from the group consisting of an acid group and an oxyphosphate group, and * represents a covalent bond
  • R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group
  • R 5 represents a hydrogen atom or a methyl group
  • X represents a covalent bond or a hydroxy group or a sulfone.
  • * represents a covalent bond
  • p represents an integer of 1 to 3).
  • a temperature-sensitive polymer gel having a crosslinked structure in which a covalent bond of a structural unit represented by the above general formula (4) is bonded.
  • the molar ratio of the structural unit represented by the general formula (1) to the structural unit represented by the general formula (3) or the general formula (4). Is 95: 5 to 20:80, preferably 85: 15 to 25:75.
  • the ratio of the structural unit represented by the general formula (1) is too large (the structural unit represented by the general formula (1) and the configuration represented by the general formula (3) or the general formula (4).
  • the heat storage density becomes smaller when the ratio of the constituent units represented by the general formula (1) exceeds 95 mol%).
  • the ratio of the structural unit represented by the general formula (1) is too small (represented by the structural unit represented by the general formula (1) and the general formula (3) or the general formula (4).
  • LCST is not shown when the ratio of the structural units represented by the general formula (1) is less than 20 mol%).
  • the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and The molar ratio of the functional group X to the structural unit represented by the general formula (2) is 99: 0.5: 0.5 to 70: 23: 7, preferably 98: 1: 1. It is 1 to 77:18: 5.
  • the ratio of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is too large (the configuration represented by the general formula (1)).
  • the total of the units and the structural units represented by the general formula (3) or the general formula (4), the functional group X, and the structural units represented by the general formula (2) is 100.
  • the total of the structural units represented by the general formula (1) and the structural units represented by the general formula (3) or the general formula (4), and the functional group X are used.
  • the molar ratio with the structural unit represented by the above general formula (2) is a theoretical value calculated from the amount of raw materials charged.
  • the heat storage material according to the second example of the embodiment includes a structural unit represented by the general formula (1), a structural unit represented by the general formula (3) or the general formula (4), and the above.
  • the functional group X and the structural unit represented by the general formula (2) may be contained in the molar ratio, and the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) may be included.
  • the number of repetitions of the structural units represented by the above general formula (4) and the order in which the respective structural units are combined are not particularly limited.
  • the number of repetitions of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (3) or the general formula (4) is usually an integer in the range of 5 to 500.
  • the LCST is mainly represented by the structural unit represented by the general formula (1) and the general formula (3) or the general formula (4).
  • R 1 in the general formula (1) is preferably a hydrogen atom or a methyl group from the viewpoint of further enhancing the temperature response.
  • R 2 in the general formula (1) is preferably an ethyl group, a methyl group or an isopropyl group from the viewpoint of further enhancing the temperature responsiveness.
  • R 3 in the general formula (1) and R 5 in the general formula (3) or the general formula (4) are hydrogen atoms from the viewpoint of facilitating the production of a temperature-sensitive polymer. It is preferable to have.
  • X in the general formulas (1), (3) and (4) is a group consisting of a hydroxy group, a sulfonic acid group, an oxysulfonic acid group, a phosphoric acid group and an oxyphosphate group so as to satisfy the above-mentioned molar ratio. It can be a functional group selected from. Among these functional groups, an oxysulfonic acid group is preferable from the viewpoint of further enhancing radical polymerizable properties.
  • R 4 in the general formulas (3) and (4) is preferably a hydroxy group or a sulfonic acid group from the viewpoint of further increasing the heat storage density.
  • the p in the general formulas (3) and (4) is preferably 1 or 2 from the viewpoint of further increasing the heat storage density.
  • the q in the general formula (2) is preferably 1 from the viewpoint of further increasing the heat storage density.
  • the covalent bond in the general formulas (1) to (4) not only connects the same structural units or different types of structural units, but also partially forms a branched structure. Good.
  • the branch structure is not particularly limited.
  • the heat storage material according to the second example of the embodiment is the following general formula (5).
  • R 1 represents a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 2 represents a methyl group, an ethyl group, an n-propyl group or an isopropyl group
  • R 1 and R 2 may be the same or different
  • R 3 represents a polymerizable monomer represented by a hydrogen atom or a methyl group
  • R 4 represents a hydroxy group, a carboxyl group, a sulfonic acid group or a phosphoric acid group
  • R 5 represents a hydrogen atom or a methyl group
  • p represents an integer of 1 to 3
  • the polymerizable monomer is represented by the following general formula (6).
  • q represents an integer of 1 to 3
  • a type selected from the group consisting of potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide. It can be produced by radical polymerization in the presence of the above polymerization initiator.
  • the polymerizable monomer represented by the general formula (5), the cross-linking agent represented by the general formula (6), and the polymerization initiator are the same as those described in the first example of the embodiment. The description is omitted. Further, the radical polymerization method, the radical polymerization conditions, and the like are the same as those described in the first example of the embodiment, and thus the description thereof will be omitted.
  • polymerizable monomer represented by the general formula (7) examples include, for example, 2-hydroxymethyl acrylate and acrylic acid 2.
  • 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate are preferable.
  • polymerizable monomer represented by the general formula (8) examples include N- (1,1-dimethyl-2). -Hydroxyethyl) acrylamide, N- (1,1-dimethyl-2-hydroxypropyl) acrylamide, N- (1,1-dimethyl-2-hydroxybutyl) acrylamide, 2-acrylamide-2-methylpropanecarboxylic acid, 2 -Acrylamide-2-methylbutanecarboxylic acid, 2-acrylamide-2-methylpentanecarboxylic acid, 2-acrylamide-2-methylpropanesulfonic acid, 2-acrylamide-2-methylbutanesulfonic acid, 2-acrylamide-2-methyl Examples thereof include pentansulfonic acid, 2-acrylamide-2-methylpropanephosphate, 2-acrylamide-2-methylbutanephosphate, 2-acrylamide-2-methylpentanephosphate and the like. Among these, 2-acrylamide-2-methylpropanesulfonic acid, 2-acrylamide-2-methylpropanephosphate, 2-acrylamide-2-methylbut
  • the polymerizable monomer represented by the general formula (5) and the general formula (7) or the general formula (8) are described.
  • the total concentration of the polymerizable monomer represented by), the cross-linking agent represented by the general formula (6), and the polymerization initiator is preferably 2 mol / L to 3 mol / L. If the total concentration is less than 2 mol / L, the heat storage density of the obtained heat storage material may decrease. On the other hand, if the total concentration exceeds 3 mol / L, the obtained heat storage material may not show LCST.
  • the water content of the heat storage material according to the first example and the second example of the embodiment is not particularly limited, but is preferably 70% to 99% by mass.
  • the water content was determined by measuring the weight of the heat storage material containing water at room temperature and then placing it in a constant temperature bath to evaporate the water at a drying temperature of 60 to 120 ° C., and the water disappeared (the weight did not decrease).
  • the weight of the heat storage material can be measured, and the amount of decrease in weight can be calculated assuming that it is water (dry weight loss method).
  • the heat storage material according to the first example and the second example of the embodiment may be made porous. By making the heat storage material porous, there is an advantage that the temperature responsiveness is further enhanced.
  • a mixed solution containing the above-mentioned polymerizable monomer, cross-linking agent, polymerization initiator and porogen (pore-forming agent) is prepared, a cross-linked structure is formed by a radical polymerization reaction, and then washing is performed. There is a method of removing the radical by the method.
  • preferred porogens are water-soluble carbohydrates such as sucrose, maltose, cerbiose, lactose, sorbitol, xylitol, glucose and fructose.
  • a pologene composition containing these water-soluble carbohydrates and polyethylene glycol, polyvinylpyrrolidone, polyvinyl alcohol or a mixture thereof may be used.
  • Another method for making the heat storage material porous there is a method of removing water from a temperature-sensitive polymer containing water by freeze-drying.
  • the temperature-sensitive polymer according to the first example and the second example of the embodiment contains a mixed solution containing at least the above-mentioned polymerizable monomer, cross-linking agent and polymerization initiator on the metal surface in the heat absorbing and radiating pipe. It can also be produced by applying it to (for example, stainless steel, copper, aluminum, etc.) and radically polymerizing it.
  • the mixed solution may contain a metal surface activator, a coupling agent, and the like.
  • the temperature-sensitive polymer according to the first example and the second example of the embodiment can also be produced by irradiating the coating film of the above-mentioned mixed solution with radiation.
  • Examples 1 to 5 and Comparative Examples 1 to 5 The aqueous raw material solution having the composition shown in Table 1 was heated from room temperature to 50 ° C. over 1 hour under a nitrogen atmosphere to obtain a temperature-sensitive polymer. After drying, the mixture was equilibrium-swelled with distilled water to obtain a temperature-sensitive polymer gel, which was then sealed in a closed aluminum container, and the endothermic peak temperature and heat storage density were measured with a differential scanning calorimeter. The results are shown in Table 2.
  • NIPAM N-Isopropylacrylamide
  • HMA 2-Hydroxyethyl Acrylate MBA: N, N'-Methylenebisacrylamide
  • KPS Carium Persulfate TEMED: N, N, N', N'-Tetramethylethylenediamine
  • the temperature-sensitive polymer gels obtained in Examples 1 to 5 have a low endothermic peak temperature of 36 ° C. to 77 ° C. and a heat storage density of 512 J / g to 844 J / g. It was big. That is, the temperature-sensitive polymer gels obtained in Examples 1 to 5 can exhibit a high heat storage density of 512 J / g to 844 J / g at a low heat storage operating temperature of 36 ° C. to 77 ° C. Further, in the reversible change between the hydrophilicity and the hydrophobicity of the temperature-sensitive polymer gel in which the thermal storage operating temperature was exhibited, the water temperature was 36 ° C.
  • the temperature-sensitive polymer gels obtained in Comparative Examples 1 to 5 have a low endothermic peak temperature of 32 ° C. to 68 ° C., similar to conventional heat storage materials such as paraffin, fatty acid, and sugar alcohol.
  • the heat storage density was extremely small, 31 J / g to 42 J / g.
  • FIG. 1 is a schematic view showing an example of the heat storage device 100 according to the first to fifth embodiments.
  • the heat storage device 100 according to the first to fifth embodiments includes a lower heat storage tank 10, an upper heat storage tank 20, an on-off valve 30, and heat absorbing / radiating pipes 51 and 61.
  • the temperature-sensitive polymer gel is stored in the upper heat storage tank 20 and the lower heat storage tank 10.
  • the materials of the upper heat storage tank 20 and the lower heat storage tank 10 are not particularly limited as long as they are not corroded by the temperature-sensitive polymer gel.
  • the upper heat storage tank 20 is installed above the lower heat storage tank 10 in the direction of gravity. As a result, when the temperature-sensitive polymer gel is phase-separated, the liquid having a high density is stored in the lower heat storage tank 10, and the liquid having a low density is stored in the upper heat storage tank 20.
  • One end 31 of the on-off valve 30 is connected to the upper part of the lower heat storage tank 10, and the other end 32 is connected to the lower part of the upper heat storage tank 20.
  • the heat absorbing / radiating pipe 51 is installed inside the lower heat storage tank 10, and the heat absorbing / radiating pipe 61 is installed inside the upper heat storage tank 20.
  • the location of the heat absorbing / radiating pipe 51 in the lower heat storage tank 10 is not particularly limited, and the same applies to the heat absorbing / radiating pipe 61.
  • the inside of the heat absorbing and radiating pipes 51 and 61 is filled with a heat medium (not shown).
  • the heat medium is not particularly limited as long as it is for heating, and examples thereof include water, silicone oil, and a mixture of biphenyl and phenyl ether.
  • the heat absorbing and radiating pipes 51 and 61 filled with the heat medium may be installed in at least one of the inside of the upper heat storage tank 20 and the inside of the lower heat storage tank 10.
  • a part of the heat absorbing / radiating pipe 51 extends to the outside of the lower heat storage tank 10, and the part outside the lower heat storage tank 10 is connected to the heating target.
  • a part of the heat absorbing / radiating pipe 61 extends to the outside of the upper heat storage tank 20, and the part outside the upper heat storage tank 20 is connected to the heating target.
  • the heating target located at a position away from the heat storage device 100 can be heated.
  • the heating target include a battery of an automobile 200, a heating device, and the like.
  • heat can be absorbed from a heat source located at a position away from the heat storage device 100.
  • the heat source include an internal combustion engine of an automobile 200.
  • the temperature-sensitive polymer gel stored in the upper heat storage tank 20 and the lower heat storage tank 10 is composed of a temperature-sensitive polymer and a solvent selected from the group consisting of water, an organic solvent, and a mixture thereof.
  • the density of the temperature-sensitive polymer gel swollen with water was 1.00 g / cm 3 or more.
  • the density of water was 1.00 g / cm 3 .
  • the temperature of the temperature-sensitive polymer and the lower limit critical solution temperature of water is 5 to 90 ° C.
  • phase separation did not occur without causing volume shrinkage. It remained one phase.
  • This hydrophilized temperature-sensitive polymer gel was placed in the upper heat storage tank 20 and the lower heat storage tank 10 of the heat storage device 100 shown in FIG.
  • the heat storage device 100 containing the temperature-sensitive polymer gel was heated until the temperature of the temperature-sensitive polymer gel became equal to or higher than the lower limit critical solution temperature. At the time of heating, the on-off valve 30 was opened.
  • the temperature-sensitive polymer gel became hydrophobic and phase-separated.
  • the hydrophobicized temperature-sensitive polymer gel having a density of 1.00 g / cm 3 or more was stored in the lower heat storage tank 10 installed below the upper heat storage tank 20.
  • the water having a density of 1.00 g / cm 3 was stored in the upper heat storage tank 20 installed above the lower heat storage tank 10. This separation state was the same until the temperature sensitive polymer gel reached the lower critical solution temperature.
  • the temperature-sensitive polymer can be moved from the upper heat storage tank 20 to the lower heat storage tank 10 by using an external power such as a pump or a screw in addition to the density difference with water, gravity, or convection of water. it can.
  • an external power such as a pump or a screw in addition to the density difference with water, gravity, or convection of water. it can.
  • the on-off valve 30 was closed with the temperature-sensitive polymer gel stored in the lower heat storage tank 10 and the water stored in the upper heat storage tank 20. Then, the heat storage device 100 was cooled until the temperature-sensitive polymer gel and water became equal to or lower than the lower limit critical solution temperature.
  • Example 2 The density of the hydrophobic polymer gel containing gas was 1.00 g / cm 3 or less. The density of water was 1.00 g / cm 3 . The temperature of the temperature-sensitive polymer and the lower limit critical solution temperature of water is 5 to 90 ° C.
  • phase separation did not occur without causing volume shrinkage. It remained one phase.
  • This hydrophilized temperature-sensitive polymer gel was placed in the upper heat storage tank 20 and the lower heat storage tank 10 of the heat storage device 100 shown in FIG.
  • the heat storage device 100 containing the temperature-sensitive polymer gel was heated until the temperature of the temperature-sensitive polymer gel became equal to or higher than the lower limit critical solution temperature. At the time of heating, the on-off valve 30 was opened.
  • the temperature-sensitive polymer gel became hydrophobic and phase-separated.
  • the temperature-sensitive polymer gel having a density of 1.00 g / cm 3 or less was stored in the upper heat storage tank 20 installed above the lower heat storage tank 10.
  • the water having a density of 1.00 g / cm 3 was stored in the lower heat storage tank 10 installed below the upper heat storage tank 20. This separation state was the same until the temperature sensitive polymer gel reached the lower critical solution temperature.
  • the movement of the hydrophobic polymer from the upper heat storage tank 20 to the lower heat storage tank 10 uses an external power such as a pump or a screw in addition to the density difference with water, gravity, or convection of water. You can also do it.
  • the on-off valve 30 was closed with the hydrophobicized temperature-sensitive polymer gel stored in the upper heat storage tank 20 and water stored in the lower heat storage tank 10. Then, the heat storage device 100 was cooled until the temperature-sensitive polymer gel and water became equal to or lower than the lower limit critical solution temperature.
  • FIG. 2 is a schematic view showing an example of an internal combustion engine warm-up system in which the heat storage device 100 according to the first to fifth embodiments is applied to the automobile 200.
  • the automobile 200 includes an internal combustion engine 80, a battery or heating device 90, and a heat storage device 100. Further, the heat absorbing / radiating pipe 51 is connected to the battery or the heating device 90 to be heated, and the heat absorbing / radiating pipe 61 is connected to the internal combustion engine 80 serving as a heat source.
  • the heat storage device 100 absorbs heat from the internal combustion engine 80 via the heat absorbing / radiating pipe 61 and stores heat. Then, if the on-off valve 30 is closed during traveling, the battery or the heating device 90 can be warmed up by the heat storage device 100 the next time the engine is started in a cold region.
  • the lower heat storage tank 10 As described above, in the heat storage device 100 according to the embodiment, the lower heat storage tank 10, the upper heat storage tank 20 installed above the lower heat storage tank 10, one end 31 is above the lower heat storage tank 10, and the other end 32. Is provided with an on-off valve 30 connected to the lower part of the upper heat storage tank 20, and a heat storage material stored in the upper heat storage tank 20 and the lower heat storage tank 10, and the heat storage material includes a temperature-sensitive polymer and water.
  • the temperature-sensitive polymer gel is hydrophobized, the hydrophobized temperature-sensitive polymer gel is stored in the upper heat storage tank 20, and the solvent is stored in the lower heat storage tank 10.
  • the heat storage device 100 since the heat storage device 100 includes a heat storage material having a relatively low heat storage operating temperature and a high heat storage density, the size is increased while ensuring the required heat storage amount. Can be suppressed.
  • the heat storage material reaches the lower limit critical solution temperature or higher, the temperature-sensitive polymer gel becomes hydrophobic, the hydrophobic polymer gel is stored in the upper heat storage tank 20, and the solvent is stored in the lower heat storage tank 10. Therefore, the heat storage state can be maintained. Further, since the temperature-sensitive polymer moves from the upper heat storage tank 20 to the lower heat storage tank 10 due to the difference in density with the solvent, convection can occur and heat can be efficiently absorbed. Further, since the heat storage device 100 includes the upper heat storage tank 20, the lower heat storage tank 10, and the on-off valve 30, it is necessary to insulate the solvent by separating the hydrophobic gel when the phases are separated. It disappears and the heat storage state can be maintained.
  • an absorption / heat dissipation pipe 51 filled with a heat medium is installed in at least one of the inside of the upper heat storage tank 20 and the inside of the lower heat storage tank 10. Is connected to the battery or heating device 90 of the automobile 200.
  • the heat storage device 100 it is possible to heat the heating target located at a position away from the heat storage device 100.
  • an absorption / heat dissipation pipe 61 filled with a heat medium is installed in at least one of the inside of the upper heat storage tank 20 and the inside of the lower heat storage tank 10. Is connected to the internal combustion engine 80 of the automobile 200.
  • heat can be absorbed from a heat source located at a position away from the heat storage device 100.
  • the method using the heat storage device 100 is the method using the above-mentioned heat storage device 100, in which the on-off valve 30 is released at a temperature equal to or higher than the lower limit critical solution temperature to make a hydrophobic polymer.
  • the on-off valve 30 is closed to maintain the heat storage state, and the on-off valve 30 is released below the lower limit critical solution temperature. This is a method of releasing the heat storage state and starting heat dissipation.
  • the internal combustion engine warm-up system includes the above-mentioned heat storage device 100.
  • the same effect as that of the heat storage device 100 can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

蓄熱装置は、下部蓄熱槽と、下部蓄熱槽よりも上方に設置されている上部蓄熱槽と、一端が下部蓄熱槽の上部に、他端が上部蓄熱槽の下部に連結されている開閉弁と、上部蓄熱槽及び下部蓄熱槽に格納されている蓄熱材と、を備え、蓄熱材は、感温性高分子と、水、有機溶媒及びこれらの混合物からなる群から選択される溶媒とからなる感温性高分子ゲルであり、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化し、且つ変化の過程において、感温性高分子ゲルに含まれる溶媒が気化せずに液体状態を維持するものであり、開閉弁が解放されている状態において、蓄熱材が下限臨界溶液温度以上になると、感温性高分子ゲルが疎水化し、上部蓄熱槽に疎水化した感温性高分子ゲルが格納され、下部蓄熱槽に溶媒が格納されるものである。

Description

蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム
 本発明は、蓄熱材を備えた蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システムに関するものである。
 家庭、オフィス、工場、廃棄物処理施設等の熱源を持つ施設からは、120℃程度以下の低温排熱の多くが未利用で排出されている。この未利用熱を有効利用するため、低温排熱を高密度に畜熱できる材料が求められている。このような蓄熱材を使用する場合、熱媒体として常圧下の水を使うのが便利であり且つ好ましい。そのため、蓄熱材の融点は100℃以下であることが好ましい。無機系蓄熱材としては、水酸化バリウム八水塩(融点78℃)、硝酸マグネシウム六水塩(融点89℃)等の無機水和塩が挙げられる。しかし、水酸化バリウム八水塩は劇物に指定されており、硝酸マグネシウム六水塩は金属を腐食させる問題があり、いずれも実用化されていない。一方、有機系蓄熱材としては、パラフィン、脂肪酸、糖アルコール等が挙げられる。しかし、これらの有機系蓄熱材は、融解熱に由来する蓄熱密度が小さいため、実用化されていない。
 近年、ハイドロゲルを利用した蓄熱材が知られている。この蓄熱材は、相転移温度以上の温度域においても非流動性を保持し、相転移温度を挟んで冷却-加熱操作を繰り返しても、安定的に非流動性を保持することができる。このような蓄熱材として、例えば、特許文献1には、ポリアクリルアミド誘導体、ポリビニルアルコール、ポリアクリル酸ナトリウム又はポリメタクリル酸ナトリウムから選択される少なくとも一種を架橋して生成させた第一のゲル化材料と、多糖類、寒天又はゼラチンである第二のゲル化材料と、第一のゲル化材料と第二のゲル化材料とに保持された無機又は水系蓄熱材料とを有する蓄熱材が記載されている。
国際公開第2014/091938号
 しかしながら、特許文献1に記載の蓄熱装置は、比較的低い蓄熱動作温度を有するものの、蓄熱密度が小さいため、必要な蓄熱量を確保するために蓄熱材を増やす必要があり、大型化してしまうという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、必要な蓄熱量を確保しつつ、大型化を抑制することができる蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システムを提供することを目的としている。
 本発明に係る蓄熱装置は、下部蓄熱槽と、前記下部蓄熱槽よりも上方に設置されている上部蓄熱槽と、一端が前記下部蓄熱槽の上部に、他端が前記上部蓄熱槽の下部に連結されている開閉弁と、前記上部蓄熱槽及び前記下部蓄熱槽に格納されている蓄熱材と、を備え、前記蓄熱材は、感温性高分子と、水、有機溶媒及びこれらの混合物からなる群から選択される溶媒とからなる感温性高分子ゲルであり、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化し、且つ前記変化の過程において、前記感温性高分子ゲルに含まれる前記溶媒が気化せずに液体状態を維持するものであり、前記開閉弁が解放されている状態において、前記蓄熱材が前記下限臨界溶液温度以上になると、前記感温性高分子ゲルが疎水化し、前記上部蓄熱槽に前記疎水化した前記感温性高分子ゲルが格納され、前記下部蓄熱槽に前記溶媒が格納されるものである。
 また、本発明に係る蓄熱装置を用いる方法は、上記の蓄熱装置を用いる方法であって、前記下限臨界溶液温度以上で、前記開閉弁を解放して、前記疎水化した感温性高分子ゲルを前記上部蓄熱槽に格納し、前記溶媒を前記下部蓄熱槽に格納した後、前記開閉弁を閉鎖して、蓄熱状態を維持し、前記下限臨界溶液温度未満で、前記開閉弁を解放して、前記蓄熱状態を解いて放熱を開始する方法である。
 また、本発明に係る内燃機関暖機システムは、上記の蓄熱装置を備えている。
 本発明に係る蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システムによれば、蓄熱装置が、比較的低い蓄熱動作温度を有し且つ蓄熱密度が大きい蓄熱材を備えているため、必要な蓄熱量を確保しつつ、大型化を抑制することができる。
実施例1~5に係る蓄熱装置の一例を示す模式図である。 実施例1~5に係る蓄熱装置を自動車に適用した内燃機関暖機システムの一例を示す模式図である。
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態.
 実施の形態の第一の例に係る蓄熱材は、感温性高分子と、水、又は有機溶媒、又は水と有機溶媒との混合溶媒とからなる感温性高分子ゲルであって、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化する感温性高分子ゲルからなるものである。
 前記感温性高分子としては、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化するものであれば特に限定されるものでなく、ポリビニルアルコール部分酢化物、ポリビニルメチルエーテル、メチルセルロース、ポリエチレンオキシド、ポリビニルメチルオキサゾリディノン、ポリN-エチルアクリルアミド、ポリN-エチルメタクリルアミド、ポリN-n-プロピルアクリルアミド、ポリN-n-プロピルメタクリルアミド、ポリN-イソプロピルアクリルアミド、ポリN-イソプロピルメタクリルアミド、ポリN-シクロプロピルアクリルアミド、ポリN-シクロプロピルメタクリルアミド、ポリN-メチル-N-エチルアクリルアミド、ポリN、N-ジエチルアクリルアミド、ポリN-メチル-N-イソプロピルアクリルアミド、ポリN-メチル-N-n-プロピルアクリルアミド、ポリN-アクリロイルピロリジン、ポリN-アクリロイルピペリジン、ポリN-2-エトキシエチルアクリルアミド、ポリN-2-エトキシエチルメタクリルアミド、ポリN-3-メトキシプロピルアクリルアミド、ポリN-3-メトキシプロピルメタクリルアミド、ポリN-3-エトキシプロピルアクリルアミド、ポリN-3-エトキシプロピルメタクリルアミド、ポリN-3-イソプロキシプロピルアクリルアミド、ポリN-3-イソプロキシプロピルメタクリルアミド、ポリN-3-(2-メトキシエトキシ)プロピルアクリルアミド、ポリN-3-(2-メトキシエトキシ)プロピルメタクリルアミド、ポリN-テトラヒドロフルフリルアクリルアミド、ポリN-テトラヒドロフルフリルメタクリルアド、ポリN-1-メチル-2-メトキシエチルアクリルアミド、ポリN-1-メチル-2-メトキシエチルメタクリルアミド、ポリN-1-メトキシメチルプロピルアクリルアミド、ポリN-1-メトキシメチルプロピルメタクリルアミド、ポリN-(2、2-ジメトキシエチル)-N-メチルアクリルアミド、ポリN-(1、3-ジオキソラン-2-イルメチル)-N-メチルアクリルアミド、ポリN-8-アクリロイル-1、4-ジオキサ-8-アザ-スピロ[4,5]デカン、ポリN-2-メトキシエチル-N-エチルアクリルアミド、ポリN-2-メトキシエチル-N-n-プロピルアクリルアミド、ポリN-2-メトキシエチル-N-イソプロピルアクリルアミド、ポリN、N-ジ(2-メトキシエチル)アクリルアミドを用いることができる。
 また、前記有機溶媒としては、極性有機溶媒から選択され、好ましくは、メタノール、エタノール、プロパノール、イソプロパノール、イソペンタノール及び2-メトキシエタノールなどのアルコール、アセトン、メチルエチルケトン、メチルn-プロピルケトン、メチルイソプロピルケトン及びメチルイソアミルケトンなどのケトン、エチレングリコールモノブチルエーテル及びプロピレングリコールモノメチルエーテルなどのエーテル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸n-ブチル、クロロホルム、アセトニトリル、グリセロール、ジメチルスルホキシド、N,N-ジメチルホルムアミド、テトラヒドロフラン、ピリジン、1,4-ジオキサン、ジメチルアセトアミド、N-メチルピロリドン、炭酸プロピレン及びその混合物からなる群から選択される。
 あるいは、前記有機溶媒は、非極性有機溶媒から選択され、好ましくは、ベンゼン、クロロベンゼン、o-ジクロロベンゼン、トルエン、o-キシレン、ジクロロメタン、1,1,2-トリクロロトリフルオロエタン、ペンタン、シクロペンタン、ヘキサン、シクロヘキサン、ヘプタン、イソオクタン、ジエチルエーテル、石油エーテル、ピリジン、四塩化炭素、脂肪酸、脂肪酸エステル及びその混合物からなる群から選択される。
 あるいは、前記有機溶媒は、油から選択され、好ましくは、植物油、精油、石油化学油、合成油及びその混合物からなる群から選択される。油が用いられる場合、前記有機溶媒はまた、親油性溶媒と称されることもある。
 あるいは、前記有機溶媒は、上記で定義した少なくとも1種の極性又は非極性有機溶媒及び上記で定義した少なくとも1種の油の混合物である
 また、上記とは別の例として、実施の形態の第一の例に係る蓄熱材は、前記感温性高分子が架橋構造と、高分子末端にヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を有し、感温性架橋高分子を構成する繰り返し単位と、前記官能基と、架橋構造単位とのモル比が、99:0.5:0.5~70:23:7であり、好ましくは98:1:1~77:18:5である感温性高分子ゲルからなるものである。
 前記繰り返し単位の割合が多過ぎる場合、すなわち、前記繰り返し単位と、前記官能基と、前記架橋構造単位との合計を100モル%としたときに、前記繰り返し単位割合が99モル%を超える場合、蓄熱密度が小さくなる。一方、前記繰り返し単位の割合が少な過ぎる場合、すなわち、前記繰り返し単位と、前記官能基と、前記架橋構造単位との合計を100モル%としたときに、前記繰り返し単位割合が70モル%未満である場合、後述するLCSTを示さなくなる。
 前記架橋構造単位は、前記感温性高分子の製造に使用する架橋剤により導入される構造単位であり、この架橋剤としては、例えば、N、N'-メチレンビスアクリルアミド、N、N'-ジアリルアクリルアミド、N、N'-ジアクリロイルイミド、N、N'-ジメタクリロイルイミド、トリアリルホルマール、ジアリルナフタレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、各種ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジアクリレート、プロピレングリコールジメタクリレート、各種ポリプロピレングリコールジ(メタ)アクリレート、1、3-ブチレングリコールジアクリレート、1、3-ブチレングリコールジメタクリレート、1、4-ブチレングリコールジメタクリレート、各種ブチレングリコールジ(メタ)アクリレート、グリセロールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ジビニルベンゼン等のジビニル誘導体、等の架橋性単量体等が挙げられるが、特にこれらに限定されるものではない。
 実施の形態の第一の例に係る蓄熱材は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000007
(式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2)
Figure JPOXMLDOC01-appb-C000008
(式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位とを含み、且つ上記一般式(1)で表される構成単位の共有結合手と上記一般式(2)で表される構成単位の共有結合手とが結合した架橋構造を有する感温性高分子ゲルからなるものである。
 本明細書において、「感温性高分子」とは、水に対する下限臨界溶液温度(Lower Critical Solution Temperature:LCST)を有し、LCSTより低温側では親水性を示し、LCSTより高温側では疎水性を示す高分子を意味する。言い換えれば、「感温性高分子」とは、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化する高分子を意味する。
 実施の形態の第一の例に係る蓄熱材において、上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、99:0.5:0.5~70:23:7であり、好ましくは98:1:1~77:18:5である。上記一般式(1)で表される構成単位の割合が多過ぎる場合(上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が99モル%を超える場合)、蓄熱密度が小さくなる。一方、上記一般式(1)で表される構成単位の割合が少な過ぎる場合(上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が70モル%未満である場合)、LCSTを示さなくなる。なお、本明細書において、上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、原料の仕込み量から計算した理論値である。
 実施の形態の第一の例に係る蓄熱材は、上記一般式(1)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とを上記モル比で含んでいればよく、上記一般式(1)で表される構成単位の繰り返し数並びにそれぞれの構成単位が結合する順番は特に限定されない。上記一般式(1)で表される構成単位の繰り返し数は、通常、5~500の範囲の整数である。
 実施の形態の第一の例に係る蓄熱材において、LCSTは、主に、上記一般式(1)中のR及びRの種類に応じて、5~80℃の広い範囲に設定することができる。上記一般式(1)中のRは、温度応答性をより高めるという観点から、水素原子又はメチル基であることが好ましい。上記一般式(1)中のRは、温度応答性をより高めるという観点から、エチル基、メチル基又はイソプロピル基であることが好ましい。また、上記一般式(1)中のRは、感温性高分子の製造が容易になるという観点から、水素原子であることが好ましい。上記一般式(1)中のXは、上記のモル比を満たすように、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される官能基とすることができる。これらの官能基の中でも、ラジカル重合性をより高めるという観点から、オキシスルホン酸基であることが好ましい。上記一般式(2)中のqは、蓄熱密度をより高めるという観点から、1であることが好ましい。上記一般式(1)及び(2)における共有結合手は、同じ構成単位同士を結合させたり、異種の構成単位同士を結合させたりするだけでなく、一部が分岐構造を形成していてもよい。分岐構造としては、特に限定されない。
 実施の形態の第一の例に係る蓄熱材は、下記一般式(5)
Figure JPOXMLDOC01-appb-C000009
(式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表す)で表される重合性モノマーを、下記一般式(6)
Figure JPOXMLDOC01-appb-C000010
(式中、qは、1~3の整数を表す)で表される架橋剤と、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム及び過酸化水素からなる群から選択される一種以上の重合開始剤との存在下でラジカル重合することにより製造することができる。
 上記一般式(5)で表される重合性モノマー(上記一般式(1)で表される構成単位を与える重合性モノマー)の具体例としては、例えば、N-エチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-シクロプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-エチル-N-メチル(メタ)アクリルアミド、N-メチル-N-n-プロピル(メタ)アクリルアミド、N-イソプロピル-N-メチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-エチル-N-メトキシエチル(メタ)アクリルアミド、N-メトキシプロピル(メタ)アクリルアミド、N-エトキシプロピル(メタ)アクリルアミド、N-イソプロポキシプロピル(メタ)アクリルアミド、N-メトキシエトキシプロピル(メタ)アクリルアミド、N-1-メチル-2-メトキシエチル(メタ)アクリルアミド、N-1-メトキシメチルプロピル(メタ)アクリルアミド、N-(2,2-ジメトキシエチル)-N-メチル(メタ)アクリルアミド、N,N-ジメトキシエチル(メタ)アクリルアミド等が挙げられる。これらの中でも、N-アルキル(炭素原子数1~3)(メタ)アクリルアミドが好ましく、N-イソプロピル(メタ)アクリルアミドがさらに好ましい。なお、本明細書において、「(メタ)アクリル」は、メタクリル又はアクリルを意味する。
 上記一般式(6)で表される架橋剤(上記一般式(2)で表される構成単位を与える架橋剤)の具体例としては、N,N’-メチレンビスアクリルアミド、N,N’-エチレンビスアクリルアミド及びN,N’-(トリメチレン)ビスアクリルアミドが挙げられる。
 ラジカル重合法としては、特に限定されるものではなく、バルク重合法、溶液重合法、乳化重合法等の公知の方法を用いることができる。上記した重合開始剤の中でも、反応性が良好であるという観点から、過硫酸カリウム及び過硫酸アンモニウムが好ましい。また、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジメチルパラトルイジン等の重合促進剤を、上記した重合開始剤と組み合わせて用いることにより、低温での迅速なラジカル重合が可能となる。
 ラジカル重合に用いられる溶媒としては、特に限定されるものではなく、水、メタノール、エタノール、n-プロパノール、イソプロパノール、1-ブタノール、イソブタノール、ヘキサノール、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロメタン、クロロホルム、四塩化炭素、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、アセトニトリル、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。これらの溶媒の中でも、蓄熱密度をより高めるという観点から、水が好ましい。ラジカル重合反応は、通常、0℃~100℃の温度で30分~24時間行えばよい。
 また、溶媒として水を用いてラジカル重合を行う場合、上記一般式(5)で表される重合性モノマーと上記一般式(6)で表される架橋剤と上記重合開始剤との合計濃度は、2mol/L~3mol/Lとすることが畜熱密度をより高めるという観点から特に好ましい。合計濃度が2mol/L未満であると、得られる蓄熱材の蓄熱密度が小さくなる場合がある。一方、合計濃度が3mol/Lを超えると、得られる蓄熱材がLCSTを示さなくなる場合がある。
 実施の形態の第一の例に係る蓄熱材が、比較的低い蓄熱動作温度(100℃以下)と大きい蓄熱密度とを達成できる理由は定かでないが次のように考えられる。LCSTを有する感温性高分子は、LCSTより低温側では親水性を示し、LCSTより高温側では疎水性を示す。実施の形態の第一の例に係る蓄熱材を構成する感温性高分子は、架橋密度が高く、且つ高分子の末端が分岐した高度の密集構造を有するため、感温性高分子への吸着水は、従来の感温性高分子と同様に高配列しているが、LCSTより高温時に低配列化する。実施の形態の第一の例に係る蓄熱材を構成する感温性高分子では、この配列性の変化が大きいため、従来の感温性高分子と同様に低い蓄熱動作温度を示すだけでなく、大きい蓄熱密度を達成できると考えられる。
 実施の形態の第一の例によれば、比較的低い蓄熱動作温度を有し且つ蓄熱密度が大きい蓄熱材及びその製造方法を提供することができる。実施の形態の第一の例に係る蓄熱材は、比較的低い蓄熱動作温度を有し且つ蓄熱密度が大きいので、蓄熱材が充填された蓄熱装置を小型化することができ、内燃機関暖機システムに好適である。
 実施の形態の第二の例に係る蓄熱材は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000011
(式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、下記一般式(2)
Figure JPOXMLDOC01-appb-C000012
(式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位と、下記一般式(3)
Figure JPOXMLDOC01-appb-C000013
 若しくは下記一般式(4)
Figure JPOXMLDOC01-appb-C000014
(式中、Rは、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表し、pは、1~3の整数を表す)で表される構成単位とを含み、且つ上記一般式(1)で表される構成単位の共有結合手と上記一般式(2)で表される構成単位の共有結合手と上記一般式(3)若しくは上記一般式(4)で表される構成単位の共有結合手とが結合した架橋構造を有する感温性高分子ゲルからなるものである。
 実施の形態の第二の例に係る蓄熱材において、上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位とのモル比は、95:5~20:80であり、好ましくは85:15~25:75である。上記一般式(1)で表される構成単位の割合が多過ぎる場合(上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が95モル%を超える場合)、蓄熱密度が小さくなる。一方、上記一般式(1)で表される構成単位の割合が少な過ぎる場合(上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位の割合が20モル%未満である場合)、LCSTを示さなくなる。
 実施の形態の第二の例に係る蓄熱材において、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、99:0.5:0.5~70:23:7であり、好ましくは98:1:1~77:18:5である。上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の割合が多過ぎる場合(上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計割合が99モル%を超える場合)、蓄熱密度が小さくなる。一方、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の割合が少な過ぎる場合(上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位との合計を100モル%としたときに、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計割合が70モル%未満である場合)、LCSTを示さなくなる。なお、本明細書において、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の合計と、上記官能基であるXと、上記一般式(2)で表される構成単位とのモル比は、原料の仕込み量から計算した理論値である。
 実施の形態の第二の例に係る蓄熱材は、上記一般式(1)で表される構成単位と、上記一般式(3)若しくは上記一般式(4)で表される構成単位と、上記官能基であるXと、上記一般式(2)で表される構成単位とを上記モル比で含んでいればよく、上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の繰り返し数並びにそれぞれの構成単位が結合する順番は特に限定されない。上記一般式(1)で表される構成単位及び上記一般式(3)若しくは上記一般式(4)で表される構成単位の繰り返し数は、通常、5~500の範囲の整数である。
 実施の形態の第二の例に係る蓄熱材において、LCSTは、主に、上記一般式(1)で表される構成単位と上記一般式(3)若しくは上記一般式(4)で表される構成単位とのモル比並びに上記一般式(1)中のR及びRの種類上記一般式(3)若しくは上記一般式(4)中のR及びRの種類に応じて、5~80℃の広い範囲に設定することができる。上記一般式(1)中のRは、温度応答性をより高めるという観点から、水素原子又はメチル基であることが好ましい。上記一般式(1)中のRは、温度応答性をより高めるという観点から、エチル基、メチル基又はイソプロピル基であることが好ましい。また、上記一般式(1)中のR及び上記一般式(3)若しくは上記一般式(4)中のRは、感温性高分子の製造が容易になるという観点から、水素原子であることが好ましい。上記一般式(1)、(3)及び(4)中のXは、上記したモル比を満たすように、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される官能基であることができる。これらの官能基の中でも、ラジカル重合性をより高めるという観点から、オキシスルホン酸基であることが好ましい。上記一般式(3)及び(4)中のRは、畜熱密度をより高めるという観点から、ヒドロキシ基又はスルホン酸基であることが好ましい。上記一般式(3)及び(4)中のpは、畜熱密度をより高めるという観点から、1又は2であることが好ましい。上記一般式(2)中のqは、蓄熱密度をより高めるという観点から、1であることが好ましい。上記一般式(1)~(4)における共有結合手は、同じ構成単位同士を結合させたり、異種の構成単位同士を結合させたりするだけでなく、一部が分岐構造を形成していてもよい。分岐構造としては、特に限定されない。
 実施の形態の第二の例に係る蓄熱材は、下記一般式(5)
Figure JPOXMLDOC01-appb-C000015
(式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表す)で表される重合性モノマーと、下記一般式(7)
Figure JPOXMLDOC01-appb-C000016
 若しくは下記一般式(8)
Figure JPOXMLDOC01-appb-C000017
(式中、Rは、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、Rは、水素原子又はメチル基を表し、pは、1~3の整数を表す)で表される重合性モノマーとを、下記一般式(6)
Figure JPOXMLDOC01-appb-C000018
(式中、qは、1~3の整数を表す)で表される架橋剤と、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム及び過酸化水素からなる群から選択される一種以上の重合開始剤との存在下でラジカル重合することにより製造することができる。
 上記一般式(5)で表される重合性モノマー、上記一般式(6)で表される架橋剤及び上記重合開始剤は、実施の形態の第一の例で説明したのと同様であるので説明を省略する。さらに、ラジカル重合方法、ラジカル重合条件等は、実施の形態の第一の例で説明したのと同様であるので説明を省略する。
 上記一般式(7)で表される重合性モノマー(上記一般式(3)で表される構成単位を与える重合性モノマー)の具体例としては、例えば、アクリル酸2-ヒドロキシメチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸2-カルボキシメチル、アクリル酸2-カルボキシエチル、アクリル酸2-カルボキシプロピル、アクリル酸2-スルホメチル、アクリル酸2-スルホエチル、アクリル酸2-スルホプロピル、アクリル酸2-ホスホメチル、アクリル酸2-ホスホエチル、アクリル酸2-ホスホプロピル等が挙げられる。これらの中でも、アクリル酸2-ヒドロキシメチル、アクリル酸2-ヒドロキシエチル及びアクリル酸2-ヒドロキシプロピルが好ましい。
 上記一般式(8)で表される重合性モノマー(上記一般式(4)で表される構成単位を与える重合性モノマー)の具体例としては、例えば、N-(1,1-ジメチル-2-ヒドロキシエチル)アクリルアミド、N-(1,1-ジメチル-2-ヒドロキシプロピル)アクリルアミド、N-(1,1-ジメチル-2-ヒドロキシブチル)アクリルアミド、2-アクリルアミド-2-メチルプロパンカルボン酸、2-アクリルアミド-2-メチルブタンカルボン酸、2-アクリルアミド-2-メチルペンタンカルボン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルブタンスルホン酸、2-アクリルアミド-2-メチルペンタンスルホン酸、2-アクリルアミド-2-メチルプロパンリン酸、2-アクリルアミド-2-メチルブタンリン酸、2-アクリルアミド-2-メチルペンタンリン酸等が挙げられる。これらの中でも、2-アクリルアミド-2-メチルプロパンスルホン酸及び2-アクリルアミド-2-メチルペンタンスルホン酸が好ましい。
 実施の形態の第一の例と同様に、溶媒として水を用いてラジカル重合を行う場合、上記一般式(5)で表される重合性モノマーと上記一般式(7)若しくは上記一般式(8)で表される重合性モノマーと上記一般式(6)で表される架橋剤と上記重合開始剤との合計濃度は、2mol/L~3mol/Lとすることが好ましい。合計濃度が2mol/L未満であると、得られる蓄熱材の蓄熱密度が小さくなる場合がある。一方、合計濃度が3mol/Lを超えると、得られる蓄熱材がLCSTを示さなくなる場合がある。
 なお、実施の形態の第一の例及び第二の例に係る蓄熱材の含水率は、特に限定されるものではないが、70%~99質量%であることが好ましい。含水率は、水分を含む畜熱材の重量を室温で測定した後、恒温槽内に入れて60~120℃の乾燥温度で水分を蒸発させ、水分が無くなった(重量が減少しなくなった)ところで蓄熱材の重量を測定し、重量の減少分を水分と仮定して求めることができる(乾燥減量法)。また、実施の形態の第一の例及び第二の例に係る蓄熱材を多孔化してもよい。蓄熱材を多孔化することにより、温度応答性をより高めるという利点がある。蓄熱材を多孔化する方法としては、上記した重合性モノマー、架橋剤、重合開始剤及びポロゲン(細孔形成剤)を含む混合溶液を調製し、ラジカル重合反応によって架橋構造を形成し、次いで洗浄によりポロゲンを除去する方法が挙げられる。溶媒として水を用いてラジカル重合反応を行う場合、好ましいポロゲンは、水溶性の炭水化物、例えば、スクロース、マルトース、セルビオース、ラクトース、ソルビトール、キシリトール、グルコース、フルクトース等である。これらの水溶性の炭水化物と、ポリエチレングリコール、ポリビニルピロリドン、ポリビニルアルコール又はこれらの混合物とを含むポロゲン組成物としてもよい。また、蓄熱材を多孔化する別の方法としては、水分を含む感温性高分子から凍結乾燥により水分を除去する方法が挙げられる。
 また、実施の形態の第一の例及び第二の例に係る感温性高分子は、上記した重合性モノマー、架橋剤及び重合開始剤を少なくとも含む混合溶液を、吸放熱配管内の金属表面(例えば、ステンレス鋼、銅、アルミニウム等)に塗布し、ラジカル重合することにより製造することもできる。混合溶液は、金属表面の活性化剤、カップリング剤等を含んでもよい。また、実施の形態の第一の例及び第二の例に係る感温性高分子は、上記した混合溶液の塗膜へ放射線を照射することにより製造することもできる。
[実施例1~5及び比較例1~5]
 表1に示す配合の原料水溶液を、窒素雰囲気下、室温から50℃まで1時間かけて昇温させ、感温性高分子を得た。これを乾燥後、蒸留水で平衡膨潤させ、感温性高分子ゲルを得た後、アルミ製の密閉容器に封入し、示差走査熱量計で吸熱ピーク温度と蓄熱密度とを測定した。その結果を表2に示す。
 なお、表1中の略号は以下の通りである。
 NIPAM:N-イソプロピルアクリルアミド
 HMA:アクリル酸2-ヒドロキシエチル
 MBA:N,N’-メチレンビスアクリルアミド
 KPS:過硫酸カリウウム
 TEMED:N,N,N’,N’-テトラメチルエチレンジアミン
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 表2の結果から分かるように、実施例1~5で得られた感温性高分子ゲルは、吸熱ピーク温度が36℃~77℃と低い上に、蓄熱密度が512J/g~844J/gと大きかった。すなわち、実施例1~5で得られた感温性高分子ゲルは、36℃~77℃の低い畜熱動作温度で、512J/g~844J/gの高い蓄熱密度を発現することができる。また、畜熱動作温度の発現する感温性高分子ゲルの親水性と疎水性との可逆的変化において、水温が36℃~77℃であり、液体状態であった。これに対し、比較例1~5で得られた感温性高分子ゲルは、パラフィン、脂肪酸、糖アルコール等の従来の蓄熱材と同様に、吸熱ピーク温度が32℃~68℃と低いものの、蓄熱密度が31J/g~42J/gと著しく小さかった。
 図1は、実施例1~5に係る蓄熱装置100の一例を示す模式図である。
 実施例1~5に係る蓄熱装置100は、下部蓄熱槽10と、上部蓄熱槽20と、開閉弁30と、吸放熱配管51、61とを備えている。
 上部蓄熱槽20及び下部蓄熱槽10には、感温性高分子ゲルが格納される。上部蓄熱槽20及び下部蓄熱槽10の材質は、感温性高分子ゲルで腐食することがなければ、特に制限はない。また、上部蓄熱槽20は、重力方向で、下部蓄熱槽10よりも上方に設置されている。これにより、感温性高分子ゲルが相分離したときに、密度の大きい液体が下部蓄熱槽10に、密度の小さい液体が上部蓄熱槽20に格納される。
 開閉弁30は、一端31が下部蓄熱槽10の上部に、他端32が上部蓄熱槽20の下部に、それぞれ連結されている。
 吸放熱配管51は、下部蓄熱槽10の内部に設置されており、吸放熱配管61は、上部蓄熱槽20の内部に設置されている。なお、吸放熱配管51が下部蓄熱槽10のどこに設置されるかについては特に限定されず、吸放熱配管61についても同様である。吸放熱配管51、61の内部には、熱媒体(図示せず)が充填されている。熱媒体は、加熱用であれば特に限定されず、例えば、水、シリコーン油、及びビフェニルとフェニルエーテルとの混合物が挙げられる。
 なお、熱媒体が充填されている吸放熱配管51、61は、上部蓄熱槽20の内部及び下部蓄熱槽10の内部のうち少なくとも一方に設置されていればよい。
 吸放熱配管51の一部は、下部蓄熱槽10の外部へ延びており、下部蓄熱槽10の外部にある部分は、加熱対象に連結される。同様に、吸放熱配管61の一部は、上部蓄熱槽20の外部へ延びており、上部蓄熱槽20の外部にある部分は、加熱対象に連結される。これにより、蓄熱装置100から離れた位置にある加熱対象を加熱することができる。なお、加熱対象としては、自動車200のバッテリー又は暖房装置等が挙げられる。また、これにより、蓄熱装置100から離れた位置にある熱源から吸熱することができる。なお、熱源としては、自動車200の内燃機関等が挙げられる。
 上部蓄熱槽20及び下部蓄熱槽10に格納される感温性高分子ゲルは、感温性高分子と、水、有機溶媒及びこれらの混合物からなる群から選択される溶媒とからなる。
(実施例1)
 以下、実施例1~5をさらに具体的に説明する。なお、実施の形態は、以下の実施例で用いた条件に限定されるものではない。
 水で膨潤した感温性高分子ゲルの密度は、1.00g/cm以上であった。水の密度は、1.00g/cmであった。また、感温性高分子及び水の下限臨界溶液温度は、5~90℃である。
 親水化した感温性高分子ゲルの温度が下限臨界溶液温度未満の状態で、この親水化した感温性高分子ゲルを密閉容器に入れたところ、体積収縮を起こさずに相分離をせず1相のままであった。
 この親水化した感温性高分子ゲルを、図1に示した蓄熱装置100の上部蓄熱槽20及び下部蓄熱槽10に入れた。
 感温性高分子ゲルの入った蓄熱装置100を、感温性高分子ゲルの温度が下限臨界溶液温度以上になるまで加熱した。加熱の際には、開閉弁30は開放しておいた。
 感温性高分子ゲルの温度が下限臨界溶液温度より高くなると、感温性高分子ゲルは疎水化することで相分離した。密度が1.00g/cm以上である疎水化した感温性高分子ゲルは、上部蓄熱槽20よりも下方に設置されている下部蓄熱槽10に格納された。一方、密度が1.00g/cmである水は、下部蓄熱槽10よりも上方に設置されている上部蓄熱槽20に格納された。この分離状態は、感温性高分子ゲルが下限臨界溶液温度になるまで同じであった。
 なお、感温性高分子の上部蓄熱槽20から下部蓄熱槽10への移動は、水との密度差、重力、又は水の対流のほか、ポンプあるいはスクリューなどの外的動力を用いることによってもできる。
 感温性高分子ゲルが下部蓄熱槽10に、水が上部蓄熱槽20にそれぞれ格納されている状態で、開閉弁30を閉鎖した。そして、感温性高分子ゲルと水とが下限臨界溶液温度以下になるまで、蓄熱装置100を冷却した。
 蓄熱装置100を冷却後、開閉弁30を開放すると、疎水化した感温性高分子ゲルに溶媒が吸着され、再び親水化した感温性高分子ゲルとなり、この感温性高分子ゲルが放熱していることを確認した。
(実施例2)
 気体を内包した疎水化した感温性高分子ゲルの密度は、1.00g/cm以下であった。水の密度は、1.00g/cmであった。また、感温性高分子及び水の下限臨界溶液温度は、5~90℃である。
 親水化した感温性高分子ゲルの温度が下限臨界溶液温度未満の状態で、この親水化した感温性高分子ゲルを密閉容器に入れたところ、体積収縮を起こさずに相分離をせず1相のままであった。
 この親水化した感温性高分子ゲルを、図1に示した蓄熱装置100の上部蓄熱槽20及び下部蓄熱槽10に入れた。
 感温性高分子ゲルの入った蓄熱装置100を、感温性高分子ゲルの温度が下限臨界溶液温度以上になるまで加熱した。加熱の際には、開閉弁30は開放しておいた。
 感温性高分子ゲルの温度が下限臨界溶液温度より高くになると、感温性高分子ゲルは疎水化することで相分離した。密度が1.00g/cm以下である感温性高分子ゲルは、下部蓄熱槽10よりも上方に設置されている上部蓄熱槽20に格納された。一方、密度が1.00g/cmである水は、上部蓄熱槽20よりも下方に設置されている下部蓄熱槽10に格納された。この分離状態は、感温性高分子ゲルが下限臨界溶液温度になるまで同じであった。
 なお、疎水化した感温性高分子の上部蓄熱槽20から下部蓄熱槽10への移動は、水との密度差、重力、又は水の対流のほか、ポンプあるいはスクリューなどの外的動力を用いることによってもできる。
 疎水化した感温性高分子ゲルが上部蓄熱槽20に、水が下部蓄熱槽10にそれぞれ格納されている状態で、開閉弁30を閉鎖した。そして、感温性高分子ゲルと水とが下限臨界溶液温度以下になるまで、蓄熱装置100を冷却した。
 蓄熱装置100を冷却後、開閉弁30を開放すると、疎水化した感温性高分子ゲルに溶媒が吸着され、再び親水化した感温性高分子ゲルとなり、この感温性高分子ゲルが放熱していることを確認した。
 図2は、実施例1~5に係る蓄熱装置100を自動車200に適用した内燃機関暖機システムの一例を示す模式図である。
 自動車200は、内燃機関80、バッテリー又は暖房装置90、及び蓄熱装置100を備えている。また、吸放熱配管51が、加熱対象となるバッテリー又は暖房装置90に連結されており、吸放熱配管61が、熱源となる内燃機関80に連結されている。
 自動車200が、例えば、寒冷地で始動される場合、開閉弁30を開放することによって、吸放熱配管51を介して、蓄熱装置100から放熱され、その放熱によってバッテリー又は暖房装置90が暖機される。また、自動車200が、内燃機関80によって走行している間に、蓄熱装置100は、吸放熱配管61を介して内燃機関80から吸熱し、蓄熱される。そして、走行中に開閉弁30を閉鎖しておけば、次に寒冷地で始動するときに、蓄熱装置100でバッテリー又は暖房装置90を暖機することができる。このように、蓄熱装置100を自動車200に適用することで、熱源となる内燃機関80から吸熱するとともに、加熱対象となるバッテリー又は暖房装置90を加熱することができる。
 以上、実施の形態に係る蓄熱装置100は、下部蓄熱槽10と、下部蓄熱槽10よりも上方に設置されている上部蓄熱槽20と、一端31が下部蓄熱槽10の上部に、他端32が上部蓄熱槽20の下部に連結されている開閉弁30と、上部蓄熱槽20及び下部蓄熱槽10に格納されている蓄熱材と、を備え、蓄熱材は、感温性高分子と、水、有機溶媒及びこれらの混合物からなる群から選択される溶媒とからなる感温性高分子ゲルであり、下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化し、且つ前記変化の過程において、感温性高分子ゲルに含まれる溶媒が気化せずに液体状態を維持するものであり、開閉弁30が解放されている状態において、蓄熱材が下限臨界溶液温度以上になると、感温性高分子ゲルが疎水化し、上部蓄熱槽20に疎水化した感温性高分子ゲルが格納され、下部蓄熱槽10に溶媒が格納されるものである。
 実施の形態に係る蓄熱装置100によれば、蓄熱装置100が、比較的低い蓄熱動作温度を有し且つ蓄熱密度が大きい蓄熱材を備えているため、必要な蓄熱量を確保しつつ、大型化を抑制することができる。また、蓄熱材が下限臨界溶液温度以上になると、感温性高分子ゲルが疎水化し、上部蓄熱槽20に疎水化した感温性高分子ゲルが格納され、下部蓄熱槽10に前記溶媒が格納されるため、蓄熱状態を保持することができる。また、感温性高分子は、溶媒との密度差により上部蓄熱槽20から下部蓄熱槽10へ移動するため、対流を起こし、効率よく熱を吸熱することができる。また、蓄熱装置100が、上部蓄熱槽20、下部蓄熱槽10、及び、開閉弁30を備えているため、相分離した際に、溶媒と疎水化したゲルとを分離することで断熱する必要がなくなり、蓄熱状態を維持することができる。
 また、実施の形態に係る蓄熱装置100は、上部蓄熱槽20の内部及び下部蓄熱槽10の内部のうち少なくとも一方に、熱媒体を充填した吸放熱配管51が設置されており、吸放熱配管51が、自動車200のバッテリー又は暖房装置90に連結されている。
 実施の形態に係る蓄熱装置100によれば、蓄熱装置100から離れた位置にある加熱対象を加熱することができる。
 また、実施の形態に係る蓄熱装置100は、上部蓄熱槽20の内部及び下部蓄熱槽10の内部のうち少なくとも一方に、熱媒体を充填した吸放熱配管61が設置されており、吸放熱配管61が、自動車200の内燃機関80に連結されている。
 実施の形態に係る蓄熱装置100によれば、蓄熱装置100から離れた位置にある熱源から吸熱することができる。
 また、実施の形態に係る蓄熱装置100を用いる方法は、上記の蓄熱装置100を用いる方法であって、下限臨界溶液温度以上で、開閉弁30を解放して、疎水化した感温性高分子ゲルを上部蓄熱槽20に格納し、溶媒を下部蓄熱槽10に格納した後、開閉弁30を閉鎖して、蓄熱状態を維持し、下限臨界溶液温度未満で、開閉弁30を解放して、蓄熱状態を解いて放熱を開始する方法である。
 また、実施の形態に係る内燃機関暖機システムは、上記の蓄熱装置100を備えている。
 実施の形態に係る蓄熱装置100を用いる方法及び内燃機関暖機システムによれば、蓄熱装置100と同様の効果を得ることができる。
 10 上部蓄熱槽、20 下部蓄熱槽、30 開閉弁、31 一端、32 他端、51 吸放熱配管、61 吸放熱配管、80 内燃機関、90 バッテリー又は暖房装置、100 蓄熱装置、200 自動車。

Claims (9)

  1.  下部蓄熱槽と、
     前記下部蓄熱槽よりも上方に設置されている上部蓄熱槽と、
     一端が前記下部蓄熱槽の上部に、他端が前記上部蓄熱槽の下部に連結されている開閉弁と、
     前記上部蓄熱槽及び前記下部蓄熱槽に格納されている蓄熱材と、を備え、
     前記蓄熱材は、
     感温性高分子と、水、有機溶媒及びこれらの混合物からなる群から選択される溶媒とからなる感温性高分子ゲルであり、
     下限臨界溶液温度を境にして親水性と疎水性とが可逆的に変化し、且つ前記変化の過程において、前記感温性高分子ゲルに含まれる前記溶媒が気化せずに液体状態を維持するものであり、
     前記開閉弁が解放されている状態において、
     前記蓄熱材が前記下限臨界溶液温度以上になると、前記感温性高分子ゲルが疎水化し、前記上部蓄熱槽に前記疎水化した前記感温性高分子ゲルが格納され、前記下部蓄熱槽に前記溶媒が格納される
     蓄熱装置。
  2.  前記蓄熱材は、
     前記感温性高分子が、架橋構造を有するとともに、ヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を分子末端に有し、前記感温性高分子を構成する繰り返し単位と、前記官能基と、前記架橋構造単位とのモル比が、99:0.5:0.5~70:20:10である
     請求項1に記載の蓄熱装置。
  3.  前記蓄熱材は、
     下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、
     下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位とを含み、
     前記一般式(1)で表される構成単位の共有結合手と前記一般式(2)で表される構成単位の共有結合手とが結合した架橋構造を有し、
     前記一般式(1)で表される構成単位と、前記官能基であるXと、前記一般式(2)で表される構成単位とのモル比が、99:0.5:0.5~70:20:7である感温性高分子ゲルである
     請求項1に記載の蓄熱装置。
  4.  前記蓄熱材は、
     下記一般式(1)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、Rは、メチル基、エチル基、n-プロピル基又はイソプロピル基を表し、R及びRは、同一であっても異なっていてもよく、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表す)で表される構成単位と、
     下記一般式(2)
    Figure JPOXMLDOC01-appb-C000004
    (式中、*は、共有結合手を表し、qは、1~3の整数を表す)で表される構成単位と、
     下記一般式(3)
    Figure JPOXMLDOC01-appb-C000005
     もしくは下記一般式(4)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは、ヒドロキシ基、カルボキシル基、スルホン酸基又はリン酸基を表し、Rは、水素原子又はメチル基を表し、Xは、共有結合手を表すか又はヒドロキシ基、スルホン酸基、オキシスルホン酸基、リン酸基及びオキシリン酸基からなる群から選択される一種以上の官能基を表し、*は、共有結合手を表し、pは、1~3の整数を表す)で表される構成単位とを含み、
     前記一般式(1)で表される構成単位の共有結合手と前記一般式(2)で表される構成単位の共有結合手と前記一般式(3)もしくは前記一般式(4)で表される構成単位の共有結合手とが結合した架橋構造を有し、
     前記一般式(1)で表される構成単位と前記一般式(3)もしくは前記一般式(4)で表される構成単位とのモル比が、95:5~20:80であり、
     前記一般式(1)で表される構成単位及び前記一般式(3)もしくは前記一般式(4)で表される構成単位の合計と、前記官能基であるXと、前記一般式(2)で表される構成単位とのモル比が、99:0.5:0.5~70:23:7である感温性高分子ゲルである
     請求項1に記載の蓄熱装置。
  5.  前記上部蓄熱槽の内部及び前記下部蓄熱槽の内部のうち少なくとも一方に、熱媒体を充填した吸放熱配管が設置されている
     請求項1~4のいずれか一項に記載の蓄熱装置。
  6.  前記吸放熱配管が、自動車のバッテリー又は暖房装置に連結されている
     請求項5に記載の蓄熱装置。
  7.  前記吸放熱配管が、自動車の内燃機関に連結されている
     請求項5又は6に記載の蓄熱装置。
  8.  請求項1~7のいずれか一項に記載の蓄熱装置を用いる方法であって、
     前記下限臨界溶液温度以上で、前記開閉弁を解放して、前記疎水化した感温性高分子ゲルを前記上部蓄熱槽に格納し、前記溶媒を前記下部蓄熱槽に格納した後、前記開閉弁を閉鎖して、蓄熱状態を維持し、
     前記下限臨界溶液温度未満で、前記開閉弁を解放して、前記蓄熱状態を解いて放熱を開始する蓄熱装置を用いる方法。
  9.  請求項1~7のいずれか一項に記載の蓄熱装置を備えた
     内燃機関暖機システム。
PCT/JP2019/039329 2019-10-04 2019-10-04 蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム WO2021064991A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020503075A JP6704547B1 (ja) 2019-10-04 2019-10-04 蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム
PCT/JP2019/039329 WO2021064991A1 (ja) 2019-10-04 2019-10-04 蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039329 WO2021064991A1 (ja) 2019-10-04 2019-10-04 蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム

Publications (1)

Publication Number Publication Date
WO2021064991A1 true WO2021064991A1 (ja) 2021-04-08

Family

ID=70858181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039329 WO2021064991A1 (ja) 2019-10-04 2019-10-04 蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム

Country Status (2)

Country Link
JP (1) JP6704547B1 (ja)
WO (1) WO2021064991A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232940A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 蓄熱材及びこれを用いた太陽電池パネル
JP2007044673A (ja) * 2005-08-12 2007-02-22 Kurita Water Ind Ltd 吸着型ヒートポンプ用水蒸気吸着材及び該吸着材を用いた吸着型ヒートポンプ装置
CN101117572A (zh) * 2007-07-25 2008-02-06 中南大学 以凝胶为载体的复合相变蓄热材料及其制备方法
JP2017222742A (ja) * 2016-06-13 2017-12-21 白元アース株式会社 ゲル状蓄熱剤およびそれを封入した保温具
JP6501990B1 (ja) * 2018-06-18 2019-04-17 三菱電機株式会社 蓄熱器、蓄熱システム及び蓄熱方法
WO2019159514A1 (ja) * 2018-02-16 2019-08-22 矢崎エナジーシステム株式会社 潜熱蓄熱体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017201739A (ja) * 2016-05-02 2017-11-09 富士通株式会社 電子機器
US10159165B2 (en) * 2017-02-02 2018-12-18 Qualcomm Incorporated Evaporative cooling solution for handheld electronic devices
WO2019104145A1 (en) * 2017-11-21 2019-05-31 Worcester Polytechnic Institute Thermal storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232940A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 蓄熱材及びこれを用いた太陽電池パネル
JP2007044673A (ja) * 2005-08-12 2007-02-22 Kurita Water Ind Ltd 吸着型ヒートポンプ用水蒸気吸着材及び該吸着材を用いた吸着型ヒートポンプ装置
CN101117572A (zh) * 2007-07-25 2008-02-06 中南大学 以凝胶为载体的复合相变蓄热材料及其制备方法
JP2017222742A (ja) * 2016-06-13 2017-12-21 白元アース株式会社 ゲル状蓄熱剤およびそれを封入した保温具
WO2019159514A1 (ja) * 2018-02-16 2019-08-22 矢崎エナジーシステム株式会社 潜熱蓄熱体
JP6501990B1 (ja) * 2018-06-18 2019-04-17 三菱電機株式会社 蓄熱器、蓄熱システム及び蓄熱方法

Also Published As

Publication number Publication date
JP6704547B1 (ja) 2020-06-03
JPWO2021064991A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
JP7244122B2 (ja) ガス吸収材料、そのガス吸収への使用、ガス吸収体およびガス吸収方法、並びに、酸性ガス吸収装置、酸性ガス回収装置、水蒸気吸収装置、水蒸気回収装置、熱交換器および熱回収装置
JP4697413B2 (ja) 吸着型ヒートポンプ用水蒸気吸着材及び該吸着材を用いた吸着型ヒートポンプ装置
Liu et al. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system
Bing et al. Unsaturated polyester resin supported form-stable phase change materials with enhanced thermal conductivity for solar energy storage and conversion
JP2005009703A (ja) 吸放出体及びそれを用いた冷温熱システム
Calabrese et al. Adsorption performance and thermodynamic analysis of SAPO-34 silicone composite foams for adsorption heat pump applications
CN113403039B (zh) 一种多功能相变储能复合材料及其制备方法
CN111511412B (zh) 纳米多孔超吸收颗粒
WO2021064990A1 (ja) 蓄熱装置
JP2002543360A (ja) ヒートシンク材料の調製
WO2021064991A1 (ja) 蓄熱装置、蓄熱装置を用いる方法、及び、蓄熱装置を備えた内燃機関暖機システム
Hori et al. Preparation of porous polymer materials using water‐in‐oil gel emulsions as templates
JP6704549B1 (ja) ヒートポンプ装置及び電気機器
JPWO2021064989A1 (ja) ヒートパイプ及び電子デバイス
JPWO2019194022A1 (ja) 蓄熱材、その製造方法及び蓄熱槽
KR101326735B1 (ko) 상전이를 이용한 열저장 및 열방출 가능한 미세기공을 가진 다공성 매체 및 그의 제조방법
JP6704559B1 (ja) 熱輸送コンテナ及び熱輸送システム
US11819823B2 (en) Super-adsorbing porous thermo-responsive desiccants
Chakraborty et al. Adsorptive removal of alcohols from aqueous solutions by N-tertiary-butylacrylamide (NtBA) and acrylic acid co-polymer gel
CN114450377B (zh) 蓄热装置
CN112135645A (zh) 纳米多孔超吸收颗粒
Bakass et al. Adsorption–desorption phenomena of water vapor on a superabsorbent polymer partially crosslinked with potassium
Grekova et al. Heat Transfer Coefficients in a Metal-sorbent System for Heat Generation Stage Initiated by a pressure jump
RU2183310C1 (ru) Устройство термостабилизации
Liu et al. DEVELOPMENT AND EXPERIMENTAL ANALYSIS ON THE PERFORMANCE OF COMPOSITE CONSOLIDATED SILICA GEL FABRICATED BY FREEZE-DRYING METHOD

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020503075

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948002

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948002

Country of ref document: EP

Kind code of ref document: A1