WO2021063174A1 - 喷涂机器人的控制方法、装置及具有其的喷涂机器人 - Google Patents

喷涂机器人的控制方法、装置及具有其的喷涂机器人 Download PDF

Info

Publication number
WO2021063174A1
WO2021063174A1 PCT/CN2020/115356 CN2020115356W WO2021063174A1 WO 2021063174 A1 WO2021063174 A1 WO 2021063174A1 CN 2020115356 W CN2020115356 W CN 2020115356W WO 2021063174 A1 WO2021063174 A1 WO 2021063174A1
Authority
WO
WIPO (PCT)
Prior art keywords
spraying
robot
component
task
path
Prior art date
Application number
PCT/CN2020/115356
Other languages
English (en)
French (fr)
Inventor
谭靖喜
刘金龙
许安鹏
Original Assignee
广东博智林机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博智林机器人有限公司 filed Critical 广东博智林机器人有限公司
Publication of WO2021063174A1 publication Critical patent/WO2021063174A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F21/00Implements for finishing work on buildings
    • E04F21/02Implements for finishing work on buildings for applying plasticised masses to surfaces, e.g. plastering walls
    • E04F21/06Implements for applying plaster, insulating material, or the like
    • E04F21/08Mechanical implements

Definitions

  • This application relates to the field of intelligent control technology, and in particular to a control method and device of a spraying robot and a spraying robot having the same.
  • the wall spraying is generally realized by manual operation, that is, the wall is sprayed or rolled by a hand-held nozzle.
  • the present application provides a spraying robot control method, device and spraying robot with the same, to solve the problem that the prior art center manually operates spraying, resulting in higher spraying cost, lower spraying efficiency, poor spraying practicability, and unable to effectively satisfy Issues such as spraying needs.
  • An embodiment of the first aspect of the present application provides a method for controlling a spraying robot.
  • the spraying robot includes a movable component, an adjusting component, and a spraying component.
  • the movable component is used to drive the spraying robot to move, and the adjusting component is used to adjust the The vertical height of the spraying component relative to the movable component, wherein the method includes the following steps: identifying the spraying position information of each spraying house type in the spraying target, and determining the position characteristics of each spraying house type;
  • the spraying position information of each spraying house type generates a spraying task, and the spraying planned route is generated according to the spraying task and the position characteristics of each spraying house type, or the spraying position information and the position of each spraying house type are sent Feature to the server to receive the spraying task and the spraying planned path generated by the server according to the spraying position information and the location characteristics of each spraying unit; control the movable component to drive the spraying robot according to the spraying task While moving
  • An embodiment of the second aspect of the present application provides a control device for a spraying robot.
  • the spraying robot includes a movable component, an adjusting component, and a spraying component.
  • the movable component is used to drive the spraying robot to move, and the adjusting component is used to adjust the The vertical height of the spraying component relative to the movable component
  • the device includes: an identification module for identifying the spraying position information of each spraying house type in the spraying target, and determining the position characteristics of each spraying house type;
  • the acquiring module is used to generate a spraying task according to the spraying position information of each spraying house type, and to generate a spraying planned path according to the spraying task and the position characteristics of each spraying house type, or to send the spraying position information and
  • the location feature of each spraying house type is sent to the server to receive the spraying task and the spraying planned path generated by the server according to the spraying position information and the location feature of each spraying house type; While the spraying task controls the
  • the embodiment of the third aspect of the present application provides a spraying robot, including: a coating component; a movable component for driving the spraying robot to move; an adjustment component for adjusting the vertical height of the spraying component relative to the movable component; the above implementation
  • the control device of the spraying robot described in the example is not limited to: a coating component; a movable component for driving the spraying robot to move; an adjustment component for adjusting the vertical height of the spraying component relative to the movable component; the above implementation.
  • Fig. 1 is a flowchart of a control method of a spraying robot according to an embodiment of the present application
  • Fig. 2 is a flowchart of a control method of a spraying robot according to an embodiment of the present application
  • Fig. 3 is a flowchart of a control method of a spraying robot according to another embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a control device of a spraying robot according to an embodiment of the present application.
  • this application provides a spraying robot control method.
  • the spraying task is automatically generated according to the spraying position information of each spraying unit, so that while the spraying robot is controlled to move along the spraying planned path, the vertical height of the spraying component is adjusted until the spraying of the spraying target is completed, without manual spraying.
  • Fig. 1 is a flowchart of a control method of a spraying robot according to an embodiment of the present application.
  • the spraying robot includes a movable component, an adjusting component, and a spraying component.
  • the movable component is used to drive the spraying robot to move
  • the adjusting component is used to adjust the vertical height of the spraying component relative to the movable component.
  • the control method of the spraying robot includes the following steps:
  • step S101 the spraying position information of each spraying house type in the spraying target is identified, and the position characteristics of each spraying house type are determined.
  • the embodiment of the application can first perform statistical planning for the spraying of different apartment types, for example, the relevant spraying position information of the sprayed apartment types such as doors, bay windows, wall panels, ceilings, and yin and yang angles can be identified by the robot.
  • the spraying pose information belonging to the ceiling is collected and stored, which can include the start spraying position (starting station number) and the end spraying position (end station number), the number of spraying target columns, and the spraying ceiling during the process of spraying.
  • Transit position is the transit site number set in consideration of the volume of the robot itself, rotate or turn around in some positions, and interfere with the building
  • the spraying position information of the wall and the yin and yang corners are all statistically stored. It should be noted that there are many ways to identify, such as obtaining the image information of the spraying target through the camera, extracting the spraying position information of each spraying apartment from the image information center, or directly crawling the room management information of the spraying target from the Internet.
  • the spraying position information of each spraying unit is obtained from the house management information, and there is no specific restriction here.
  • the embodiment of the present application can also accurately identify the location features of each spraying house type, such as door features, bay window features, etc., to effectively meet the different needs of different types of houses. , Improve the accuracy and reliability of the control, and enhance the user experience.
  • step S102 a spraying task is generated according to the spraying position information of each spraying unit, and a spraying planned route is generated according to the spraying task and the position characteristics of each spraying unit, or the spraying position information and the location characteristics of each spraying unit are sent to
  • the server can receive the spraying tasks and the spraying planned route generated by the server according to the spraying location information and the location characteristics of each spraying unit.
  • the embodiment of the present application first generates a spraying task according to the spraying position information of each spraying unit, such as generating a ceiling according to the starting spraying position, the ending spraying position, the target number of spraying rows, and the transit position in the spraying ceiling process.
  • the spraying planning path of the spraying ceiling is determined, which includes the path from the current position of the spraying robot to the starting spraying position and the path for performing the spraying task, so that the spraying robot can automatically move according to the planned spraying path And work.
  • the embodiments of the present application can be implemented manually without workers, have high production efficiency, low labor costs, and eliminate the need for harsh construction site environments, effectively meet spraying quality requirements, and realize intelligent equipment operation.
  • the spraying robot when starting the spraying robot work, first complete the parameter initialization of the robot control system. Among them, the initialization of the parameters such as the speed of the chassis trolley in the moving component, the servo speed position of the body, and the selection of the spraying house type, so that all important parameters are completed. After initialization, the spraying robot is controlled to move according to the planned spraying planning path, which improves the reliability and accuracy of spraying and avoids spraying accidents.
  • the spraying tasks and spraying planning paths in the embodiments of the present application can be automatically generated by the robot according to a preset generation method to achieve stand-alone control, or can be automatically generated by the server according to the preset generation method, and the spraying robot only needs to Sending spraying position information and receiving spraying tasks and spraying planning paths, so that the server can control multiple spraying robots to spray at the same time, realize distributed control, effectively improve spraying efficiency, improve practicality, and be more intelligent and simple.
  • the spraying planning path is generated according to the spraying task and the location characteristics of each spraying unit, and/or the spraying task and the spraying plan are generated according to the spraying position information and the location characteristics of each spraying unit
  • the path includes: generating the initial spraying planning path according to the spraying task; if the location feature is the bay window feature, determine the bay window planning path corresponding to the bay window feature of the initial spraying planning path, and preset the bay window planning path relative to the bay window. Distance to generate the planned spraying path.
  • the embodiment of the present application first generates the initial spraying planning path according to the spraying task, and this path is for the working path of the robot for each spraying house type. Secondly, considering the different spraying requirements of each spraying house type, such as no spraying at the bay window. At this time, in order to avoid the collision of the robot, based on the initial spraying planning path, the planned path can be moved a certain distance (such as 30cm) from the bay window to ensure that the robot retracts the nozzle at the bay window in time to avoid collisions while controlling The robot keeps a certain distance from the bay window to further ensure the effectiveness of the moving path, improve the accuracy and reliability of the control, and enhance the user experience. It should be noted that the preset distance can be set by those skilled in the art according to actual conditions.
  • the bay window is taken as an example in the above part of the embodiments of the present application, those skilled in the art should understand that any position feature can be configured in a similar manner to the above, and the control method of the bay window feature is only illustrative. , Is not limited to this kind of control method.
  • the planned path can be optimized according to the spraying instructions, and the planned path can be updated in real time to ensure the applicability of the control.
  • step S103 the movable component is controlled according to the spraying task to drive the spraying robot to move along the planned spraying path, and the adjustment component is controlled to adjust the vertical height of the spraying component until the spraying of the spraying target is completed.
  • the embodiment of the present application can control the spraying robot to move along the spraying planned path and control the vertical height of the spraying assembly to complete indoor facade walls, bay windows, ceilings, and yin and sun corners, and special-shaped surfaces.
  • the spraying mode is unmanned and automated, realizing automatic counting of spraying columns, realizing spraying path planning, and reducing the labor intensity of personnel.
  • the spraying principle of the spraying robot is described in detail below.
  • the spraying task includes the start spraying position, the transfer spraying position, the end spraying position, and the target number of spraying rows.
  • the movable component is controlled according to the spraying task to drive the spraying robot along the planned spraying path. Movement includes: controlling the movable component to drive the spraying robot to move to the starting spraying position; controlling the spraying component to follow the starting spraying position, transit spraying position, and ending spraying position in the spraying planning path according to the preset trajectory and preset angle to the current spraying Repeat spraying for the apartment type until the number of spray columns meets the target number of columns, then stop spraying.
  • the spraying robot in the process of spraying the facade wall, read the start spraying position and end spraying position of the facade wall, the target number of spraying and the transfer position during the spraying process, and then control the spraying robot to follow the predetermined trajectory and angle. Spraying. After spraying is completed at this position, the current number of sprayed columns will be automatically counted. If the currently completed column number is equal to the target number of columns, it means that the spraying of the facade wall has been completed, and you can enter other doors, bay windows, ceilings, etc. The spraying of yin and yang corners, etc., otherwise continue to spray the facade wall. If there is a transfer position in the middle, it will not be counted in the number of rows that have been sprayed, and the spraying components will not be started, and the spraying robot will not move for spraying.
  • preset trajectory and preset angle can be set by those skilled in the art according to the actual situation, so that statistics can be used to count the number of spraying columns and initial spraying for each mode (ceiling, facade wall, door, bay window, etc.) Position and end spraying position method to plan spraying tasks.
  • the control method of the embodiment of the present application further includes: detecting whether the spraying robot is parallel to the spraying target and the distance is less than a preset threshold; if Parallel to the spraying target and the distance is less than the preset threshold, the spraying component is controlled to start spraying, otherwise a reminder signal is sent.
  • the spraying robot when the spraying robot is started to move to the initial spraying position, for example, the chassis trolley of the movable component has a certain positioning accuracy error.
  • the distance judgment can be made through the vision system installed on both sides of the spraying robot to judge the chassis trolley Whether it is parallel to the wall and the distance is the specified distance error, that is, the distance is less than the preset threshold. If the returned data is less than the set value, the distance between the chassis trolley and the wall is considered to be qualified and parallel, and the positioning completion signal is returned at this time Otherwise, you can send a reminder signal to remind the staff to make manual adjustments, or automatically adjust according to the preset adjustment method until the chassis positioning is completed.
  • a vision system may be used to compensate for the error of the chassis movement, thereby effectively spraying process requirements, such as the distance between the spray nozzle and the spray target by 600 mm.
  • preset threshold can be set by those skilled in the art according to actual conditions, and there is no specific limitation here.
  • the control method of the embodiment of the present application further includes: collecting spraying position information of the current spraying house type; according to the spraying position information and spraying tasks of the current spraying house type Determine the current spraying mode to control the spraying components to start spraying according to the current spraying mode.
  • the current spraying mode may be one of the facade wall spraying mode, the bay window spraying mode, the ceiling spraying mode, the left inner corner spraying mode, and the right inner corner spraying mode. .
  • the embodiment of the present application can automatically identify the current spraying position information, compare it with the position information of the spraying task, improve the accuracy of spraying, and further determine whether it belongs to the ceiling or the ceiling.
  • spraying modes include facade wall spraying mode, bay window spraying mode, ceiling spraying mode, left internal corner spraying mode and right internal corner spraying mode, etc.
  • the horizontal position of the nozzle can be flexibly adjusted to achieve indoor doors, Wall panels, bay windows, ceilings and yin and yang angles and other spraying modes are sprayed.
  • automatic and unmanned spraying is realized, reducing labor intensity, solving the problem of single spraying position caused by rigid nozzle structure, and spraying more uniformly. It is necessary to spray the roof and wall at the same time to make the structure flexible and adjustable, improve the practicality of spraying, improve the working efficiency of spraying, and achieve spraying effects such as no sag, no leaking, no brushing, and no exposed bottom.
  • the specific control of each spraying mode can be specifically set by those skilled in the art, which will not be described in detail here.
  • the method of the embodiment of the present application further includes: detecting the current electric quantity, and when the current electric quantity meets the charging condition, controlling the spraying robot to perform return charging along the charging path.
  • the embodiment of the application can also monitor the power of the robot in real time. If the power can only support the return of the robot to charge, the robot is controlled to stop spraying, and the charging path is generated according to the current position and the charging position, and the robot is controlled to return to charge according to the charging path. Position and charge to ensure the continuous endurance of the spraying robot, which is simple and convenient.
  • the method of the embodiment of the present application further includes: collecting a current spraying image, and if the current spraying image does not meet a preset requirement, controlling the spraying robot to stop spraying and give an alarm.
  • the embodiment of the application can collect spraying images in real time, and detect the current spraying quality according to the spraying images. Once the spraying quality does not meet the preset requirements, indicating that the spraying effect is not ideal, the spraying is stopped and the staff is notified to make corrections and adjustments. Intelligent, effectively guarantee the use requirements, and enhance the use experience.
  • the spraying robot of the embodiment of the present application is mainly composed of a spraying robot body, a chassis mechanism, a battery system, a spraying system, a weighing detection system, and an electronic control system; among them, the spraying robot body consists of a two-stage lifting mechanism, a horizontal moving mechanism, The composition of the spraying rotating mechanism, the spray gun rotating mechanism and the spraying machine system can be understood as the above-mentioned adjustment components;
  • the chassis mechanism is composed of the Mecanum wheel system (omnidirectional wheel), which can be understood as the above-mentioned movable components;
  • the battery management system is It is composed of lithium battery, charging system, discharge system, and battery management system;
  • the spraying system is composed of spraying machine, paint storage system, switch valve block, spray gun mechanism, etc., which can be understood as the spraying components mentioned above;
  • the electronic control system is composed of an electric control cabinet, The controller and drive system are composed;
  • the weighing system is composed of weight sensors, transmitters, and analog modules.
  • the spraying robot control system mainly includes a controller, a bus IO module, and several motion modules, a battery management system, a vision system, and a UI man-machine interface.
  • the motion module can include a servo motor and a bus line used to drive the servo motor.
  • Servo driver, part of the motion module can realize the chassis movement, and part of the servo can realize the motion control of the body.
  • the bus IO module can be used to collect digital IO signals and analog input and output signals; the controller can communicate with the battery management system through RS485 to complete the acquisition of battery information; the controller can communicate with the vision system through Ethernet to start the camera Take pictures and obtain the detection results processed by the vision system.
  • the UI interface can communicate with the controller via Ethernet to realize the display of control system status information and related operations.
  • control method of the embodiment of the present application includes the following steps:
  • Step S201 Start.
  • Step S202 Initialize the robot control system parameters.
  • the parameters of the robot control system are initialized. Among them, the parameters such as the speed of the chassis trolley in the mobile component, the servo speed position of the body and other parameters are initialized, and the spraying type selection is completed, so that all After the initialization of important parameters, the spraying robot is controlled to move according to the planned spraying planning path, which improves the reliability and accuracy of spraying and avoids spraying accidents.
  • Step S203 Selection of spraying apartment type rooms.
  • the spraying task is generated according to the spraying position information of each spraying unit, and then the spraying planning path of the spraying ceiling is determined according to the spraying task of the ceiling, which includes the path from the current position of the spraying robot to the starting spraying position and the path for executing the spraying task.
  • the spraying robot can automatically move and work according to the spraying planning path, without manual implementation by workers, with high production efficiency, low labor cost, and without the harsh environment of the construction site, effectively meeting the spraying quality requirements, and realizing the intelligent operation of the equipment.
  • Step S204 the robot walks according to the spraying path.
  • Step S205 reach the spraying position.
  • Step S206 Whether the chassis is parallel to the wall surface. Wherein, if it is, step S208 is executed, otherwise, step S207 is executed.
  • Step S207 Adjust through the vision system.
  • the distance judgment can be performed by the vision system installed on both sides of the spray robot to determine whether the chassis trolley is parallel to the wall and whether the distance is the specified distance error, that is, the distance is less than the preset threshold. If the returned data is less than the set value range, it is considered that the distance between the chassis trolley and the wall is qualified and parallel, and the positioning completion signal is returned at this time. Otherwise, a reminder signal can be sent to remind the staff to make manual adjustments, or according to the preset adjustment method Carry out automatic adjustment until the positioning of the chassis is completed.
  • Step S208 Automatically identify the target spraying position information.
  • Step S209 Select facade wall spraying, bay window spraying, ceiling spraying, left internal corner spraying or right internal corner spraying.
  • the spraying position information In other words, it automatically recognizes the current spraying position information and compares it with the position information of the spraying task. While improving the accuracy of the spraying, it further judges whether it belongs to the spraying of the ceiling, the facade wall, or the bay window, so as to determine after the comparison of the position information. Spray mode.
  • Step S210 Start the spraying control system.
  • the spraying system After the spraying mode is determined, start the spraying system to flexibly adjust the horizontal position of the nozzle according to different modes to realize the spraying of various spraying modes such as indoor doors, wall panels, bay windows, ceilings, and yin and yang angles, while achieving automation and unmanned
  • the spraying method reduces labor intensity, solves the problem of single spraying position caused by the rigid nozzle structure, and sprays more uniformly, and sprays the roof and wall at the same time as needed to make the structure flexible and adjustable, improve the practicality of spraying, and improve the spraying
  • the working efficiency can achieve spraying effects such as no sag, no leaking, no brushing, and no exposed bottom.
  • Step S211 the robot body moves.
  • Step S212 the spraying of the corresponding position is completed.
  • a method of counting the number of spraying columns, starting spraying position, and ending spraying position of each mode can be used to plan spraying tasks.
  • Step S213 the overall spraying is completed. Wherein, if it is, the spraying ends, otherwise the step S204 is continued.
  • each spraying unit including doors, bay windows, wall panels, ceilings, Yin and Yang angles, etc.
  • each spraying unit including doors, bay windows, wall panels, ceilings, Yin and Yang angles, etc.
  • Step S214 spraying ends.
  • the method of the embodiment of the present application includes:
  • Step S301 Start.
  • Step S302 Start the facade wall spraying.
  • the current spraying mode is determined to be the facade wall spraying mode, and the facade wall spraying task is obtained to start the spraying system.
  • Step S303 automatically count the number of target columns N1 of the sprayed facade wall.
  • Step S304 Start the chassis AGV to run to the target position.
  • Step S305 Reach the target position.
  • step S306 it is judged whether the target position is a spraying position. Wherein, if yes, then step S307 is executed, otherwise, step S304 is executed.
  • Step S307 Start the spraying system.
  • Step S308 the robot body runs spraying.
  • Step S309 spraying at the target position is completed.
  • Step S310 Count N2 of the number of sprayed columns.
  • the spraying robot is controlled to spray according to a predetermined trajectory and angle. After the spraying is completed at the position, the number of rows currently sprayed is automatically counted. Among them, if there is a transfer position in the middle, it will not be counted in the number of sprayed rows. , And the spraying components are not started, and the spraying robot does not move to spray, which improves the reliability and accuracy of spraying and effectively guarantees the spraying requirements.
  • Step S311 It is judged whether the number of completed rows is equal to the target number of sprayed rows. Wherein, if it is, step S312 is executed, otherwise, step S304 is executed.
  • the spraying robot in the process of spraying the facade wall, read the start spraying position and end spraying position of the facade wall, the target number of spraying and the transfer position in the spraying process, and then control the spraying robot to follow the predetermined trajectory and Spraying is performed at an angle. After spraying is completed at this position, the number of rows currently sprayed is automatically counted. If the number of rows currently completed is equal to the target number of rows, it means that the spraying of the facade wall has been completed.
  • Step S312 spraying of the facade wall is completed.
  • Step S3013 go to other spraying modes.
  • ceiling spraying, bay window spraying, etc. use the same method.
  • the spraying mode is obtained, the spraying is started, and the number of spraying rows currently completed is compared with the target spraying row.
  • Count judge whether the spraying is completed or continue spraying, if the spraying is completed, enter other spraying modes, until all the apartment types and rooms are sprayed.
  • the spraying robot control method proposed in the embodiments of the present application automatically generates spraying tasks according to the spraying position information of each spraying unit, so as to control the spraying robot to move along the planned spraying path while adjusting the vertical height of the spraying assembly.
  • Fig. 4 is a schematic structural diagram of a control device of a spraying robot according to an embodiment of the present application.
  • the spraying robot includes a movable component, an adjusting component and a spraying component.
  • the movable component is used to drive the spraying robot to move, and the adjusting component is used to adjust the vertical height of the spraying component relative to the movable component.
  • the control of the spraying robot includes: an identification module 100, an acquisition module 200, and a control module 300.
  • the identification module 100 is used to identify the spraying position information of each spraying house type in the spraying target, and to determine the position characteristics of each spraying house type.
  • the acquiring module 200 is used to generate a spraying task according to the spraying position information of each spraying unit, and to generate a spraying planned route according to the spraying task and the location characteristics of each spraying unit, or to send the spraying position information and the location characteristics of each spraying unit To the server to receive the spraying tasks and spraying planning paths generated by the server according to the spraying location information and the location characteristics of each spraying unit.
  • the control module 300 is used for controlling the movable component to drive the spraying robot to move along the planned spraying path according to the spraying task, and at the same time controlling the adjustment component to adjust the vertical height of the spraying component until the spraying of the spraying target is completed.
  • the acquisition module includes: a planning unit or a receiving unit.
  • the planning unit is used to generate the initial spraying planning path according to the spraying task, and when the location feature is the bay window feature, determine the bay window planning path corresponding to the bay window feature of the initial spraying planning path, and compare the bay window planning path to the outside of the bay window Move the preset distance to generate the planned spraying path.
  • the receiving unit is used to receive the server to generate the initial spraying planning path according to the spraying task, and when the location feature is the bay window feature, determine the bay window planning path corresponding to the bay window feature of the initial spraying planning path, and compare the bay window planning path to the outside of the bay window Move the preset distance to generate the planned spraying path.
  • the spraying task includes a start spraying position, a transfer spraying position, an end spraying position, and the target number of spraying rows
  • the control module includes 300: a first control unit and a second control unit .
  • the first control unit is used to control the movable component to drive the spraying robot to move to the initial spraying position.
  • the second control unit is used to control the spraying component to repeat the spraying of the current spraying unit according to the preset trajectory and preset angle along the starting spraying position, transit spraying position, and ending spraying position in the spraying planning path, until the number of spraying columns meets the target When the number of rows, stop spraying.
  • control module 300 further includes: a detection unit and a sending unit.
  • the detection unit detects whether the spraying robot is parallel to the spraying target and the distance is less than a preset threshold.
  • the sending unit when it is parallel to the spraying target and the distance is less than the preset threshold, the second control unit controls the spraying assembly to start spraying, otherwise the sending unit is used to send a reminder signal.
  • control module 300 further includes: an acquisition unit and a determination unit.
  • the collection unit is used to collect the spraying position information of the current spraying unit.
  • the determining unit is used for determining the current spraying mode according to the spraying position information and spraying tasks of the current spraying unit, so as to control the spraying component to start spraying according to the current spraying mode.
  • the spraying robot control device proposed in the embodiment of the present application automatically generates spraying tasks according to the spraying position information of each spraying unit, so as to control the spraying robot to move along the planned spraying path while adjusting the vertical height of the spraying assembly.
  • the embodiment of the present application also proposes a spraying robot.
  • the spraying robot includes a spraying component, a movable component for driving the spraying robot to move, and a device for adjusting the vertical height of the spraying component relative to the movable component. Adjust the components and the above-mentioned control device of the spray robot.
  • the spraying robot can automatically generate spraying tasks according to the spraying position information of each spraying unit, so as to control the spraying robot to move along the spraying planned path while adjusting the vertical height of the spraying component until the spraying of the spraying target is completed, without manual operation Spraying, while improving spraying efficiency, reduces spraying costs, improves spraying practicability, and effectively guarantees the effectiveness and reliability of spraying, and realizes intelligent spraying by robots.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "N number” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or N wires, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be used, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable media if necessary. The program is processed in a way to obtain the program electronically and then stored in the computer memory.
  • each part of this application can be implemented by hardware, software, firmware, or a combination thereof.
  • the N steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic gate circuits with logic functions for data signals Logic circuit, application specific integrated circuit with suitable combinational logic gate circuit, programmable gate array (PGA), field programmable gate array (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing relevant hardware to complete.
  • the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
  • the functional units in the various embodiments of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Spray Control Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manipulator (AREA)

Abstract

一种喷涂机器人的控制方法、装置及具有其的喷涂机器人,其中,方法包括:识别喷涂目标中每个喷涂户型的喷涂位置信息,确定每个喷涂户型的位置特征;生成喷涂任务,并根据喷涂任务和每个喷涂户型的位置特征生成喷涂规划路径,或接收服务器根据喷涂位置信息和每个喷涂户型位置特征生成的喷涂任务和喷涂规划路径;根据喷涂任务控制可移动组件带动喷涂机器人沿喷涂规划路径移动且控制调整组件调整喷涂组件竖直高度,直至完成喷涂目标的喷涂。

Description

喷涂机器人的控制方法、装置及具有其的喷涂机器人
相关申请的交叉引用
本申请基于申请号为201910944361.4、申请日为2019年09月30日的中国专利申请“喷涂机器人的控制方法、装置及具有其的喷涂机器人”提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能控制技术领域,特别涉及一种喷涂机器人的控制方法、装置及具有其的喷涂机器人。
背景技术
相关技术中,在室内装修时,一般采用人工操作的方式实现墙面喷涂,即由人工手持喷嘴对墙面进行喷涂或滚涂。
然而,人工操作的方式不但费时费力,喷涂的工作效率较低,而且喷嘴结构死板使得喷涂位置单一,喷涂的实用性较低,甚至长时间工作会影响工作人员的身体健康,亟待改进。
发明内容
本申请提供一种喷涂机器人的控制方法、装置及具有其的喷涂机器人,以解决现有技术中心,人工操作喷涂,导致喷涂成本较高、喷涂效率较低,喷涂实用性较差,无法有效满足喷涂需求等问题。
本申请第一方面实施例提供喷涂机器人的控制方法,喷涂机器人包括可移动组件、调整组件和喷涂组件,所述可移动组件用于带动所述喷涂机器人移动,所述调整组件用于调整所述喷涂组件相对所述可移动组件的竖直高度,其中,所述方法包括以下步骤:识别喷涂目标中每个喷涂户型的喷涂位置信息,并确定所述每个喷涂户型的位置特征;根据所述每个喷涂户型的喷涂位置信息生成喷涂任务,并根据所述喷涂任务和所述每个喷涂户型的位置特征生成喷涂规划路径,或者,发送所述喷涂位置信息和所述每个喷涂户型的位置特征至服务器,以接收所述服务器根据所述喷涂位置信息和所述每个喷涂户型的位置特征生成的喷涂任务和喷涂规划路径;根据所述喷涂任务控制所述可移动组件带动所述喷涂机器人沿着所述喷涂规划路径移动的同时,控制所述调整组件调整喷涂组件的竖直高度,直至完成所述喷涂目标的喷涂。
本申请第二方面实施例提供喷涂机器人的控制装置,喷涂机器人包括可移动组件、调 整组件和喷涂组件,所述可移动组件用于带动所述喷涂机器人移动,所述调整组件用于调整所述喷涂组件相对所述可移动组件的竖直高度,其中,所述装置包括:识别模块,用于识别喷涂目标中每个喷涂户型的喷涂位置信息,并确定所述每个喷涂户型的位置特征;获取模块,用于根据所述每个喷涂户型的喷涂位置信息生成喷涂任务,并根据所述喷涂任务和所述每个喷涂户型的位置特征生成喷涂规划路径,或者,发送所述喷涂位置信息和所述每个喷涂户型的位置特征至服务器,以接收所述服务器根据所述喷涂位置信息和所述每个喷涂户型的位置特征生成的喷涂任务和喷涂规划路径;控制模块,用于根据所述喷涂任务控制所述可移动组件带动所述喷涂机器人沿着所述喷涂规划路径移动的同时,控制所述调整组件调整喷涂组件的竖直高度,直至完成所述喷涂目标的喷涂。
本申请第三方面实施例提供喷涂机器人,包括:涂组件;可移动组件,用于带动喷涂机器人移动;调整组件,用于调整所述喷涂组件相对所述可移动组件的竖直高度;上述实施例所述的喷涂机器人的控制装置。
根据每个喷涂户型的喷涂位置信息自动生成喷涂任务,从而控制喷涂机器人沿着喷涂规划路径移动的同时,调整喷涂组件的竖直高度,直至完成喷涂目标的喷涂,无需人工做操喷涂,提高喷涂效率的同时,降低喷涂成本,提高喷涂实用性,并且有效保证喷涂的有效性和可靠性,实现机器人的智能喷涂。由此,解决了人工操作喷涂,导致喷涂成本较高、喷涂效率较低,喷涂实用性较差,无法有效满足喷涂需求等问题。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例的喷涂机器人的控制方法的流程图;
图2为根据本申请一个实施例的喷涂机器人的控制方法的流程图;
图3为根据本申请另一个实施例的喷涂机器人的控制方法的流程图;
图4为根据本申请实施例的喷涂机器人的控制装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的喷涂机器人的控制方法、装置及具有其的喷涂机器人。针对上述背景技术中提到的由于人工操作喷涂,导致喷涂成本较高、喷涂效率较低,喷涂实用性较差,无法有效满足喷涂需求,本申请提供了一种喷涂机器人的控制方法,在该方法中,根据每个喷涂户型的喷涂位置信息自动生成喷涂任务,从而控制喷涂机器人沿着喷涂规划路径移动的同时,调整喷涂组件的竖直高度,直至完成喷涂目标的喷涂,无需人工做操喷涂,提高喷涂效率的同时,降低喷涂成本,提高喷涂实用性,并且有效保证喷涂的有效性和可靠性,实现机器人的智能喷涂。由此,解决了人工操作喷涂,导致喷涂成本较高、喷涂效率较低,喷涂实用性较差,无法有效满足喷涂需求等问题。
图1是本申请实施例的喷涂机器人的控制方法的流程图。
具体而言,喷涂机器人包括可移动组件、调整组件和喷涂组件,其中,可移动组件用于带动喷涂机器人移动,调整组件用于调整喷涂组件相对可移动组件的竖直高度。其中,如图1所示,该喷涂机器人的控制方法包括以下步骤:
在步骤S101中,识别喷涂目标中每个喷涂户型的喷涂位置信息,并确定每个喷涂户型的位置特征。
可以理解的是,在机器人喷涂之前本申请实施例可以先将不同户型的喷涂进行统计规划,例如将门、飘窗、墙板、天花板、阴阳角等喷涂户型的相关喷涂位置信息按照机器人能识别的方式进行存储,如将属于天花板的喷涂位姿信息收集存储,其可以包含起始喷涂位置(起始站点号)和结束喷涂位置(结束站点号)、喷涂的目标列数以及喷涂天花板过程中的中转位置(中转位置是考虑到机器人自身的体积,在某些位置旋转或者掉头出现与建筑物有干涉而设置的中转站点号),下面会进行详细描述,同理,同时将门、飘窗、立面墙、阴阳角的喷涂位置信息全部统计存储。需要说明的是,识别的方式可以有很多种,例如通过摄像头获取喷涂目标的图像信息,从图像信息中心提取每个喷涂户型的喷涂位置信息,也可以直接从网络爬取喷涂目标的房管信息,从房管信息中得到每个喷涂户型的喷涂位置信息,在此不做具体限制。
另外,由于每个喷涂户型的不同,导致喷涂的需求不同,因此本申请实施例还可以准确识别每个喷涂户型的位置特征,如门特征、飘窗特征等,以有效满足不同户型的不同需求,提高控制的准确度和可靠性,提升使用体验。
在步骤S102中,根据每个喷涂户型的喷涂位置信息生成喷涂任务,并根据喷涂任务和每个喷涂户型的位置特征生成喷涂规划路径,或者,发送喷涂位置信息和每个喷涂户型的位置特征至服务器,以接收服务器根据喷涂位置信息和每个喷涂户型的位置特征生成的喷涂任务和喷涂规划路径。
具体而言,本申请实施例首先根据每个喷涂户型的喷涂位置信息生成喷涂任务,如根 据天花板的起始喷涂位置、结束喷涂位置、喷涂的目标列数以及喷涂天花板过程中的中转位置生成天花板的喷涂任务,进而根据天花板的喷涂任务确定喷涂天花板的喷涂规划路径,其包括喷涂机器人的当前位置移动到起始喷涂位置的路径和执行喷涂任务的路径,使得喷涂机器人可以根据喷涂规划路径自动移动并工作,鉴于现有技术,本申请实施例可以无需工人手动实现,生产效率高、人工成本低,且无需施工现场环境恶劣,有效满足喷涂质量要求,实现设备智能化作业。
另外,当启动喷涂机器人工作时,先完成机器人控制系统的参数初始化,其中,如移动组件中底盘小车的速度、本体伺服速度位置等参数初始化、喷涂户型的选择等,使得在完成所有重要参数的初始化之后,控制喷涂机器人按照规划好的喷涂规划路径进行运动,提高喷涂的可靠性和准确性,避免出现喷涂事故。
需要说明的是,本申请实施例的喷涂任务和喷涂规划路径可以由机器人根据按照预设的生成方式自动生成,实现单机控制,也可以由服务器按照预设的生成方式自动生成,喷涂机器人只需发送喷涂位置信息与接收喷涂任务和喷涂规划路径,从而服务器可以同时控制多个喷涂机器人同时喷涂,实现分布式控制,有效提升喷涂的工作效率,提高实用性,更加智能化、简单化。
进一步地,在本申请的一个实施例中,根据喷涂任务和每个喷涂户型的位置特征生成喷涂规划路径,和/或根据喷涂位置信息和每个喷涂户型的位置特征生成的喷涂任务和喷涂规划路径,包括:根据喷涂任务生成初始喷涂规划路径;若位置特征为飘窗特征,则确定初始喷涂规划路径对应飘窗特征的飘窗规划路径,并将飘窗规划路径相对于飘窗外移预设距离,生成喷涂规划路径。
举例而言,本申请实施例首先根据喷涂任务生成初始喷涂规划路径,此路径针对于机器人对于每个喷涂户型的工作路径,其次考虑每个喷涂户型的喷涂的需求不同,如飘窗处无需喷涂,此时为避免机器人发生碰撞,在初始喷涂规划路径的基础上,规划路径可以相对于飘窗外移一定距离(如30cm),保证机器人在飘窗处及时收回喷嘴以避免发生碰撞的同时,控制机器人与飘窗保持一定距离,进一步保证移动路径的有效性,提高控制的准确度和可靠性,提升使用体验。需要说明的是,预设距离可以由本领域技术人员根据实际情况进行设置。
在本申请实施例的以上部分虽然以飘窗为例,但是本领域技术人员应当理解的是,对于任何位置特征都可以通过以上类似的方式进行配置,飘窗特征的控制方式仅是示意性的,并不仅限于这一种控制方式,如针对于用户要求的喷涂指令,可以根据喷涂指令优化规划路径,并且实时更新规划路径,保证控制的适用性。
在步骤S103中,根据喷涂任务控制可移动组件带动喷涂机器人沿着喷涂规划路径移动 的同时,控制调整组件调整喷涂组件的竖直高度,直至完成喷涂目标的喷涂。
也就是说,本申请实施例可以通过控制喷涂机器人沿着喷涂规划路径移动与控制调喷涂组件的竖直高度,完成室内的立面墙、飘窗、天花板和阴阳角、异形面等多种喷涂模式的喷涂无人化和自动化,实现自动统计喷涂列数,实现喷涂路径规划,减轻人员的劳动强度,下面对喷涂机器人的喷涂原理进行详细描述。
其中,在本申请的一个实施例中,喷涂任务包括起始喷涂位置、中转喷涂位置、结束喷涂位置与喷涂的目标列数,其中,根据喷涂任务控制可移动组件带动喷涂机器人沿着喷涂规划路径移动,包括:控制可移动组件带动喷涂机器人移动至起始喷涂位置;控制喷涂组件根据预设轨迹和预设角度沿着喷涂规划路径中起始喷涂位置、中转喷涂位置、结束喷涂位置对当前喷涂户型进行重复喷涂,直至喷涂列数满足目标列数时,停止喷涂。
例如,在进行立面墙喷涂过程中,读取立面墙的起始喷涂位置和结束喷涂位置、喷涂的目标列数以及喷涂过程中的中转位置,进而控制喷涂机器人按照预定的轨迹以及角度进行喷涂,喷涂完成该位置后,自动统计当前已喷涂完成的列数,如果当前完成的列数等于目标列数时,表示该已完成立面墙的喷涂,可以进入其他门、飘窗、天花板、阴阳角等户型的喷涂,否则继续进行立面墙的喷涂,其中,中间如果有中转位置,则不计入已喷涂完成的列数中,且不启动喷涂组件,喷涂机器人不运动进行喷涂。
需要说明的是,预设轨迹和预设角度可以由本领域技术人员根据实际情况进行设置,从而可以采用统计每个模式(天花板、立面墙、门、飘窗等)喷涂列数、起始喷涂位置和结束喷涂位置的方法进行规划喷涂任务。
进一步地,在本申请的一个实施例中,在控制喷涂机器人移动至起始喷涂位置之后,本申请实施例的控制方法还包括:检测喷涂机器人是否与喷涂目标平行且间距小于预设阈值;若与喷涂目标平行且间距小于预设阈值,则控制喷涂组件开始喷涂,否则发送提醒信号。
可以理解的是,启动喷涂机器人运动至起始喷涂位置时,如可移动组件的底盘小车有一定的定位精度误差,此时可以通过安装在喷涂机器人两侧的视觉系统进行距离判断,判断底盘小车与墙面是否平行以及距离是否为规定的距离误差,即间距小于预设阈值,若返回的数据小于设定值范围内,则认为底盘小车与墙面间距合格并且平行,此时返回定位完成信号,否则可以发送提醒信号,以提醒工作人员进行人工调整,也可以根据预设调整方式进行自动调整,直至底盘定位完成。本申请实施例可以采用视觉系统进行底盘运动的误差补偿,从而有效喷涂工艺要求,如喷涂的喷嘴离喷涂目标600mm的距离。
需要说明的是,预设阈值可以由本领域技术人员根据实际情况进行设置,在此不做具体限制。
进一步地,在本申请的一个实施例中,在控制喷涂组件开始喷涂之前,本申请实施例的控制方法还包括:采集当前喷涂户型的喷涂位置信息;根据当前喷涂户型的喷涂位置信息和喷涂任务确定当前喷涂模式,以根据与当前喷涂模式控制喷涂组件开始喷涂。可选地,在本申请的一个实施例中,当前喷涂模式可以为立面墙喷涂模式、飘窗喷涂模式、天花板喷涂模式、左侧阴角喷涂模式与右侧阴角喷涂模式中的一种。
具体而言,当到达起始喷涂位置且底盘定位完成后,本申请实施例可以自动识别当前喷涂位置信息,与喷涂任务的位置信息进行比较,提高喷涂的准确性的同时,进一步判断属于天花板还是立面墙、飘窗的喷涂,从而过位置信息的比较后,确定喷涂模式,则启动喷涂组件。其中,喷涂模式包括立面墙喷涂模式、飘窗喷涂模式、天花板喷涂模式、左侧阴角喷涂模式与右侧阴角喷涂模式等,根据不同模式可以灵活调节喷嘴水平方向位置,实现室内门、墙面板、飘窗、天花板和阴阳角等多种喷涂模式的喷涂,同时实现自动化无人化方式喷涂,降低劳动强度,解决因喷嘴结构死板造成喷涂位置单一的问题,且喷涂更加均匀,且根据需要对屋顶和墙面同时喷涂,使其结构灵活可调,提高喷涂的实用性,提升喷涂的工作效率,可实现喷涂无流坠、无漏喷、无漏刷、无露底等喷涂效果。需要说明的是,每个喷涂模式的具体控制可以有本领域技术人员进行针对性设置,在此不做具体描述。
另外,在本申请的一个实施例中,本申请实施例的方法还包括:检测当前电量,并在当前电量满足充电条件时,控制喷涂机器人沿着充电路径进行回归充电。
可以理解的是,本申请实施例还可以实时监控机器人的电量,如果电量仅能够支撑机器人回归充电,则控制机器人停止喷涂,并根据当前位置和充电位置生成充电路径,控制机器人根据充电路径回归充电位置,并充电,以保证喷涂机器人的持续续航能力,简单便捷。
进一步地,在本申请的一个实施例中,本申请实施例的方法还包括:采集当前喷涂图像,若当前喷涂图像不满足预设要求,则控制喷涂机器人停止喷涂,并报警。
也就是说,本申请实施例可以实时采集喷涂图像,根据喷涂图像检测当前喷涂质量,一旦喷涂质量不满足预设要求,表示喷涂效果不理想,则停止喷涂,并通知工作人员进行纠正调整,更加智能化,有效保证使用需求,提升使用体验。
下面结合附图2和图3,以一个具体实施例对本申请实施例的控制方法进行详细描述。
具体地,本申请实施例的喷涂机器人主要由喷涂机器人本体、底盘机构、电池系统、喷涂系统、称重检测系统、电控系统组成;其中,喷涂机器人本体由两级提升机构、水平移动机构、喷涂旋转机构、喷枪旋转机构和喷涂机系统、组成,可以理解为上述的调整组件;底盘机构由麦克纳姆轮系统(全向轮)组成,可以理解为上述的可移动组件;电池管 理系统则由锂电池、充电系统、放电系统、电池管理系统组成;喷涂系统由喷涂机、油漆存储系统、开关阀块、喷枪机构等组成,可以理解为上述的喷涂组件;电控系统由电控柜、控制器、驱动系统组成;称重系统则由重量传感器、变送器、模拟量模块组成。
其中,喷涂机器人控制系统主要包括控制器、总线IO模块和若干个运动模块、电池管理系统、视觉系统、UI人机界面等模块组成,运动模块可以包括伺服电机和用于驱动伺服电机的总线式伺服驱动器,部分运动模块可以实现底盘运动,部分伺服可以实现本体的运动控制。总线IO模块可以用于实现采集数字量IO信号、模拟量输入输出信号;控制器可以通过RS485与电池管理系统进行通讯,完成电池信息的获取;控制器可以通过Ethernet与视觉系统进行通讯,启动相机进行拍照并获取视觉系统处理的检测结果。UI界面可以通过Ethernet与控制器进行通讯,实现控制系统状态信息的显示以及相关操作。
如图2所示,本申请实施例的控制方法包括以下步骤:
步骤S201:开始。
步骤S202:机器人控制系统参数初始化。
可以理解的是,当启动喷涂机器人工作时,先完成机器人控制系统的参数初始化,其中,如移动组件中底盘小车的速度、本体伺服速度位置等参数初始化、喷涂户型的选择等,使得在完成所有重要参数的初始化之后,控制喷涂机器人按照规划好的喷涂规划路径进行运动,提高喷涂的可靠性和准确性,避免出现喷涂事故。
步骤S203:喷涂户型房间选择。
首先根据每个喷涂户型的喷涂位置信息生成喷涂任务,进而根据天花板的喷涂任务确定喷涂天花板的喷涂规划路径,其包括喷涂机器人的当前位置移动到起始喷涂位置的路径和执行喷涂任务的路径,使得喷涂机器人可以根据喷涂规划路径自动移动并工作,无需工人手动实现,生产效率高、人工成本低,且无需施工现场环境恶劣,有效满足喷涂质量要求,实现设备智能化作业。
步骤S204:机器人按照喷涂路径行走。
步骤S205:达到喷涂位置。
可以立即的是,控制喷涂机器人沿着喷涂规划路径移动起始喷涂位置,以在喷涂开始之前完成准备工作。
步骤S206:底盘是否与墙面平行。其中,如果是,则执行步骤S208,否则执行步骤S207。
步骤S207:通过视觉系统调整。
鉴于底盘小车有一定的定位精度误差,可以通过安装在喷涂机器人两侧的视觉系统进行距离判断,判断底盘小车与墙面是否平行以及距离是否为规定的距离误差,即间距小于预设阈值,若返回的数据小于设定值范围内,则认为底盘小车与墙面间距合格并且平行, 此时返回定位完成信号,否则可以发送提醒信号,以提醒工作人员进行人工调整,也可以根据预设调整方式进行自动调整,直至底盘定位完成。
步骤S208:自动识别目标喷涂位置信息。
步骤S209:选择立面墙喷涂、飘窗喷涂、天花板喷涂、左侧阴角喷涂或者右侧阴角喷涂。
即言,自动识别当前喷涂位置信息,与喷涂任务的位置信息进行比较,提高喷涂的准确性的同时,进一步判断属于天花板还是立面墙、飘窗的喷涂,从而过位置信息的比较后,确定喷涂模式。
步骤S210:启动喷涂控制系统。
在喷涂模式确定之后,启动喷涂系统,以根据不同模式可以灵活调节喷嘴水平方向位置,实现室内门、墙面板、飘窗、天花板和阴阳角等多种喷涂模式的喷涂,同时实现自动化无人化方式喷涂,降低劳动强度,解决因喷嘴结构死板造成喷涂位置单一的问题,且喷涂更加均匀,且根据需要对屋顶和墙面同时喷涂,使其结构灵活可调,提高喷涂的实用性,提升喷涂的工作效率,可实现喷涂无流坠、无漏喷、无漏刷、无露底等喷涂效果。
步骤S211:机器人本体运动。
步骤S212:对应位置喷涂完成。
本申请实施例可以采用统计每个模式(天花板、立面墙、门、飘窗等)喷涂列数、起始喷涂位置和结束喷涂位置的方法进行规划喷涂任务。
步骤S213:整体喷涂完成。其中,如果是,则喷涂结束,否则继续执行步骤S204。
直至喷涂目标(当前室内)的每个喷涂户型(包括门、飘窗、墙板、天花板、阴阳角等)均喷涂完毕,表示整体喷涂完成。
步骤S214:喷涂结束。
如图3所示,以喷涂立面墙为例,本申请实施例的方法包括:
步骤S301:开始。
步骤S302:启动立面墙喷涂。
即言,确定当前喷涂模式为立面墙喷涂模式,获取立面墙喷涂任务,以启动喷涂系统。
步骤S303:自动统计喷涂立面墙目标列数N1。
步骤S304:启动底盘AGV运行至目标位置。
步骤S305:到达目标位置。
控制喷涂机器人沿着喷涂规划路径移动至起始喷涂位置。
步骤S306,判断目标位置是否为喷涂位置。其中,如果是,则执行步骤S307,否则执 行步骤S304。
步骤S307:启动喷涂系统。
步骤S308:机器人本体运行喷涂。
步骤S309:目标位置喷涂完成。
步骤S310:喷涂完成列数计数N2。
具体地,控制喷涂机器人按照预定的轨迹以及角度进行喷涂,喷涂完成该位置后,自动统计当前已喷涂完成的列数,其中,中间如果有中转位置,则不计入已喷涂完成的列数中,且不启动喷涂组件,喷涂机器人不运动进行喷涂,提高喷涂的可靠性和准确性,有效保证喷徐要求。
步骤S311:判断完成列数是否等于目标喷涂列数。其中,如果是,则执行步骤S312,否则执行步骤S304。
也就是说,在进行立面墙喷涂过程中,读取立面墙的起始喷涂位置和结束喷涂位置、喷涂的目标列数以及喷涂过程中的中转位置,进而控制喷涂机器人按照预定的轨迹以及角度进行喷涂,喷涂完成该位置后,自动统计当前已喷涂完成的列数,如果当前完成的列数等于目标列数时,表示该已完成立面墙的喷涂。
步骤S312:立面墙喷涂完成。
步骤S3013,转到其他喷涂模式。
即言,天花板喷涂、飘窗喷涂等采用同样的方法,通过比较底盘当前到达的位置信息与系统存储的位置信息进行比较,得到喷涂模式,启动喷涂,比较当前完成的喷涂列数与目标喷涂列数,进行判断是否喷涂完成或者继续喷涂,如果喷涂完成则进入其他喷涂模式,直到所有户型及房间喷涂完成为止。
综上,本申请实施例提出的喷涂机器人的控制方法,根据每个喷涂户型的喷涂位置信息自动生成喷涂任务,从而控制喷涂机器人沿着喷涂规划路径移动的同时,调整喷涂组件的竖直高度,直至完成喷涂目标的喷涂,无需人工做操喷涂,提高喷涂效率的同时,降低喷涂成本,提高喷涂实用性,并且有效保证喷涂的有效性和可靠性,实现机器人的智能喷涂。由此,解决了人工操作喷涂,导致喷涂成本较高、喷涂效率较低,喷涂实用性较差,无法有效满足喷涂需求等问题。
其次参照附图描述根据本申请实施例提出的喷涂机器人的控制装置。
图4是本申请实施例的喷涂机器人的控制装置的结构示意图。
喷涂机器人包括可移动组件、调整组件和喷涂组件,可移动组件用于带动喷涂机器人移动,调整组件用于调整喷涂组件相对可移动组件的竖直高度,如图4所示,该喷涂机器 人的控制装置10包括:识别模块100、获取模块200和控制模块300。
其中,识别模块100,用于识别喷涂目标中每个喷涂户型的喷涂位置信息,并确定每个喷涂户型的位置特征。
获取模块200,用于根据每个喷涂户型的喷涂位置信息生成喷涂任务,并根据喷涂任务和每个喷涂户型的位置特征生成喷涂规划路径,或者,发送喷涂位置信息和每个喷涂户型的位置特征至服务器,以接收服务器根据喷涂位置信息和每个喷涂户型的位置特征生成的喷涂任务和喷涂规划路径。
控制模块300,用于根据喷涂任务控制可移动组件带动喷涂机器人沿着喷涂规划路径移动的同时,控制调整组件调整喷涂组件的竖直高度,直至完成喷涂目标的喷涂。
进一步地,在本申请的一个实施例中,获取模块包括:规划单元或者接收单元。
其中,规划单元用于根据喷涂任务生成初始喷涂规划路径,且在位置特征为飘窗特征时,确定初始喷涂规划路径对应飘窗特征的飘窗规划路径,并将飘窗规划路径相对于飘窗外移预设距离,生成喷涂规划路径。
接收单元用于接收服务器根据喷涂任务生成初始喷涂规划路径,且在位置特征为飘窗特征时,确定初始喷涂规划路径对应飘窗特征的飘窗规划路径,并将飘窗规划路径相对于飘窗外移预设距离,生成的喷涂规划路径。
进一步地,在本申请的一个实施例中,喷涂任务包括起始喷涂位置、中转喷涂位置、结束喷涂位置与喷涂的目标列数,其中,控制模块包括300:第一控制单元和第二控制单元。
其中,第一控制单元,用于控制可移动组件带动喷涂机器人移动至起始喷涂位置。
第二控制单元,用于控制喷涂组件根据预设轨迹和预设角度沿着喷涂规划路径中起始喷涂位置、中转喷涂位置、结束喷涂位置对当前喷涂户型进行重复喷涂,直至喷涂列数满足目标列数时,停止喷涂。
进一步地,在本申请的一个实施例中,控制模块300还包括:检测单元和发送单元。
其中,检测单元,检测喷涂机器人是否与喷涂目标平行且间距小于预设阈值。
发送单元,在与喷涂目标平行且间距小于预设阈值时,第二控制单元控制喷涂组件开始喷涂,否则发送单元用于发送提醒信号。
进一步地,在本申请的一个实施例中,控制模块300还包括:采集单元和确定单元。
其中,采集单元,用于采集当前喷涂户型的喷涂位置信息。
确定单元,用于根据当前喷涂户型的喷涂位置信息和喷涂任务确定当前喷涂模式,以根据与当前喷涂模式控制喷涂组件开始喷涂。
需要说明的是,前述对喷涂机器人的控制方法实施例的解释说明也适用于该实施例的喷涂机器人的控制装置,此处不再赘述。
综上,本申请实施例提出的喷涂机器人的控制装置,根据每个喷涂户型的喷涂位置信息自动生成喷涂任务,从而控制喷涂机器人沿着喷涂规划路径移动的同时,调整喷涂组件的竖直高度,直至完成喷涂目标的喷涂,无需人工做操喷涂,提高喷涂效率的同时,降低喷涂成本,提高喷涂实用性,并且有效保证喷涂的有效性和可靠性,实现机器人的智能喷涂。由此,解决了人工操作喷涂,导致喷涂成本较高、喷涂效率较低,喷涂实用性较差,无法有效满足喷涂需求等问题。
此外,本申请实施例还提出了一种喷涂机器人,该喷涂机器人包括喷涂组件、用于带动喷涂机器人移动的可移动组件、用于调整所述喷涂组件相对所述可移动组件的竖直高度的调整组件和上述的喷涂机器人的控制装置。该喷涂机器人可以根据每个喷涂户型的喷涂位置信息自动生成喷涂任务,从而控制喷涂机器人沿着喷涂规划路径移动的同时,调整喷涂组件的竖直高度,直至完成喷涂目标的喷涂,无需人工做操喷涂,提高喷涂效率的同时,降低喷涂成本,提高喷涂实用性,并且有效保证喷涂的有效性和可靠性,实现机器人的智能喷涂。由此,解决了人工操作喷涂,导致喷涂成本较高、喷涂效率较低,喷涂实用性较差,无法有效满足喷涂需求等问题。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或N个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种喷涂机器人的控制方法,其特征在于,喷涂机器人包括可移动组件、调整组件和喷涂组件,所述可移动组件用于带动所述喷涂机器人移动,所述调整组件用于调整所述喷涂组件相对所述可移动组件的竖直高度,其中,所述方法包括以下步骤:
    识别喷涂目标中每个喷涂户型的喷涂位置信息,并确定所述每个喷涂户型的位置特征;
    根据所述每个喷涂户型的喷涂位置信息生成喷涂任务,并根据所述喷涂任务和所述每个喷涂户型的位置特征生成喷涂规划路径,或者,发送所述喷涂位置信息和所述每个喷涂户型的位置特征至服务器,以接收所述服务器根据所述喷涂位置信息和所述每个喷涂户型的位置特征生成的喷涂任务和喷涂规划路径;以及
    根据所述喷涂任务控制所述可移动组件带动所述喷涂机器人沿着所述喷涂规划路径移动的同时,控制所述调整组件调整喷涂组件的竖直高度,直至完成所述喷涂目标的喷涂。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述喷涂任务和所述每个喷涂户型的位置特征生成喷涂规划路径,和/或所述根据所述喷涂位置信息和所述每个喷涂户型的位置特征生成的喷涂任务和喷涂规划路径,包括:
    根据所述喷涂任务生成初始喷涂规划路径;
    若所述位置特征为飘窗特征,则确定所述初始喷涂规划路径对应飘窗特征的飘窗规划路径,并将所述飘窗规划路径相对于飘窗外移预设距离,生成所述喷涂规划路径。
  3. 根据权利要求1或2所述的方法,其特征在于,所述喷涂任务包括起始喷涂位置、中转喷涂位置、结束喷涂位置与喷涂的目标列数,其中,所述根据所述喷涂任务控制所述可移动组件带动所述喷涂机器人沿着所述喷涂规划路径移动,包括:
    控制所述可移动组件带动所述喷涂机器人移动至所述起始喷涂位置;
    控制所述喷涂组件根据预设轨迹和预设角度沿着所述喷涂规划路径中所述起始喷涂位置、所述中转喷涂位置、所述结束喷涂位置对当前喷涂户型进行重复喷涂,直至喷涂列数满足所述目标列数时,停止喷涂。
  4. 根据权利要求3所述的方法,其特征在于,在控制所述喷涂机器人移动至所述起始喷涂位置之后,还包括:
    检测所述喷涂机器人是否与所述喷涂目标平行且间距小于预设阈值;
    若与所述喷涂目标平行且所述间距小于所述预设阈值,则控制所述喷涂组件开始喷涂,否则发送提醒信号。
  5. 根据权利要求4所述的方法,其特征在于,在控制所述喷涂组件开始喷涂之前,还包括:
    采集所述当前喷涂户型的喷涂位置信息;
    根据所述当前喷涂户型的喷涂位置信息和所述喷涂任务确定当前喷涂模式,以根据与所述当前喷涂模式控制所述喷涂组件开始喷涂。
  6. 一种喷涂机器人的控制装置,其特征在于,喷涂机器人包括可移动组件、调整组件和喷涂组件,所述可移动组件用于带动所述喷涂机器人移动,所述调整组件用于调整所述喷涂组件相对所述可移动组件的竖直高度,其中,所述装置包括:
    识别模块,用于识别喷涂目标中每个喷涂户型的喷涂位置信息,并确定所述每个喷涂户型的位置特征;
    获取模块,用于根据所述每个喷涂户型的喷涂位置信息生成喷涂任务,并根据所述喷涂任务和所述每个喷涂户型的位置特征生成喷涂规划路径,或者,发送所述喷涂位置信息和所述每个喷涂户型的位置特征至服务器,以接收所述服务器根据所述喷涂位置信息和所述每个喷涂户型的位置特征生成的喷涂任务和喷涂规划路径;以及
    控制模块,用于根据所述喷涂任务控制所述可移动组件带动所述喷涂机器人沿着所述喷涂规划路径移动的同时,控制所述调整组件调整喷涂组件的竖直高度,直至完成所述喷涂目标的喷涂。
  7. 根据权利要求6所述的装置,其特征在于,所述获取模块包括:
    规划单元,用于根据所述喷涂任务生成初始喷涂规划路径,且在所述位置特征为飘窗特征时,确定所述初始喷涂规划路径对应飘窗特征的飘窗规划路径,并将所述飘窗规划路径相对于飘窗外移预设距离,生成所述喷涂规划路径;或者
    接收单元,用于接收所述服务器根据所述喷涂任务生成初始喷涂规划路径,且在所述位置特征为飘窗特征时,确定所述初始喷涂规划路径对应飘窗特征的飘窗规划路径,并将所述飘窗规划路径相对于飘窗外移预设距离,生成的所述喷涂规划路径。
  8. 根据权利要求6或7所述的装置,其特征在于,所述喷涂任务包括起始喷涂位置、中转喷涂位置、结束喷涂位置与喷涂的目标列数,其中,所述控制模块包括:
    第一控制单元,用于控制所述可移动组件带动所述喷涂机器人移动至所述起始喷涂位置;
    第二控制单元,用于控制所述喷涂组件根据预设轨迹和预设角度沿着所述喷涂规划路径中所述起始喷涂位置、所述中转喷涂位置、所述结束喷涂位置对当前喷涂户型进行重复喷涂,直至喷涂列数满足所述目标列数时,停止喷涂。
  9. 根据权利要求8所述的装置,其特征在于,所述控制模块还包括:
    检测单元,检测所述喷涂机器人是否与所述喷涂目标平行且间距小于预设阈值;
    发送单元,在与所述喷涂目标平行且所述间距小于所述预设阈值时,所述第二控制单元 控制所述喷涂组件开始喷涂,否则所述发送单元用于发送提醒信号。
  10. 一种喷涂机器人,其特征在于,包括:
    喷涂组件;
    可移动组件,用于带动喷涂机器人移动;
    调整组件,用于调整所述喷涂组件相对所述可移动组件的竖直高度;
    如权利要求6-9任一项所述的喷涂机器人的控制装置。
PCT/CN2020/115356 2019-09-30 2020-09-15 喷涂机器人的控制方法、装置及具有其的喷涂机器人 WO2021063174A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910944361.4A CN110700523A (zh) 2019-09-30 2019-09-30 喷涂机器人的控制方法、装置及具有其的喷涂机器人
CN201910944361.4 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021063174A1 true WO2021063174A1 (zh) 2021-04-08

Family

ID=69197559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115356 WO2021063174A1 (zh) 2019-09-30 2020-09-15 喷涂机器人的控制方法、装置及具有其的喷涂机器人

Country Status (2)

Country Link
CN (1) CN110700523A (zh)
WO (1) WO2021063174A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700523A (zh) * 2019-09-30 2020-01-17 广东博智林机器人有限公司 喷涂机器人的控制方法、装置及具有其的喷涂机器人
CN113359693A (zh) * 2020-02-20 2021-09-07 广东博智林机器人有限公司 机器人作业方法、装置、设备和存储介质
CN113496073A (zh) * 2020-04-03 2021-10-12 广东博智林机器人有限公司 喷涂路径规划方法、装置、设备和存储介质
CN111545375B (zh) * 2020-05-12 2021-11-26 广东博智林机器人有限公司 一种定位喷涂方法、装置、系统及存储介质
CN113713986A (zh) * 2020-05-25 2021-11-30 广东博智林机器人有限公司 喷涂控制方法、装置、设备及存储介质、喷涂装置
CN112208262A (zh) * 2020-09-23 2021-01-12 广东博智林机器人有限公司 一种基于铺贴机器人的墙纸铺贴控制方法及装置
CN111921732B (zh) * 2020-10-14 2021-01-29 广东博嘉拓建筑科技有限公司 一种行走路径规划方法、装置、设备及介质
CN112247710A (zh) * 2020-10-26 2021-01-22 张杰华 一种墙面打磨涂漆的方法
CN115233942B (zh) * 2022-07-21 2023-09-29 如你所视(北京)科技有限公司 涂刷方法及装置
CN115228647B (zh) * 2022-08-01 2023-12-05 广东博智林机器人有限公司 喷涂机器人及其控制方法和装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016200439A1 (en) * 2015-06-09 2016-12-15 Integrated Construction Enterprises, Inc. Construction board installation robot
CN107899814A (zh) * 2017-12-20 2018-04-13 芜湖哈特机器人产业技术研究院有限公司 一种机器人喷涂系统及其控制方法
CN108284048A (zh) * 2017-01-09 2018-07-17 苏州市铂汉塑胶五金有限公司 一种喷涂控制方法
WO2019060920A1 (en) * 2017-09-25 2019-03-28 Canvas Construction, Inc. AUTOMATED WALL FINISHING SYSTEM AND METHOD
CN109972824A (zh) * 2019-05-09 2019-07-05 广东博智林机器人有限公司 喷涂机器人及控制方法和控制装置、计算机可读存储介质
CN110202585A (zh) * 2019-07-30 2019-09-06 广东博智林机器人有限公司 喷涂控制方法、装置、喷涂机器人以及存储介质
CN110700523A (zh) * 2019-09-30 2020-01-17 广东博智林机器人有限公司 喷涂机器人的控制方法、装置及具有其的喷涂机器人

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525423A (zh) * 2015-01-04 2015-04-22 成都思达特电器有限公司 一种控制喷涂机器人的喷涂方法
CN106088544B (zh) * 2016-06-08 2018-03-27 以恒激光科技(北京)有限公司 建筑墙面自动喷漆机器人
CN106513229A (zh) * 2016-11-01 2017-03-22 河池学院 一种喷涂汽车机器人的控制方法
CN110017012B (zh) * 2019-05-21 2021-05-04 广东博智林机器人有限公司 喷涂机器人、控制方法及计算机可读存储介质
CN109972827A (zh) * 2019-05-09 2019-07-05 广东博智林机器人有限公司 喷涂机器人及控制方法和控制装置、计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016200439A1 (en) * 2015-06-09 2016-12-15 Integrated Construction Enterprises, Inc. Construction board installation robot
CN108284048A (zh) * 2017-01-09 2018-07-17 苏州市铂汉塑胶五金有限公司 一种喷涂控制方法
WO2019060920A1 (en) * 2017-09-25 2019-03-28 Canvas Construction, Inc. AUTOMATED WALL FINISHING SYSTEM AND METHOD
CN107899814A (zh) * 2017-12-20 2018-04-13 芜湖哈特机器人产业技术研究院有限公司 一种机器人喷涂系统及其控制方法
CN109972824A (zh) * 2019-05-09 2019-07-05 广东博智林机器人有限公司 喷涂机器人及控制方法和控制装置、计算机可读存储介质
CN110202585A (zh) * 2019-07-30 2019-09-06 广东博智林机器人有限公司 喷涂控制方法、装置、喷涂机器人以及存储介质
CN110700523A (zh) * 2019-09-30 2020-01-17 广东博智林机器人有限公司 喷涂机器人的控制方法、装置及具有其的喷涂机器人

Also Published As

Publication number Publication date
CN110700523A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2021063174A1 (zh) 喷涂机器人的控制方法、装置及具有其的喷涂机器人
WO2021017468A1 (zh) 喷涂控制方法、装置、喷涂机器人以及存储介质
US11208209B2 (en) UAV, method and system for cleaning a wall body
CN112207846B (zh) 一种可升降式机房智能巡检机器人系统及巡检方法
WO2020192000A1 (zh) 一种基于自主导航的畜禽信息感知机器人与地图构建方法
CN111656296B (zh) 用于机器人自主运动规划和导航的系统和方法
WO2020140860A1 (zh) 动态区域划分与区域通道识别方法及清洁机器人
US11369983B2 (en) Automaton for treating a surface
US20190118370A1 (en) Method for treating a surface and corresponding automated device
CN109381122A (zh) 运行自动前进的清洁设备的方法
CN110554699A (zh) 机器人的控制系统及控制方法
CN114224226A (zh) 避障清扫机器人、机器人机械臂避障规划系统及方法
US20240208061A1 (en) Vertical wall construction method and construction robot
CN112137512B (zh) 扫地机器人清扫区域检测方法、装置、设备、系统和介质
CN112985505B (zh) 移动与固定感知结合的室内环境时空分布场生成方法
CN115874780A (zh) 喷涂方法、喷涂装置、电子设备以及介质
CN112022011B (zh) 扫地机器人的控制方法、设备、系统和存储介质
CN110539305A (zh) 一种用于小区安保的智能机器人管理控制系统
US20220005236A1 (en) Multi-level premise mapping with security camera drone
CN113757956A (zh) 空调器控制方法、装置、设备、空调器和存储介质
Lu et al. Slam and navigation of electric power intelligent inspection robot based on ROS
CN112137528B (zh) 扫地机器人清扫区域检测方法、装置、设备、系统和介质
CN111540077B (zh) 基于三维模型坐标定位的换流站阀厅移动式智能巡检方法
CN115228647B (zh) 喷涂机器人及其控制方法和装置及存储介质
CN117565074A (zh) 一种建筑低碳运行管理机器人及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872661

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20872661

Country of ref document: EP

Kind code of ref document: A1