WO2021062971A1 - 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用 - Google Patents

一种结合三维打印模板和发泡法制备的陶瓷支架及其应用 Download PDF

Info

Publication number
WO2021062971A1
WO2021062971A1 PCT/CN2020/073613 CN2020073613W WO2021062971A1 WO 2021062971 A1 WO2021062971 A1 WO 2021062971A1 CN 2020073613 W CN2020073613 W CN 2020073613W WO 2021062971 A1 WO2021062971 A1 WO 2021062971A1
Authority
WO
WIPO (PCT)
Prior art keywords
template
bioceramic
porous
dimensional printing
combining
Prior art date
Application number
PCT/CN2020/073613
Other languages
English (en)
French (fr)
Inventor
何福坡
倪培燊
邓欣
Original Assignee
季华实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 季华实验室 filed Critical 季华实验室
Publication of WO2021062971A1 publication Critical patent/WO2021062971A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Definitions

  • the invention relates to the technical field of biological materials, in particular to a porous bioceramic stent prepared by combining a three-dimensional printing template and a foaming method and its application.
  • the porous structure of phosphate, silicate, calcium carbonate and other bioceramic scaffolds have good biocompatibility and bone conductivity, can be degraded and absorbed, have a wide range of sources, and are low in cost, so they are widely used as bone graft materials.
  • the pore structure of the porous bioceramic scaffold plays a vital role in the effect of bone repair.
  • the higher porosity can provide a larger space for the new generation of bone tissue to grow in, which is beneficial to promote the degradation of the material and accelerate the repair and reconstruction of the defect.
  • the large pore size of the porous scaffold is larger than 50 ⁇ m to ensure the ingrowth of bone tissue.
  • the high three-dimensional connectivity is conducive to the transmission of oxygen and nutrients, and promotes the rapid growth of blood vessels, which in turn promotes the growth of new bone tissue into the center of the material, reducing the risk of osteonecrosis.
  • the three-dimensional printing method can obtain a porous bioceramic scaffold with controllable porosity and pore size and complete three-dimensional interconnection.
  • Extrusion type 3D printing technology has high efficiency and simple steps, so it is most commonly used to prepare porous bioceramic scaffolds.
  • the porous bioceramic scaffold is finally obtained.
  • the porous bioceramic scaffold prepared by three-dimensional printing technology has a convex surface on the macroporous surface, which is not conducive to the growth of bone tissue.
  • a three-dimensional connected porous polymer template is prepared by a three-dimensional printing technology, and then a ceramic slurry is poured. After the polymer template is removed, a porous bioceramic scaffold with concave pore surfaces can be obtained.
  • the porous bioceramic scaffold prepared by this method usually has a low porosity of the concave macropores, which is not conducive to the rapid growth of new bone tissue, and it is difficult to achieve a better bone defect repair effect.
  • the present invention provides a porous bioceramic scaffold prepared by combining a three-dimensional printing template and a foaming method.
  • the porous bioceramic scaffold prepared by the present invention has concave macropores, high porosity, and good three-dimensional connectivity. The problem of the low porosity of the concave macropores of the existing bioceramic scaffolds.
  • the present invention provides a ceramic stent prepared by combining a three-dimensional printing template and a foaming method.
  • the preparation method includes the following specific steps:
  • ovalbumin as a foaming agent, dissolving the ovalbumin in deionized water to prepare a foaming agent solution, then adding the bioceramic powder to the foaming agent solution, ball milling and mixing to obtain a bioceramic slurry;
  • the sample is demolded, and the excess bioceramics on the surface of the porous polymer template is removed, thereby exposing the surface of the porous polymer template; the sample is degreased and sintered to obtain a porous bioceramic scaffold.
  • ovalbumin as a foaming agent is heated at a certain temperature to solidify, so the bioceramic slurry inside the porous polymer template will be solidified and formed within a certain temperature range; ovalbumin and macromolecules are removed by degreasing After sintering the template, the obtained porous bioceramic scaffold has concave pipe holes and spherical holes.
  • the materials selected for the porous polymer template in S1 are polycaprolactone (PCL), photosensitive resin, polyurethane (PU), polycarbonate (PC), polyhydroxyalkanoate (PHA), polylactic acid ( PLA), one of polylactic acid-glycolic acid copolymer (PLGA);
  • the bioceramic powder is one of phosphate ceramic powder, silicate ceramic powder, calcium carbonate ceramic powder, and calcium sulfate ceramic powder Or multiple. More preferably, the bioceramic powder is hydroxyapatite calcium phosphate powder, ⁇ -tricalcium phosphate powder, calcium silicate powder, magnesia feldspar powder, calcium carbonate powder, and a mixed powder of calcium phosphate and calcium silicate.
  • the three-dimensional printing technology mentioned in S1 is any one of light curing molding and fused deposition printing.
  • the amount of ovalbumin in the ovalbumin foaming agent solution described in S2 relative to water is 1-30 wt.%; the bioceramic powder in the bioceramic slurry is relative to the ovalbumin
  • the mass volume ratio of the solution is 0.5 ⁇ 2.25 g/mL.
  • the temperature of the water bath for heating and curing described in S3 is 70-100°C.
  • the temperature of degreasing described in S4 is 450-700°C, and the time is 1-60 h.
  • the sintering temperature described in S4 is 650 ⁇ 1350°C, and the time is 0.5 ⁇ 6 h.
  • the porosity of the porous bioceramic scaffold in S4 is 55%-85%.
  • the porous bioceramic scaffold in S4 includes tubular macropores and spherical pores; the distance between adjacent tubular macropores is 100-3000 ⁇ m; the pore diameter of the tubular macropores is 100-2000 ⁇ m, and the spherical The pore diameter of the macropore is 10 ⁇ 2000 ⁇ m.
  • the porosity and pore size of the porous bioceramic scaffold provided by the present invention can be adjusted by changing the structure of the polymer template, the concentration of ovalbumin, the solid content of the bioceramic slurry, and the sintering process.
  • the porous bioceramic scaffold prepared by the invention can be used for filling and repairing bone defects in non-weight-bearing parts such as maxillofacial region, skull and cancellous bone parts, and repairing bone defects in partial load-bearing parts such as radius, ulna, spine, jaw and femur. .
  • the porous bioceramic stent prepared by the combination of a three-dimensional printing template and a foaming method has high porosity, three-dimensional interconnection of pores, and concave pipe-shaped and spherical large pores.
  • the high porosity of the porous bioceramic scaffold of the present invention is beneficial to material degradation, the concave large pores are beneficial to the regeneration of bone tissue, and the three-dimensional connectivity is beneficial to blood vessel ingrowth, thereby promoting efficient repair of bone defects.
  • This embodiment is a method for preparing a porous magnesia feldspar bioceramic scaffold by combining a three-dimensional printing template and a foaming method.
  • the photosensitive resin is selected as the porous polymer template material, and the magnesia feldspar powder is selected as the bioceramic powder.
  • the implementation steps include:
  • the sample is demolded, and the bioceramic on the surface of the porous photosensitive resin template is cut off, thereby exposing the surface of the porous photosensitive resin template.
  • the sample was placed in a high-temperature furnace and vacuum degreasing at 550°C for 60 hours to remove the porous photosensitive resin template, and then air sintered at 1150°C for 4 hours to obtain a porous magnesia feldspar bioceramic scaffold.
  • the pore diameter of the pipe-shaped macropores is about 500 ⁇ m
  • the distance between adjacent pipe-shaped macropores is 3000 ⁇ m
  • the pore diameter of the spherical macropores is 10 ⁇ 2000 ⁇ m.
  • the mead drainage method measured the porosity of the hydroxyapatite calcium phosphate bioceramic scaffold to be 85%.
  • This embodiment is a method for preparing a porous hydroxyapatite calcium phosphate bioceramic scaffold by combining a three-dimensional printing template and a foaming method.
  • the photosensitive resin is selected as the porous polymer template material, and calcium hydroxyapatite phosphate is selected as the bioceramic powder.
  • the implementation steps include:
  • the sample is demolded, and the bioceramic on the surface of the porous photosensitive resin template is cut off, thereby exposing the surface of the porous photosensitive resin template.
  • the sample was placed in a high temperature furnace and vacuum degreasing at 700°C for 1 hour to remove the porous photosensitive resin template, followed by air sintering at 1350°C for 3 hours to obtain a porous hydroxyapatite calcium phosphate bioceramic scaffold.
  • the three-dimensional connection of the hydroxyapatite calcium phosphate bioceramic scaffold was observed by scanning electron microscope.
  • the pore diameter of the pipe-shaped macropore is about 550 ⁇ m
  • the distance between adjacent pipe-shaped macropores is 1000 ⁇ m
  • the pore diameter of the spherical macropore is 100 ⁇ 500
  • the porosity of the hydroxyapatite calcium phosphate bioceramic scaffold measured by Archimedes drainage method is 72%.
  • This embodiment is a method for preparing a porous ⁇ -tricalcium phosphate bioceramic scaffold by combining a three-dimensional printing template and a foaming method.
  • the implementation steps include:
  • the three-dimensional template of the porous template is imported into the fused deposition three-dimensional printing device, a three-dimensional connected porous PCL template is prepared by three-dimensional printing, and then the porous PCL template is placed in the mold.
  • the sample is demolded, and the bioceramic on the surface of the porous PCL template is cut off, thereby exposing the surface of the porous PCL template.
  • the sample was placed in a high-temperature furnace and vacuum degreasing at 600°C for 16 hours to remove the porous PCL template, and then air sintered at 1200°C for 4 hours to obtain a porous ⁇ -tricalcium phosphate bioceramic scaffold.
  • the porous ⁇ -tricalcium phosphate bioceramic scaffolds are three-dimensionally connected.
  • the pore diameter of the pipe-shaped macropores is about 600 ⁇ m
  • the distance between adjacent pipe-shaped macropores is 800 ⁇ m
  • the pore diameter of the spherical macropores is 50 ⁇ 300.
  • the porosity of the ⁇ -tricalcium phosphate bioceramic scaffold measured by Archimedes drainage method is 82%.
  • This embodiment is a method for preparing a porous calcium silicate bioceramic scaffold by combining a three-dimensional printing template and a foaming method.
  • the three-dimensional template of the porous template is imported into the fused deposition three-dimensional printing device, a three-dimensional connected porous PLGA template is prepared by three-dimensional printing, and then the porous PLGA template is placed in the mold.
  • the sample is demolded, and the bioceramic on the surface of the porous PLGA template is cut off, thereby exposing the surface of the porous PLGA template.
  • the sample was placed in a high-temperature furnace and vacuum degreasing at 600°C for 16 hours to remove the porous PLGA template, and then air sintered at 1100°C for 6 hours to obtain a porous calcium silicate bioceramic scaffold.
  • the pore diameter of the pipe-shaped macropores is about 100 ⁇ m, the distance between adjacent pipe-shaped macropores is 3000 ⁇ m, and the pore diameter of the spherical macropores is 50 ⁇ 100. Between ⁇ m, the porosity of the hydroxyapatite calcium phosphate bioceramic scaffold measured by Archimedes drainage method is 55%.
  • This embodiment is a method for preparing a porous magnesia feldspar bioceramic scaffold by combining a three-dimensional printing template and a foaming method.
  • the photosensitive resin is selected as the porous polymer template material, and the magnesia feldspar powder is selected as the bioceramic powder.
  • the implementation steps include:
  • the sample is demolded, and the bioceramic on the surface of the porous photosensitive resin template is cut off, thereby exposing the surface of the porous photosensitive resin template.
  • the sample was placed in a high-temperature furnace and vacuum degreasing at 550°C for 60 hours to remove the porous photosensitive resin template, and then air sintered at 1150°C for 4 hours to obtain a porous magnesia feldspar bioceramic scaffold.
  • the diameter of the pipe-shaped macropore is about 500 ⁇ m
  • the distance between adjacent pipe-shaped macropores is 3000 ⁇ m
  • the diameter of the spherical macropore is 10 ⁇ 2000 ⁇ m
  • the porosity of the hydroxyapatite calcium phosphate bioceramic scaffold measured by Archimedes drainage method is 85%.
  • This embodiment is a method for preparing a porous calcium carbonate bioceramic scaffold by combining a three-dimensional printing template and a foaming method.
  • the implementation steps include:
  • the sample is demolded, and the bioceramic on the surface of the porous PC template is cut, thereby exposing the surface of the porous PC template.
  • the sample was placed in a high-temperature furnace and vacuum-degreased at 450°C for 16 hours to remove the porous PC template, and then air-sintered at 650°C for 0.5 hours to obtain a porous calcium carbonate bioceramic scaffold.
  • the pore diameter of the pipe-shaped macropores is about 300 ⁇ m
  • the distance between adjacent pipe-shaped macropores is 100 ⁇ m
  • the pore diameter of the spherical macropores is 10 ⁇ 50.
  • the porosity of the porous calcium carbonate bioceramic scaffold measured by Archimedes drainage method is 65%.
  • This embodiment is a method for preparing a porous calcium silicate/calcium carbonate bioceramic scaffold by combining a three-dimensional printing template and a foaming method.
  • the sample is demolded, and the bioceramic on the surface of the porous PCL template is cut off, thereby exposing the surface of the porous PCL template.
  • the sample was placed in a high-temperature furnace, vacuum degreasing at 600 °C for 16 hours to remove the porous PCL template, and then air sintered at 850 °C in carbon dioxide atmosphere (pressure 0.2 MPa) for 1.5 hours to obtain calcium polysilicate/ Calcium carbonate bioceramic scaffold.
  • the pore diameter of the pipe-shaped macropore is about 1000 ⁇ m
  • the distance between adjacent pipe-shaped macropores is 900 ⁇ m
  • the pore diameter of the spherical macropore is 50 ⁇ 300 ⁇ m.
  • the porosity of the calcium carbonate bioceramic scaffold is 65% measured by Archimedes drainage method.
  • the high porosity of the porous bioceramic scaffold of the present invention is conducive to material degradation, the concave large pores are conducive to the regeneration of bone tissue, and the three-dimensional connectivity is conducive to blood vessel ingrowth, so it can promote the efficient repair of bone defects and is suitable for clinical use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Dermatology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种结合三维打印模板和发泡法制备的陶瓷支架,其制备方法包括利用三维打印技术制备三维连通的多孔高分子模板;将生物陶瓷粉末加入到发泡剂溶液中,配制生物陶瓷浆料;将多孔高分子模板放在模具中,然后倒入生物陶瓷浆料,然后水浴加热使其固化成型,接着烘干;将样品脱模,然后脱脂、烧结,获得多孔生物陶瓷支架。

Description

一种结合三维打印模板和发泡法制备的陶瓷支架及其应用 技术领域
本发明涉及生物材料技术领域,尤其涉及一种结合三维打印模板和发泡法制备的多孔生物陶瓷支架及其应用。
背景技术
临床上治疗骨缺损通常需要进行骨移植。多孔结构的磷酸盐、硅酸盐、碳酸钙等生物陶瓷支架的生物相容性和骨传导性好、可降解被吸收、来源广泛、成本较低,因此被广泛用做骨移植材料。多孔生物陶瓷支架的孔结构对骨修复效果起着至关重要的作用。较高的孔隙率可以提供较大的空间使新生代骨组织长入,有利于促进材料的降解,并加速缺损的修复和重建。多孔支架的大孔尺寸大于50 μm才能保证骨组织长入。高度的三维连通性有利于氧气和营养物质传输,促进血管迅速长入,进而促进新生骨组织长入材料的中心部位,减少骨坏死的风险。
此外,研究表明,凹面孔的成骨效率明显高于凸面孔。通过三维打印法可以获得孔隙率和孔径可控,完全三维连通的多孔生物陶瓷支架。挤出类型的三维打印技术效率高,步骤简单,所以最常用于制备多孔生物陶瓷支架。
技术问题
三维打印的多孔陶瓷坯体经过脱脂、烧结后,最后获得多孔生物陶瓷支架。然而,三维打印技术制备的多孔生物陶瓷支架的大孔表面为凸面,不利于骨组织的生长。通过三维打印技术制备三维连通的多孔高分子模板,然后灌注陶瓷浆料,将高分子模板除去后,可以获得孔表面为凹面的多孔生物陶瓷支架。但是,这种方法制备的多孔生物陶瓷支架的凹面大孔的孔隙率通常较低,不利于新生骨组织的快速长入,难以达到较好的骨缺损修复效果。
技术解决方案
有鉴于此,本发明提供了一种结合三维打印模板和发泡法制备的多孔生物陶瓷支架,本发明制备的多孔生物陶瓷支架具有凹面的大孔、孔隙率高、三维连通性好,解决了现有的生物陶瓷支架的凹面大孔的孔隙率偏低的问题。
本发明提供了一种结合三维打印模板和发泡法制备的陶瓷支架,其制备方法包括以下具体步骤:
S1.利用三维打印技术制备三维连通的多孔高分子模板,然后将多孔高分子模板放在模具中;
S2.以卵清蛋白作为发泡剂,将卵清蛋白溶解于去离子水中,配制发泡剂溶液,然后将生物陶瓷粉末加入到发泡剂溶液中,球磨混合,获得生物陶瓷浆料;
S3.将生物陶瓷浆料倒入到模具中,使浆料充满高分子模板的多孔结构,然后水浴加热使其固化成型,接着烘干;
S4.将样品脱模,切除多孔高分子模板表面多余的生物陶瓷,从而暴露出多孔高分子模板的表面;将样品进行脱脂、烧结,获得多孔生物陶瓷支架。
本发明中,以作为发泡剂的卵清蛋白在一定温度下加热会固化,所以多孔高分子模板内部的生物陶瓷浆料在一定温度范围内会固化成型;通过脱脂除去卵清蛋白和高分子模板,再进行烧结后,获得的多孔生物陶瓷支架具有凹形的管道孔和球形孔。
    进一步的,S1中所述多孔高分子模板选用的材料为聚己内酯(PCL)、光敏树脂、聚氨酯(PU)、聚碳酸酯(PC)、聚羟基脂肪酸酯(PHA)、聚乳酸(PLA)、聚乳酸-乙二醇酸共聚物(PLGA)中的一种;所述生物陶瓷粉末为磷酸盐陶瓷粉末、硅酸盐陶瓷粉末、碳酸钙陶瓷粉末、硫酸钙陶瓷粉末中的一种或多种。更优选的,所述生物陶瓷粉末为羟基磷灰石磷酸钙粉末、β-磷酸三钙粉末、硅酸钙粉末、镁黄长石粉末、碳酸钙粉末以及磷酸钙和硅酸钙的混合粉末。
进一步的,S1中所述三维打印技术为光固化成型、熔融沉积打印中的任一种。
    进一步的,S2中所述卵清蛋白发泡剂溶液中的卵清蛋白相对于水的加入量为1~30 wt.%;所述的生物陶瓷浆料中的生物陶瓷粉末相对于卵清蛋白溶液的质量体积比为0.5~2.25 g/mL。
    进一步的,S3中所述的水浴加热固化成型的温度为70~100℃。
进一步的,S4中所述脱脂的温度为450~700℃,时间为1~60 h。
进一步的,S4中所述烧结的温度为650~1350℃,时间为0.5~6 h。
进一步的,S4中所述多孔生物陶瓷支架的孔隙率为55%~85%。
进一步的,S4中所述多孔生物陶瓷支架包括管状大孔和球形孔;相邻所述管状大孔的间距为100~3000 μm;所述管状大孔的孔径为100~2000 μm,所述球形大孔的孔径为10~2000 μm。
 
有益效果
本发明提供的多孔生物陶瓷支架的孔隙率和孔径可以通过改变高分子模板的结构、卵清蛋白浓度、生物陶瓷浆料的固相含量和烧结工艺进行调控。
本发明制备的多孔生物陶瓷支架可以应用在颌面部、颅骨、松质骨部位等非承重部位骨缺损的填充修复,以及桡骨、尺骨、脊柱、颌骨、股骨等部分承重部位的骨缺损修复。
本发明结合三维打印模板和发泡法制备的多孔生物陶瓷支架,其孔隙率高,且孔隙三维连通,具有凹形的管道状和球状大孔。本发明多孔生物陶瓷支架的高孔隙率有利于材料降解,凹形大孔有利于骨组织的再生、三维连通性有利于血管长入,因此可以促进骨缺损的高效修复。
本发明的最佳实施方式
本实施例为结合三维打印模板和发泡法制备多孔镁黄长石生物陶瓷支架的方法。
选用光敏树脂作为多孔高分子模板材料,选用镁黄长石粉末作为生物陶瓷粉末,实施步骤包括:
S1.将多孔模板的三维模板导入到光固化成型设备上,通过三维打印制得三维连通的多孔光敏树脂模板,然后将多孔光敏树脂模板放到模具中。
S2.配制30 wt%卵清蛋白溶液,然后将镁黄长石粉末和卵清蛋白溶液球磨混合,获得镁黄长石生物陶瓷浆料。浆料中生物陶瓷粉末与卵清蛋白溶液的质量体积比为0.5 g/mL。
S3.将镁黄长石生物陶瓷浆料倒入到模具中,使生物陶瓷浆料充满高分子模板的内部大孔,然后将装有生物陶瓷浆料和光敏树脂模板的模具在70 ℃下水浴加热,使模板里的浆料完全固化,接着在50℃的烘箱中烘干。
S4.将样品脱模,切除多孔光敏树脂模板表面的生物陶瓷,从而暴露出多孔光敏树脂模板的表面。将样品置于高温炉中,在550 ℃下真空脱脂60小时,从而除去多孔光敏树脂模板,然后在1150℃下空气烧结4小时,从而获得多孔镁黄长石生物陶瓷支架。
使用扫描电镜观察镁黄长石生物陶瓷支架三维连通,管道状大孔的孔径约为500 μm,相邻的管道状大孔的间距为3000 μm,球状大孔的孔径在10~2000 μm,采用阿基米德排水法测得羟基磷灰石磷酸钙生物陶瓷支架的孔隙率为85%。
本发明的实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
本实施例为结合三维打印模板和发泡法制备多孔羟基磷灰石磷酸钙生物陶瓷支架的方法。
选用光敏树脂作为多孔高分子模板材料,选用羟基磷灰石磷酸钙作为生物陶瓷粉末,实施步骤包括:
S1.将多孔模板的三维模板导入到光固化成型三维打印机,打印出三维连通的多孔光敏树脂模板,然后将多孔光敏树脂模板放到模具中。
S2.配制10 wt%卵清蛋白溶液,然后将羟基磷灰石磷酸钙粉末和卵清蛋白溶液球磨混合,获得羟基磷灰石磷酸钙生物陶瓷浆料。浆料中生物陶瓷粉末与卵清蛋白溶液的质量体积比为1.5 g/mL。
S3.将羟基磷灰石磷酸钙生物陶瓷浆料倒入到模具中,使生物陶瓷浆料充满高分子模板的内部大孔,然后将装有生物陶瓷浆料和高分子模板的模具在80 ℃下水浴加热,使模板里的浆料完全固化,接着50℃的烘箱中烘干。
S4.将样品脱模,切除多孔光敏树脂模板表面的生物陶瓷,从而暴露出多孔光敏树脂模板的表面。将样品置于高温炉中,在700 ℃下真空脱脂1小时,从而除去多孔光敏树脂模板,接着在1350℃下空气烧结3小时,从而获得多孔羟基磷灰石磷酸钙生物陶瓷支架。
使用扫描电镜观察得羟基磷灰石磷酸钙生物陶瓷支架的三维连通,管道状大孔的孔径约为550 μm,相邻的管道状大孔的间距为1000 μm,球状大孔的孔径在100~500 μm之间,采用阿基米德排水法测得羟基磷灰石磷酸钙生物陶瓷支架的孔隙率为72%。
 
实施例2
本实施例为结合三维打印模板和发泡法制备多孔β-磷酸三钙生物陶瓷支架的方法。
选用PCL作为多孔高分子模板材料,选用β-磷酸三钙作为生物陶瓷粉末,实施步骤包括:
S1.将多孔模板的三维模板导入到熔融沉积三维打印设备上,通过三维打印制得三维连通的多孔PCL模板,然后将多孔PCL模板放到模具中。
S2.配制20 wt%卵清蛋白溶液,然后将β-磷酸三钙粉末和卵清蛋白溶液球磨混合,获得β-磷酸三钙生物陶瓷浆料。浆料中生物陶瓷粉末与卵清蛋白溶液的质量体积比为1 g/mL。
S3.将β-磷酸三钙生物陶瓷浆料倒入模具中,使生物陶瓷浆料充满高分子模板的内部大孔,然后将装有生物陶瓷浆料和高分子模板的模具在85℃下水浴加热,使模板里的浆料完全固化,接着在50 ℃的烘箱中烘干。
S4.将样品脱模,切除多孔PCL模板表面的生物陶瓷,从而暴露出多孔PCL模板的表面。将样品置于高温炉中,在600 ℃下真空脱脂16小时,从而除去多孔PCL模板,然后在1200℃下空气烧结4小时,从而获得多孔β-磷酸三钙生物陶瓷支架。
使用扫描电镜观察得多孔β-磷酸三钙生物陶瓷支架三维连通,管道状大孔的孔径约为600 μm,相邻的管道状大孔的间距为800 μm,球状大孔的孔径在50~300 μm之间,采用阿基米德排水法测得β-磷酸三钙生物陶瓷支架的孔隙率为82%。
 
实施例3
本实施例为结合三维打印模板和发泡法制备多孔硅酸钙生物陶瓷支架的方法。
选用PLGA作为多孔高分子模板材料,选用硅酸钙粉末作为生物陶瓷粉,实施步骤包括:
S1.将多孔模板的三维模板导入到熔融沉积三维打印设备上,通过三维打印制得三维连通的多孔PLGA模板,然后将多孔PLGA模板放到模具中。
S2.配制1 wt%卵清蛋白溶液,然后将硅酸钙粉末和卵清蛋白溶液球磨混合,获得硅酸钙生物陶瓷浆料。浆料中生物陶瓷粉末与卵清蛋白溶液的质量体积比为2.5 g/mL。
S3.将硅酸钙生物陶瓷浆料倒入到模具中,使生物陶瓷浆料充满高分子模板的内部大孔,然后将装有生物陶瓷浆料和高分子模板的模具在100 ℃下水浴加热,使模板里的浆料完全固化,接着在50℃的烘箱中烘干。
S4.将样品脱模,切除多孔PLGA模板表面的生物陶瓷,从而暴露出多孔PLGA模板的表面。将样品置于高温炉中,在600 ℃下真空脱脂16小时,从而除去多孔PLGA模板,然后在1100℃下空气烧结6小时,从而获得多孔硅酸钙生物陶瓷支架。
使用扫描电镜观察多孔硅酸钙生物陶瓷支架三维连通,管道状大孔的孔径约为100 μm,相邻的管道状大孔的间距为3000 μm,球状大孔的孔径在50~100 μm之间,采用阿基米德排水法测得羟基磷灰石磷酸钙生物陶瓷支架的孔隙率为55%。
 
实施例4
本实施例为结合三维打印模板和发泡法制备多孔镁黄长石生物陶瓷支架的方法。
选用光敏树脂作为多孔高分子模板材料,选用镁黄长石粉末作为生物陶瓷粉末,实施步骤包括:
S1.将多孔模板的三维模板导入到光固化成型设备上,通过三维打印制得三维连通的多孔光敏树脂模板,然后将多孔光敏树脂模板放到模具中。
S2.配制30 wt%卵清蛋白溶液,然后将镁黄长石粉末和卵清蛋白溶液球磨混合,获得镁黄长石生物陶瓷浆料。浆料中生物陶瓷粉末与卵清蛋白溶液的质量体积比为0.5 g/mL。
S3.将镁黄长石生物陶瓷浆料倒入到模具中,使生物陶瓷浆料充满高分子模板的内部大孔,然后将装有生物陶瓷浆料和光敏树脂模板的模具在70 ℃下水浴加热,使模板里的浆料完全固化,接着在50℃的烘箱中烘干。
S4.将样品脱模,切除多孔光敏树脂模板表面的生物陶瓷,从而暴露出多孔光敏树脂模板的表面。将样品置于高温炉中,在550 ℃下真空脱脂60小时,从而除去多孔光敏树脂模板,然后在1150℃下空气烧结4小时,从而获得多孔镁黄长石生物陶瓷支架。
使用扫描电镜观察镁黄长石生物陶瓷支架三维连通,管道状大孔的孔径约为500 μm,相邻的管道状大孔的间距为3000 μm,球状大孔的孔径在10~2000 μm,采用阿基米德排水法测得羟基磷灰石磷酸钙生物陶瓷支架的孔隙率为85%。
 
实施例5
本实施例为结合三维打印模板和发泡法制备多孔碳酸钙生物陶瓷支架的方法。
选用PC作为多孔高分子模板材料,选用碳酸钙粉末作为生物陶瓷粉末,实施步骤包括:
S1.将多孔模板的三维模板导入到熔融沉积设备上,通过三维打印制得三维连通的多孔PC模板,然后将多孔PC模板放到模具中。
S2.配制5 wt%卵清蛋白溶液,然后将碳酸钙粉末和卵清蛋白溶液球磨混合,获得碳酸钙生物陶瓷浆料。浆料中生物陶瓷粉末与卵清蛋白溶液的质量体积比为1.5 g/mL。
S3.将镁碳酸钙生物陶瓷浆料倒入到模具中,使生物陶瓷浆料充满高分子模板的内部大孔,然后将装有生物陶瓷浆料和PC模板的模具在70 ℃下水浴加热,使模板里的浆料完全固化,接着在50℃的烘箱中烘干。
S4.将样品脱模,切除多孔PC模板表面的生物陶瓷,从而暴露出多孔PC模板的表面。将样品置于高温炉中,在450 ℃下真空脱脂16小时,从而除去多孔PC模板,然后在650℃下空气烧结0.5小时,从而获得多孔碳酸钙生物陶瓷支架。
使用扫描电镜观察多孔碳酸钙生物陶瓷支架三维连通,管道状大孔的孔径约为300 μm,相邻的管道状大孔的间距为100 μm,球状大孔的孔径在10~50 μm,采用阿基米德排水法测得多孔碳酸钙生物陶瓷支架的孔隙率为65%。
 
实施例6
本实施例为结合三维打印模板和发泡法制备多孔硅酸钙/碳酸钙生物陶瓷支架的方法。
选用PCL作为多孔高分子模板材料,选用硅酸钙和碳酸钙的混合粉末作为生物陶瓷粉末,实施步骤包括:
S1.将多孔模板的三维模板导入到熔融沉积设备上,通过三维打印制得三维连通的多孔PCL模板,然后将多孔PCL模板放到模具中。
S2.配制6 wt%卵清蛋白溶液,然后将硅酸钙/碳酸钙粉末和卵清蛋白溶液球磨混合,获得硅酸钙/碳酸钙生物陶瓷浆料。硅酸钙和碳酸钙的质量比为1: 2。浆料中生物陶瓷粉末与卵清蛋白溶液的质量体积比为1.4 g/mL。
S3.将硅酸钙/碳酸钙生物陶瓷浆料倒入到模具中,使生物陶瓷浆料充满高分子模板的内部大孔,然后将装有生物陶瓷浆料和PCL模板的模具在100 ℃下水浴加热,使模板里的浆料完全固化,接着在50℃的烘箱中烘干。
S4.将样品脱模,切除多孔PCL模板表面的生物陶瓷,从而暴露出多孔PCL模板的表面。将样品置于高温炉中,在600 ℃下真空脱脂16小时,从而除去多孔PCL模板,然后在850℃下,二氧化碳气氛(压强为0.2 MPa)中空气烧结1.5小时,从而获得多硅酸钙/碳酸钙生物陶瓷支架。
使用扫描电镜观察硅酸钙/碳酸钙生物陶瓷支架三维连通,管道状大孔的孔径约为1000 μm,相邻的管道状大孔的间距为900 μm,球状大孔的孔径在50~300 μm,采用阿基米德排水法测得碳酸钙生物陶瓷支架的孔隙率为65%。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明多孔生物陶瓷支架的高孔隙率有利于材料降解,凹形大孔有利于骨组织的再生、三维连通性有利于血管长入,因此可以促进骨缺损的高效修复,适合临床使用。
 

Claims (10)

  1. 一种结合三维打印模板和发泡法制备的陶瓷支架,其特征在于,其制备方法包括以下具体步骤:
    S1.利用三维打印技术制备三维连通的多孔高分子模板,然后将多孔高分子模板放在模具中;
    S2.以卵清蛋白作为发泡剂,将卵清蛋白溶解于去离子水中,配制发泡剂溶液,然后将生物陶瓷粉末加入到发泡剂溶液中,球磨混合,获得生物陶瓷浆料;
    S3.将生物陶瓷浆料倒入到模具中,使浆料充满高分子模板的多孔结构,然后水浴加热使其固化成型,接着烘干;
    S4.将样品脱模,切除多孔高分子模板表面多余的生物陶瓷,从而暴露出多孔高分子模板的表面;将样品进行脱脂、烧结,获得多孔生物陶瓷支架。
  2. 根据权利要求1所述的结合三维打印模板和发泡法制备的陶瓷支架,其特征在于,S1中所述多孔高分子模板选用的材料为聚己内酯、光敏树脂、聚氨酯、聚碳酸酯、聚羟基脂肪酸酯、聚乳酸、聚乳酸-乙二醇酸共聚物中的一种;所述生物陶瓷粉末为磷酸盐陶瓷粉末、硅酸盐陶瓷粉末、碳酸钙陶瓷粉末、硫酸钙陶瓷粉末中的一种或多种。
  3. 根据权利要求1所述的结合三维打印模板和发泡法制备的陶瓷支架,其特征在于,S1中所述三维打印技术为光固化成型、熔融沉积打印中的任一种。
  4. 根据权利要求1所述的结合三维打印模板和发泡法制备的陶瓷支架,其特征在于,S2中所述卵清蛋白发泡剂溶液中的卵清蛋白相对于水的加入量为1~30 wt.%;所述的生物陶瓷浆料中的生物陶瓷粉末相对于卵清蛋白溶液的质量体积比为0.5~2.25 g/mL。
  5. 根据权利要求1所述的结合三维打印模板和发泡法制备的陶瓷支架,其特征在于,S3中所述的水浴加热固化成型的温度为70~100℃。
  6. 根据权利要求1所述的结合三维打印模板和发泡法制备的陶瓷支架,其特征在于,S4中所述脱脂的温度为450~700℃,时间为1~60 h。
  7. 根据权利要求1所述的结合三维打印模板和发泡法制备的陶瓷支架,其特征在于,S4中所述烧结的温度为650~1350℃,时间为0.5~6 h。
  8. 根据权利要求1所述的结合三维打印模板和发泡法制备的陶瓷支架,其特征在于,S4中所述多孔生物陶瓷支架的孔隙率为55%~85%。
  9. 根据权利要求1所述的结合三维打印模板和发泡法制备的陶瓷支架,其特征在于,S4中所述多孔生物陶瓷支架包括管状大孔和球形孔;相邻所述管状大孔的间距为100~3000 μm;所述管状大孔的孔径为100~2000 μm,所述球形大孔的孔径为10~2000 μm。
  10. 根据权利要求1至9任意一项所述的结合三维打印模板和发泡法制备的陶瓷支架在骨缺损修复材料中的应用。
PCT/CN2020/073613 2019-09-30 2020-01-21 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用 WO2021062971A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910944364.8 2019-09-30
CN201910944364.8A CN110615676A (zh) 2019-09-30 2019-09-30 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用

Publications (1)

Publication Number Publication Date
WO2021062971A1 true WO2021062971A1 (zh) 2021-04-08

Family

ID=68925446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073613 WO2021062971A1 (zh) 2019-09-30 2020-01-21 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用

Country Status (2)

Country Link
CN (1) CN110615676A (zh)
WO (1) WO2021062971A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956803A (zh) * 2022-04-14 2022-08-30 四川大学 一种基于3d打印的骨诱导磷酸钙陶瓷及制备方法和应用
CN115724668A (zh) * 2021-09-01 2023-03-03 中国科学院金属研究所 一种具有泰森多边形特征的宏观梯度孔结构多孔陶瓷制备方法及应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110615676A (zh) * 2019-09-30 2019-12-27 季华实验室 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用
CN112408968B (zh) * 2020-11-13 2021-09-24 武汉大学 一种生物活性3d打印陶瓷及其制备方法
CN112759415A (zh) * 2020-12-31 2021-05-07 松山湖材料实验室 多孔陶瓷的制备工艺
CN115068693B (zh) * 2021-03-11 2024-04-12 东北林业大学 一种骨修复发泡复合材料及其制备方法
CN115120779B (zh) * 2021-03-23 2023-11-03 吴东蔚 一种可用于3d打印的水凝胶泡沫材料及其制备方法与应用
CN113561295B (zh) * 2021-08-13 2022-07-22 季华实验室 一种消失模芯的制备方法、消失模具和应用
CN115724667A (zh) * 2021-09-01 2023-03-03 中国科学院金属研究所 一种具有规则孔隙结构多孔氮化硅陶瓷的制备方法及应用
CN114988910A (zh) * 2022-05-19 2022-09-02 山东大学 一种梯度功能泡沫化陶瓷骨支架的3d打印方法
CN114751732B (zh) * 2022-06-14 2022-09-09 季华实验室 一种3d打印具有血管网络结构陶瓷材料的方法
CN116003138B (zh) * 2022-11-09 2023-12-08 福建星海通信科技有限公司 基于嵌入式直写3d打印的陶瓷微通道换热器制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792328A (zh) * 2010-03-22 2010-08-04 南京工业大学 多孔性料浆坯体的制备方法
CN103058706A (zh) * 2012-11-27 2013-04-24 中国人民解放军国防科学技术大学 蛋白发泡制备泡沫陶瓷吸声材料的方法
CN107117956A (zh) * 2017-04-05 2017-09-01 江苏大学 一种用于骨修复的多孔生物压电复合材料及其制备方法
CN110227178A (zh) * 2019-07-30 2019-09-13 广东工业大学 一种生物陶瓷支架及其应用
CN110615676A (zh) * 2019-09-30 2019-12-27 季华实验室 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107160534A (zh) * 2017-05-17 2017-09-15 广东工业大学 一种三维打印生物陶瓷复合支架及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792328A (zh) * 2010-03-22 2010-08-04 南京工业大学 多孔性料浆坯体的制备方法
CN103058706A (zh) * 2012-11-27 2013-04-24 中国人民解放军国防科学技术大学 蛋白发泡制备泡沫陶瓷吸声材料的方法
CN107117956A (zh) * 2017-04-05 2017-09-01 江苏大学 一种用于骨修复的多孔生物压电复合材料及其制备方法
CN110227178A (zh) * 2019-07-30 2019-09-13 广东工业大学 一种生物陶瓷支架及其应用
CN110615676A (zh) * 2019-09-30 2019-12-27 季华实验室 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115724668A (zh) * 2021-09-01 2023-03-03 中国科学院金属研究所 一种具有泰森多边形特征的宏观梯度孔结构多孔陶瓷制备方法及应用
CN114956803A (zh) * 2022-04-14 2022-08-30 四川大学 一种基于3d打印的骨诱导磷酸钙陶瓷及制备方法和应用
CN114956803B (zh) * 2022-04-14 2023-07-04 四川大学 一种基于3d打印的骨诱导磷酸钙陶瓷及制备方法和应用

Also Published As

Publication number Publication date
CN110615676A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2021062971A1 (zh) 一种结合三维打印模板和发泡法制备的陶瓷支架及其应用
Song et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology
Du et al. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview
Marques et al. Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production
Sánchez-Salcedo et al. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering
CA2417895C (en) Porous synthetic bone graft and method of manufacture thereof
Rainer et al. Fabrication of bioactive glass–ceramic foams mimicking human bone portions for regenerative medicine
Li et al. Novel method to manufacture porous hydroxyapatite by dual‐phase mixing
Li et al. Fabrication of porous beta-tricalcium phosphate with microchannel and customized geometry based on gel-casting and rapid prototyping
CN111803715B (zh) 具有核壳结构的可降解人工骨颗粒及其制备方法
WO2007128192A1 (fr) Biocéramique médicale poreuse du type renforcé
CN112898011B (zh) 一种基于光固化三维打印的无序多孔生物陶瓷支架及其制备方法与应用
Li et al. Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and indirect stereolithography techniques
Abdurrahim et al. Recent progress on the development of porous bioactive calcium phosphate for biomedical applications
CN108348637B (zh) 由经天然结构的生物形态转变获得的活性羟基磷灰石制成的大型3d多孔支架及其获得工艺
Zhang et al. Digital light processing of β-tricalcium phosphate bioceramic scaffolds with controllable porous structures for patient specific craniomaxillofacial bone reconstruction
Chanes-Cuevas et al. Macro-, micro-and mesoporous materials for tissue engineering applications.
Zhang et al. Fabrication and properties of porous β-tricalcium phosphate ceramics prepared using a double slip-casting method using slips with different viscosities
Mohammed Mohammed et al. A comprehensive review of the effects of porosity and macro-and micropore formations in porous β-TCP scaffolds on cell responses
Mallick et al. 3D bioceramic foams for bone tissue engineering
EP2933241A1 (en) Method for producing a porous calcium polyphosphate structure
Kumawat et al. Rationally designed biomimetic bone scaffolds with hierarchical porous-architecture: Microstructure and mechanical performance
Sa et al. Fabrication and evaluation of 3D β-TCP scaffold by novel direct-write assembly method
Yang et al. Fabrication of β-TCP scaffold with pre-designed internal pore architecture by rapid prototyping of mask projection stereolithography
Swain Processing of porous hydroxyapatite scaffold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873223

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873223

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20873223

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20873223

Country of ref document: EP

Kind code of ref document: A1