WO2021060617A1 - 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드 - Google Patents

폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드 Download PDF

Info

Publication number
WO2021060617A1
WO2021060617A1 PCT/KR2019/015411 KR2019015411W WO2021060617A1 WO 2021060617 A1 WO2021060617 A1 WO 2021060617A1 KR 2019015411 W KR2019015411 W KR 2019015411W WO 2021060617 A1 WO2021060617 A1 WO 2021060617A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
acid composition
monomer
acid resin
fluorine
Prior art date
Application number
PCT/KR2019/015411
Other languages
English (en)
French (fr)
Inventor
황인환
이익상
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Publication of WO2021060617A1 publication Critical patent/WO2021060617A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a polyamic acid composition, a method of preparing the polyamic acid composition, and a polyimide comprising the polyamic acid composition.
  • a polyimide (PI) resin is a high heat-resistant resin prepared by solution polymerization of an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative, followed by imidization at a high temperature.
  • Polyimide resin is an insoluble, infusible, ultra-high heat-resistant resin, and is used in the fields of electric, electronic, automobile and aerospace industries due to its high glass transition temperature, excellent heat oxidation resistance, heat resistance, radiation resistance, low temperature characteristics, chemical resistance and electrical properties. It is used in various forms such as films, resins, molded parts, adhesives, and insulators. In particular, as a material for the electronics industry, its use is expanding into interlayer insulating films of semiconductor chips due to its excellent insulation, thermal and chemical stability.
  • Van der Waals is prepared using an aromatic dianhydride monomer or an aromatic amine monomer containing a fluorine substituent having a small radius, a large electronegativity and a large binding energy between heterogeneous elements. It has been found that polyimide exhibits a low dielectric constant. It is known that the use of 4,4'-(hexafluoroisopropylidene)bis(phthalic acid) (hereinafter referred to as 6FDA), a representative fluorinated monomer, can effectively lower the dielectric constant of polyimide.
  • 6FDA 4,4'-(hexafluoroisopropylidene)bis(phthalic acid)
  • the polyimide produced due to the unique flexible structure of 6FDA has a high coefficient of thermal expansion, resulting in poor heat resistance and poor adhesion. Therefore, it is an important technical task to provide a polyimide that simultaneously satisfies dielectric properties, adhesion, heat resistance, and mechanical properties.
  • the present invention provides a polyamic acid composition capable of simultaneously realizing low dielectric loss tangent, high adhesion, mechanical properties at high temperature, and high thermal decomposition temperature, a method for preparing a polyamic acid composition, and a polyimide and polyimide film comprising a polyamic acid composition. .
  • a first polyamic acid resin containing a fluorine-based monomer provides a polyamic acid composition comprising a second polyamic acid resin containing a hydrophilic monomer, the dielectric loss tangent measured at a frequency of 1.0 GHz after curing is 0.004 or less, and a decomposition temperature of 1% by weight of 470°C or higher.
  • the present invention provides a method for preparing the above-described polyamic acid composition including mixing the first polyamic acid resin and the second polyamic acid resin.
  • the present invention provides a polyimide that is a cured product of the polyamic acid composition.
  • the present invention provides a polyimide film including the polyimide in a film or sheet form.
  • the present invention provides a polyamic acid composition capable of simultaneously realizing low dielectric constant, high adhesive force, and mechanical properties at high temperature, a method of preparing a polyamic acid composition, and a polyimide and a polyimide film including the polyamic acid composition.
  • the polyamic acid composition comprising the fluorine-based polyamic acid and the hydrophilic polyamic acid of the present invention can achieve high heat resistance and low dielectric constant, low dielectric loss tangent, low thermal expansion, moisture absorption resistance, and high insulation strength by the fluorine-based polyamic acid.
  • excellent mechanical strength and high interfacial adhesion can be realized by the hydrophilic polyamic acid.
  • dianhydride (dianhydride) is intended to include a precursor or derivative thereof, which may not be technically dianhydride, but nevertheless react with diamine to form polyamic acid. This polyamic acid can be converted back to polyimide.
  • diamine is intended to include precursors or derivatives thereof, which may not technically be diamines, but nevertheless will react with dianhydride to form polyamic acid, which polyamic acid is again It can be converted to polyimide.
  • the "hydrophilic" monomer may mean a compound containing a polar functional group in the molecular structure.
  • the polar functional group may be a functional group exhibiting polarity relative to carbon in addition to the amine group or anhydride group of the diamine monomer or dianhydride monomer.
  • the hydrophilic monomer of the present application may mean a compound including a carbonyl group, a sulfone group, an oxy group, an ester group, or an ether group in the molecular structure.
  • the present invention is a first polyamic acid resin containing a fluorine-based monomer; And it provides a polyamic acid composition comprising a second polyamic acid resin containing a hydrophilic monomer, the dielectric loss tangent (loss coefficient) measured at a frequency of 1.0 GHz after curing is 0.004 or less, and a decomposition temperature of 1% by weight of 470° C. or higher. .
  • the polyimide film of the present invention includes a first polyamic acid resin containing a fluorine-based diamine monomer and a fluorine-based dianhydride monomer as a polymerization unit; And by including a second polyamic acid resin containing a hydrophilic diamine monomer and a hydrophilic dianhydride monomer as a polymerized unit, low dielectric constant, low dielectric loss tangent (loss coefficient), mechanical properties including high adhesion, and excellent heat resistance at high temperatures at the same time. Can be implemented.
  • a process temperature of 400°C or higher can be formed, and at such a high temperature, even a polyimide having excellent heat resistance can be thermally decomposed, and a polyamic acid composition required to manufacture a polyimide
  • the thermal characteristics of the display substrate can be said to be a very important factor to implement.
  • That the first polyamic acid resin and the second polyamic acid resin contain the monomer as a polymerized unit means a state in which a polymerization reaction has occurred between each monomer before curing with polyimide.
  • the dielectric loss tangent measured at a frequency of 1.0 GHz after curing of the polyamic acid composition of the present invention may be 0.004 or less, for example, the upper limit of the dielectric loss tangent is 0.004, 0.0039, 0.0038, 0.0037, 0.0036, 0.0035, 0.0034, 0.0033, 0.0032 Alternatively, it may be 0.003 or less, and the lower limit may be 0.001 or 0.0025 or more. In this case, the decomposition temperature of 1% by weight of the polyamic acid composition after curing may be 470°C or higher.
  • the lower limit of the decomposition temperature may be 475°C, 480°C, 485°C, 490°C, 495°C, or 500°C or higher, and the upper limit may be 520°C or 550°C or lower.
  • the dielectric loss tangent loss coefficient
  • the desired adhesive property and thermal properties having a high thermal decomposition temperature can be realized.
  • the dielectric constant measured at a frequency of 1.0 GHz after curing of the polyamic acid composition of the present invention may be 3.0 or less, for example, the dielectric constant is 2.0 to 3.0, 2.0 to 2.9, 2.0 to 2.8, 2.0 to 2.7, 2.0 to 2.6, 2.0 To 2.5 or 2.5 to 3.0.
  • the breaking strength according to ASTM D882 may be 220 to 280 MPa, and the breaking elongation may be 15 to 25%.
  • the breaking strength is 220 to 275 MPa, 220 to 260 MPa, 220 to 255 MPa, 220 to 245 MPa, 220 to 240 MPa, 220 to 230 MPa, 235 to 242 MPa, 242 to 245 MPa or 270 to It may be 280 MPa, and the elongation at break may be 15 to 22%, 15 to 20%, 15 to 18%, 15 to 16%, 16 to 20%, 16 to 18%, or 18 to 20%.
  • the dielectric constant may be sufficiently lowered, and desired adhesive properties and mechanical properties may be realized.
  • the adhesion according to ASTM D3359 may be 0.1 N/cm or more.
  • the lower limit of the adhesion may be 0.11 N/cm, 0.13 N/cm, 0.15 N/cm, or 0.17 N/cm or more, and the upper limit may be 0.25 N/cm or 0.21 N/cm or less.
  • the present application may realize desired adhesive properties, mechanical properties, and thermal properties having a high thermal decomposition temperature while sufficiently lowering the dielectric loss tangent (loss coefficient) by adjusting the properties of the polyamic acid composition after curing.
  • the dielectric constant and dielectric loss tangent are obtained by curing the polyamic acid composition to prepare a polyimide film.
  • the polyimide film may be measured for a 1 GHz frequency using SPDR (Split Post Dielecric Resonator) technology.
  • the adhesive strength is after curing the polyamic acid composition to prepare a polyimide film
  • the adhesion to the substrate may be measured using a tensile tester according to ASTM D3359.
  • the breaking strength and breaking elongation may be obtained by curing the polyamic acid composition to prepare a polyimide film, and then measuring the polyimide film by the ASTM D882 method.
  • the thermal decomposition temperature is heated to 150°C at a rate of 10°C/min in a nitrogen atmosphere by curing the polyamic acid composition to cure the polyimide film using a thermogravimetric analysis equipment, and then isothermal for 30 minutes. Retained to remove moisture. Thereafter, the temperature at which the temperature is raised to 600° C. at a rate of 10° C./min may be measured to measure the temperature at which a weight loss of 1% occurs.
  • the polyamic acid composition according to the present application may include a first polyamic acid resin and a second polyamic acid resin in an amount of 35 to 75 parts by weight and 25 to 65 parts by weight, respectively.
  • the first polyamic acid resin is 38 to 73 parts by weight, 43 to 68 parts by weight, 48 to 63 parts by weight, 52 to 58 parts by weight, or 58 to 62 parts by weight may be included
  • the second polyamic acid resin is 28 to 63 parts by weight, 33 to 58 parts by weight Parts, 38 to 53 parts by weight, 38 to 43 parts by weight, or 42 to 48 parts by weight.
  • the content ratio is more specifically, based on 100 parts by weight of the first polyamic acid resin, the second polyamic acid resin is 30 to 180 parts by weight, 35 to 160 parts by weight, 40 to 145 parts by weight, 45 to 153 parts by weight Parts, 55 to 130 parts by weight, 60 to 100 parts by weight, 63 to 90 parts by weight, 65 to 80 parts by weight, or 70 to 90 parts by weight.
  • the present application may provide a polyamic acid composition capable of simultaneously realizing high adhesive strength and mechanical properties at high temperature with low dielectric constant by adjusting the weight ratio of each resin.
  • the first polyamic acid resin may be included in the range of 30 to 80% by weight in the total polyamic acid composition.
  • the first polyamic acid resin may be included in the range of 35 to 75% by weight, 40 to 70% by weight, 40 to 60% by weight, 50 to 60% by weight, or 55 to 70% by weight in the total polyamic acid composition.
  • the second polyamic acid resin may be included in the range of 20 to 70% by weight in the total polyamic acid composition.
  • the second polyamic acid resin is 25 to 65% by weight, 30 to 60% by weight, 30 to 50% by weight, 30 to 45% by weight, 40 to 60% by weight, 50 to 65% by weight of the total polyamic acid composition % Or 55 to 70% by weight.
  • the fluorine-based monomer may be included in the range of 25 to 75 mol% in the total polyamic acid resin.
  • the fluorine-based monomer is 30 to 70 mol%, 30 to 60 mol%, 30 to 45 mol%, 40 to 70 mol% 40 to 60 mol%, 40 to 55 mol%, 45 in the total polyamic acid resin It may be included in the range of 60 to 60 mol%, 55 to 75 mol%, or 60 to 70 mol%.
  • the hydrophilic monomer may be included in the range of 25 to 75 mol% in the total polyamic acid resin.
  • the hydrophilic monomer is 30 to 70 mol%, 30 to 60 mol%, 30 to 45 mol%, 40 to 70 mol% 40 to 60 mol%, 40 to 55 mol%, 45 in the total polyamic acid resin It may be included in the range of 60 to 60 mol%, 55 to 75 mol%, or 60 to 70 mol%.
  • the fluorine-based monomer may be included in the range of 70 to 100 mol% in the first polyamic acid resin.
  • the fluorine-based monomer is 70 to 90 mol%, 70 to 80 mol%, 79 to 100 mol%, 80 to 100 mol%, 85 to 100 mol%, or 90 to 100 mol% in the first polyamic acid resin
  • the first polyamic acid resin may include a hydrophilic monomer or other monomer in addition to the fluorine-based monomer.
  • the hydrophilic monomer may be included in the range of 70 to 100 mol% in the second polyamic acid resin.
  • the hydrophilic monomer is 70 to 90 mol%, 70 to 80 mol%, 79 to 100 mol%, 80 to 100 mol%, 85 to 100 mol%, or 90 to 100 mol% in the second polyamic acid resin It may be included in the range of, and the second polyamic acid resin may include a fluorine-based monomer or other monomers in addition to the hydrophilic monomer.
  • the present application describes the weight ratio of the first polyamic acid resin and the second polyamic acid resin in the polyamic acid composition, and the mol% of the fluorine-based monomer and/or the hydrophilic monomer contained in the first polyamic acid resin and/or the second polyamic acid resin. It can be adjusted, and the content ratio of the fluorine-based or hydrophilic monomer in the total resin can be adjusted.
  • the present application can prevent degradation of adhesive properties and mechanical properties at high temperatures caused by the inclusion of a fluorine-based monomer while sufficiently lowering the dielectric constant by adjusting the ratio of each of the above compositions, and the compatibility of two resins with different properties can be achieved. Can be improved.
  • the fluorine-based diamine monomer and the fluorine-based dianhydride monomer may refer to a monomer including a fluorine atom in a molecular structure.
  • the fluorine atom may be included in various positions and structures in the monomer, and this is not particularly limited.
  • the fluorine-based diamine monomer and the fluorine-based dianhydride monomer may include at least one perfluoroalkyl group in the molecular structure.
  • the perfluoroalkyl group may be, for example, a perfluoromethyl group.
  • the dielectric constant can be lowered without the additive without problems of compatibility and dispersibility of the particles, thereby improving heat resistance and mechanical properties. Can be implemented together.
  • the fluorine-based diamine monomer is 2,2'-bis(trifluoromethyl)benzidine (TFMB), 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (HFBAPP), 2,2 -Bis(4-aminophenyl)hexafluoropropane (BAHF), 2,2'-bis(trifluoromethyl)-4,4'-diaminophenyl ether, 4,4'-bis(4-amino-) It may include at least one selected from the group consisting of 2-trifluoromethylphenoxy)biphenyl and 4,4'-bis(4-amino-2-trifluoromethylphenoxy)phenyl.
  • TFMB 2,2'-bis(trifluoromethyl)benzidine
  • HFBAPP 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane
  • BAHF 2,2 -Bis(4-aminophen
  • the fluorine-based dianhydride monomer is 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6-FDA) and 9,9-bis(trifluoromethyl)-2,3,4,7-c It may include one or more selected from the group consisting of xanthine tetracarboxylic anhydride.
  • the fluorine-based diamine monomer and the fluorine-based dianhydride monomer may have two or more benzene rings.
  • the fluorine-based diamine monomer may have, for example, a perfluoroalkyl group by substituting hydrogen of the benzene ring.
  • the fluorine-based diamine monomer may have the aforementioned perfluoroalkyl group in an alkylene group connecting two benzene rings.
  • the fluorine-based dianhydride monomer may have a perfluoroalkyl group by substituting hydrogen of the benzene ring, and in one example, the perfluoroalkyl group described above in the alkylene group connecting the two benzene rings Can have.
  • the hydrophilic monomer may mean a compound including a polar functional group in the molecular structure.
  • the polar functional group may be a functional group exhibiting polarity relative to carbon in addition to the amine group or anhydride group of the diamine monomer or dianhydride monomer.
  • the hydrophilic diamine monomer of the present application may be a diamine monomer including a carbonyl group, a sulfone group, an oxy group, an ester group, or an ether group in a molecular structure
  • the hydrophilic dianhydride monomer is a carbonyl group, a sulfone group, It may be a dianhydride monomer containing an oxy group, an ester group or an ether group.
  • the hydrophilic diamine monomer is 4,4'-diaminodiphenylether (ODA), 2,2-bis(4,-(4-aminophenoxy)phenyl)propane (BAPP), 4,4-diaminobenzanyl Lead (4,4-DABA), 3,3-diaminobenzanilide (3,3-DABA), 1,3-bis (4-aminophenoxy) benzene (TPE-R) and 1,4-bis It may include one or more selected from the group consisting of (4-aminophenoxy)benzene (TPE-Q).
  • ODA 4,4'-diaminodiphenylether
  • BAPP 2,2-bis(4,-(4-aminophenoxy)phenyl)propane
  • 4,4-DABA 4,4-diaminobenzanyl Lead
  • 4,4-DABA 3,3-diaminobenzanilide
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • the hydrophilic dianhydride monomer is 4,4'-oxydiphthalic dianhydride (ODPA), diphenylsulfone-3,4,3',4'-tetracarboxylic dianhydride (DSDA), 3,3 ,4,4-benzophenonetetracarboxylic dianhydride (BTDA), paraphenylene bistrimethyltate anhydride (TAHQ) may be one containing at least one selected from the group consisting of.
  • ODPA 4,4'-oxydiphthalic dianhydride
  • DSDA diphenylsulfone-3,4,3',4'-tetracarboxylic dianhydride
  • BTDA 3,3 ,4,4-benzophenonetetracarboxylic dianhydride
  • TAHQ paraphenylene bistrimethyltate anhydride
  • the polyamic acid composition may contain 15 to 40% by weight of solid content based on the total weight.
  • the solid content of the polyamic acid composition it is possible to prevent an increase in manufacturing cost and process time required to remove a large amount of solvent in the curing process while controlling viscosity increase.
  • the polyamic acid composition of the present invention may be a composition having low viscosity properties.
  • the polyamic acid composition of the present invention may have a viscosity of 10,000 cP or less and 9,000 cP or less as measured under conditions of a temperature of 23° C. and a shear rate of 1 s ⁇ 1.
  • the lower limit is not particularly limited, but may be 500 cP or more or 1000 cP or more.
  • the viscosity may be measured using, for example, Haake's Rheostress 600, and may be measured under conditions of a shear rate of 1/s, a temperature of 23° C., and a 1 mm plate gap.
  • the present invention provides a precursor composition having excellent processability by adjusting the viscosity range, so that a film or substrate having desired physical properties can be formed when forming a film or substrate.
  • the polyamic acid composition of the present invention has a weight average molecular weight after curing of 10,000 to 100,000 g/mol, 15,000 to 80,000 g/mol, 18,000 to 70,000 g/mol, 20,000 to 60,000 g/mol, 25,000 to 55,000 g /mol or 30,000 to 50,000 g/mol.
  • weight average molecular weight refers to a value converted to standard polystyrene measured by GPC (Gel permeation Chromatograph).
  • the polyamic acid composition may include an organic solvent.
  • the organic solvent is not particularly limited as long as it is an organic solvent in which polyamic acid can be dissolved, but may be an aprotic polar solvent as an example.
  • the aprotic polar solvent is, for example, N,N'-dimethylformamide (DMF), N,N'-diethylformamide (DEF), N,N'-dimethylacetamide (DMAc), dimethylpropane.
  • Amide solvents such as amide (DMPA), phenolic solvents such as p-chlorophenol and o-chlorophenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL) and Diglyme, etc. These may be mentioned, and these may be used alone or in combination of two or more.
  • the solubility of the polyamic acid may be adjusted by using auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water in some cases.
  • auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water in some cases.
  • the organic solvent may be, for example, N-methyl-pyrrolidone (NMP).
  • the polyamic acid composition of the present invention may contain a filler for the purpose of improving various properties of the film such as sliding property, thermal conductivity, conductivity, corona resistance, and loop hardness.
  • the filler to be added is not particularly limited, and examples thereof include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
  • the particle diameter of the filler is not particularly limited, and may be determined according to the characteristics of the film to be modified and the type of filler to be added.
  • the average particle diameter may be 0.05 to 20 ⁇ m, 0.1 to 10 ⁇ m, 0.1 to 5 ⁇ m, or 0.1 to 3 ⁇ m. In the present specification, unless otherwise specified, the average particle diameter may be an average particle diameter measured according to D50 particle size analysis.
  • the particle diameter range by adjusting the particle diameter range, it is possible to sufficiently maintain the modification effect and not to deteriorate the mechanical properties without impairing the surface properties.
  • the present invention is not particularly limited to the amount of the filler added, and can be determined by the film properties to be modified, the filler particle size, and the like.
  • the amount of the filler added may be 0.01 to 10 parts by weight, 0.01 to 5 parts by weight, or 0.02 to 1 part by weight based on 100 parts by weight of the polyimide resin. According to the present invention, by adjusting the content, the mechanical properties of the film may not be impaired while sufficiently maintaining the modifying effect of the filler.
  • the method of adding the filler is not particularly limited, and a method known in the same industry may be used.
  • the polyamic acid composition comprising the fluorine-based polyamic acid and the hydrophilic polyamic acid of the present invention can realize a low dielectric constant, low dielectric loss tangent, low thermal expansion, moisture absorption resistance, and high insulation strength with high heat resistance by the fluorine-based polyamic acid, Excellent mechanical strength and high interfacial adhesion can be realized by the hydrophilic polyamic acid.
  • the present invention relates to a method of manufacturing a polyamic acid composition, and the manufacturing method may be a method of manufacturing the above-described polyamic acid composition.
  • the present invention provides a method for preparing a polyamic acid composition comprising the step of mixing a first polyamic acid resin and a second polyamic acid resin.
  • the method for preparing a polyamic acid composition of the present invention is to prepare a first polyamic acid resin by polymerizing a fluorine-based diamine monomer and a fluorine-based dianhydride monomer in a molar ratio of 1:0.8 to 1:2 in a first organic solvent.
  • the step of doing; Preparing a second polyamic acid resin by polymerizing a hydrophilic diamine monomer and a hydrophilic dianhydride monomer in a molar ratio of 1:0.8 to 1:2 in a second organic solvent; And mixing the first polyamic acid resin and the second polyamic acid resin.
  • the order of preparing the first polyamic acid resin and the second polyamic acid resin is not particularly limited, and the first polyamic acid resin may be prepared after the second polyamic acid resin is first prepared.
  • the step of mixing the first polyamic acid resin and the second polyamic acid resin may be performed at a high temperature of 50 to 80°C.
  • the step of mixing the first polyamic acid resin and the second polyamic acid resin may be performed at 50 to 70°C, 50 to 60°C, 60 to 80°C, 60 to 70°C, or 70 to 80°C. have.
  • the present invention provides a low dielectric constant, low dielectric loss tangent, low thermal expansion, moisture absorption resistance, and high insulation strength along with heat resistance having a high thermal decomposition temperature by using a fluorine-based polyamic acid (first polyamic acid resin) through the preparation of the polyamic acid composition.
  • first polyamic acid resin fluorine-based polyamic acid
  • second polyamic acid resin hydrophilic polyamic acid
  • the first organic solvent and the second organic solvent are not particularly limited as long as they are organic solvents in which polyamic acid can be dissolved independently, but may be an aprotic polar solvent as an example.
  • the aprotic polar solvent is, for example, N,N'-dimethylformamide (DMF), N,N'-diethylformamide (DEF), N,N'-dimethylacetamide (DMAc), dimethylpropane.
  • Amide solvents such as amide (DMPA), phenolic solvents such as p-chlorophenol and o-chlorophenol, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL) and Diglyme, etc. These may be mentioned, and these may be used alone or in combination of two or more.
  • the solubility of the polyamic acid may be adjusted by using auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water in some cases.
  • auxiliary solvents such as toluene, tetrahydrofuran, acetone, methyl ethyl ketone, methanol, ethanol, and water in some cases.
  • the organic solvent may be, for example, N-methyl-pyrrolidone (NMP).
  • the present invention provides a polyimide that is a cured product of the polyamic acid composition.
  • the polyimide may be a cured product of the above-described polyamic acid composition or a precursor composition prepared by the method.
  • the present invention provides a polyimide film comprising the polyimide in the form of a film or sheet.
  • the present application relates to a method of manufacturing a polyimide film.
  • the present invention comprises the steps of preparing a gel film by forming a film of the polyamic acid composition on a support and drying it; And it may provide a method for producing a polyimide film comprising the step of curing the gel film.
  • a conventionally known method may be used for a method of imidizing the polyamic acid composition to prepare a polyimide film.
  • thermal imidation method a thermal imidation method, a chemical imidization method, or a composite imidization method in which the thermal imidation method and the chemical imidization method are used in combination may be exemplified.
  • N-methyl-pyrrolidone NMP was introduced into a 500 ml reactor equipped with a stirrer and a nitrogen injection/discharging pipe, and the temperature of the reactor was set to 30°C.
  • NMP N-methyl-pyrrolidone
  • BAHF 2,2-bis(4-aminophenyl)hexafluoropropane
  • 6-FDA 4,4'-(hexafluoroisopropylidene)diphthalic anhydride
  • 6-FDA 4,4'-(hexafluoroisopropylidene)diphthalic anhydride
  • Air bubbles were removed from the prepared polyimide precursor composition through high-speed rotation of 1,500 rpm or more. Thereafter, the defoamed polyimide precursor composition was applied to the glass substrate using a spin coater. Thereafter, a gel film was prepared by drying in a nitrogen atmosphere and at a temperature of 120° C. for 30 minutes, and the gel film was heated to 450° C. at a rate of 2° C./min, heat-treated at 450° C. for 60 minutes, and then until 30° C. It cooled at a rate of 2° C./min to obtain a polyimide film. Thereafter, the polyimide film was peeled off from the glass substrate by dipping in distilled water. The thickness of the prepared polyimide film was 15 ⁇ m. The thickness of the prepared polyimide film was measured using an Anritsu's Electric Film thickness tester.
  • Example 1 a polyamic acid composition and a polyimide film of Examples 2 to 4 and Comparative Examples 1 to 7 were prepared in the same manner as in Example 1, except that the monomer and the content ratio thereof were changed as shown in Table 1 below. I did.
  • the thickness of the prepared polyimide film was measured using an Anritsu's Electric Film thickness tester. The results are shown in Table 2 below.
  • the dielectric loss tangent at 1 GHz of the polyimide films prepared in the above Examples and Comparative Examples was measured using an SPDR meter of Keysight. As a result, the measured dielectric loss tangent values are shown in Table 2 below.
  • the dielectric loss tangent can be evaluated as excellent below 0.0050 and very good below 0.0040 or 0.0036.
  • thermogravimetric analysis To measure the thermal decomposition temperature, a Q50 model of TA's thermogravimetric analysis was used, and the polyimide film was heated to 150°C at a rate of 10 min/°C in a nitrogen atmosphere, and then maintained isothermal for 30 minutes to remove moisture. Removed. Thereafter, the temperature was increased to 600° C. at a rate of 10 min/° C. to measure the temperature at which a weight loss of 1% occurs. The measured results are shown in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 출원은 폴리아믹산 조성물, 폴리아믹산 조성물의 제조 방법 및 이를 포함하는 폴리이미드에 관한 것으로서, 낮은 유전율과, 내열성 및 기계적 특성을 동시에 구현할 수 있는 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드를 제공한다.

Description

폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드
관련 출원들과의 상호 인용
본 출원은 2019년 9월 27일자 한국 특허 출원 제10-2019-0119866호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 폴리아믹산 조성물, 상기 폴리아믹산 조성물의 제조방법 및 상기 폴리아믹산 조성물을 포함하는 폴리이미드에 관한 것이다.
일반적으로 폴리이미드(polyimide, PI) 수지는 방향족 디안하이드라이드와 방향족 디아민 또는 방향족 디이소시아네이트를 용액 중합하여 폴리아믹산 유도체를 제조한 후, 고온에서 이미드화하여 제조되는 고내열 수지이다.
폴리이미드 수지는 불용, 불융의 초고내열성 수지로서 높은 유리전이온도, 우수한 내열산화성, 내열특성, 내방사선성, 저온특성, 내약품성 및 전기적 특성으로 인하여 전기, 전자, 자동차 및 항공 우주산업 분야에 있어서 필름, 수지, 성형부품, 접착제 및 절연체 등의 다양한 형태로 사용되고 있으며, 특히 전자산업 소재로서 절연성 및 열적, 화학적 안정성이 우수하여 반도체 칩의 층간 절연막 등으로 그 용도가 확대되고 있다.
최근에는 초 절연성 및 기능성에 대한 요구 증대로 폴리이미드의 개량 또는, 신규 조성 개발 및 새로운 가공 기술 개발의 필요성이 점차 증대되고 있으며, 특히 고집적 다층구조의 전자 소자에 사용되기 위하여는 더욱 낮은 유전상수, 높은 유리전이온도 및 낮은 열팽창 특성이 요구되어, 이를 만족시키는 폴리이미드의 개발이 요구되고 있다.
이와 관련하여, 종래 기술로, 반데르발스(Van der Waals) 반지름이 작고, 전기음성도 및 이종 원소간 결합에너지가 큰 불소 치환기를 함유하는 방향족 디안하이드라이드 단량체 또는 방향족 아민 단량체를 사용하여 제조된 폴리이미드는 낮은 유전상수를 나타낸다는 점이 밝혀졌다. 대표적인 불소화 단량체인 4,4'-(헥사플루오로이소프로필리덴)비스(프탈산)(이하, 6FDA라 함)을 사용할 경우 폴리이미드의 유전율을 효과적으로 낮출 수 있다고 알려져 있다. 그러나, 6FDA를 사용한 폴리이미드의 경우 6FDA 특유의 유연한 구조로 인해 제조된 폴리이미드가 높은 열팽창율을 가져 내열 특성이 떨어지고 접착력이 떨어지는 문제점이 있었다. 따라서, 유전특성과 접착성, 내열성 및 기계적 특성을 동시에 만족시키는 폴리이미드를 제공하는 것이 중요한 기술적 과제이다.
본 발명은 낮은 유전정접, 높은 접착력, 고온에서의 기계적 특성 및 높은 열분해온도를 동시에 구현할 수 있는 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물을 포함하는 폴리이미드 및 폴리이미드 필름을 제공한다.
상기 과제를 해결하기 위하여,
본 발명은 일실시예에서, 불소계 단량체를 포함하는 제1 폴리아믹산 수지; 및 친수성 단량체를 포함하는 제2 폴리아믹산 수지를 포함하고, 경화 후 주파수 1.0 GHz에서 측정한 유전정접이 0.004 이하이고, 1 중량%의 분해온도가 470℃ 이상인 폴리아믹산 조성물을 제공한다.
본 발명은 일실시예에서, 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지를 혼합하는 단계를 포함하는 전술한 폴리아믹산 조성물의 제조방법을 제공한다.
또한, 본 발명은 일실시예에서, 상기 폴리아믹산 조성물의 경화물인 폴리이미드를 제공한다.
더불어, 본 발명은 일실시예에서, 상기 폴리이미드를 필름 또는 시트 형태로 포함하는 폴리이미드 필름을 제공한다.
본 발명은 낮은 유전율, 높은 접착력 및 고온에서의 기계적 특성을 동시에 구현할 수 있는 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물을 포함하는 폴리이미드 및 폴리이미드 필름을 제공한다.
구체적으로, 본 발명의 불소계 폴리아믹산 및 친수성 폴리아믹산을 포함하는 폴리아믹산 조성물은 불소계 폴리아믹산에 의해 높은 내열특성과 함께 저유전상수, 저유전정접, 저열팽창성, 내흡습 특성 및 높은 절연 강도를 구현할 수 있고, 친수성 폴리아믹산에 의해 우수한 기계적 강도와 높은 계면 접착력을 구현할 수 있다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 구체적으로 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명에서, "디안하이드라이드(이무수물; dianhydride)"는 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디안하이드라이드가 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 발명에서, "디아민"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.
본 발명에서, "친수성" 단량체는 분자 구조 내에 극성 작용기를 포함하는 화합물을 의미할 수 있다. 상기 극성 작용기는 디아민 단량체 또는 디안하이드라이드 단량체의 아민기 또는 안하이드라이드기 이외에 탄소 대비 극성을 나타내는 작용기일 수 있다. 일 예시에서, 본 출원의 친수성 단량체는 분자 구조 내에 카르보닐기, 술폰기, 옥시기, 에스테르기 또는 에테르기를 포함하는 화합물을 의미할 수 있다.
이하, 본 발명에 대하여 구체적으로 설명하기로 한다.
본 발명은 불소계 단량체를 포함하는 제1 폴리아믹산 수지; 및 친수성 단량체를 포함하는 제2 폴리아믹산 수지를 포함하고, 경화 후 주파수 1.0 GHz에서 측정한 유전정접(손실계수)이 0.004 이하이고, 1 중량%의 분해온도가 470℃ 이상인 폴리아믹산 조성물을 제공한다.
구체적으로, 본 발명의 폴리이미드 필름은 불소계 디아민 단량체 및 불소계 디안하이드라이드 단량체를 중합 단위로 포함하는 제1 폴리아믹산 수지; 및 친수성 디아민 단량체 및 친수성 디안하이드라이드 단량체를 중합 단위로 포함하는 제2 폴리아믹산 수지를 포함함으로써, 낮은 유전율, 낮은 유전정접(손실계수), 높은 접착력를 포함하는 기계적 특성 및 고온에서의 우수한 내열성을 동시에 구현할 수 있다. 특히, 예를 들어 OLED(organic light emitting diode)의 경우 400℃ 이상의 공정온도가 조성될 수 있으며, 이러한 고온에서는 내열성이 우수한 폴리이미드라 하더라도 열분해될 수 있는 바, 폴리이미드를 제조하는데 필요한 폴리아믹산 조성물의 열적 특성은 디스플레이 기판을 구현하는데 매우 중요한 인자라 할 수 있다.
상기 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지가 상기 단량체를 중합 단위로 포함한다는 것은 폴리이미드로 경화하기 전에 각 단량체 간에 중합 반응이 일어난 상태를 의미한다.
본 발명의 폴리아믹산 조성물의 경화 후 주파수 1.0 GHz에서 측정한 유전정접이 0.004 이하일 수 있고, 예를 들어, 상기 유전정접의 상한은 0.004, 0.0039, 0.0038, 0.0037, 0.0036, 0.0035, 0.0034, 0.0033, 0.0032 또는 0.003 이하일 수 있고, 하한은 0.001 또는 0.0025 이상일 수 있다. 이 때, 상기 폴리아믹산 조성물의 경화 후 1 중량%의 분해온도가 470℃ 이상일 수 있다. 예를 들어, 상기 분해온도의 하한은 475℃, 480℃, 485℃, 490℃, 495℃ 또는 500℃ 이상일 수 있고, 상한은 520℃ 또는 550℃ 이하일 수 있다. 본 출원은 상기 폴리아믹산 조성물의 경화 후 물성을 조절함으로써, 유전정접(손실계수)을 충분히 낮추면서도 목적하는 접착 특성 및 높은 열분해온도를 갖는 열적 특성을 구현할 수 있다.
본 발명의 폴리아믹산 조성물의 경화 후 주파수 1.0 GHz에서 측정한 유전율이 3.0 이하일 수 있고, 예를 들어, 상기 유전율은 2.0 내지 3.0, 2.0 내지 2.9, 2.0 내지 2.8, 2.0 내지 2.7, 2.0 내지 2.6, 2.0 내지 2.5 또는 2.5 내지 3.0일 수 있다. 이 때, 상기 폴리아믹산 조성물의 경화 후 ASTM D882에 따른 파단 강도가 220 내지 280MPa이며, 파단 신율이 15 내지 25%일 수 있다. 예를 들어, 상기 파단 강도는 220 내지 275 MPa, 220내지 260 MPa, 220내지 255 MPa, 220내지 245 MPa, 220내지 240 MPa, 220 내지 230 MPa, 235 내지 242 MPa, 242 내지 245 MPa 또는 270 내지 280 MPa일 수 있고, 상기 파단 신율은 15 내지 22%, 15 내지 20%, 15 내지 18%, 15 내지 16%, 16 내지 20%, 16 내지 18% 또는 18 내지 20%일 수 있다. 본 출원은 상기 폴리아믹산 조성물의 경화 후 물성을 조절함으로써, 유전율을 충분히 낮추면서도 목적하는 접착 특성 및 기계적 물성을 구현할 수 있다.
또한, 본 발명의 폴리아믹산 조성물의 경화 후 ASTM D3359에 따른 접착력이 0.1 N/cm 이상일 수 있다. 예를 들어, 상기 접착력의 하한은 0.11 N/cm, 0.13 N/cm, 0.15 N/cm 또는 0.17 N/cm 이상일 수 있고, 상한은 0.25 N/cm 또는 0.21 N/cm 이하일 수 있다.
본 출원은 상기 폴리아믹산 조성물의 경화 후 물성을 조절함으로써, 유전정접(손실계수)을 충분히 낮추면서도 목적하는 접착 특성, 기계적 물성 및 높은 열분해온도를 갖는 열적 특성을 구현할 수 있다.
하나의 예시에서, 상기 유전율 및 유전정접은 폴리아믹산 조성물을 경화시켜 폴리이미드 필름을 제조한 후 폴리이미드 필름을 SPDR(Split Post Dielecric Resonator) 기술로 1GHz 주파수에 대해 측정한 것일 수 있다.
하나의 예시에서, 상기 접착력은 폴리아믹산 조성물을 경화시켜 폴리이미드 필름을 제조한 후 폴리이미드 필름에 대해서 ASTM D3359에 따라 인장시험기를 사용해 기판과의 접착력을 측정한 것일 수 있다.
하나의 예시에서, 상기 파단 강도 및 파단 신율은 폴리아믹산 조성물을 경화시켜 폴리이미드 필름을 제조한 후 폴리이미드 필름을 ASTM D882 방법으로 측정한 것일 수 있다.
하나의 예시에서, 상기 열분해온도는 폴리아믹산 조성물을 경화시켜 폴리이미드 필름을 열무게 분석(thermogravimetric analysis) 장비를 사용하여 질소 분위기하에서 10℃/분의 속도로 150℃까지 승온시킨 후 30 분간 등온을 유지하여 수분을 제거했다. 이후 10℃/분의 속도로 600℃까지 승온하여 1%의 중량 감소가 발생하는 온도를 측정한 것일 수 있다.
본 출원에 따른 폴리아믹산 조성물은 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지를 각각 35 내지 75 중량부 및 25 내지 65 중량부로 포함할 수 있고, 예를 들어, 상기 제1 폴리아믹산 수지는 38 내지 73 중량부, 43 내지 68 중량부, 48 내지 63 중량부, 52 내지 58 중량부 또는 58 내지 62 중량부의 비율로 포함될 수 있고, 상기 제2 폴리아믹산 수지는 28 내지 63 중량부, 33 내지 58 중량부, 38 내지 53 중량부, 38 내지 43 중량부 또는 42 내지 48 중량부의 비율로 포함될 수 있다. 상기 함량 비율은 더 구체적으로, 제1 폴리아믹산 수지를 100 중량부 기준으로 했을 때, 제2 폴리아믹산 수지는 30 내지 180 중량부, 35 내지 160 중량부, 40 내지 145 중량부, 45 내지 153 중량부, 55 내지 130 중량부, 60 내지 100 중량부, 63 내지 90중량부, 65 내지 80 중량부 또는 70 내지 90 중량부의 비율로 포함될 수 있다. 본 출원은 상기 각 수지의 중량 비율을 조절함으로써, 낮은 유전율과 함께 높은 접착력 및 고온에서의 기계적 특성을 동시에 구현할 수 있는 폴리아믹산 조성물을 제공할 수 있다.
상기 제1 폴리아믹산 수지는 폴리아믹산 조성물 전체에서 30 내지 80 중량%의 범위로 포함될 수 있다. 예를 들어, 상기 제1 폴리아믹산 수지는 폴리아믹산 조성물 전체에서 35 내지 75 중량%, 40 내지 70 중량%, 40 내지 60 중량%, 50 내지 60 중량% 또는 55 내지 70 중량%의 범위로 포함될 수 있다. 또한, 상기 제2 폴리아믹산 수지는 폴리아믹산 조성물 전체에서 20 내지 70 중량%의 범위로 포함될 수 있다. 예를 들어, 상기 제2 폴리아믹산 수지는 폴리아믹산 조성물 전체에서 25 내지 65 중량%, 30 내지 60 중량%, 30 내지 50 중량%, 30 내지 45 중량%, 40 내지 60 중량%, 50 내지 65 중량% 또는 55 내지 70 중량%의 범위로 포함될 수 있다.
하나의 예시에서, 상기의 불소계 단량체는 전체 폴리아믹산 수지 내에서, 25 내지 75 몰%의 범위로 포함될 수 있다. 예를 들어, 상기 불소계 단량체는 전체 폴리아믹산 수지 내에서 30 내지 70 몰%, 30 내지 60 몰%, 30 내지 45 몰%, 40 내지 70 몰% 40 내지 60 몰%, 40 내지 55 몰%, 45 내지 60 몰%, 55 내지 75 몰% 또는 60 내지 70 몰%의 범위로 포함될 수 있다. 또한, 상기 친수성 단량체는 전체 폴리아믹산 수지 내에서, 25 내지 75 몰%의 범위로 포함될 수 있다. 예를 들어, 상기 친수성 단량체는 전체 폴리아믹산 수지 내에서 30 내지 70 몰%, 30 내지 60 몰%, 30 내지 45 몰%, 40 내지 70 몰% 40 내지 60 몰%, 40 내지 55 몰%, 45 내지 60 몰%, 55 내지 75 몰% 또는 60 내지 70 몰%의 범위로 포함될 수 있다.
또한, 일 예시에서, 상기 불소계 단량체는 제1 폴리아믹산 수지 내에서 70 내지 100 몰%의 범위로 포함될 수 있다. 예를 들어, 상기 불소계 단량체는 제1 폴리아믹산 수지 내에서 70 내지 90 몰%, 70 내지 80 몰%, 79 내지 100 몰%, 80 내지 100 몰%, 85 내지 100 몰% 또는 90 내지 100 몰%의 범위로 포함될 수 있고, 제1 폴리아믹산 수지는 불소계 단량체 이외에 친수성 단량체 또는 기타 다른 단량체를 포함할 수 있다. 또한, 상기 친수성 단량체는 제2 폴리아믹산 수지 내에서 70 내지 100 몰%의 범위로 포함될 수 있다. 예를 들어, 상기 친수성 단량체는 제2 폴리아믹산 수지 내에서 70 내지 90 몰%, 70 내지 80 몰%, 79 내지 100 몰%, 80 내지 100 몰%, 85 내지 100 몰% 또는 90 내지 100 몰%의 범위로 포함될 수 있고, 제2 폴리아믹산 수지는 친수성 단량체 이외에 불소계 단량체 또는 기타 다른 단량체를 포함할 수 있다.
본 출원은 폴리아믹산 조성물 내의 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지의 중량 비율, 상기 제1 폴리아믹산 수지 및/또는 제2폴리아믹산 수지 내에 포함되는 불소계 단량체 및/또는 친수성 단량체의 몰%를 조절할 수 있고, 전체 수지 내에서의 상기 불소계 또는 친수성 단량체의 함량 비율을 조절할 수 있다. 본 출원은 상기 각 조성의 비율을 조절함으로써, 유전율은 충분히 낮추면서도 불소계 단량체가 포함됨으로써 발생하는 접착 특성 저하 및 고온에서의 기계적인 특성 저하를 방지할 수 있으며, 성질이 다른 두 수지의 상용성을 향상시킬 수 있다.
본 명세서에서, 불소계 디아민 단량체 및 불소계 디안하이드라이드 단량체는 분자 구조 내에 불소 원자를 포함한 단량체를 의미할 수 있다. 상기 불소 원자는 상기 단량체 내에 다양한 위치 및 구조로 포함될 수 있으며, 이는 특별히 제한되지 않는다. 예를 들어, 상기 불소계 디아민 단량체 및 불소계 디안하이드라이드 단량체는 분자 구조 내에 적어도 하나 이상의 퍼플루오르알킬기를 포함할 수 있다. 상기 퍼플루오르알킬기는 예를 들어, 퍼플루오르메틸기일 수 있다. 본 발명은 상기 불소계 단량체를 중합 단위로 포함함으로써, 종래에 첨가제로서 불소계 입자를 포함하던 것과는 달리, 입자의 상용성 및 분산성 문제 없이 상기 첨가제 없이도 유전율을 낮출 수 있으며, 이에 따라 내열성 및 기계적 특성을 함께 구현할 수 있다.
상기 불소계 디아민 단량체는 2,2'-비스(트리플루오로메틸)벤지딘(TFMB), 2,2-비스[4-(4-아미노페녹시)페닐]헥사플루오로프로판(HFBAPP), 2,2-비스(4-아미노페닐)헥사플루오로프로판(BAHF), 2,2'-비스(트리플루오로메틸)-4,4'-디아미노페닐에테르, 4,4'-비스(4-아미노-2-트리플루오로메틸페녹시)비페닐 및 4,4'-비스(4-아미노-2-트리플루오로메틸페녹시)페닐로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는 것일 수 있다.
상기 불소계 디안하이드라이드 단량체는 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(6-FDA) 및 9,9-비스(트리플루오로메틸)-2,3,4,7-크산틴테트라카복실산 무수물로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는 것일 수 있다.
하나의 예시에서, 상기 불소계 디아민 단량체 및 불소계 디안하이드라이드 단량체는 2 이상의 벤젠 고리를 가질 수 있다. 일 예시에서, 상기 불소계 디아민 단량체는 예를 들어, 상기 벤젠 고리의 수소가 치환되어 퍼플루오르알킬기를 가질 수 있다. 또한, 일 예시에서, 상기 불소계 디아민 단량체는 두 개의 벤젠 고리를 연결하는 알킬렌기에 전술한 퍼플루오르알킬기를 가질 수 있다. 또한, 하나의 예시에서, 상기 불소계 디안하이드라이드 단량체는 벤젠 고리의 수소가 치환되어 퍼플루오르알킬기를 가질 수 있고, 또한, 일 예시에서, 두 개의 벤젠 고리를 연결하는 알킬렌기에 전술한 퍼플루오르알킬기를 가질 수 있다.
본 출원의 구체예에서, 전술한 바와 같이 친수성 단량체는 분자 구조 내에 극성 작용기를 포함하는 화합물을 의미할 수 있다. 상기 극성 작용기는 디아민 단량체 또는 디안하이드라이드 단량체의 아민기 또는 안하이드라이드기 이외에 탄소 대비 극성을 나타내는 작용기일 수 있다. 일 예시에서, 본 출원의 친수성 디아민 단량체는 분자 구조 내에 카르보닐기, 술폰기, 옥시기, 에스테르기 또는 에테르기를 포함하는 디아민 단량체일 수 있고, 상기 친수성 디안하이드라이드 단량체는 분자 구조 내에 카르보닐기, 술폰기, 옥시기, 에스테르기 또는 에테르기를 포함하는 디안하이드라이드 단량체일 수 있다.
상기 친수성 디아민 단량체는 4,4'-디아미노디페닐에테르(ODA), 2,2-비스(4,-(4-아미노페녹시)페닐)프로판(BAPP), 4,4-디아미노벤자닐리드(4,4-DABA), 3,3-디아미노벤자닐리드(3,3-DABA), 1,3-비스(4-아미노페녹시)벤젠(TPE-R) 및 1,4-비스(4-아미노페녹시)벤젠(TPE-Q)으로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는 것일 수 있다.
상기 친수성 디안하이드라이드 단량체는 4,4'-옥시디프탈릭 디안하이드라이드(ODPA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(DSDA), 3,3,4,4-벤조페논테트라카복실릭 디안하이드라이드(BTDA), 파라페닐렌비스트리메틸테이트 언하이드라이드(TAHQ)로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는 것일 수 있다.
하나의 구체적인 예에서, 상기 폴리아믹산 조성물은 전체 중량을 기준으로 고형분을 15 내지 40 중량% 포함할 수 있다. 본 발명은 상기 폴리아믹산 조성물의 고형분 함량을 조절함으로써, 점도 상승을 제어하면서 경화 과정에서 다량의 용매를 제거해야 하는 제조 비용과 공정 시간 증가를 방지할 수 있다.
본 발명의 폴리아믹산 조성물은 저점도 특성을 갖는 조성물일 수 있다. 본 발명의 폴리아믹산 조성물은 23℃ 온도 및 1s-1의 전단속도 조건으로 측정한 점도가 10,000cP 이하, 9,000 cP 이하일 수 있다. 그 하한은 특별히 한정되지 않으나, 500 cP 이상 또는 1000 cP 이상일 수 있다. 상기 점도는 예를 들어, Haake 사의 Rheostress 600을 사용하여 측정한 것일 수 있고 1/s의 전단 속도, 23℃ 온도 및 1 mm 플레이트 갭 조건에서 측정한 것일 수 있다. 본 발명은 상기 점도 범위를 조절함으로써, 우수한 공정성을 갖는 전구체 조성물을 제공하여, 필름 또는 기판 형성 시 목적하는 물성의 필름 또는 기판을 형성할 수 있다.
일 구체예에서, 본 발명의 폴리아믹산 조성물은 경화 후 중량평균분자량이 10,000 내지 100,000g/mol, 15,000 내지 80,000 g/mol, 18,000 내지 70,000 g/mol, 20,000 내지 60,000 g/mol, 25,000 내지 55,000 g/mol 또는 30,000 내지 50,000 g/mol의 범위 내일 수 있다. 본 발명에서 용어 중량평균분자량은, GPC(Gel permeation Chromatograph)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미한다.
본 발명은 상기 폴리아믹산 조성물이 유기용매를 포함할 수 있다. 상기 유기용매는 폴리아믹산이 용해될 수 있는 유기용매라면 특별히 한정되지는 않으나, 하나의 예로서 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.
상기 비양성자성 극성 용매는 예를 들어, N,N'-디메틸포름아미드(DMF), N,N'-디에틸포름아미드(DEF), N,N'-디메틸아세트아미드(DMAc), 디메틸프로판아미드(DMPA) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다.
본 발명은, 경우에 따라서 톨루엔, 테트라히드로푸란, 아세톤, 메틸에틸케톤, 메탄올, 에탄올, 물 등의 보조적 용매를 사용하여, 폴리아믹산의 용해도를 조절할 수도 있다.
하나의 예시에서, 상기 유기용매는 예를 들어, N-메틸-피롤리돈(NMP) 일 수 있다.
한편, 본 발명의 폴리아믹산 조성물은 접동성, 열전도성, 도전성, 코로나 내성, 루프 경도 등의 필름의 여러 가지 특성을 개선할 목적으로 충전재가 포함될 수 있다. 첨가되는 충전재는 특별히 한정되는 것은 아니지만, 예를 들어, 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다.
상기 충전재의 입경은 특별히 한정되는 것은 아니며, 개질하여야 할 필름 특성과 첨가하는 충전재의 종류에 따라서 결정할 수 있다. 상기 평균 입경은 0.05 내지 20 ㎛, 0.1 내지 10 ㎛, 0.1 내지 5 ㎛ 또는 0.1 내지 3 ㎛일 수 있다. 본 명세서에서 평균 입경은 특별히 달리 규정하지 않는 한, D50 입도 분석에 따라 측정한 평균 입경일 수 있다.
본 발명은 상기 입경 범위를 조절함으로써, 개질 효과를 충분히 유지하면서도 표면성을 손상시키지 않고 기계적 특성을 저하시키지 않을 수 있다.
또한, 본 발명은 충전재의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성이나 충전재 입경 등에 의해 결정할 수 있다. 본 발명에서, 상기 충전재의 첨가량은 폴리이미드 수지 100 중량부에 대하여 0.01 내지 10 중량부, 0.01 내지 5 중량부, 또는 0.02 내지 1 중량부일 수 있다. 본 발명은 상기 함량을 조절함으로써, 충전재의 개질 효과를 충분히 유지하면서도 필름의 기계적 특성을 손상시키지 않을 수 있다.
상기 충전재의 첨가 방법은 특별히 한정되는 것은 아니고, 동종 업계의 공지의 방법을 이용할 수도 있다.
본 발명의 불소계 폴리아믹산 및 친수성 폴리아믹산을 포함하는 폴리아믹산 조성물은 불소계 폴리아믹산에 의해 높은 내열특성과 함께 낮은 유전상수, 낮은 유전정접, 저열팽창성, 내흡습 특성 및 높은 절연 강도를 구현할 수 있고, 친수성 폴리아믹산에 의해 우수한 기계적 강도와 높은 계면 접착력을 구현할 수 있다.
또한, 본 발명은 폴리아믹산 조성물의 제조방법에 관한 것으로, 상기 제조방법은 전술한 폴리아믹산 조성물의 제조방법일 수 있다.
구체적으로, 본 발명은 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지를 혼합하는 단계를 포함하는 폴리아믹산 조성물의 제조방법을 제공한다.
하나의 예시에서, 본 발명의 폴리아믹산 조성물의 제조방법은, 제 1 유기용매 중에서 불소계 디아민 단량체 및 불소계 디안하이드라이드 단량체를 1:0.8 내지 1:2의 몰비로 중합시켜 제1 폴리아믹산 수지를 제조하는 단계; 제2 유기용매 중에서 친수성 디아민 단량체 및 친수성 디안하이드라이드 단량체를 1:0.8 내지 1:2의 몰비로 중합시켜 제2 폴리아믹산 수지를 제조하는 단계; 및 상기 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지를 혼합하는 단계를 포함할 수 있다. 상기 제1 폴리아믹산 수지의 제조와 제2 폴리아믹산 수지의 제조 순서는 특별히 제한되지 않고, 제2 폴리아믹산 수지를 먼저 제조 후 제1 폴리아믹산 수지를 제조할 수 있다.
상기 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지를 혼합하는 단계는 50 내지 80℃의 고온에서 수행하는 것일 수 있다. 예를 들어, 상기 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지를 혼합하는 단계는 50 내지 70℃, 50 내지 60℃, 60 내지 80℃, 60 내지 70℃ 또는 70 내지 80℃에서 수행하는 것일 수 있다.
본 발명은 상기 폴리아믹산 조성물 제조를 통해, 불소계 폴리아믹산(제1 폴리아믹산 수지)에 의해 높은 열분해온도를 갖는 내열특성과 함께 낮은 유전상수, 낮은 유전정접, 저열팽창성, 내흡습 특성 및 높은 절연 강도를 구현할 수 있고, 친수성 폴리아믹산(제2 폴리아믹산 수지)에 의해 우수한 기계적 강도와 높은 계면 접착력을 구현할 수 있다.
상기 제1 유기용매 및 제2 유기용매는 각각 독립적으로 폴리아믹산이 용해될 수 있는 유기용매라면 특별히 한정되지는 않으나, 하나의 예로서 비양성자성 극성 용매(aprotic polar solvent)일 수 있다.
상기 비양성자성 극성 용매는 예를 들어, N,N'-디메틸포름아미드(DMF), N,N'-디에틸포름아미드(DEF), N,N'-디메틸아세트아미드(DMAc), 디메틸프로판아미드(DMPA) 등의 아미드계 용매, p-클로로페놀, o-클로로페놀 등의 페놀계 용매, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL) 및 디그림(Diglyme) 등을 들 수 있고, 이들은 단독으로 또는 2종 이상 조합되어 사용될 수 있다.
본 발명은, 경우에 따라서 톨루엔, 테트라히드로푸란, 아세톤, 메틸에틸케톤, 메탄올, 에탄올, 물 등의 보조적 용매를 사용하여, 폴리아믹산의 용해도를 조절할 수도 있다.
하나의 예시에서, 상기 유기용매는 예를 들어, N-메틸-피롤리돈(NMP) 일 수 있다.
또한, 본 발명은 상기 폴리아믹산 조성물의 경화물인 폴리이미드를 제공한다. 일 예시에서, 상기 폴리이미드는 전술한 폴리아믹산 조성물 또는 그 제조방법으로 제조된 전구체 조성물의 경화물일 수 있다.
더불어, 본 발명은 상기 폴리이미드를 필름 또는 시트 형태로 포함하는 폴리이미드 필름을 제공한다.
하나의 예시에서, 본 출원은 폴리이미드 필름의 제조방법에 관한 것이다. 본 발명은 상기 폴리아믹산 조성물을 지지체에 제막하고 건조하여 겔 필름을 제조하는 단계; 및 상기 겔 필름을 경화하는 단계를 포함하는, 폴리이미드 필름의 제조방법을 제공할 수 있다.
구체적으로, 상기한 폴리아믹산 조성물을 이미드화하여 폴리이미드 필름을 제조하는 방법에 대해서는, 종래 공지된 방법을 사용할 수 있다.
이러한 이미드화의 구체적인 방법으로는 열 이미드화법, 화학 이미드화법 또는 상기 열 이미드화법과 화학 이미드화법을 병용하는 복합 이미드화법을 예로 들 수 있다.
이하 본 발명에 따르는 실시예 등을 통해 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
<실시예 1>
폴리아믹산 조성물의 제조
교반기 및 질소 주입·배출관을 구비한 500 ㎖ 반응기에 질소를 주입시키면서 N-메틸-피롤리돈(NMP)을 투입하고 반응기의 온도를 30℃로 설정한 후 제1 폴리아믹산 수지의 불소계 디아민 단량체로서 2,2-비스(4-아미노페닐)헥사플루오로프로판(BAHF) 및 불소계 디안하이드라이드 단량체로서 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(6-FDA)을 투입하여 완전히 용해한 후 40℃로 온도를 올려 가열하면서 120 분간 교반을 계속하였다. 이어서, 질소 분위기하에 80℃로 온도를 올려 가열하면서 2 시간 동안 추가적으로 교반을 계속한 후, 제1 폴리아믹산 수지를 제조하였다. 또한, 제2 폴리아믹산 수지의 친수성 디아민 단량체로서 4,4'-디아미노디페닐에테르(ODA) 및 친수성 디안하이드라이드 단량체로서 3,3,4,4-벤조페논테트라카복실릭 디안하이드라이드(BTDA) 투입하여 완전히 용해한 후 40℃로 온도를 올려 가열하면서 120 분간 교반을 계속하였다. 이어서, 질소 분위기하에 80℃로 온도를 올려 가열하면서 2 시간 동안 추가적으로 교반을 계속한 후, 제2 폴리아믹산 수지를 제조하였다. 상기 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지를 하기 표 1의 중량 비율로 혼합하여 폴리아믹산 조성물을 제조하였다.
폴리이미드 필름의 제조
상기 제조된 폴리이미드 전구체 조성물을 1,500 rpm 이상의 고속 회전을 통해 기포를 제거하였다. 이후 스핀코터를 이용하여 유리 기판에 탈포된 폴리이미드 전구체 조성물을 도포하였다. 이후 질소 분위기 하에서 및 120℃의 온도에서 30 분 동안 건조하여 겔 필름을 제조하고, 상기 겔 필름을 450℃까지 2℃/분의 속도로 승온하고, 450℃에서 60 분 동안 열처리하고, 30℃까지 2℃/분의 속도로 냉각하여 폴리이미드 필름을 수득하였다. 이후 증류수에 디핑(dipping)하여 유리 기재에서 폴리이미드 필름을 박리시켰다. 제조된 폴리이미드 필름의 두께는 15 ㎛였다. 제조된 폴리이미드 필름의 두께는 Anritsu사의 필름 두께 측정기(Electric Film thickness tester)를 사용하여 측정하였다.
<실시예 2 내지 4 및 비교예 1 내지 7>
실시예 1에서, 단량체 및 이의 함량비를 하기 표 1과 같이 변경한 것을 제외하고, 실시예 1과 동일한 방법으로 실시예 2 내지 4 및 비교예 1 내지 7의 폴리아믹산 조성물 및 폴리이미드 필름을 제조하였다.
Figure PCTKR2019015411-appb-T000001
실험예 1: 두께 측정
상기 제조된 폴리이미드 필름의 두께는 Anritsu사의 필름 두께 측정기(Electric Film thickness tester)를 사용하여 측정하였다. 그 결과를 하기 표 2에 나타내었다.
실험예 2: 유전정접(손실계수) 측정
상기 실시예 및 비교예에서 제조된 폴리이미드 필름의 1 GHz에서의 유전정접을 Keysight사의 SPDR 측정기를 이용하여 측정하였다. 그 결과, 측정된 유전정접 값을 하기 표 2에 나타내었다.
유전정접은 0.0050 이하 우수, 0.0040 또는 0.0036 이하 매우 우수로 평가될 수 있다.
실험예 3: 1 중량%의 분해온도 측정
열분해온도를 측정하기 위해 TA사 열무게 분석(thermogravimetric analysis) Q50 모델을 사용하였으며, 상기 폴리이미드 필름을 질소 분위기하에서 10 min/℃의 속도로 150℃까지 승온시킨 후 30 분간 등온을 유지하여 수분을 제거했다. 이후 10 min/℃의 속도로 600℃까지 승온하여 1%의 중량 감소가 발생하는 온도를 측정하였다. 측정된 결과를 하기 표 2에 나타내었다.
Figure PCTKR2019015411-appb-T000002

Claims (18)

  1. 불소계 단량체를 포함하는 제1 폴리아믹산 수지; 및
    친수성 단량체를 포함하는 제2 폴리아믹산 수지를 포함하고,
    경화 후 주파수 1.0 GHz에서 측정한 유전정접이 0.004 이하이고, 1 중량%의 분해온도가 470℃ 이상인 폴리아믹산 조성물.
  2. 제 1 항에 있어서,
    제1 폴리아믹산 수지 및 제2 폴리아믹산 수지는 각각 35 내지 75 중량부 및 25 내지 65 중량부의 비율로 포함되는 폴리아믹산 조성물.
  3. 제 1 항에 있어서,
    제1 폴리아믹산 수지는 폴리아믹산 조성물 전체에서 30 내지 80 중량%의 범위로 포함되는 폴리아믹산 조성물.
  4. 제 1 항에 있어서,
    제2 폴리아믹산 수지는 폴리아믹산 조성물 전체에서 20 내지 70 중량%의 범위 내로 포함되는 폴리아믹산 조성물.
  5. 제 1 항에 있어서,
    전체 폴리아믹산 수지 내에서, 불소계 단량체는 25 내지 75 몰%의 범위로 포함되는 폴리아믹산 조성물.
  6. 제 1 항에 있어서,
    전체 폴리아믹산 수지 내에서, 친수성 단량체는 25 내지 75 몰%의 범위로 포함되는 폴리아믹산 조성물.
  7. 제 1 항에 있어서,
    제1 폴리아믹산 수지는 불소계 디아민 단량체 및 불소계 디안하이드라이드 단량체를 포함하는 폴리아믹산 조성물.
  8. 제 1 항에 있어서,
    불소계 단량체는 제1 폴리아믹산 수지 내에 70 내지 100 몰%의 범위 내로 포함되는 폴리아믹산 조성물.
  9. 제 7 항에 있어서,
    불소계 디아민 단량체는 2,2'-비스(트리플루오로메틸)벤지딘(TFMB), 2,2-비스[4-(4-아미노페녹시)페닐]헥사플루오로프로판(HFBAPP), 2,2-비스(4-아미노페닐)헥사플루오로프로판(BAHF), 2,2'-비스(트리플루오로메틸)-4,4'-디아미노페닐에테르, 4,4'-비스(4-아미노-2-트리플루오로메틸페녹시)비페닐 및 4,4'-비스(4-아미노-2-트리플루오로메틸페녹시)페닐로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는 것인 폴리아믹산 조성물.
  10. 제 7 항에 있어서,
    불소계 디안하이드라이드 단량체는 4,4'-(헥사플루오로이소프로필리덴)디프탈산 무수물(6-FDA) 및 9,9-비스(트리플루오로메틸)-2,3,4,7-크산틴테트라카복실산 무수물로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는 것인 폴리아믹산 조성물.
  11. 제 1 항에 있어서,
    제2 폴리아믹산 수지는 친수성 디아민 단량체 및 친수성 디안하이드라이드 단량체를 포함하는 폴리아믹산 조성물.
  12. 제 1 항에 있어서,
    친수성 단량체는 제2 폴리아믹산 수지 내에 70 내지 100 몰%의 범위 내로 포함되는 폴리아믹산 조성물.
  13. 제 11 항에 있어서,
    친수성 디아민 단량체는 4,4'-디아미노디페닐에테르(ODA), 2,2-비스(4,-(4-아미노페녹시)페닐)프로판(BAPP), 4,4-디아미노벤자닐리드(4,4-DABA), 3,3-디아미노벤자닐리드(3,3-DABA), 1,3-비스(4-아미노페녹시)벤젠(TPE-R) 및 1,4-비스(4-아미노페녹시)벤젠(TPE-Q)으로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는 폴리아믹산 조성물.
  14. 제 11 항에 있어서,
    친수성 디안하이드라이드 단량체는 4,4'-옥시디프탈릭 디안하이드라이드(ODPA), 디페닐설폰-3,4,3',4'-테트라카르복실릭 디안하이드라이드(DSDA), 3,3,4,4-벤조페논테트라카복실릭 디안하이드라이드(BTDA), 파라페닐렌비스트리메틸테이트 언하이드라이드(TAHQ)로 이루어진 그룹으로부터 선택된 1 종 이상을 포함하는 폴리아믹산 조성물.
  15. 제1 폴리아믹산 수지 및 제2 폴리아믹산 수지를 혼합하는 단계를 포함하는 제 1 항에 따른 폴리아믹산 조성물의 제조방법.
  16. 제 15 항에 있어서,
    제1 폴리아믹산 수지 및 제2 폴리아믹산 수지를 혼합하는 단계는 50 내지 80℃에서 수행하는 것인 폴리아믹산 조성물의 제조방법.
  17. 제 1 항에 따른 폴리아믹산 조성물의 경화물인 폴리이미드.
  18. 제 17 항에 따른 폴리이미드를 필름 또는 시트 형태로 포함하는 폴리이미드 필름.
PCT/KR2019/015411 2019-09-27 2019-11-13 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드 WO2021060617A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0119866 2019-09-27
KR1020190119866A KR102260028B1 (ko) 2019-09-27 2019-09-27 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드

Publications (1)

Publication Number Publication Date
WO2021060617A1 true WO2021060617A1 (ko) 2021-04-01

Family

ID=75166300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015411 WO2021060617A1 (ko) 2019-09-27 2019-11-13 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드

Country Status (2)

Country Link
KR (1) KR102260028B1 (ko)
WO (1) WO2021060617A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037574A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 폴리이미드 필름 및 그 제조방법
KR20180000863A (ko) * 2016-06-24 2018-01-04 코오롱인더스트리 주식회사 내열성이 개선된 폴리아믹산 수지, 이로부터 제조된 폴리이미드 필름 및 이의 표시소자
KR20180089860A (ko) * 2017-02-01 2018-08-09 스미또모 가가꾸 가부시키가이샤 폴리이미드 필름
JP2018165346A (ja) * 2017-03-28 2018-10-25 東レ・デュポン株式会社 ポリイミドフィルム
JP2019059834A (ja) * 2017-09-26 2019-04-18 河村産業株式会社 ポリイミド粉体、ポリイミドワニス及びポリイミドフィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037574A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 폴리이미드 필름 및 그 제조방법
KR20180000863A (ko) * 2016-06-24 2018-01-04 코오롱인더스트리 주식회사 내열성이 개선된 폴리아믹산 수지, 이로부터 제조된 폴리이미드 필름 및 이의 표시소자
KR20180089860A (ko) * 2017-02-01 2018-08-09 스미또모 가가꾸 가부시키가이샤 폴리이미드 필름
JP2018165346A (ja) * 2017-03-28 2018-10-25 東レ・デュポン株式会社 ポリイミドフィルム
JP2019059834A (ja) * 2017-09-26 2019-04-18 河村産業株式会社 ポリイミド粉体、ポリイミドワニス及びポリイミドフィルム

Also Published As

Publication number Publication date
KR102260028B1 (ko) 2021-06-03
KR20210037332A (ko) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2021060613A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2021091011A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2012081763A1 (ko) 폴리이미드 필름
WO2019004677A1 (ko) 폴리이미드 전구체 조성물, 이의 제조방법 및 이로부터 제조된 폴리이미드 기재
WO2021091014A1 (ko) 유전특성이 개선된 폴리이미드 필름 및 그 제조방법
WO2021091012A1 (ko) 저유전 폴리이미드 필름 및 그 제조방법
WO2021101324A2 (ko) 저유전 폴리이미드 복합 분말 및 그 제조방법
WO2021006427A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조 방법 및 이를 포함하는 폴리이미드
WO2021060616A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드
WO2021095976A1 (ko) 고탄성 및 고내열 폴리이미드 필름 및 그 제조방법
WO2022107969A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2020101115A1 (ko) 가교성 디안하이드라이드계 화합물 및 산화방지제를 포함하는 폴리이미드 전구체 조성물, 이로부터 제조된 폴리이미드 필름
WO2021091013A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2016209060A1 (ko) 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
WO2020230969A1 (ko) 폴리이미드 및 이의 제조 방법
WO2022108296A1 (ko) 액정 분말을 포함하는 저유전 폴리아믹산, 폴리이미드 필름 및 그 제조방법
WO2022107966A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2021060617A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드
WO2021060612A1 (ko) 폴리아믹산 조성물, 이의 제조방법 및 이를 포함하는 폴리이미드 필름
WO2021060615A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드
WO2021060614A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조방법 및 이를 포함하는 폴리이미드
WO2022107968A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2022107965A1 (ko) 폴리아믹산 조성물 및 이를 포함하는 폴리이미드
WO2023038321A1 (ko) 폴리아믹산 조성물 및 이로부터 제조되는 폴리이미드
WO2021006429A1 (ko) 폴리아믹산 조성물, 폴리아믹산 조성물의 제조 방법 및 이를 포함하는 폴리이미드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947082

Country of ref document: EP

Kind code of ref document: A1