WO2021060322A1 - 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 - Google Patents
非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 Download PDFInfo
- Publication number
- WO2021060322A1 WO2021060322A1 PCT/JP2020/035913 JP2020035913W WO2021060322A1 WO 2021060322 A1 WO2021060322 A1 WO 2021060322A1 JP 2020035913 W JP2020035913 W JP 2020035913W WO 2021060322 A1 WO2021060322 A1 WO 2021060322A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aqueous electrolyte
- electrolyte secondary
- secondary battery
- binder
- secondary cell
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a binder for a non-aqueous electrolyte secondary battery, an electrode composition for a non-aqueous electrolyte secondary battery, an electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
- a graphite-based material is used for the negative electrode of a lithium ion secondary battery, but the theoretical capacity of the graphite-based material is 372 mAh / g (LiC 6 ), which is currently approaching its limit.
- silicon can occlude up to 4.4 lithium atoms with respect to 1 silicon atom in terms of molar ratio, and theoretically, a capacity about 10 times that of a graphite-based carbon material can be obtained.
- the volume of silicon particles swells about 3 to 4 times when lithium is occluded, deterioration progresses due to repeated charging and discharging, and there is a problem that the capacity decreases.
- a detailed analysis of this phenomenon reveals that when lithium is inserted into an active material containing silicon, fine cracks occur in the electrode due to volume expansion, and the electrolytic solution penetrates into these fine cracks, resulting in a new coating (SEI layer). Has been confirmed to be formed.
- Patent Document 1 by using a negative electrode material in which carbon particles are modified with a silane coupling agent, an electrode having excellent durability and an excellent charge / discharge cycle can be obtained even when a silicon-based compound is used.
- Patent Document 2 proposes to attach niobium oxide to a silicon-based compound to improve durability.
- Patent Documents 1 and 2 the negative electrode active material is improved, but the binder used for the negative electrode is also required to be further improved.
- An object of the present invention is to provide a binder for a non-aqueous electrolyte secondary battery capable of obtaining a battery having excellent performance even when an active material containing silicon is used, and to provide a binder for the non-aqueous electrolyte secondary battery.
- To provide an electrode composition for a non-aqueous electrolyte secondary battery containing a binder for an electrolyte secondary battery and to provide an electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the electrode composition for a non-aqueous electrolyte secondary battery. It is to provide a water electrolyte secondary battery.
- a binder for a non-aqueous electrolyte secondary battery which comprises at least carboxymethyl cellulose and / or a salt thereof and a conductive additive.
- the conductive additive is a carbon nanotube or a conductive polymer.
- the conductive polymer is a polythiophene-based conductive polymer.
- a dopant additive selected from formic acid and / or polyhydric alcohols.
- the polyhydric alcohol is at least one selected from (poly) ethylene glycol and / or sugar alcohol.
- An electrode composition for a non-aqueous electrolyte secondary battery which comprises the binder for a non-aqueous electrolyte secondary battery according to any one of (1) to (9).
- An electrode for a non-aqueous electrolyte secondary battery using the electrode composition for a non-aqueous electrolyte secondary battery according to (10) or (11) is provided.
- a binder for a non-aqueous electrolyte secondary battery capable of obtaining a battery having excellent performance even when an active material containing silicon is used, and this
- a non-aqueous electrolyte secondary battery electrode composition containing a binder for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery electrode and a non-aqueous electrolyte using this non-aqueous electrolyte secondary battery electrode composition.
- a secondary battery can be provided.
- the binder for a non-aqueous electrolyte secondary battery the electrode composition for a non-aqueous electrolyte secondary battery, the electrode for a non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery according to the embodiment of the present invention will be described.
- the binder for a non-aqueous electrolyte secondary battery of the present invention is characterized by containing at least carboxymethyl cellulose and / or a salt thereof and a conductive additive.
- Carboxymethyl cellulose and / or its salt used in the present invention has a structure in which a hydroxyl group in a glucose unit constituting cellulose is substituted with a carboxymethyl ether group.
- Carboxymethyl cellulose may be in the form of salts. Examples of the salt of carboxymethyl cellulose include metal salts such as sodium carboxymethyl cellulose salt.
- cellulose means a polysaccharide having a structure in which D-glucopyranose (simply referred to as “glucose unit” or “anhydrous glucose”) is linked by ⁇ , 1-4 bonds.
- D-glucopyranose simply referred to as "glucose unit” or “anhydrous glucose”
- Cellulose is generally classified into natural cellulose, regenerated cellulose, fine cellulose, microcrystalline cellulose excluding non-crystalline regions, etc., based on the origin, manufacturing method, and the like.
- Examples of natural cellulose include bleached or unbleached pulp, purified linters, cellulose produced by microorganisms such as acetobacter, and the like.
- the raw material of the bleached or unbleached pulp is not particularly limited, and examples thereof include wood, cotton, straw, and bamboo.
- the method for producing bleached or unbleached pulp is also not particularly limited, and a mechanical method, a chemical method, or a method in which a mechanical method and a chemical method are combined is exemplified.
- Examples of bleached or unbleached pulp include mechanical pulp, chemical pulp, crushed wood pulp, sulfite pulp, kraft pulp, and papermaking pulp.
- dissolved pulp which is a main raw material such as artificial fiber and cellophane, which is chemically refined and mainly dissolved in a chemical and used, is also exemplified.
- regenerated cellulose examples include regenerated cellulose obtained by dissolving cellulose in a solvent such as a copper ammonia solution, a cellulose zantate solution, or a morpholine derivative and spinning it again.
- fine cellulose and cellulose-based materials obtained by depolymerizing cellulosic materials such as natural cellulose and regenerated cellulose by acid hydrolysis, alkali hydrolysis, enzymatic decomposition, blasting treatment, vibration ball mill treatment, etc. Examples thereof include fine cellulose obtained by mechanical treatment.
- CMC used in the present invention
- a known manufacturing method of CMC can be applied.
- CMC can be produced by treating cellulose with a mercerizing agent (alkali) to prepare mercerized cellulose (alkali cellulose), and then adding an etherifying agent to the mercerized cellulose to cause an etherification reaction. ..
- the raw material cellulose the above-mentioned cellulose can be used without particular limitation, but those having a high cellulose purity are preferable, and dissolving pulp or linter is more preferable. By using these, CMC with high purity can be obtained.
- Examples of the mercerizing agent include alkali metal hydroxide salts such as sodium hydroxide and potassium hydroxide.
- Examples of the etherifying agent include monochloroacetic acid and sodium monochloroacetate.
- the molar ratio of the mercerizing agent to the etherifying agent is 2.00 to 2.
- the etherifying agent When monochloroacetic acid is used as the etherifying agent. 45 is common. The reason is that the etherification reaction can be sufficiently carried out when the amount is 2.00 or more, and it is possible to prevent unreacted monochloroacetic acid from remaining and being wasted. When it is 2.45 or less, it is possible to prevent the side reaction by the excess mercerizing agent and monochloroacetic acid from proceeding and the formation of the alkali metal glycolic acid salt, which is economical.
- the CMC may be a commercially available product. Examples of commercially available products include the trade name "Sunrose" manufactured by Nippon Paper Industries, Ltd.
- the ratio of the group substituted with the carboxymethyl ether group (-OCH 2 COOH) among the hydroxyl groups (-OH) in the glucose unit constituting the cellulose can also be expressed as the degree of etherification of CMC.
- the CMC used in the present invention has a degree of substitution of carboxymethyl groups per glucose unit (hereinafter, may be referred to as "CM-DS" or "DS value”) in the range of 0.5 to 1.5. Is preferable.
- CM-DS is 0.5 or more, the solubility in water can be kept good, and the generation of undissolved substances can be suppressed. Further, when the CM-DS is 1.5 or less, the increase in the spinnability of the liquid can be suppressed and the handling can be easily maintained.
- CM-DS can be calculated by the method shown in the examples. Therefore, the CM-DS of the CMC of the present invention is preferably 0.5 to 1.5, more preferably 0.5 to 1.0.
- the method for measuring the degree of substitution of the carboxymethyl group is as follows: Weigh approximately 2.0 g of the sample and place it in an Erlenmeyer flask with a 300 mL stopper. 100 mL of a solution prepared by adding 100 mL of special grade concentrated nitric acid to 1000 mL of methanol is added, and the mixture is shaken for 3 hours to convert the salt of carboxymethyl cellulose (CMC) into H-CMC (hydrogen type carboxymethyl cellulose). Weigh 1.5 to 2.0 g of the absolutely dry H-CMC and place it in an Erlenmeyer flask with a 300 mL stopper.
- the viscosity of the aqueous dispersion of CMC with a solid content of 1% (w / v) at 25 ° C. measured using a B-type viscometer is preferably 100 to 20,000 mPa ⁇ s, and is preferably 1000 to 20,000 mPa ⁇ s. It is more preferably 15,000 mPa ⁇ s, and particularly preferably 1,500 to 10,000 mPa ⁇ s.
- the method for measuring viscosity is as follows: Carboxymethyl cellulose or a salt thereof is measured in a 1000 mL glass beaker and dispersed in 900 mL of distilled water to prepare an aqueous dispersion having a solid content of 1% (w / v). The aqueous dispersion is stirred at 25 ° C. using a stirrer at 600 rpm for 3 hours. Then, according to the method of JIS-Z-8803, a B-type viscometer (manufactured by Toki Sangyo Co., Ltd.) was used to obtain No. The viscosity after 3 minutes is measured at 1 rotor / rotation speed of 30 rpm.
- the CMC used in the present invention may be one type or a combination of two or more types of CMCs having different degrees of etherification, CM-DS, viscosity, molecular weight and the like.
- the binder for a non-aqueous electrolyte secondary battery of the present invention contains a conductive additive.
- a conductive additive it is preferable to use carbon nanotubes (hereinafter, may be referred to as CNT) or a conductive polymer.
- carbon nanotube single-walled CNT is preferable.
- Examples of the conductive polymer include polythiophene-based conductive polymer, polyphenylene, polycarbazole, polyacetylene, polypyrrole, polythiophene, polyaniline, etc., and polythiophene-based conductive polymer is preferable.
- polythiophene-based conductive polymer examples include poly (3,4-ethylenedioxythiophene) (hereinafter, may be referred to as PEDOT), polystyrene sulfonic acid (hereinafter, may be referred to as PSS), oligothiophene, and the like. , Of these, it is preferable to contain at least PEDOT and PSS.
- PEDOT polystyrene sulfonic acid
- PSS polystyrene sulfonic acid
- oligothiophene oligothiophene
- the conductive polymer preferably satisfies the range of pH 1 to 8, and more preferably the range of pH 4 to 8.
- the pH of the conductive polymer is indicated by the pH of an aqueous solution having a solid content of 1.1% by mass of the conductive polymer.
- the conductive additive is preferably used in an amount of 10 to 1000% by mass, more preferably 20 to 900% by mass, and further preferably 50 to 900% by mass with respect to 100% by mass of carboxymethyl cellulose and / or a salt thereof. preferable.
- the conductive additive is particularly preferably used in the range of 10 to 200% by weight and 50 to 100% by weight with respect to 100% by mass of carboxymethyl cellulose and / or a salt thereof. preferable.
- the binder for a non-aqueous electrolyte secondary battery of the present invention may further contain a dopant additive.
- a dopant additive formic acid, polyhydric alcohols and the like can be used as the dopant additive.
- polyhydric alcohols include (poly) ethylene glycol and sugar alcohols, and examples of sugar alcohols include sorbitol, xylitol and mannitol.
- (poly) ethylene glycol means ethylene glycol or polyethylene glycol.
- a dopant additive When a dopant additive is used, it is preferably used in an amount of 100 to 3000% by mass, more preferably 200 to 2500% by mass, based on the solid content of the conductive additive.
- the dopant additive in the non-aqueous electrolyte secondary battery binder of the present invention.
- Electrode composition for a non-aqueous electrolyte secondary battery of the present invention contains the above-mentioned binder for a non-aqueous electrolyte secondary battery, and may further contain an electrode active material. preferable. Further, the electrode composition may contain the above-mentioned dopant additive, and may also contain other components such as a conductive auxiliary agent used as needed.
- the binder for a non-aqueous electrolyte secondary battery can form an electrode composition together with an electrode active material.
- the non-aqueous electrolyte secondary battery binder in the electrode composition is preferably 0.5 to 5.0% by mass with respect to the entire electrode composition.
- the electrode active material contained in the electrode composition is a negative electrode active material when used for a non-aqueous electrolyte secondary battery electrode for a negative electrode, and a positive electrode when used for a non-aqueous electrolyte secondary battery electrode for a positive electrode. It is an active material.
- a graphite material such as graphite (natural graphite, artificial graphite, etc.), coke, carbon fiber, etc .
- an element capable of forming an alloy with lithium that is, for example, a silicon compound, Al, Sn, Ag, Elements such as Bi, Mg, Zn, In, Ge, Pb, Ti
- compounds containing elements capable of forming alloys with lithium elements capable of forming alloys with lithium and the compounds, carbon and / Or a compound with the above-mentioned graphite material, a nitride containing lithium, or the like
- graphitic materials and silicon-based compounds are preferable, and silicon particles or silicon oxide particles are more preferable as graphite and silicon-based compounds.
- the silicon oxide in the present invention is represented by SiO x (0 ⁇ x ⁇ 2). Further, in the present invention, as the negative electrode active material, a composite of a silicon compound and a graphitic material is more suitable.
- the negative electrode active material is a composite of a graphite material and a silicon-based compound
- the content of the silicon-based active material in 100% by mass of the negative electrode active material is preferably 10% by mass or more, and more preferably 20% by mass or more.
- the positive electrode active material is a LiFePO 4 , LiMe x Oy (Me means a transition metal containing at least one of Ni, Co, and Mn. X and y mean an arbitrary number). Is preferable.
- the content of the electrode active material in the electrode composition is usually 60 to 99% by mass, preferably 70 to 99% by mass, and more preferably 90 to 99% by mass, 91 to 99% by mass, 92 to 92. It is 99% by mass and 95 to 99% by mass, particularly preferably 96 to 99% by mass, and most preferably 98 to 99% by mass.
- the electrode composition may contain other binders other than the binder for non-aqueous electrolyte secondary batteries of the present invention.
- examples of other binders used in electrode compositions for negative electrodes include synthetic rubber-based binders.
- the synthetic rubber-based binder one or more selected from the group consisting of styrene butadiene rubber (SBR), nitrile butadiene rubber, methyl methacrylate butadiene rubber, chloroprene rubber, carboxy-modified styrene butadiene rubber and latex of these synthetic rubbers is used. it can. Of these, styrene-butadiene rubber (SBR) is preferable.
- SBR styrene-butadiene rubber
- polytetrafluoroethylene PTFE
- PTFE tetrafluoroethylene
- the content of the other binder in the electrode composition is usually 1 to 10% by mass, preferably 1 to 6% by mass, and more preferably 1 to 2% by mass.
- the electrode composition may contain a conductive auxiliary agent, if necessary.
- the conductive auxiliary agent include conductive carbons such as carbon black, acetylene black, and Ketjen black.
- the content of the conductive auxiliary agent in the electrode composition is usually 0.01 to 20% by mass, preferably 0.1 to 10% by mass.
- an aqueous solvent is preferable.
- the type of the aqueous solvent is not particularly limited, but water, a water-soluble organic solvent, or a mixed solvent thereof is preferable, and water is more preferable.
- the water-soluble organic solvent is an organic solvent that dissolves in water.
- examples are methanol, ethanol, 2-propanol, butanol, glycerin, acetone, methyl ethyl ketone, 1,4-dioxane, N-methyl-2-pyrrolidone, tetrahydrofuran (THF), N, N-dimethylformamide (DMF), N. , N-Dimethylacetamide, dimethyl sulfoxide (DMSO), acetonitrile, methyltriglycoldiester succinate, acetic acid and combinations thereof.
- the amount of the water-soluble organic solvent in the mixed solvent is preferably 10% by mass or more, more preferably 50% by mass or more, still more preferably 70% by mass or more.
- the upper limit of the amount is not limited, but is preferably 95% by mass or less, and more preferably 90% by mass or less.
- the aqueous solvent may contain a water-insoluble organic solvent as long as the effects of the invention are not impaired.
- the production conditions of the electrode composition are not particularly limited. For example, to an aqueous solution of carboxymethyl cellulose and / or a salt thereof, other components constituting the electrode composition are added, and if necessary, they are mixed with stirring. Further, the properties of the electrode composition are not particularly limited. For example, liquid, paste, slurry and the like can be mentioned, and any of them may be used.
- the electrode for a non-aqueous electrolyte secondary battery of the present invention can be obtained by applying the electrode composition for a non-aqueous electrolyte secondary battery obtained as described above onto a current collector.
- the coating method include blade coating, bar coating, and die coating, and blade coating is preferable.
- blade coating a method of casting the electrode composition for a non-aqueous electrolyte secondary battery of the present invention on a current collector using a coating device such as a doctor blade is exemplified.
- the laminating method is not limited to the above specific example, and there is also a method of discharging and applying the electrode composition from an extrusion type liquid dispenser having a slot nozzle onto a current collector which is wound around a backup roll and travels. Illustrated.
- the blade coating after casting, drying by heating (temperature is, for example, 80 to 120 ° C., heating time is, for example, 4 to 12 hours) or the like, and pressurization by a roll press or the like is performed as necessary to obtain non-conformity of the present invention.
- An electrode for a water electrolyte secondary battery can be obtained.
- ⁇ Current collector> As the current collector, any electric conductor that does not cause a fatal chemical change in the constituent electrodes or batteries can be used.
- a negative electrode current collector When the electrode is a negative electrode, a negative electrode current collector can be used, and when the electrode is a positive electrode, a positive electrode current collector can be used.
- Examples of the material of the current collector for the negative electrode include those obtained by adhering carbon, nickel, titanium or silver to the surface of stainless steel, nickel, copper, titanium, carbon, copper or stainless steel. Of these, copper or a copper alloy is preferable, and copper is more preferable.
- Examples of the material of the current collector for the positive electrode include metals such as aluminum and stainless steel, and aluminum is preferable.
- Examples of the shape of the current collector include a net, punched metal, foam metal, and a foil processed into a plate shape, and a foil processed into a plate shape is preferable.
- the electrode for a non-aqueous electrolyte secondary battery of the present invention is used as an electrode (at least one of a negative electrode or a positive electrode) of a non-aqueous electrolyte secondary battery. That is, the present invention also provides a non-aqueous electrolyte secondary battery.
- the non-aqueous electrolyte secondary battery of the present invention may have a structure in which positive electrodes and negative electrodes are alternately laminated via a separator and wound many times.
- a non-aqueous electrolyte secondary battery can be obtained by placing a laminated body of a positive electrode, a separator, and a negative electrode wound many times in a battery container, injecting a non-aqueous electrolyte, and sealing the battery.
- the shape of the non-aqueous electrolyte secondary battery is not particularly limited, and a cylindrical type, a square type, a flat type, a coin type, a button type, a sheet type, etc. can be adopted.
- the material of the battery container is not particularly limited as long as the purpose of preventing the intrusion of moisture into the battery can be achieved, and examples thereof include laminating metal, aluminum, and the like.
- the separator is usually impregnated with a non-aqueous electrolyte.
- a non-aqueous electrolyte for example, a microporous membrane made of polyolefin such as polyethylene or polypropylene or a non-woven fabric can be used.
- the non-aqueous electrolyte usually contains a lithium salt and a non-aqueous solvent.
- the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiClO 4, and the like.
- the non-aqueous solvent include ethylene carbonate, diethyl carbonate, dimethyl carbonate, propylene carbonate, butylene carbonate, methyl ethyl carbonate and the like.
- the non-aqueous solvent one type may be used alone, or two or more types may be used in combination.
- the concentration of lithium salt in the non-aqueous electrolyte can usually be used at a concentration of 0.5 to 2.5 mol / L.
- Example 1 (Preparation of binder) Carboxymethyl cellulose MAC500LC (DS value: 0.65, 1% viscosity: 4700 mPa ⁇ s, manufactured by Nippon Paper Co., Ltd.) 1.25 g of aqueous dispersion (2% by mass) and 1.1% by mass of acidic PEDOT: PSS (Product name: Orgacon ICP 1050, manufactured by Sigma Aldrich, ⁇ pH 2.5) A conductive additive neutralized to pH 7 using 1.0 M sodium hydroxide aqueous solution with respect to 2.27 g, and ethylene glycol as a dopant additive. 0.07 g was added. Then, it was mixed with Mazerustar (Mazerustar KK-250S, manufactured by Kurabo Industries Ltd.) to obtain a binder 1 for a non-aqueous electrolyte secondary battery.
- the obtained electrode composition was applied onto a current collector (length 320 mm ⁇ width 170 mm ⁇ thickness 17 ⁇ m copper foil (manufactured by Furukawa Electric Co., Ltd., NC-WS)) with a 130 ⁇ m applicator, and at room temperature 30. After drying for minutes, it was dried at 60 ° C. for 30 minutes. After drying, it was pressed at 5.0 kN using a small tabletop roll press (SA-602, manufactured by Tester Sangyo Co., Ltd.) to obtain a negative electrode plate 1 having a negative electrode active material layer on the current collector.
- SA-602 small tabletop roll press
- a separator manufactured by CS Tech, polypropylene separator having a thickness of 20 ⁇ m was punched out so as to have a circular shape with a diameter of 17 mm, and vacuum dried at 60 ° C. for 12 hours.
- the negative electrode plate 1 is placed in a stainless steel circular dish-shaped container having a diameter of 20.0 mm, then a separator, a positive electrode plate, a spacer (diameter 15.5 mm, thickness 1 mm), and a stainless steel washer (manufactured by Hosen Co., Ltd.).
- a separator a positive electrode plate
- a spacer spacer
- a stainless steel washer manufactured by Hosen Co., Ltd.
- Example 2 Preparation of binder Performed except that 10 mg of CNT (single layer CNT) was used without PEDOT and PSS, 1.0 g of an aqueous dispersion (2% by mass) of CMC (MAC500LC) was used, and sodium hydroxide and ethylene glycol were not used.
- a binder was prepared in the same manner as in Example 1 to obtain a binder 2 for a non-aqueous electrolyte secondary battery.
- the obtained electrode composition was applied onto a current collector (length 320 mm ⁇ width 170 mm ⁇ thickness 17 ⁇ m copper foil (manufactured by Furukawa Electric Co., Ltd., NC-WS)) with a 130 ⁇ m applicator, and at room temperature 30. After drying for minutes, it was dried at 60 ° C. for 30 minutes. After drying, it was pressed at 5.0 kN using a small tabletop roll press (SA-602, manufactured by Tester Sangyo Co., Ltd.) to obtain a negative electrode plate 2 having a negative electrode active material layer on the current collector.
- SA-602 small tabletop roll press
- a coin-type non-aqueous electrolyte secondary battery 2 was produced in the same procedure as in Example 1 except that the negative electrode plate 2 was used instead of the negative electrode plate 1.
- Example 3 (Preparation of binder) Acidic PEDOT: A binder was prepared in the same manner as in Example 1 except that the PSS was not neutralized and the dopant additive was changed to 0.59 g of 98 mass% formic acid. I got 3.
- a coin-type non-aqueous electrolyte secondary battery 3 was produced in the same procedure as in Example 1 except that the negative electrode plate 3 was used instead of the negative electrode plate 1.
- Example 4 (Preparation of binder) Carboxymethyl cellulose MAC350HC (DS value: 0.9, 1% viscosity: 4600 mPa ⁇ s, manufactured by Nippon Paper Industries, Ltd.) 0.25 g of aqueous dispersion (2% by mass) and acidic PEDOT: PSS (product name: Orgacon ICP) To 2.2 g of 1050, manufactured by Sigma-Aldrich, ⁇ pH 2.5), 1.06 g of 98 mass% formic acid as a dopant additive was added. Then, it was mixed with Mazerustar (Mazerustar KK-250S manufactured by Kurabo Industries Ltd.) to obtain a binder 4 for a non-aqueous electrolyte secondary battery.
- Mazerustar Mizerustar KK-250S manufactured by Kurabo Industries Ltd.
- a coin-type non-aqueous electrolyte secondary battery 4 was produced in the same procedure as in Example 1 except that the negative electrode plate 4 was used instead of the negative electrode plate 1.
- Example 5 (Preparation of binder) Carboxymethyl cellulose MAC500LC (DS value: 0.65, 1% viscosity: 4700 mPa ⁇ s, manufactured by Nippon Paper Industries, Ltd.) 0.5 g, 1.1 mass% neutral PEDOT: PSS (Product name: Orgacon N-1005, manufactured by Sigma Aldrich, pH 5 to 7) To 0.9 g, 0.235 g of 98% by mass formic acid as a dopant additive was added. Then, it was mixed with Mazerustar (Mazerustar KK-250S, manufactured by Kurabo Industries Ltd.) to obtain a binder 5 for a non-aqueous electrolyte secondary battery.
- Mazerustar Mizerustar KK-250S, manufactured by Kurabo Industries Ltd.
- a coin-type non-aqueous electrolyte secondary battery 5 was produced in the same procedure as in Example 1 except that the negative electrode plate 5 was used instead of the negative electrode plate 1.
- Example 1 Manufacturing of negative electrode plate
- CMC MAC500LC
- a coin-type non-aqueous electrolyte secondary battery 6 was produced in the same procedure as in Example 1 except that the negative electrode plate 6 was used instead of the negative electrode plate 1.
- Comparative Example 2 Manufacturing of negative electrode plate
- a negative electrode plate was produced in the same manner as in Comparative Example 1 except that the amount of 98 mass% SiO x powder was changed to 2.0 g without using artificial graphite to obtain a negative electrode plate 7.
- a coin-type non-aqueous electrolyte secondary battery 7 was produced in the same procedure as in Example 1 except that the negative electrode plate 7 was used instead of the negative electrode plate 1.
- ⁇ Evaluation method> ⁇ Discharge capacity> The charge / discharge rate test was performed using a secondary battery charge / discharge test device (BTS2004, manufactured by Nagano Co., Ltd.), and the coin-type non-aqueous electrolyte produced in Examples 1 to 5 and Comparative Examples 1 and 2 in a constant temperature bath at 25 ° C. Using the secondary batteries 1 to 7, 52 cycles were carried out, with charging and discharging performed in the order of charging treatment and discharging treatment as one cycle.
- BTS2004 secondary battery charge / discharge test device
- a constant current constant voltage (CC-CV) method (CC current 0.2C, CV voltage 4.2V, termination current 0.02C) was used in all cycles. Further, as a condition of the discharge process, the final voltage was set to 3.0 V. In the first cycle, the constant current of the discharge process was performed at 0.2 C, and the discharge capacity A (mAh / g) one cycle after the discharge was measured.
- the constant current of the discharge process was set as follows, and the discharge capacity B (mAh / g) was measured after the discharge of 52 cycles.
- ⁇ Constant current of discharge processing in each cycle 2 to 10 cycles: Constant current 0.2C for discharge processing 11 to 20 cycles: Constant current 1C for discharge processing 21 cycles: Constant current 0.2C for discharge processing 22-31 cycles: constant current 2C for discharge processing 32 cycles: Constant current 0.2C for discharge processing 33-42 cycles: Constant current 3C for discharge processing 43-52 cycles: constant current 0.2C for discharge processing
- Capacity retention rate is determined from the discharge capacities A and B in each cycle test described above.
- Capacity retention rate (%) Discharge capacity B (mAh / g) after 52 cycles / Discharge capacity A (mAh / g) after 1 cycle x 100 It was calculated from the formula of. The results measured above are shown in Table 1 below.
- the electrode compositions for non-aqueous electrolyte secondary batteries obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were used as a current collector (length 320 mm ⁇ width 170 mm ⁇ thickness 17 ⁇ m), respectively.
- the capacity retention rate of the secondary battery using the binder for a non-aqueous electrolyte secondary battery containing at least carboxymethyl cellulose and / or a salt thereof and a conductive additive is good. It turned out.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本発明の非水電解質二次電池用結合剤は、カルボキシメチルセルロースおよび/又はその塩と、導電性添加剤とを少なくとも含む。また、本発明は、上記非水電解質二次電池用結合剤を含む非水電解質二次電池用電極組成物、上記非水電解質二次電池用電極組成物を用いた非水電解質二次電池用電極および非水電解質二次電池をも提供する。
Description
本発明は、非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池に関する。
近年、スマートフォンやタブレット等に代表される小型携帯端末の急速な普及により、それらを駆動させる小型でエネルギー密度の高い電池に対する要求が高まっている。
一般に、リチウムイオン二次電池の負極には黒鉛系材料が用いられているが、黒鉛系材料の理論容量は372mAh/g(LiC6)であり、現状、その限界に近付いている。
さらにリチウムイオン二次電池のエネルギー密度を向上するためには、新しい材料の選択が必要となっている。そこで、炭素、リチウムに次いで電位が低く、比容量の大きいケイ素、スズ等と、リチウムとを合金化した材料が注目を集めている。
これらの材料の中でも、ケイ素は、モル比でケイ素原子1に対してリチウム原子を4.4まで吸蔵することができ、理論的には黒鉛系炭素材料の約10倍の容量が得られる。しかし、ケイ素粒子はリチウムを吸蔵すると体積がおよそ3倍~4倍に膨れるため、充放電の繰り返しにより劣化が進行し、容量が低下することが問題となっている。この現象を詳しく解析すると、ケイ素を含む活物質にリチウムが挿入されると、体積膨張により電極内に微細な割れが生じ、この微細な割れに電解液が侵入し、新たな被膜(SEI層)が形成されることが確認されている。このとき、元に戻らない不可逆な容量が発生し、結果として、電池容量が低下する。この現象は、サイクル途中の充放電効率の変化に現れる。特に体積変化の大きいサイクル初期段階におけるサイクル効率の低下は、充放電効率の高い正極と組み合わせた電池としての寿命に大きな影響を与える。そのため、ケイ素を含む活物質を用いる場合、この体積膨張による電極構造の変化を最小限に抑えることが重要な課題となっている。
このような状況から、特許文献1では炭素粒子をシランカップリング剤で修飾した負極材を用いることで、ケイ素系化合物を用いた際にも耐久性に優れ充放電サイクルに優れる電極を得られることが提案されている。
また、特許文献2では、ケイ素系化合物に酸化ニオブを付着させ、耐久性を向上させることが提案されている。
また、特許文献2では、ケイ素系化合物に酸化ニオブを付着させ、耐久性を向上させることが提案されている。
特許文献1および2では、負極活物質の改良を行っているが、負極に用いるバインダーにも更なる改良が求められている。
本発明の目的は、ケイ素を含む活物質を用いた場合であっても、優れた性能を有する電池を得ることができる非水電解質二次電池用結合剤を提供すること、また、この非水電解質二次電池用結合剤を含む非水電解質二次電池用電極組成物を提供すること、および、この非水電解質二次電池用電極組成物を用いた非水電解質二次電池用電極および非水電解質二次電池を提供することである。
本発明者らは、鋭意検討の結果、結合剤に所定の導電物質を用いることにより、上記課題を解決できることを見出した。
すなわち、本発明によれば、
(1) カルボキシメチルセルロースおよび/又はその塩と、導電性添加剤とを少なくとも含むことを特徴とする非水電解質二次電池用結合剤、
(2) 前記導電性添加剤が、カーボンナノチューブ又は導電性ポリマーであることを特徴とする(1)に記載の非水電解質二次電池用結合剤、
(3) 前記導電性ポリマーは、ポリチオフェン系導電性ポリマーであることを特徴とする(2)に記載の非水電解質二次電池用結合剤、
(4) 前記導電性ポリマーが、ポリ(3,4-エチレンジオキシチオフェン)及びポリスチレンスルホン酸を少なくとも含むことを特徴とする(3)に記載の非水電解質二次電池用結合剤、
(5) 前記導電性ポリマーが、pH1~8の範囲を満たすことを特徴とする(3)または(4)に記載の非水電解質二次電池用結合剤、
(6) 前記導電性ポリマーが、pH4~8の範囲を満たすことを特徴とする(3)または(4)に記載の非水電解質二次電池用結合剤、
(7) さらにギ酸及び/又は多価アルコール類から選ばれるドーパント添加剤を含むことを特徴とする(3)~(6)のいずれかに記載の非水電解質二次電池用結合剤、
(8) 前記多価アルコール類が、(ポリ)エチレングリコール及び/又は糖アルコールから選ばれる少なくとも1種であることを特徴とする(7)に記載の非水電解質二次電池用結合剤、
(9) 前記カルボキシメチルセルロースおよび/又はその塩は、カルボキシメチル置換度が0.5~1.5の範囲であり、且つ固形分1%(w/v)の水分散体とした際の粘度(30rpm、25℃)が、100~20000mPa・sの範囲にあることを特徴とする(1)~(8)のいずれかに記載の非水電解質二次電池用結合剤、
(10) (1)~(9)のいずれかに記載の非水電解質二次電池用結合剤を含む、非水電解質二次電池用電極組成物、
(11) 活物質100質量%に対してケイ素系活物質の含有量が10質量%以上であることを特徴とする、(10)に記載の非水電解質二次電池用電極組成物、
(12) (10)または(11)に記載の非水電解質二次電池用電極組成物を用いた、非水電解質二次電池用電極、
(13) (10)または(11)に記載の非水電解質二次電池用電極組成物を用いた、非水電解質二次電池
が提供される。
(1) カルボキシメチルセルロースおよび/又はその塩と、導電性添加剤とを少なくとも含むことを特徴とする非水電解質二次電池用結合剤、
(2) 前記導電性添加剤が、カーボンナノチューブ又は導電性ポリマーであることを特徴とする(1)に記載の非水電解質二次電池用結合剤、
(3) 前記導電性ポリマーは、ポリチオフェン系導電性ポリマーであることを特徴とする(2)に記載の非水電解質二次電池用結合剤、
(4) 前記導電性ポリマーが、ポリ(3,4-エチレンジオキシチオフェン)及びポリスチレンスルホン酸を少なくとも含むことを特徴とする(3)に記載の非水電解質二次電池用結合剤、
(5) 前記導電性ポリマーが、pH1~8の範囲を満たすことを特徴とする(3)または(4)に記載の非水電解質二次電池用結合剤、
(6) 前記導電性ポリマーが、pH4~8の範囲を満たすことを特徴とする(3)または(4)に記載の非水電解質二次電池用結合剤、
(7) さらにギ酸及び/又は多価アルコール類から選ばれるドーパント添加剤を含むことを特徴とする(3)~(6)のいずれかに記載の非水電解質二次電池用結合剤、
(8) 前記多価アルコール類が、(ポリ)エチレングリコール及び/又は糖アルコールから選ばれる少なくとも1種であることを特徴とする(7)に記載の非水電解質二次電池用結合剤、
(9) 前記カルボキシメチルセルロースおよび/又はその塩は、カルボキシメチル置換度が0.5~1.5の範囲であり、且つ固形分1%(w/v)の水分散体とした際の粘度(30rpm、25℃)が、100~20000mPa・sの範囲にあることを特徴とする(1)~(8)のいずれかに記載の非水電解質二次電池用結合剤、
(10) (1)~(9)のいずれかに記載の非水電解質二次電池用結合剤を含む、非水電解質二次電池用電極組成物、
(11) 活物質100質量%に対してケイ素系活物質の含有量が10質量%以上であることを特徴とする、(10)に記載の非水電解質二次電池用電極組成物、
(12) (10)または(11)に記載の非水電解質二次電池用電極組成物を用いた、非水電解質二次電池用電極、
(13) (10)または(11)に記載の非水電解質二次電池用電極組成物を用いた、非水電解質二次電池
が提供される。
本発明によれば、ケイ素を含む活物質を用いた場合であっても、優れた性能を有する電池を得ることができる非水電解質二次電池用結合剤を提供することができ、また、この非水電解質二次電池用結合剤を含む非水電解質二次電池用電極組成物、および、この非水電解質二次電池用電極組成物を用いた非水電解質二次電池用電極および非水電解質二次電池を提供することができる。
以下、本発明の実施の形態に係る非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池について説明する。
<非水電解質二次電池用結合剤>
本発明の非水電解質二次電池用結合剤は、カルボキシメチルセルロースおよび/又はその塩と、導電性添加剤とを少なくとも含むことを特徴とする。
本発明の非水電解質二次電池用結合剤は、カルボキシメチルセルロースおよび/又はその塩と、導電性添加剤とを少なくとも含むことを特徴とする。
<カルボキシメチルセルロースおよび/又はその塩>
本発明に用いるカルボキシメチルセルロースおよび/又はその塩(以下、CMCと略記することがある。)は、セルロースを構成するグルコース単位中の水酸基がカルボキシメチルエーテル基に置換された構造を持つ。カルボキシメチルセルロースは、塩の形態であってもよい。カルボキシメチルセルロースの塩としては、カルボキシメチルセルロースナトリウム塩などの金属塩などが例示される。
本発明に用いるカルボキシメチルセルロースおよび/又はその塩(以下、CMCと略記することがある。)は、セルロースを構成するグルコース単位中の水酸基がカルボキシメチルエーテル基に置換された構造を持つ。カルボキシメチルセルロースは、塩の形態であってもよい。カルボキシメチルセルロースの塩としては、カルボキシメチルセルロースナトリウム塩などの金属塩などが例示される。
本発明においてセルロースとは、D-グルコピラノース(単に「グルコース単位」、「無水グルコース」とも言う。)がβ,1-4結合で連なった構造の多糖を意味する。セルロースは一般に起源、製法等から、天然セルロース、再生セルロース、微細セルロース、非結晶領域を除いた微結晶セルロース等に分類される。
天然セルロースとしては、晒又は未晒パルプ、精製リンター、酢酸菌等の微生物によって生産されるセルロース等が例示される。晒又は未晒パルプの原料は特に限定されず、例えば、木材、木綿、わら、竹等が挙げられる。晒又は未晒パルプの製造方法も特に限定されず、機械的方法、化学的方法、あるいは、機械的方法及び化学的方法を組み合わせた方法が例示される。晒又は未晒パルプとしては、メカニカルパルプ、ケミカルパルプ、砕木パルプ、亜硫酸パルプ、クラフトパルプ、製紙用パルプが例示される。また晒又は未晒パルプとしては、化学的に精製され、主として薬品に溶解して使用する、人造繊維、セロハンなどの主原料となる溶解パルプも例示される。
再生セルロースとしては、セルロースを、銅アンモニア溶液、セルロースザンテート溶液、モルフォリン誘導体などの溶媒に溶解し、改めて紡糸して得られる再生セルロースが例示される。
微細セルロースとしては、天然セルロース、再生セルロースなどのセルロース系素材を、酸加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル処理等によって解重合処理して得られる微細セルロース、セルロース系素材を機械的に処理して得られる微細セルロースが例示される。
本発明で用いるCMCを製造するにあたっては、公知のCMCの製法を適用することができる。例えば、セルロースをマーセル化剤(アルカリ)で処理してマーセル化セルロース(アルカリセルロース)を調製した後に、マーセル化セルロースにエーテル化剤を添加してエーテル化反応させることでCMCを製造することができる。
原料のセルロースとしては、上述のセルロースであれば特に制限なく用いることができるが、セルロース純度が高いものが好ましく、溶解パルプ又はリンターがより好ましい。
これらを用いることにより、純度の高いCMCを得ることができる。
これらを用いることにより、純度の高いCMCを得ることができる。
マーセル化剤としては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ金属塩が例示される。エーテル化剤としてはモノクロロ酢酸、モノクロロ酢酸ソーダ等が例示される。
水溶性の一般的なカルボキシメチルセルロースの製法において、マーセル化剤とエーテル化剤のモル比(マーセル化剤/エーテル化剤)は、エーテル化剤としてモノクロロ酢酸を使用する場合では2.00~2.45が一般的である。その理由は、2.00以上であることによりエーテル化反応を十分に行うことができ、未反応のモノクロロ酢酸が残って無駄となることを防止できる。2.45以下であることにより、過剰のマーセル化剤とモノクロロ酢酸による副反応が進行してグリコール酸アルカリ金属塩が生成することを防止でき、経済的である。
本発明においてCMCは市販品であってもよい。市販品としては、例えば、日本製紙(株)製の商品名「サンローズ」が挙げられる。
本発明においてCMCは市販品であってもよい。市販品としては、例えば、日本製紙(株)製の商品名「サンローズ」が挙げられる。
セルロースを構成するグルコース単位中の水酸基(-OH)のうちカルボキシメチルエーテル基(-OCH2COOH)に置換されている基の割合をCMCのエーテル化度として表すこともできる。
本発明において用いるCMCは、グルコース単位当たりのカルボキシメチル基の置換度(以下、「CM-DS」または「DS値」ということがある。)が、0.5~1.5の範囲にあることが好ましい。CM-DSが0.5以上であることにより、水への溶解性を良好に保つことができ、未溶解物の発生を抑制することができる。また、CM-DSが1.5以下であることにより、液の曳糸性の増加を抑え、取扱いを容易に保つことができる。
CM-DSは実施例に示す方法にて算出することができる。よって、本発明のCMCのCM-DSは0.5~1.5が好ましく、さらに好ましくは0.5~1.0である。
CM-DSは実施例に示す方法にて算出することができる。よって、本発明のCMCのCM-DSは0.5~1.5が好ましく、さらに好ましくは0.5~1.0である。
なお、カルボキシメチル基の置換度の測定方法は以下の通りである:
試料約2.0gを精秤して、300mL共栓付き三角フラスコに入れる。メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振盪して、カルボキシメチルセルロースの塩(CMC)をH-CMC(水素型カルボキシメチルセルロース)に変換する。その絶乾H-CMCを1.5~2.0g精秤し、300mL共栓付き三角フラスコに入れる。80%メタノール15mLでH-CMCを湿潤し、0.1N-NaOHを100mL加え、室温で3時間振盪する。指示薬として、フェノールフタレインを用いて、0.1N-H2SO4で過剰のNaOHを逆滴定し、次式によってカルボキシメチル置換度(DS値)を算出する。
A=[(100×F’-0.1N-H2SO4(mL)×F)×0.1]/(H-CMCの絶乾質量(g))
カルボキシメチル置換度=0.162×A/(1-0.058×A)
F’:0.1N-H2SO4のファクター
F:0.1N-NaOHのファクター
試料約2.0gを精秤して、300mL共栓付き三角フラスコに入れる。メタノール1000mLに特級濃硝酸100mLを加えた液100mLを加え、3時間振盪して、カルボキシメチルセルロースの塩(CMC)をH-CMC(水素型カルボキシメチルセルロース)に変換する。その絶乾H-CMCを1.5~2.0g精秤し、300mL共栓付き三角フラスコに入れる。80%メタノール15mLでH-CMCを湿潤し、0.1N-NaOHを100mL加え、室温で3時間振盪する。指示薬として、フェノールフタレインを用いて、0.1N-H2SO4で過剰のNaOHを逆滴定し、次式によってカルボキシメチル置換度(DS値)を算出する。
A=[(100×F’-0.1N-H2SO4(mL)×F)×0.1]/(H-CMCの絶乾質量(g))
カルボキシメチル置換度=0.162×A/(1-0.058×A)
F’:0.1N-H2SO4のファクター
F:0.1N-NaOHのファクター
また、25℃における固形分1%(w/v)としたCMCの水分散体のB型粘度計を用いて測定される粘度は、100~20,000mPa・sであることが好ましく、1000~15,000mPa・sであることがより好ましく、1,500~10,000mPa・sが特に好ましい。
なお、粘度の測定方法は以下の通りである:
カルボキシメチルセルロース又はその塩を、1000mL容ガラスビーカーに測りとり、蒸留水900mLに分散し、固形分1%(w/v)となるように水分散体を調製する。
水分散体を25℃で撹拌機を用いて600rpmで3時間撹拌する。その後、JIS-Z-8803の方法に準じて、B型粘度計(東機産業社製)を用いて、No.1ローター/回転数30rpmで3分後の粘度を測定する。
カルボキシメチルセルロース又はその塩を、1000mL容ガラスビーカーに測りとり、蒸留水900mLに分散し、固形分1%(w/v)となるように水分散体を調製する。
水分散体を25℃で撹拌機を用いて600rpmで3時間撹拌する。その後、JIS-Z-8803の方法に準じて、B型粘度計(東機産業社製)を用いて、No.1ローター/回転数30rpmで3分後の粘度を測定する。
本発明に用いるCMCは、1種類であってもよいし、エーテル化度、CM-DS、粘度、分子量などの異なる2種類以上のCMCの組み合わせであってもよい。
<導電性添加剤>
本発明の非水電解質二次電池用結合剤は、導電性添加剤を含む。
導電性添加剤としては、カーボンナノチューブ(以下、CNTということがある。)または導電性ポリマーを用いることが好ましい。
本発明の非水電解質二次電池用結合剤は、導電性添加剤を含む。
導電性添加剤としては、カーボンナノチューブ(以下、CNTということがある。)または導電性ポリマーを用いることが好ましい。
カーボンナノチューブとしては、単層CNTが好ましい。
また、導電性ポリマーとしては、ポリチオフェン系導電性ポリマー、ポリフェニレン、ポリカルバゾール、ポリアセチレン、ポリピロール、ポリチオフェン、ポリアニリン等が挙げられ、ポリチオフェン系導電性ポリマーが好ましい。
ポリチオフェン系導電性ポリマーとしては、ポリ(3,4-エチレンジオキシチオフェン)(以下、PEDOTということがある。)及びポリスチレンスルホン酸(以下、PSSということがある。)、オリゴチオフェン等が挙げられ、これらの中でもPEDOT及びPSSを少なくとも含むことが好ましい。なお、以下において、PEDOT:PSSは、PEDOTとPSSの両方を含む混合物を示す。
また、導電性ポリマーは、pH1~8の範囲を満たすことが好ましく、pH4~8の範囲を満たすことがより好ましい。ここで、導電性ポリマーのpHは、導電性ポリマーの固形分1.1質量%水溶液のpHにより示される。
導電性添加剤は、カルボキシメチルセルロースおよび/又はその塩100質量%に対して、10~1000質量%用いることが好ましく、20~900質量%用いることがより好ましく、50~900質量%用いることがさらに好ましい。導電性添加剤は、後述するドーパント添加剤が併用されない場合には、カルボキシメチルセルロースおよび/又はその塩100質量%に対して、10~200重量%、50~100重量%の範囲で用いることが特に好ましい。
<ドーパント添加剤>
本発明の非水電解質二次電池用結合剤は、さらにドーパント添加剤を含んでいてもよい。ドーパント添加剤としては、ギ酸、多価アルコール類等を用いることができる。また、多価アルコール類としては、(ポリ)エチレングリコール、糖アルコール等が挙げられ、糖アルコールとしては、ソルビトール、キシリトール、マンニトール等が挙げられる。
本発明の非水電解質二次電池用結合剤は、さらにドーパント添加剤を含んでいてもよい。ドーパント添加剤としては、ギ酸、多価アルコール類等を用いることができる。また、多価アルコール類としては、(ポリ)エチレングリコール、糖アルコール等が挙げられ、糖アルコールとしては、ソルビトール、キシリトール、マンニトール等が挙げられる。
ここで、本明細書において、(ポリ)エチレングリコールは、エチレングリコールまたはポリエチレングリコールを意味する。
ドーパント添加剤を用いる場合には、導電性添加剤の固形分に対して、100~3000質量%用いることが好ましく、200~2500質量%用いることがより好ましい。
また、上記導電性添加剤として導電性ポリマーを用いる場合には、本発明の非水電解質二次電池用結合剤にドーパント添加剤を含ませることが好ましい。
<非水電解質二次電池用電極組成物>
本発明の非水電解質二次電池用電極組成物(以下、「電極組成物」ということがある。)は、上記非水電解質二次電池用結合剤を含み、さらに電極活物質を含むことが好ましい。さらに、電極組成物は、上記ドーパント添加剤を含んでいてもよく、また必要に応じて用いられる導電助剤等のその他の成分を含んでいてもよい。
本発明の非水電解質二次電池用電極組成物(以下、「電極組成物」ということがある。)は、上記非水電解質二次電池用結合剤を含み、さらに電極活物質を含むことが好ましい。さらに、電極組成物は、上記ドーパント添加剤を含んでいてもよく、また必要に応じて用いられる導電助剤等のその他の成分を含んでいてもよい。
即ち、本発明において、非水電解質二次電池用結合剤は、電極活物質と共に電極組成物を構成し得る。この場合において、電極組成物中の非水電解質二次電池用結合剤は、電極組成物の全体に対して、好ましくは0.5~5.0質量%である。
<電極活物質>
電極組成物に含まれる電極活物質は、負極用の非水電解質二次電池用電極に用いる場合には負極活物質であり、正極用の非水電解質二次電池用電極に用いる場合には正極活物質である。
電極組成物に含まれる電極活物質は、負極用の非水電解質二次電池用電極に用いる場合には負極活物質であり、正極用の非水電解質二次電池用電極に用いる場合には正極活物質である。
負極活物質としては、黒鉛(天然黒鉛、人造黒鉛等)、コークス、炭素繊維などの黒鉛質材料;リチウムと合金を形成することが可能な元素、すなわち例えばケイ素系化合物、Al、Sn、Ag、Bi、Mg、Zn、In、Ge、Pb、Tiなどの元素;リチウムと合金を形成することが可能な元素を含む化合物;リチウムと合金を形成することが可能な元素及び前記化合物と、炭素及び/又は前記黒鉛質材料との複合化物、若しくはリチウムを含む窒化物などを例示することができる。このうち黒鉛質材料及びケイ素系化合物が好ましく、黒鉛及びケイ素系化合物としてケイ素粒子又はケイ素酸化物粒子がより好ましい。
なお、本発明におけるケイ素酸化物とは、SiOx(0<x≦2)で表されるものである。また本発明において、負極活物質としては、ケイ素系化合物と黒鉛質材料との複合体がさらに好適である。
前記負極活物質が黒鉛質材料とケイ素系化合物との複合体である場合、黒鉛質材料とケイ素系化合物は、黒鉛質材料:ケイ素系化合物=10~90:90~10の配合比が好ましく、50~80:50~20がより好ましい。また、負極活物質100質量%中、ケイ素系活物質の含有量が10質量%以上であることが好ましく、20質量%以上であることがより好ましい。
正極活物質としては、LiFePO4、LiMexOy(MeはNi、Co、Mnの少なくとも1種を含む遷移金属を意味する。x、yは任意の数を意味する。)系の正極活物質が好ましい。
電極組成物中の電極活物質の含有量は、通常は60~99質量%であり、好ましくは70~99質量%であり、さらに好ましくは90~99質量%、91~99質量%、92~99質量%、及び95~99質量%、特に好ましくは96~99質量%、最も好ましくは98~99質量%である。
<その他の成分>
また、電極組成物には、本発明の非水電解質二次電池用結合剤以外のその他の結合剤が含まれ得る。負極用の電極組成物に使用されるその他の結合剤としては、合成ゴム系結合剤が例示される。合成ゴム系結合剤としては、スチレンブタジエンゴム(SBR)、ニトリルブタジエンゴム、メチルメタクリレートブタジエンゴム、クロロプレンゴム、カルボキシ変性スチレンブタジエンゴム及びこれら合成ゴムのラテックスよりなる群から選択された1種以上が使用できる。このうち、スチレンブタジエンゴム(SBR)が好ましい。また、正極用の電極組成物に使用されるその他の結合剤としては、前記負極用の結合剤として挙げた合成ゴム系結合剤のほか、ポリテトラフルオロエチレン(PTFE)が例示され、このうちポリテトラフルオロエチレン(PTFE)を使用することが好ましい。
また、電極組成物には、本発明の非水電解質二次電池用結合剤以外のその他の結合剤が含まれ得る。負極用の電極組成物に使用されるその他の結合剤としては、合成ゴム系結合剤が例示される。合成ゴム系結合剤としては、スチレンブタジエンゴム(SBR)、ニトリルブタジエンゴム、メチルメタクリレートブタジエンゴム、クロロプレンゴム、カルボキシ変性スチレンブタジエンゴム及びこれら合成ゴムのラテックスよりなる群から選択された1種以上が使用できる。このうち、スチレンブタジエンゴム(SBR)が好ましい。また、正極用の電極組成物に使用されるその他の結合剤としては、前記負極用の結合剤として挙げた合成ゴム系結合剤のほか、ポリテトラフルオロエチレン(PTFE)が例示され、このうちポリテトラフルオロエチレン(PTFE)を使用することが好ましい。
電極組成物中のその他の結合剤の含有量は、通常は1~10質量%、好ましくは1~6質量%、より好ましくは1~2質量%である。
また、電極組成物は、必要に応じて導電助剤を含んでいてもよい。導電助剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック等の導電性カーボンが挙げられる。電極組成物中の導電助剤の含有量は、通常0.01~20質量%、好ましくは0.1~10質量%である。
また、電極組成物に用いる溶媒としては、水系溶媒が好ましい。水系溶媒の種類は特に限定されないが、水、水溶性有機溶媒、あるいはこれらの混合溶媒であることが好ましく、水がより好ましい。
水溶性有機溶媒とは、水に溶解する有機溶媒である。その例として、メタノール、エタノール、2-プロパノール、ブタノール、グリセリン、アセトン、メチルエチルケトン、1,4-ジオキサン、N-メチル-2-ピロリドン、テトラヒドロフラン(THF)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、ジメチルスルホキシド(DMSO)、アセトニトリル、コハク酸メチルトリグリコールジエステル、酢酸およびこれらの組合せ等が挙げられる。
水系溶媒として上記混合溶媒を用いる場合において、混合溶媒中の水溶性有機溶媒の量は、10質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上がさらに好ましい。当該量の上限は限定されないが95質量%以下が好ましく、90質量%以下がより好ましい。また、発明の効果を損なわない範囲で、水系溶媒は非水溶性有機溶媒を含んでいてもよい。
電極組成物の製造条件は特に限定はない。例えば、カルボキシメチルセルロースおよび/又はその塩の水溶液に、電極組成物を構成する他の成分を添加し、必要に応じて撹拌しながら混合する。
また、電極組成物の性状も特に限定されない。例えば、液状、ペースト状、スラリー状などが挙げられ、いずれであってもよい。
また、電極組成物の性状も特に限定されない。例えば、液状、ペースト状、スラリー状などが挙げられ、いずれであってもよい。
<非水電解質二次電池用電極>
本発明の非水電解質二次電池用電極は、上記により得られる非水電解質二次電池用電極組成物を集電体上に塗布することにより得ることができる。塗布の方法としては例えば、ブレード塗工、バー塗工、ダイ塗工が挙げられ、ブレード塗工が好ましい。例えばブレード塗工の場合には、ドクターブレードなどの塗工装置を用いて本発明の非水電解質二次電池用電極組成物を集電体上にキャスティングする方法が例示される。また、積層の方法は上記具体例に限定されず、バックアップロールに巻回して走行する集電体上に、スロットノズルを有するエクストルージョン型注液器より前記電極組成物を吐出させ塗布する方法も例示される。ブレード塗工においては、キャスティング後さらに必要に応じて加熱(温度は例えば80~120℃、加熱時間は例えば4~12時間)などによる乾燥、ロールプレスなどによる加圧を行うことにより本発明の非水電解質二次電池用電極が得られる。
本発明の非水電解質二次電池用電極は、上記により得られる非水電解質二次電池用電極組成物を集電体上に塗布することにより得ることができる。塗布の方法としては例えば、ブレード塗工、バー塗工、ダイ塗工が挙げられ、ブレード塗工が好ましい。例えばブレード塗工の場合には、ドクターブレードなどの塗工装置を用いて本発明の非水電解質二次電池用電極組成物を集電体上にキャスティングする方法が例示される。また、積層の方法は上記具体例に限定されず、バックアップロールに巻回して走行する集電体上に、スロットノズルを有するエクストルージョン型注液器より前記電極組成物を吐出させ塗布する方法も例示される。ブレード塗工においては、キャスティング後さらに必要に応じて加熱(温度は例えば80~120℃、加熱時間は例えば4~12時間)などによる乾燥、ロールプレスなどによる加圧を行うことにより本発明の非水電解質二次電池用電極が得られる。
<集電体>
集電体としては、構成された電極あるいは電池において致命的な化学変化を起こさない電気伝導体であれば何れも使用可能である。電極が負極の場合には負極用集電体を、正極の場合には正極用集電体を、それぞれ用いることができる。
集電体としては、構成された電極あるいは電池において致命的な化学変化を起こさない電気伝導体であれば何れも使用可能である。電極が負極の場合には負極用集電体を、正極の場合には正極用集電体を、それぞれ用いることができる。
負極用集電体の材料としては、ステンレス鋼、ニッケル、銅、チタン、炭素、銅又はステンレス鋼の表面に、カーボン、ニッケル、チタン又は銀を付着処理させたもの等が例示される。これらのうち、銅又は銅合金が好ましく、銅がより好ましい。
正極用集電体の材料としては、アルミニウム、ステンレスなどの金属が例示され、アルミニウムが好ましい。
集電体の形状としては、網、パンチドメタル、フォームメタル、板状に加工された箔などが例示され、板状に加工された箔が好ましい。
正極用集電体の材料としては、アルミニウム、ステンレスなどの金属が例示され、アルミニウムが好ましい。
集電体の形状としては、網、パンチドメタル、フォームメタル、板状に加工された箔などが例示され、板状に加工された箔が好ましい。
<非水電解質二次電池>
本発明の非水電解質二次電池用電極は、非水電解質二次電池の電極(負極又は正極の少なくとも一方)として用いられる。すなわち本発明は非水電解質二次電池をも提供する。本発明の非水電解質二次電池は、正極及び負極が交互に、セパレータを介して積層され、多数回巻回された構造を取りうる。また、多数回巻回された正極、セパレータ、及び負極の積層体を、電池容器に入れ、非水電解質を注入して封口することにより非水電解質二次電池が得られる。
本発明の非水電解質二次電池用電極は、非水電解質二次電池の電極(負極又は正極の少なくとも一方)として用いられる。すなわち本発明は非水電解質二次電池をも提供する。本発明の非水電解質二次電池は、正極及び負極が交互に、セパレータを介して積層され、多数回巻回された構造を取りうる。また、多数回巻回された正極、セパレータ、及び負極の積層体を、電池容器に入れ、非水電解質を注入して封口することにより非水電解質二次電池が得られる。
非水電解質二次電池の形状は、特に限定はなく、円筒型、角型、扁平型、コイン型、ボタン型、シート型等を採用することができる。また、電池容器の材質としては、電池内部への水分の侵入を防ぐ目的を達成可能な限り特に限定はなく、金属、アルミニウム等のラミネート等が挙げられる。
なお、前記セパレータは通常、非水電解質で含浸される。セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン製の微孔膜または不織布を用いることができる。
また、非水電解質は、通常、リチウム塩と非水溶媒を含んでなる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiClO4等が挙げられる。また、非水溶媒としては、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、メチルエチルカーボネート等が挙げられる。非水溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。非水電解質におけるリチウム塩の濃度は、通常0.5~2.5モル/Lの濃度で用いることができる。
以下、本発明の実施の形態を実施例により説明するが、本発明はこれにより限定されるものではない。
(実施例1)
(結合剤の調製)
カルボキシメチルセルロースMAC500LC(DS値:0.65、1%粘度:4700mPa・s、日本製紙(株)製)の水分散液(2質量%)1.25gと、1.1質量%の酸性PEDOT:PSS(製品名:Orgacon ICP 1050、シグマアルドリッチ製、<pH2.5)2.27gに対して1.0M水酸化ナトリウム水溶液を用いてpH7に中和した導電性添加剤と、ドーパント添加剤としてエチレングリコールを0.07g加えた。そして、マゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用結合剤1を得た。
(結合剤の調製)
カルボキシメチルセルロースMAC500LC(DS値:0.65、1%粘度:4700mPa・s、日本製紙(株)製)の水分散液(2質量%)1.25gと、1.1質量%の酸性PEDOT:PSS(製品名:Orgacon ICP 1050、シグマアルドリッチ製、<pH2.5)2.27gに対して1.0M水酸化ナトリウム水溶液を用いてpH7に中和した導電性添加剤と、ドーパント添加剤としてエチレングリコールを0.07g加えた。そして、マゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用結合剤1を得た。
(負極板の作製)
負極活物質として98質量%黒鉛粉末(人造黒鉛)1.0g及び98質量%SiOx粉末1.0g、導電助剤として98質量%アセチレンブラック(以下、ABということがある。)0.01g、バインダーとして上記非水電解質二次電池用結合剤1を全量、マゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用電極組成物を得た。その後、得られた電極組成物を集電体(縦320mm×横170mm×厚さ17μmの銅箔(古河電気工業社製、NC-WS))上に130μmのアプリケーターで塗布し、室温にて30分間乾燥後、60℃で30分間乾燥させた。乾燥後、小型卓上ロールプレス(テスター産業社製、SA-602)を用いて5.0kNでプレスして、集電体上に負極活物質層を有する負極板1を得た。
負極活物質として98質量%黒鉛粉末(人造黒鉛)1.0g及び98質量%SiOx粉末1.0g、導電助剤として98質量%アセチレンブラック(以下、ABということがある。)0.01g、バインダーとして上記非水電解質二次電池用結合剤1を全量、マゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用電極組成物を得た。その後、得られた電極組成物を集電体(縦320mm×横170mm×厚さ17μmの銅箔(古河電気工業社製、NC-WS))上に130μmのアプリケーターで塗布し、室温にて30分間乾燥後、60℃で30分間乾燥させた。乾燥後、小型卓上ロールプレス(テスター産業社製、SA-602)を用いて5.0kNでプレスして、集電体上に負極活物質層を有する負極板1を得た。
(コイン型非水電解質二次電池の作製)
得られた負極板1と、LiCoO2正極板(宝泉社製、目付量:227.1g/m2、放電実効容量:145mAh/g)をそれぞれ直径16mmの円形になるように打ち抜き、打ち抜いた負極板1と正極板を120℃で12時間真空乾燥を行った。
得られた負極板1と、LiCoO2正極板(宝泉社製、目付量:227.1g/m2、放電実効容量:145mAh/g)をそれぞれ直径16mmの円形になるように打ち抜き、打ち抜いた負極板1と正極板を120℃で12時間真空乾燥を行った。
同様に直径17mmの円形となるようにセパレータ(CS Tech社製、厚み20μmのポリプロピレンセパレータ)を打ち抜き、60℃で12時間真空乾燥を行った。
その後、直径20.0mmのステンレス製円形皿型容器に負極板1を置き、次いで、セパレータ、正極板、スペーサー(直径15.5mm、厚さ1mm)、ステンレス製のワッシャー(宝泉株式会社製)をこの順で積層し、その後円形皿型容器に電解液(1mol/LのLiPF6、エチレンカーボネートとジエチルカーボネートの体積比1:1)を300μL添加した。これにポリプロピレン製のパッキンを介してステンレス製のキャップを被せ、コイン電池用かしめ機(宝泉株式会社)で密封し、コイン型の非水電解質二次電池1を得た。
(実施例2)
(結合剤の調製)
PEDOT及びPSSを用いずにCNT(単層CNT)を10mg用い、CMC(MAC500LC)の水分散液(2質量%)1.0g用い、さらに水酸化ナトリウム及びエチレングリコールを用いなかった以外は、実施例1と同様に結合剤の調製を行い、非水電解質二次電池用結合剤2を得た。
(結合剤の調製)
PEDOT及びPSSを用いずにCNT(単層CNT)を10mg用い、CMC(MAC500LC)の水分散液(2質量%)1.0g用い、さらに水酸化ナトリウム及びエチレングリコールを用いなかった以外は、実施例1と同様に結合剤の調製を行い、非水電解質二次電池用結合剤2を得た。
(負極板の作製)
負極活物質として98質量%SiOx粉末2.0g、バインダーとして上記非水電解質二次電池用結合剤2を固形分相当量にて30mg、48質量%スチレンブタジエンゴム(以下、SBRということがある。)63mg、水1.5gをマゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用電極組成物を得た。その後、得られた電極組成物を集電体(縦320mm×横170mm×厚さ17μmの銅箔(古河電気工業社製、NC-WS))上に130μmのアプリケーターで塗布し、室温にて30分間乾燥後、60℃で30分間乾燥させた。乾燥後、小型卓上ロールプレス(テスター産業社製、SA-602)を用いて5.0kNでプレスして、集電体上に負極活物質層を有する負極板2を得た。
負極活物質として98質量%SiOx粉末2.0g、バインダーとして上記非水電解質二次電池用結合剤2を固形分相当量にて30mg、48質量%スチレンブタジエンゴム(以下、SBRということがある。)63mg、水1.5gをマゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用電極組成物を得た。その後、得られた電極組成物を集電体(縦320mm×横170mm×厚さ17μmの銅箔(古河電気工業社製、NC-WS))上に130μmのアプリケーターで塗布し、室温にて30分間乾燥後、60℃で30分間乾燥させた。乾燥後、小型卓上ロールプレス(テスター産業社製、SA-602)を用いて5.0kNでプレスして、集電体上に負極活物質層を有する負極板2を得た。
(コイン型非水電解質二次電池の作製)
次いで、負極板1に代えて負極板2を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池2を作製した。
次いで、負極板1に代えて負極板2を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池2を作製した。
(実施例3)
(結合剤の調製)
酸性PEDOT:PSSを中和せず、またドーパント添加剤を98質量%ギ酸0.59gに変更した以外は、実施例1と同様に結合剤の調製を行い、非水電解質二次電池用結合剤3を得た。
(結合剤の調製)
酸性PEDOT:PSSを中和せず、またドーパント添加剤を98質量%ギ酸0.59gに変更した以外は、実施例1と同様に結合剤の調製を行い、非水電解質二次電池用結合剤3を得た。
(負極板の作製)
バインダーとして上記にて得られた非水電解質二次電池用結合剤3を全量用い、負極活物質として人造黒鉛を用いず、98質量%SiOx粉末の量を2.0gに変更した以外は、実施例1と同様に非水電解質二次電池用電極組成物を調製し、得られた電極組成物を用いて、実施例1と同様に負極板を作製することにより負極板3を得た。
バインダーとして上記にて得られた非水電解質二次電池用結合剤3を全量用い、負極活物質として人造黒鉛を用いず、98質量%SiOx粉末の量を2.0gに変更した以外は、実施例1と同様に非水電解質二次電池用電極組成物を調製し、得られた電極組成物を用いて、実施例1と同様に負極板を作製することにより負極板3を得た。
(コイン型非水電解質二次電池の作製)
次いで、負極板1に代えて負極板3を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池3を作製した。
次いで、負極板1に代えて負極板3を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池3を作製した。
(実施例4)
(結合剤の調製)
カルボキシメチルセルロースMAC350HC(DS値:0.9、1%粘度:4600mPa・s、日本製紙(株)製)の水分散液(2質量%)0.25gと、酸性PEDOT:PSS(製品名:Orgacon ICP 1050、シグマアルドリッチ製、<pH2.5)2.2gに対して、ドーパント添加剤としての98質量%ギ酸を1.06g加えた。そして、マゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用結合剤4を得た。
(結合剤の調製)
カルボキシメチルセルロースMAC350HC(DS値:0.9、1%粘度:4600mPa・s、日本製紙(株)製)の水分散液(2質量%)0.25gと、酸性PEDOT:PSS(製品名:Orgacon ICP 1050、シグマアルドリッチ製、<pH2.5)2.2gに対して、ドーパント添加剤としての98質量%ギ酸を1.06g加えた。そして、マゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用結合剤4を得た。
(負極板の作製)
バインダーとして上記にて得られた非水電解質二次電池用結合剤4を全量用い、負極活物質として人造黒鉛を用いず、98質量%SiOx粉末の量を2.0gに変更した以外は、実施例1と同様に非水電解質二次電池用電極組成物を調製し、得られた電極組成物を用いて、実施例1と同様に負極板を作製することにより負極板4を得た。
バインダーとして上記にて得られた非水電解質二次電池用結合剤4を全量用い、負極活物質として人造黒鉛を用いず、98質量%SiOx粉末の量を2.0gに変更した以外は、実施例1と同様に非水電解質二次電池用電極組成物を調製し、得られた電極組成物を用いて、実施例1と同様に負極板を作製することにより負極板4を得た。
(コイン型非水電解質二次電池の作製)
次いで、負極板1に代えて負極板4を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池4を作製した。
次いで、負極板1に代えて負極板4を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池4を作製した。
(実施例5)
(結合剤の調製)
カルボキシメチルセルロースMAC500LC(DS値:0.65、1%粘度:4700mPa・s、日本製紙(株)製)の水分散液(2質量%)0.5g、1.1質量%の中性PEDOT:PSS(製品名:Orgacon N-1005、シグマアルドリッチ製、pH5~7)0.9gに対して、ドーパント添加剤としての98質量%ギ酸を0.235g加えた。そして、マゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用結合剤5を得た。
(結合剤の調製)
カルボキシメチルセルロースMAC500LC(DS値:0.65、1%粘度:4700mPa・s、日本製紙(株)製)の水分散液(2質量%)0.5g、1.1質量%の中性PEDOT:PSS(製品名:Orgacon N-1005、シグマアルドリッチ製、pH5~7)0.9gに対して、ドーパント添加剤としての98質量%ギ酸を0.235g加えた。そして、マゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用結合剤5を得た。
(負極板の作製)
負極活物質として98質量%SiOx粉末2.0g、導電助剤として98質量%アセチレンブラック0.01g、バインダーとして上記にて得られた非水電解質二次電池用結合剤5を全量、48質量%スチレンブタジエンゴム63mg、水1.5gをマゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用電極組成物を得た。その後、得られた電極組成物を用いて、実施例1と同様に負極板を作製することにより負極板5を得た。
負極活物質として98質量%SiOx粉末2.0g、導電助剤として98質量%アセチレンブラック0.01g、バインダーとして上記にて得られた非水電解質二次電池用結合剤5を全量、48質量%スチレンブタジエンゴム63mg、水1.5gをマゼルスター(倉敷紡績社製、マゼルスターKK-250S)で混合し、非水電解質二次電池用電極組成物を得た。その後、得られた電極組成物を用いて、実施例1と同様に負極板を作製することにより負極板5を得た。
(コイン型非水電解質二次電池の作製)
次いで、負極板1に代えて負極板5を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池5を作製した。
次いで、負極板1に代えて負極板5を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池5を作製した。
(比較例1)
(負極板の作製)
非水電解質二次電池用結合剤1に代えて、CMC(MAC500LC)の水分散液(2質量%)1.0gを用い、さらに48質量%SBRを63mg用いた以外は、実施例1と同様に負極板の作製を行い、負極板6を得た。
(負極板の作製)
非水電解質二次電池用結合剤1に代えて、CMC(MAC500LC)の水分散液(2質量%)1.0gを用い、さらに48質量%SBRを63mg用いた以外は、実施例1と同様に負極板の作製を行い、負極板6を得た。
(コイン型非水電解質二次電池の作製)
次いで、負極板1に代えて負極板6を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池6を作製した。
次いで、負極板1に代えて負極板6を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池6を作製した。
(比較例2)
(負極板の作製)
人造黒鉛を用いず、98質量%SiOx粉末の量を2.0gに変更した以外は、比較例1と同様に負極板の作製を行い、負極板7を得た。
(負極板の作製)
人造黒鉛を用いず、98質量%SiOx粉末の量を2.0gに変更した以外は、比較例1と同様に負極板の作製を行い、負極板7を得た。
(コイン型非水電解質二次電池の作製)
次いで、負極板1に代えて負極板7を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池7を作製した。
次いで、負極板1に代えて負極板7を用いた以外は、実施例1と同様の手順にて、コイン型の非水電解質二次電池7を作製した。
<評価方法>
<放電容量>
充放電レート試験は二次電池充放電試験装置(BTS2004、株式会社ナガノ製)を用い、25℃の恒温槽にて、実施例1~5および比較例1,2で作製したコイン型非水電解質二次電池1~7を用いて、充電処理、放電処理の順で行う充放電を1サイクルとして、52サイクルを実施した。
<放電容量>
充放電レート試験は二次電池充放電試験装置(BTS2004、株式会社ナガノ製)を用い、25℃の恒温槽にて、実施例1~5および比較例1,2で作製したコイン型非水電解質二次電池1~7を用いて、充電処理、放電処理の順で行う充放電を1サイクルとして、52サイクルを実施した。
なお、充電処理の条件としては、すべてのサイクルで、定電流定電圧(CC-CV)方式(CC電流0.2C、CV電圧4.2V、終止電流0.02C)とした。また、放電処理の条件としては、終止電圧を3.0Vに設定した。最初の1サイクルは、放電処理の定電流を0.2Cで行い、放電後に1サイクル後の放電容量A(mAh/g)を計測した。
その後の52サイクル目までは、下記の通り放電処理の定電流を設定し、52サイクルの放電後に放電容量B(mAh/g)の計測を行った。
・(各サイクルにおける放電処理の定電流)
2~10サイクル :放電処理の定電流0.2C
11~20サイクル:放電処理の定電流1C
21サイクル :放電処理の定電流0.2C
22~31サイクル:放電処理の定電流2C
32サイクル :放電処理の定電流0.2C
33~42サイクル:放電処理の定電流3C
43~52サイクル:放電処理の定電流0.2C
・(各サイクルにおける放電処理の定電流)
2~10サイクル :放電処理の定電流0.2C
11~20サイクル:放電処理の定電流1C
21サイクル :放電処理の定電流0.2C
22~31サイクル:放電処理の定電流2C
32サイクル :放電処理の定電流0.2C
33~42サイクル:放電処理の定電流3C
43~52サイクル:放電処理の定電流0.2C
<容量維持率>
容量維持率は、前述した各サイクル試験での放電容量AおよびBから、
容量維持率(%)=52サイクル後の放電容量B(mAh/g)/1サイクル後の放電容量A(mAh/g)×100
の式より算出した。
上記にて測定した結果を下記表1に示す。
容量維持率は、前述した各サイクル試験での放電容量AおよびBから、
容量維持率(%)=52サイクル後の放電容量B(mAh/g)/1サイクル後の放電容量A(mAh/g)×100
の式より算出した。
上記にて測定した結果を下記表1に示す。
<塗工性>
塗工性の評価は、実施例1~5および比較例1~2で得られた非水電解質二次電池用電極組成物をそれぞれ、集電体(縦320mm×横170mm×厚さ17μmの銅箔(古河電気工業社製、NC-WS))上に130μmのアプリケーターで塗布し、室温にて30分間乾燥後、60℃で30分間乾燥させた後の表面の状態を目視評価により行い、以下の基準により評価した。
A:塗工面に凹凸がほとんど見られない
B:塗工面に少し凹凸が見られる
C:塗工面に凹凸が見られる
塗工性の評価は、実施例1~5および比較例1~2で得られた非水電解質二次電池用電極組成物をそれぞれ、集電体(縦320mm×横170mm×厚さ17μmの銅箔(古河電気工業社製、NC-WS))上に130μmのアプリケーターで塗布し、室温にて30分間乾燥後、60℃で30分間乾燥させた後の表面の状態を目視評価により行い、以下の基準により評価した。
A:塗工面に凹凸がほとんど見られない
B:塗工面に少し凹凸が見られる
C:塗工面に凹凸が見られる
表1に示すように、カルボキシメチルセルロースおよび/又はその塩と、導電性添加剤とを少なくとも含む非水電解質二次電池用結合剤を用いた二次電池の容量維持率は、良好なものであることが分かった。
Claims (13)
- カルボキシメチルセルロースおよび/又はその塩と、導電性添加剤とを少なくとも含むことを特徴とする非水電解質二次電池用結合剤。
- 前記導電性添加剤が、カーボンナノチューブ又は導電性ポリマーであることを特徴とする請求項1に記載の非水電解質二次電池用結合剤。
- 前記導電性ポリマーは、ポリチオフェン系導電性ポリマーであることを特徴とする請求項2に記載の非水電解質二次電池用結合剤。
- 前記導電性ポリマーが、ポリ(3,4-エチレンジオキシチオフェン)及びポリスチレンスルホン酸を少なくとも含むことを特徴とする請求項3に記載の非水電解質二次電池用結合剤。
- 前記導電性ポリマーが、pH1~8の範囲を満たすことを特徴とする請求項3または4に記載の非水電解質二次電池用結合剤。
- 前記導電性ポリマーが、pH4~8の範囲を満たすことを特徴とする請求項3または4に記載の非水電解質二次電池用結合剤。
- さらにギ酸及び/又は多価アルコール類から選ばれるドーパント添加剤を含むことを特徴とする請求項3~6のいずれかに記載の非水電解質二次電池用結合剤。
- 前記多価アルコール類が、(ポリ)エチレングリコール及び/又は糖アルコールから選ばれる少なくとも1種であることを特徴とする請求項7に記載の非水電解質二次電池用結合剤。
- 前記カルボキシメチルセルロースおよび/又はその塩は、カルボキシメチル置換度が0.5~1.5の範囲であり、且つ固形分1%(w/v)の水分散体とした際の粘度(30rpm、25℃)が、100~20000mPa・sの範囲にあることを特徴とする請求項1~8のいずれかに記載の非水電解質二次電池用結合剤。
- 請求項1~9のいずれかに記載の非水電解質二次電池用結合剤を含む、非水電解質二次電池用電極組成物。
- 活物質100質量%に対してケイ素系活物質の含有量が10質量%以上であることを特徴とする、請求項10に記載の非水電解質二次電池用電極組成物。
- 請求項10または11に記載の非水電解質二次電池用電極組成物を用いた、非水電解質二次電池用電極。
- 請求項10または11に記載の非水電解質二次電池用電極組成物を用いた、非水電解質二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021548955A JPWO2021060322A1 (ja) | 2019-09-26 | 2020-09-24 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019174918 | 2019-09-26 | ||
JP2019-174918 | 2019-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021060322A1 true WO2021060322A1 (ja) | 2021-04-01 |
Family
ID=75166988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/035913 WO2021060322A1 (ja) | 2019-09-26 | 2020-09-24 | 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2021060322A1 (ja) |
WO (1) | WO2021060322A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100062338A1 (en) * | 2008-09-11 | 2010-03-11 | Lockheed Martin Corporation | Nanostructured anode for high capacity rechargeable batteries |
JP2011001391A (ja) * | 2008-03-19 | 2011-01-06 | Univ Of Yamanashi | 導電性高分子材料、導電性高分子フィルム及びこれを用いた導電性高分子アクチュエータ |
CN103923335A (zh) * | 2014-05-08 | 2014-07-16 | 郑州大学 | Pedot:pss/高岭土纳米管复合材料及其制备方法 |
US20140315081A1 (en) * | 2011-12-30 | 2014-10-23 | Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences | Composite electrode material for lithium ion battery and preparation method thereof |
JP2016066508A (ja) * | 2014-09-25 | 2016-04-28 | 信越化学工業株式会社 | 非水電解質二次電池用負極及び非水電解質二次電池 |
US20170174872A1 (en) * | 2013-08-07 | 2017-06-22 | Shenzhen Xin Chang Long New Materials Technology Co, Ltd. | Aqueous composite binder of natural polymer derivative-conducting polymer and application thereof |
JP2017141409A (ja) * | 2016-02-12 | 2017-08-17 | 東ソー株式会社 | 導電性高分子水溶液、及び導電性高分子膜 |
WO2018062250A1 (ja) * | 2016-09-30 | 2018-04-05 | 日本製紙株式会社 | カルボキシメチルセルロース又はその塩、及び、電極組成物 |
CN110890545A (zh) * | 2019-09-24 | 2020-03-17 | 北京理工大学 | 一种pedot:pss/cmc复合粘结剂及其制备方法和应用 |
JP2020177849A (ja) * | 2019-04-22 | 2020-10-29 | 第一工業製薬株式会社 | 電極用結着剤組成物、電極用塗料組成物、蓄電デバイス用電極、および蓄電デバイス |
-
2020
- 2020-09-24 WO PCT/JP2020/035913 patent/WO2021060322A1/ja active Application Filing
- 2020-09-24 JP JP2021548955A patent/JPWO2021060322A1/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011001391A (ja) * | 2008-03-19 | 2011-01-06 | Univ Of Yamanashi | 導電性高分子材料、導電性高分子フィルム及びこれを用いた導電性高分子アクチュエータ |
US20100062338A1 (en) * | 2008-09-11 | 2010-03-11 | Lockheed Martin Corporation | Nanostructured anode for high capacity rechargeable batteries |
US20140315081A1 (en) * | 2011-12-30 | 2014-10-23 | Guangzhou Institute Of Energy Conversion, Chinese Academy Of Sciences | Composite electrode material for lithium ion battery and preparation method thereof |
US20170174872A1 (en) * | 2013-08-07 | 2017-06-22 | Shenzhen Xin Chang Long New Materials Technology Co, Ltd. | Aqueous composite binder of natural polymer derivative-conducting polymer and application thereof |
CN103923335A (zh) * | 2014-05-08 | 2014-07-16 | 郑州大学 | Pedot:pss/高岭土纳米管复合材料及其制备方法 |
JP2016066508A (ja) * | 2014-09-25 | 2016-04-28 | 信越化学工業株式会社 | 非水電解質二次電池用負極及び非水電解質二次電池 |
JP2017141409A (ja) * | 2016-02-12 | 2017-08-17 | 東ソー株式会社 | 導電性高分子水溶液、及び導電性高分子膜 |
WO2018062250A1 (ja) * | 2016-09-30 | 2018-04-05 | 日本製紙株式会社 | カルボキシメチルセルロース又はその塩、及び、電極組成物 |
JP2020177849A (ja) * | 2019-04-22 | 2020-10-29 | 第一工業製薬株式会社 | 電極用結着剤組成物、電極用塗料組成物、蓄電デバイス用電極、および蓄電デバイス |
CN110890545A (zh) * | 2019-09-24 | 2020-03-17 | 北京理工大学 | 一种pedot:pss/cmc复合粘结剂及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021060322A1 (ja) | 2021-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102249000B1 (ko) | 카복시메틸 셀룰로오스 또는 그 염 및 전극 조성물 | |
US11424439B2 (en) | Negative electrode of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
Ani et al. | Cellulose from waste materials for electrochemical energy storage applications: A review | |
JP7337630B2 (ja) | 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 | |
WO2022070810A1 (ja) | 分散液、非水電解質二次電池用電極組成物、非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用電極の製造方法 | |
JP7232951B1 (ja) | カルボキシメチルセルロースおよび/又はその塩、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 | |
WO2021060322A1 (ja) | 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 | |
JP2014170685A (ja) | 二次電池電極用バインダー組成物 | |
KR20210104716A (ko) | 비수 전해질 이차 전지용 카르복시메틸 셀룰로오스 또는 그 염 | |
JP7337616B2 (ja) | 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 | |
WO2021039281A1 (ja) | 非水電解質二次電池用電極、及びその製造方法 | |
JP2021128887A (ja) | 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極、非水電解質二次電池および非水電解質二次電池用結合剤の製造方法 | |
JP2021128888A (ja) | 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極、非水電解質二次電池および非水電解質二次電池用結合剤の製造方法 | |
JP2021128886A (ja) | 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極、非水電解質二次電池および非水電解質二次電池用結合剤の製造方法 | |
WO2021161813A1 (ja) | 非水電解質二次電池用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極、非水電解質二次電池および非水電解質二次電池用結合剤の製造方法 | |
JPWO2020129897A1 (ja) | 非水電解質二次電池用電極、その製造方法、及び非水電解質二次電池 | |
JP7262913B1 (ja) | カルボキシメチルセルロースおよび/又はその塩、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 | |
JP2023070235A (ja) | 非水電解質二次電池電極用結合剤、非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 | |
JP2021047988A (ja) | 非水電解質二次電池用電極組成物、非水電解質二次電池用電極および非水電解質二次電池 | |
KR20240089570A (ko) | 카복시메틸 셀룰로스 및/또는 그 염, 비수 전해질 이차전지용 전극 조성물, 비수 전해질 이차전지용 전극 및 비수 전해질 이차전지 | |
KR20240004856A (ko) | 비수 전해질 이차전지 전극용 결합제, 비수 전해질 이차전지용 전극 조성물, 비수 전해질 이차전지용 전극 및 비수 전해질 이차전지 | |
JP2022182384A (ja) | カルボキシメチルセルロース又はその塩、及び、電極組成物 | |
KR20220062624A (ko) | 비수 전해질 이차전지 전극용 결합제, 수용액, 비수 전해질 이차전지용 전극 조성물 및 비수 전해질 이차전지용 전극 | |
JP2023023142A (ja) | 非水電解質二次電池電極用結合剤、非水電解質二次電池用電極組成物および非水電解質二次電池用電極 | |
CN118451570A (zh) | 羧甲基纤维素和/或其盐、非水电解质二次电池用电极组合物、非水电解质二次电池用电极和非水电解质二次电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20869991 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021548955 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20869991 Country of ref document: EP Kind code of ref document: A1 |