WO2021060298A1 - 回転電機用の固定子および回転電機、ならびに回転電機用の固定子の製造方法および回転電機の製造方法 - Google Patents

回転電機用の固定子および回転電機、ならびに回転電機用の固定子の製造方法および回転電機の製造方法 Download PDF

Info

Publication number
WO2021060298A1
WO2021060298A1 PCT/JP2020/035856 JP2020035856W WO2021060298A1 WO 2021060298 A1 WO2021060298 A1 WO 2021060298A1 JP 2020035856 W JP2020035856 W JP 2020035856W WO 2021060298 A1 WO2021060298 A1 WO 2021060298A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron core
stator
core portion
rotary electric
electric machine
Prior art date
Application number
PCT/JP2020/035856
Other languages
English (en)
French (fr)
Inventor
木村守
佐野博久
相牟田京平
阿部登志雄
太田元基
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2020566308A priority Critical patent/JP6857318B1/ja
Priority to US17/760,766 priority patent/US20220344980A1/en
Priority to CN202080062216.4A priority patent/CN114342215B/zh
Publication of WO2021060298A1 publication Critical patent/WO2021060298A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator for a rotary electric machine and a rotary electric machine having a rotor rotating around a rotating shaft and a stator having a circular tube shape arranged around the rotor, and a stator for the rotary electric machine. Regarding the manufacturing method and the manufacturing method of the rotary electric machine.
  • the material of the stator around which the coil is wound is a soft magnetic material with small iron loss instead of the conventional electromagnetic steel plate.
  • a soft magnetic material with small iron loss instead of the conventional electromagnetic steel plate.
  • an amorphous soft magnetic metal or a nanocrystalline soft magnetic metal may be used.
  • Examples of the rotary electric machine in which the above material is used for the stator include a rotary electric machine in which the stator portion (teeth portion) around which the coil is wound is made of amorphous soft magnetic metal (for example, Patent Document 1), and a fixing made of an electromagnetic steel plate.
  • a rotary electric machine (for example, Patent Document 2) in which an amorphous soft magnetic metal is arranged in a child insertion hole is known.
  • the thickness of the amorphous soft magnetic metal or nanocrystalline soft magnetic metal is, for example, about 0.015 to 0.030 mm, which is 0.5 mm or 0 of a general electromagnetic steel plate. It is thinner than .35 mm and has a Vickers hardness of about 900, which is more than 5 times harder than an electromagnetic steel sheet.
  • the formed stator has low toughness and may be chipped or cracked.
  • the laminate since the stator of the laminate is exposed on the rotor side, the laminate may be chipped or cracked, and a part of the stator may come into contact with the rotor. There is sex. That is, from the viewpoint of destruction of the rotary electric machine, there is a possibility that the rotary electric machine has low reliability. Further, since amorphous soft magnetic metal and nanocrystalline soft magnetic metal have high magnetic permeability but low saturation magnetic flux density, if the stator is composed only of amorphous soft magnetic metal and nanocrystalline soft magnetic metal, the amount of magnetic flux inside the stator May saturate and the characteristics of the rotating electric machine deteriorate.
  • a laminated body of amorphous soft magnetic metal is arranged in an insertion hole of a first iron core portion composed of a laminated body of electromagnetic steel sheets. That is, around the second iron core portion where chipping or cracking is likely to occur, the first iron core portion where chipping or cracking is unlikely to occur is arranged.
  • the problem of magnetic saturation of Patent Document 1 can be suppressed, but in order to insert the second iron core portion of the rectangle into the insertion hole of the rectangle, clearance is required on each side of the rectangle. The clearance may become a gap in the magnetic circuit, and the maximum torque of the rotating electric machine may be greatly reduced.
  • the first iron core portion which is a laminated body of electrical steel sheets, has a stator in which a second iron core portion, which is a laminated body of amorphous soft magnetic metal or nanocrystalline soft magnetic metal, is arranged.
  • a stator for a rotary electric machine and a rotary electric machine having excellent reliability a method for manufacturing a stator for a rotary electric machine, and a method for manufacturing a rotary electric machine.
  • the present invention is a stator for a rotary electric machine, and the stator is a laminate of an amorphous soft magnetic metal or a nanocrystalline soft magnetic metal with a first iron core portion of an annular shape which is a laminate of electrical steel sheets.
  • the first annular core portion having a second iron core portion includes a plurality of teeth portions in which a coil is wound so as to project toward the inner peripheral side, and the plurality of teeth portions are described from the outer peripheral surface for each of the plurality of teeth portions.
  • a stator for a rotary electric machine which has a first groove portion formed in a tooth portion, and the second iron core portion is arranged in the first groove portion.
  • the first groove portion has a shape in which the width becomes equal or gradually narrows from the outer surface side of the first iron core portion toward the tip inside the teeth portion.
  • the width of the bottom portion of the first groove portion is 20% or more with respect to the width of the thinnest portion of the teeth portion.
  • the first groove portion is closed on both ends in the stacking direction of the first iron core portion.
  • the third iron core portion which is a laminated body of an amorphous soft magnetic metal or a nanocrystalline soft magnetic metal, and the first iron core portion has a cross-sectional view perpendicular to the stacking direction of the first iron core portion. It is preferable that the third iron core portion has a plurality of second groove portions formed on the outer peripheral side of the slot portion, and the third iron core portion is arranged in the second groove portion.
  • the rotary electric machine of the present invention is characterized by having a rotor rotating around a rotating shaft and the stator arranged around the rotor.
  • the method for manufacturing a stator of the present invention is the method for manufacturing a stator, and when the stator is formed, the second iron core portion is viewed from the outer peripheral surface side of the first iron core portion. It is characterized by being inserted into the first groove portion.
  • the second iron core portion is paired and inserted into the pair of the first groove portions sandwiching the central axis.
  • the method for manufacturing a rotary electric machine of the present invention is characterized in that the rotary electric machine is manufactured by combining the stator and the rotor.
  • the first iron core portion which is a laminated body of electrical steel sheets, has a stator in which a second iron core portion, which is a laminated body of amorphous soft magnetic metal or nanocrystalline soft magnetic metal, is arranged. It is possible to provide a stator for a rotary electric machine and a rotary electric machine, a method for manufacturing a stator for a rotary electric machine, and a method for manufacturing a rotary electric machine, which are excellent in reliability.
  • the rotary electric machine 100 of the present embodiment has a columnar shape having a rotation axis as a axis of symmetry, and as shown in the cross-sectional view of FIG. 1, the rotation electric machine 100 is arranged around the shaft 101 and the shaft 101 as the rotation axis. It has a columnar rotor 1 having a child iron core 102, and an annular stator 2 arranged around the outer diameter side of the rotor 1 so as to face the rotor 1 via a gap 110. There is. Further, the stator 2 has a first iron core portion 103 and a second iron core portion 121.
  • a plurality of slot portions 104, teeth portions 106, and groove portions 120 are formed in the first iron core portion 103 with the rotation axis (central axis) as the axis of symmetry.
  • Each groove 120 extends in the axial direction of the rotation shaft, that is, in the stacking direction of the first iron core 103.
  • the slot portions 104 for arranging the coil conducting wires can be arranged at intervals between the adjacent teeth portions 106.
  • the coil 105 is arranged so as to wind each tooth portion 106 through the slot portions 104 on both sides of each tooth portion 106.
  • a second iron core portion 121 is arranged in each groove portion 120.
  • a frame, bearings, a cooling structure, and the like are arranged around the stator 2.
  • the first iron core portion 103 a laminated body of thin plates punched from a thin plate of an electromagnetic steel plate into the shape of the first iron core portion 103 of FIG. 1 can be used.
  • the second iron core portion 121 is punched from a thin plate of amorphous soft magnetic metal or nanocrystalline soft magnetic metal having a higher magnetic permeability than an electromagnetic steel plate into the shape of the second iron core portion 121 of FIG.
  • a laminated body of thin plates can be used. That is, a thin band-shaped amorphous soft magnetic metal (amorphous alloy) obtained by quenching a molten metal, a nanocrystalline soft magnetic metal (nanocrystalline alloy) obtained by subjecting it to heat treatment to crystallize nanocrystals, and more specifically.
  • Fe-based amorphous alloys Fe-Si-B-based alloys, etc.
  • Fe-based nanocrystal alloys Fe-Si-B-Cu-Nb-based alloys, etc.
  • Fe-based nanocrystal alloys Fe-Si-B- A laminated body of thin plates punched into the shape of the second iron core portion 121 shown in FIG. 1 from a thin plate of Nb—Cu—Ni-based alloy or the like can be used. It is known that these metal laminates have low toughness and are prone to chipping and cracking. That is, according to the configuration of the present embodiment, both the above-mentioned characteristic improvement and high reliability can be realized.
  • each groove portion 120 is formed in each tooth portion 106 from the outer surface of the ring of the first iron core portion 103.
  • the groove portion 120 is formed in a shape in which the width gradually narrows from the outer surface side toward the tip inside the teeth portion 106.
  • a second iron core portion 121 is arranged so as to fit into the groove portion 120.
  • the rotary electric machine 100 of the present embodiment is a second laminated body of amorphous soft magnetic metal or nanocrystalline soft magnetic metal in the teeth portion 106 of the first iron core portion 103 which is a laminated body of electromagnetic steel sheets.
  • the iron core portion 121 is arranged. By doing so, it is possible to suppress the magnetic saturation of the stator 2 caused by the second iron core portion 121, and it is possible to suppress a decrease in the amount of magnetic flux leakage from the stator 2 to the rotor 1. That is, it is possible to obtain a highly efficient rotary electric machine 100 having more excellent characteristics.
  • the rotary electric machine 100 of the present embodiment has a groove portion 120 having a shape in which the width gradually narrows from the outer surface side of the first iron core portion 103 toward the tip inside the teeth portion 106.
  • a second iron core portion 121 having substantially the same shape as the groove portion 120 is arranged in the groove portion 120.
  • the second iron core portion 121 can be inserted into the groove portion 120 from the outer surface side of the first iron core portion 103 and aligned, and the groove portion 120 and the second iron core portion 121 are brought into close contact with each other. Can be placed. Then, it is possible to suppress a decrease in the maximum torque due to the gap, and it is possible to obtain a rotary electric machine 100 having more excellent characteristics and a large maximum torque.
  • the rotary electric machine 100 of the present embodiment is formed of an amorphous soft magnetic metal in which chips and cracks are likely to occur in the teeth portion 106 of the first iron core portion 103 formed of an electromagnetic steel plate that is unlikely to be chipped or cracked.
  • the second iron core portion 121 is arranged.
  • the coil 105 can be either distributed winding or centralized winding.
  • the number of the teeth portions 106 is not limited to 12 as shown in FIG. 1, and an appropriate number can be set according to the number of poles of the rotor 1.
  • the shape of the tooth portion 106 is not limited to the semi-closed slot as shown in FIG. 1, and is a wedge-shaped open slot or a fully closed slot, which is difficult to process by the conventional method using amorphous soft magnetic metal as a tooth. It can also be.
  • both ends of the groove portion 120 in the stacking direction that is, both ends in the rotation axis direction are laminated. It can be blocked by thin plates at both ends of the body.
  • the thin plates excluding both ends of the laminated body have the shape of the first iron core portion 103 shown in FIG. 1, and the thin plates at both ends of the laminated body have the shape of the thin plate 501 shown in FIG. 2 without the shape of the groove 120. Can be done.
  • both ends of the stack that is, the thin plates at both ends in the rotation axis direction can be used as guides, and the outer peripheral surface of the first iron core portion 103 can be used as a guide. From the side, the second iron core portion 121 can be easily inserted. Further, even if the second iron core portion 121 is arranged in the groove portion 120 and then the second iron core portion is chipped or cracked, it can be made difficult to pop out in the stacking direction, and the rotor 1 and the stator 2 come into contact with each other. Can be further suppressed. That is, the rotary electric machine 100 having more high reliability can be obtained.
  • the second iron core portion 121 when the second iron core portion 121 is formed as a laminated body, the second iron core portion 121 can be sandwiched from the laminating direction by the thin plates at both ends of the lamination. As a result, it is possible to suppress the opening of the laminate of the laminated body of the second iron core portion 121, suppress the deterioration of the characteristics of the second iron core portion 121, and make the rotary electric machine 100 having more excellent characteristics. ..
  • the tip portion 30 of the teeth portion 106 that is, the dimensions of the teeth portion 106 sandwiched between the groove portion 120 and the gap portion 110, and the dimensions of the teeth portion 106 and It is preferable that the side surface portion 31 of the teeth portion 106, that is, the dimensions of the teeth portion 106 sandwiched between the groove portion 120 and the slot portion 104 are reduced within an allowable range of processing accuracy and material strength.
  • the width Wb of the bottom portion of the groove portion 120 in the circumferential direction is preferably 20% or more, preferably 50% or more, with respect to the thinnest portion width Wa of the teeth portion 106. Is more preferable.
  • the width Wb of the bottom portion of the groove portion 120 can be set to 80% or less of the plate thickness of the first iron core portion 103, for example, in order to give the teeth portion sufficient strength.
  • the magnetic characteristics of the teeth portion 106 can be brought close to the characteristics of the second iron core portion 121, and specifically, the torque can be equal to or higher than that of the second iron core portion 121, and the loss can be significantly reduced.
  • a highly efficient rotary electric machine 100 having more excellent characteristics can be obtained.
  • the shape of the groove 220 of the first iron core portion 203 and the shape of the second iron core portion 221 are the same as those of the rotary electric machine 100 of the first embodiment. It's different. Then, in the rotary electric machine 200 of the present embodiment, a groove portion 220 having an equal width is formed from the outer surface side of the first iron core portion 203 toward the tip inside the teeth portion 206, and the groove portion 220 has a rectangular shape. 2 iron core portions 221 are arranged. By doing so, the second iron core portion 221 can be made into a simple shape, and the rotary electric machine 200 can be made easier to manufacture.
  • the shape of the first iron core portion 303 is different from that of the rotary electric machine 100 of the first embodiment.
  • a plurality of second groove portions 320 are formed between the groove portions 120 on the outer peripheral surface of the first iron core portion 303, that is, on the outer peripheral side of the slot portion 104, and the first It extends in the stacking direction of the iron core portion of the above, that is, in the direction of the rotation axis.
  • a third iron core portion 321 is arranged in each second groove portion 320.
  • the third iron core portion 321 can be a laminate of the same Fe-based amorphous alloy or Fe-based nanocrystal alloy as the second iron core portion. By doing so, the magnetic flux that was conventionally concentrated in the vicinity of the slot portion 104 because the magnetic flux flows in the shortest distance is increased in the third iron core portion 321 by providing the third iron core portion 321 having a high magnetic permeability. By flowing, the concentration of magnetic flux can be reduced, and the iron loss of the stator 2 can be reduced due to the difference in materials, so that the rotary electric machine 300 having more excellent characteristics can be obtained.
  • a method of manufacturing the rotary electric machine 100 of the first embodiment includes a step of forming the stator 2, a step of forming the rotor 1, and a step of combining the stator 2 and the rotor 1. To do.
  • the second iron core portion 121 can be easily aligned and arranged with the first iron core portion 103, and the gap between the first iron core portion 103 and the second iron core portion 121 can be formed.
  • the stator 2 can be easily assembled so as to be small.
  • the second iron core portion 121 when inserting the second iron core portion 121, as shown in FIG. 6, it is more preferable to pair the second iron core portions 121 and insert them into the pair of groove portions 120 sandwiching the rotation shaft. That is, the second iron core portion 121 is simultaneously inserted from the outer peripheral side into the pair of groove portions 120 that are opposed to each other so as to sandwich the central shaft (rotation shaft). By doing so, it is possible to easily align and arrange the second iron core portion 121 while suppressing the deformation of the first iron core portion 103.
  • the third iron core portion 321 can also be inserted into the second groove portion 320 from the outer peripheral surface side of the first iron core portion in the same manner as the second iron core portion 121. Further, the third iron core portions 321 can be paired and inserted into the pair of second groove portions 320 that sandwich the rotation shaft.
  • 8 and 9 are graphs of torque and loss with the ratio (%) obtained by dividing the width Wb of the groove portion by the width Wa of the thinnest portion of the teeth on the horizontal axis.
  • the entire stator is made of silicon steel plate (35A300 equivalent material), and as an example, the second iron core portion matching the width of the groove portion is made of amorphous metal (2605HB1M (registered trademark): manufactured by Hitachi Metals, Ltd.). The results of the study are shown.
  • the torque was about the same when the width Wb of the groove portion was 20%, but the torque tends to increase by widening the width Wb of the groove portion, and the width of the groove portion is 80%. There is a 0.5% increase in torque.
  • the width Wb of the groove portion is widened to reduce the loss, and when the width Wb of the groove portion is 20%, the width Wb of the groove portion is set to about 80%, and the width Wb of the groove portion is set to 80%. The loss became 40%, and the result that the loss could be significantly reduced was obtained by increasing the width Wb of the groove portion.
  • Rotor 2 Stator 120, 220: Groove 121, 221: Second iron core 30: Tip 31: Side surface 100, 200, 300, 501: Rotor 101: Shaft 102: Rotor core 103, 203, 303: First iron core part 104, 201: Slot part 105: Coil 106, 202: Teeth part 110: Gap 320: Second groove part 321: Third iron core part

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

電磁鋼板の積層体である第1の鉄心部に、アモルファス軟磁性金属またはナノ結晶軟磁性金属の積層体である第2の鉄心部を配した固定子を有し、特性と信頼性に優れた回転電機および回転電機用の固定子、ならびに回転電機用の固定子の製造方法および回転電機の製造方法を提供する。 回転電機用の固定子であって、前記固定子は、電磁鋼板の積層体である環状 の第1の鉄心部と、アモルファス軟磁性金属またはナノ結晶軟磁性金属の積層体である第2の鉄心部とを有し、前記環状の第1の鉄心部は、内周側に向かい突出してコイルが巻き回されている複数のティース部と、外周面から前記ティース部内毎に形成されている第1の溝部とを有し、前記第2の鉄心部は、前記第1の溝部に配置されていることを特徴とする回転電機用の固定子である。

Description

回転電機用の固定子および回転電機、ならびに回転電機用の固定子の製造方法および回転電機の製造方法
 本発明は、回転軸の周りに回転する回転子と、その回転子周りに配された円管形状の固定子とを有する回転電機および回転電機用の固定子、ならびに回転電機用の固定子の製造方法および回転電機の製造方法に関する。
 近年、モータや発電機などの回転電機は、小型化と高効率化が求められ、コイルが巻き回される固定子の材料には、従来の電磁鋼板に代え、鉄損の小さい軟磁性材料、例えば、アモルファス軟磁性金属やナノ結晶軟磁性金属が用いられることがある。
 上記材料が固定子に用いられた回転電機としては、コイルが巻き回される固定子部分(ティース部分)をアモルファス軟磁性金属にした回転電機(例えば、特許文献1)、電磁鋼板で作製した固定子の挿入孔内にアモルファス軟磁性金属を配した回転電機(例えば、特許文献2)などが知られている。
特開2019-68567号公報 WO2017/208290号公報
 固定子を、薄板の積層体にする場合、アモルファス軟磁性金属やナノ結晶軟磁性金属の板厚は、例えば、0.015~0.030mm程度と、一般的な電磁鋼板の0.5mm、0.35mmより薄く、ビッカース硬度が900程度と、電磁鋼板の5倍以上硬く、形成した固定子は靭性が低く、欠けや割れが発生することがある。
 そのため、特許文献1の回転電機では、積層体の固定子が回転子側に露出しているため、積層体に欠けや割れが発生し、固定子の一部が回転子に接触してしまう可能性がある。すなわち、回転電機の破壊等の観点から、信頼性の低い回転電機になる可能性がある。また、アモルファス軟磁性金属やナノ結晶軟磁性金属は、透磁率は高いものの飽和磁束密度が低いため、アモルファス軟磁性金属やナノ結晶軟磁性金属だけで固定子を構成すると、固定子内部の磁束量が飽和し、回転電機の特性が悪くなる可能性がある。
 また、特許文献2の回転電機では、電磁鋼板の積層体で構成した第1の鉄心部の挿入孔に、アモルファス軟磁性金属の積層体を配している。すなわち、欠けや割れが発生しやすい第2の鉄心部の周りに、欠けや割れが発生しにくい第1の鉄心部を配している。このようにすることで、特許文献1の磁気飽和の問題は抑制できるが、矩形の挿入孔に矩形の第2の鉄心部を挿入するには、矩形の各辺にクリアランスが必要になり、これらクリアランスが、磁気回路におけるギャップとなって、回転電機の最大トルクが大きく低下してしまう可能性がある。
 そこで本発明では、電磁鋼板の積層体である第1の鉄心部に、アモルファス軟磁性金属またはナノ結晶軟磁性金属の積層体である第2の鉄心部を配した固定子を有し、特性と信頼性に優れた回転電機および回転電機用の固定子、ならびに回転電機用の固定子の製造方法および回転電機の製造方法を提供する。
 本発明は、回転電機用の固定子であって、前記固定子は、電磁鋼板の積層体である環状 の第1の鉄心部と、アモルファス軟磁性金属またはナノ結晶軟磁性金属の積層体である第2の鉄心部とを有し、前記環状の第1の鉄心部は、内周側に向かい突出してコイルが巻き回された複数のティース部と、前記複数のティース部毎に外周面から前記ティース部内に形成された第1の溝部とを有し、前記第2の鉄心部は、前記第1の溝部に配置されていることを特徴とする回転電機用の固定子である。
 また、前記第1の溝部は、前記第1の鉄心部の外側面側から前記ティース部内先端に向かって、等幅または徐々に幅が狭くなる形状であることが好ましい。
 また、前記第1の溝部の底部の幅が、前記ティース部の最薄部の幅に対して20%以上であることが好ましい。
 また、前記第1の溝部は、前記第1の鉄心部の積層方向の両端側で閉塞されていることが好ましい。
 また、アモルファス軟磁性金属またはナノ結晶軟磁性金属の積層体である第3の鉄心部を有し、前記第1の鉄心部は、前記第1の鉄心部の積層方向に垂直な断面視において、スロット部外周側に形成されている複数の第2の溝部を有し、前記第3の鉄心部は、前記第2の溝部に配置されていることが好ましい。
 本発明の回転電機は、回転軸の周りに回転する回転子と、前記回転子の周りに配された、前記固定子と、を有していることを特徴とする。
 また、本発明の固定子の製造方法は、前記固定子の製造方法であって、前記固定子を形成する際、前記第2の鉄心部を、前記第1の鉄心部の外周面側から前記第1の溝部に挿入することを特徴とする。
 前記固定子の製造方法において、前記第2の鉄心部を一対にして、中心軸を挟む一対の前記第1の溝部に挿入することが好ましい。
 本発明の回転電機の製造方法は、前記固定子と、回転子とを組み合わせて、回転電機を製造することを特徴とする。
 本発明によれば、電磁鋼板の積層体である第1の鉄心部に、アモルファス軟磁性金属またはナノ結晶軟磁性金属の積層体である第2の鉄心部を配した固定子を有し、特性と信頼性に優れた回転電機および回転電機用の固定子、ならびに回転電機用の固定子の製造方法および回転電機の製造方法を提供することができる。
本発明の第1実施形態である回転電機100の回転軸に垂直な断面模式図である。 本発明の第1実施形態である回転電機100の第1の鉄心部の積層体の両端に用いることが可能な薄板形状である。 図1のティース部先端の部分拡大図である。 本発明の第2実施形態である回転電機200の回転軸に垂直な断面模式図である。 本発明の第3実施形態である回転電機300の回転軸に垂直な断面模式図である。 本発明の第4実施形態である回転電機100の製造方法について説明する図である。 溝部120の底部の幅Wbと、ティース部106の最薄部幅Waを示す図である。 本発明の実施例と従来例のトルクを比較した結果を示す図である。 本発明の実施例と従来例の損失を比較した結果を示す図である。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
(第1実施形態)
 本実施形態の回転電機100は、その概形は回転軸を対称軸とする柱状であり、図1の断面図に示すように、回転軸となるシャフト101とシャフト101の周囲に配置される回転子鉄心102を有する円柱状の回転子1と、回転子1の外径側周りに、回転子1に対して、ギャップ110を介して対向配置される円環状の固定子2とを有している。また、固定子2は、第1の鉄心部103と、第2の鉄心部121とを有している。
 第1の鉄心部103には、回転軸(中心軸)を対称軸にして、複数のスロット部104、ティース部106、溝部120が形成されている。各溝部120は、回転軸の軸方向、すなわち、第1の鉄心部103の積層方向に延設されている。コイル導線を配するためのスロット部104は、隣り合うティース部106間毎に配置することができる。コイル105は、各ティース部106の両脇のスロット部104を通し、各ティース部106を巻き回すようにして配されている。そして、各溝部120には、第2の鉄心部121が配されている。なお、不図示であるが、固定子2の周りには、フレーム、ベアリング、冷却構造等が配されている。
 ここで、第1の鉄心部103には、電磁鋼板の薄板から、図1の第1の鉄心部103の形状に打抜き加工された、薄板の積層体を用いることができる。
 また、第2の鉄心部121には、電磁鋼板よりも透磁率の高いアモルファス軟磁性金属やナノ結晶軟磁性金属の薄板から、図1の第2の鉄心部121の形状に打抜き加工された、薄板の積層体を用いることができる。すなわち、溶湯金属を急冷して得られる薄帯状のアモルファス軟磁性金属(アモルファス合金)、それに熱処理を施してナノ結晶を晶出させたナノ結晶軟磁性金属(ナノ結晶合金)、より具体的には、Fe基アモルファス合金(Fe-Si-B系合金等)や、Fe基ナノ結晶合金(Fe-Si-B-Cu-Nb系合金等)や、Fe基ナノ結晶合金(Fe-Si-B-Nb-Cu―Ni系合金等)の薄板から、図1に示す第2の鉄心部121の形状に打抜き加工された、薄板の積層体を用いることができる。なお、これら金属の積層体は、靭性が低く、欠けや割れが発生しやすいことが知られている。すなわち、本実施形態の構成によれば、上述の特性向上と高信頼性の両立を実現することができる。
 また、各溝部120は、第1の鉄心部103の円環の外側面から各ティース部106内に形成されている。各溝部120の形状は種々のものを採用することができるが、本実施形態では、外側面側からティース部106内の先端に向かい、幅が徐々に狭くなる形状に形成されている。そして、溝部120に篏合するように第2の鉄心部121が配されている。
 ここで、本実施形態の回転電機100は、電磁鋼板の積層体である第1の鉄心部103のティース部106内に、アモルファス軟磁性金属やナノ結晶軟磁性金属の積層体である第2の鉄心部121が配されている。このようにすることで、第2の鉄心部121に起因した固定子2の磁気飽和を抑制することができ、固定子2から回転子1への漏洩磁束量の低下を抑制することができる。すなわち、より特性に優れた、高効率の回転電機100にすることができる。
 また、本実施形態の回転電機100は、第1の鉄心部103の外側面側からティース部106内の先端に向かい、徐々に幅が狭くなる形状の溝部120にしている。そして、溝部120には、溝部120とほぼ同形状の第2の鉄心部121を配している。このようにすることで、第2の鉄心部121を溝部120に、第1の鉄心部103の外側面側から挿入して篏合することができ、溝部120と第2の鉄心部121を密着させて、配置することができる。そして、隙間に起因した最大トルクの低下を抑制することができ、より特性に優れた、最大トルクの大きい回転電機100にすることができる。
 さらに、本実施形態の回転電機100は、欠けや割れが発生しにくい電磁鋼板で形成された第1の鉄心部103のティース部106内に、欠けや割れが発生しやすいアモルファス軟磁性金属で形成された第2の鉄心部121を配している。このようにすることで、固定子2の一部に欠けや割れが発生しても、固定子が回転子1に接触することを抑制でき、より信頼性に優れた回転電機100にすることができる。
 なお、本実施形態の回転電機100において、コイル105は、分布巻、集中巻の、どちらも用いることができる。また、ティース部106の本数も、図1のような12本に限らず、回転子1の極数に合わせて適切な本数にすることができる。さらに、ティース部106の形状も、図1のような半閉スロットに限らず、アモルファス軟磁性金属をティースとする従来手法では加工が困難であった楔形状にしたオープンスロット、あるいは、全閉スロットにすることもできる。
 さらに、本実施形態の回転電機100は、第1の鉄心部103を、回転軸方向に積層した積層体にしたとき、溝部120の、積層方向の両端、すなわち、回転軸方向の両端を、積層体の両端の薄板により閉塞することができる。例えば、積層体の両端を除く薄板を、図1に示す第1の鉄心部103形状にし、積層体の両端の薄板を、溝部120の形状が無い、図2に示す薄板501の形状にすることができる。
 このようにすることで、第2の鉄心部121を溝部120に配する際、積層両端、すなわち、回転軸方向の両端の薄板をガイドにすることができ、第1の鉄心部103の外周面側から、第2の鉄心部121を挿入しやすくすることができる。
また、第2の鉄心部121を溝部120に配した後、第2の鉄心部に欠けや割れが生じても、積層方向に飛び出しにくくすることができ、回転子1と固定子2との接触をより抑制することができる。すなわち、より信頼性に優れた回転電機100にすることができる。
さらに、第2の鉄心部121を積層体としたとき、積層両端の薄板により、第2の鉄心部121を積層方向から挟み込むことができる。これにより、第2の鉄心部121の積層体の積層の開きを抑制することができ、第2の鉄心部121の特性劣化を抑制して、より特性に優れた回転電機100にすることができる。
 また、本実施形態の回転電機100では、図3の部分拡大図に示すように、ティース部106の先端部30、すなわち、溝部120とギャップ部110に挟まれたティース部106の寸法、および、ティース部106部の側面部31、すなわち、溝部120とスロット部104に挟まれたティース部106の寸法を、加工精度と材料強度が許容される範囲で細くするのが好ましい。具体的には、図7に示すように、周方向における、溝部120の底部の幅Wbを、ティース部106の最薄部幅Waに対して、20%以上とすることが好ましく、50%以上であるとさらに好ましい。また、溝部120の底部の幅Wbは、ティース部に十分な強度を持たせるために、例えば、第1の鉄心部103の板厚の80%以下にすることができる。
 このようにすることで、ティース部106の磁気特性を、第2の鉄心部121の特性に近づけることができ、具体的には、トルクを同等以上かつ、損失を大幅に低減することが可能となり、より特性に優れた、高効率の回転電機100にすることができる。
(第2実施形態)
 次に、本発明の第2実施形態である回転電機200について説明する。なお、本実施形態は、第1実施形態の一部を変更したものであり、図において、第1実施形態と同一部分には同一符号を付している。
 図4の断面図に示すように、本実施形態の回転電機200は、第1の鉄心部203の溝部220の形状と第2の鉄心部221の形状が、第1実施形態の回転電機100と異なっている。そして、本実施形態の回転電機200では、第1の鉄心部203の外側面側からティース部206内の先端に向かい、等幅な溝部220が形成されていて、この溝部220に矩形形状の第2の鉄心部221が配されている。このようにすることで、第2の鉄心部221を簡単な形状にすることができ、より製造の容易な回転電機200にすることができる。
(第3実施形態)
次に、本発明の第3実施形態である回転電機300について説明する。なお、本実施形態は、第1実施形態の一部を変更したものであり、図において、第1実施形態と同一部分には同一符号を付している。
 図5の断面図に示すように、本実施形態の回転電機300は、第1の鉄心部303の形状が、第1実施形態の回転電機100と異なっている。そして、本実施形態の回転電機300では、第1の鉄心部303の外周面の溝部120間、すなわち、スロット部104の外周側に、複数の第2の溝部320が形成されており、第1の鉄心部の積層方向、すなわち、回転軸の方向に延設されている。各第2の溝部320に、第3の鉄心部321が配されている。 
 第3の鉄心部321は、第2の鉄心部と同じ、Fe基アモルファス合金や、Fe基ナノ結晶合金の積層体にすることできる。このようにすることで、従来は磁束が最短距離を流れるためスロット部104近傍に集中していた磁束が、高透磁率の第3の鉄心部321を設けることにより第3の鉄心部321に多く流れることにより、磁束の集中を軽減できることと、材料の違いにより固定子2の鉄損を小さくすることができ、より特性に優れた回転電機300にすることができる。
(第4実施形態)
 次に、本発明の第4実施形態として、第1実施形態の回転電機100の製造方法について説明する。
 回転電機100の製造方法は、固定子2を形成する工程と、回転子1を形成する工程と、固定子2と回転子1とを組み合わせる工程と、を有していることを特徴の一つとする。
 また、固定子2の形成工程において、図6に示すように、第2の鉄心部121を、第1の鉄心部の外周面側から溝部120に挿入することが好ましい。
 このようにすることで、第1の鉄心部103に第2の鉄心部121を容易に篏合して配することができ、第1の鉄心部103と第2の鉄心部121との隙間が小さくなるように、容易に固定子2を組み立てることができる。
 また、第2の鉄心部121を挿入する際には、図6に示すように、第2の鉄心部121を一対にして、回転軸を挟む一対の溝部120に挿入することがさらに好ましい。すなわち、中心軸(回転軸)を挟むようにして対置された一対の溝部120に、外周側から同時に第2の鉄心部121を挿入する。このようにすることで第1の鉄心部103の変形を抑制しつつ、第2の鉄心部121を容易に篏合して配することができる。
 また、第3の鉄心部321も第2の鉄心部121と同様にして、第1の鉄心部の外周面側から第2の溝部320に挿入できる。また、第3の鉄心部321を一対にして、回転軸を挟む一対の第2の溝部320に挿入することができる。
次に、溝部の幅をパラメータとしたトルクと損失の検討結果について説明する。
溝部の幅Wbをティース最薄部の幅Waで除した比率(%)を横軸に取ったトルクと損失のグラフを図8、図9に示す。従来例として固定子全体をケイ素鋼板(35A300相当材)としたものと、実施例として溝部の幅に合わせた第2の鉄心部をアモルファス金属(2605HB1M(登録商標):日立金属株式会社製)とした検討結果を示している。従来例のトルクに対し、実施例では、溝部の幅Wbを20%とすると同程度であったトルクが、溝部の幅Wbを広くすることでトルクが増加する傾向にあり溝部の幅80%で0.5%のトルク上昇がある。また、従来例の損失に対して、実施例では溝部の幅Wbを広くすることで、損失が低減し溝部の幅Wbが20%では約80%、溝部の幅Wbを80%とすることで損失が40%となり、溝部の幅Wbを増加することにより大幅な損失低減可能な結果を得た。
 以上、本発明の実施形態について、実施形態を用いて説明してきたが、本発明は上記実施形態に限定されるものではない。特許請求の範囲に記載された技術範囲において、適宜変更することが可能である。
1:回転子
2:固定子
120、220:溝部
121、221:第2の鉄心部
 30:先端部
 31:側面部
 100、200、300、501:回転電機
101:シャフト
 102:回転子鉄心
 103、203、303:第1の鉄心部
 104、201:スロット部
 105:コイル
 106、202:ティース部
 110:ギャップ
320:第2の溝部
 321:第3の鉄心部

 

Claims (9)

  1.  回転電機用の固定子であって、 
    前記固定子は、電磁鋼板の積層体である環状の第1の鉄心部と、アモルファス軟磁性金属またはナノ結晶軟磁性金属の積層体である第2の鉄心部とを有し、
    前記環状の第1の鉄心部は、内周側に向かい突出してコイルが巻き回された複数のティース部と、前記複数のティース部毎に外周面から前記ティース部内に形成された第1の溝部とを有し、
    前記第2の鉄心部は、前記第1の溝部に配置されていることを特徴とする回転電機用の固定子。
  2.  前記第1の溝部は、前記第1の鉄心部の外側面側から前記ティース部内先端に向かって、等幅または徐々に幅が狭くなる形状であることを特徴とする請求項1に記載の固定子。
  3.  前記第1の溝部の底部の幅が、前記ティース部の最薄部の幅に対して20%以上である
    ことを特徴とする請求項1または2に記載の固定子。
  4.  前記第1の溝部は、前記第1の鉄心部の積層方向の両端側で閉塞されていることを特徴とする請求項1~3のいずれか一項に記載の固定子。
  5.  アモルファス軟磁性金属またはナノ結晶軟磁性金属の積層体である第3の鉄心部を有し、 
     前記第1の鉄心部は、前記第1の鉄心部の積層方向に垂直な断面視において、スロット部外周側に形成されている複数の第2の溝部を有し、
     前記第3の鉄心部は、前記第2の溝部に配置されていることを特徴とする請求項1~4のいずれか一項に記載の固定子。
  6.  回転軸の周りに回転する回転子と、前記回転子の周りに配された、請求項1~5のいずれか一項に記載の固定子と、を有していることを特徴とする回転電機。
  7.  請求項1~5のいずれか一項に記載の固定子の製造方法であって、
    前記固定子を形成する際、前記第2の鉄心部を、前記第1の鉄心部の外周面側から前記第1の溝部に挿入することを特徴とする固定子の製造方法。
  8.  前記第2の鉄心部を一対にして、中心軸を挟む一対の前記第1の溝部に挿入することを特徴とする請求項7に記載の固定子の製造方法。
  9.  請求項1~5のいずれか一項に記載の固定子と、回転子とを組み合わせて、回転電機を製造する回転電機の製造方法。
     
     
PCT/JP2020/035856 2019-09-24 2020-09-23 回転電機用の固定子および回転電機、ならびに回転電機用の固定子の製造方法および回転電機の製造方法 WO2021060298A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020566308A JP6857318B1 (ja) 2019-09-24 2020-09-23 回転電機用の固定子および回転電機、ならびに回転電機用の固定子の製造方法および回転電機の製造方法
US17/760,766 US20220344980A1 (en) 2019-09-24 2020-09-23 Stator for rotating electrical machine, rotating electrical machine, method for manufacturing stator for rotating electrical machine, and method for manufacturing rotating electrical machine
CN202080062216.4A CN114342215B (zh) 2019-09-24 2020-09-23 旋转电机用的定子及其制造方法、旋转电机及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019172812 2019-09-24
JP2019-172812 2019-09-24
JP2020046196 2020-03-17
JP2020-046196 2020-03-17

Publications (1)

Publication Number Publication Date
WO2021060298A1 true WO2021060298A1 (ja) 2021-04-01

Family

ID=75165840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035856 WO2021060298A1 (ja) 2019-09-24 2020-09-23 回転電機用の固定子および回転電機、ならびに回転電機用の固定子の製造方法および回転電機の製造方法

Country Status (4)

Country Link
US (1) US20220344980A1 (ja)
JP (1) JP6857318B1 (ja)
CN (1) CN114342215B (ja)
WO (1) WO2021060298A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029202A1 (ja) * 2022-08-03 2024-02-08 ミネベアミツミ株式会社 モータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207028A (ja) * 2009-03-05 2010-09-16 Honda Motor Co Ltd ステータ
JP2014155347A (ja) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp 分割鉄心、及びこの分割鉄心を用いた固定子、並びにこの固定子を備えた回転電機
WO2017208290A1 (ja) * 2016-05-30 2017-12-07 三菱電機株式会社 固定子、電動機、圧縮機、および冷凍空調装置
WO2018069956A1 (ja) * 2016-10-11 2018-04-19 三菱電機株式会社 ステータ、電動機、駆動装置、圧縮機、及び冷凍空調装置、並びにステータの製造方法
WO2019064630A1 (ja) * 2017-09-29 2019-04-04 株式会社日立製作所 ラジアルギャップ型回転電機、その製造装置及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100399672C (zh) * 2004-02-25 2008-07-02 三菱电机株式会社 旋转电机的铁心的制造方法
US7081697B2 (en) * 2004-06-16 2006-07-25 Visteon Global Technologies, Inc. Dynamoelectric machine stator core with mini caps
CN1780090A (zh) * 2004-11-19 2006-05-31 乐金电子(天津)电器有限公司 电机铁芯结构
JP2009106045A (ja) * 2007-10-23 2009-05-14 Hitachi Ltd 回転電機
JP5022278B2 (ja) * 2008-03-12 2012-09-12 株式会社日立製作所 回転電機用の固定子鉄心およびその製造方法
JP2015192551A (ja) * 2014-03-28 2015-11-02 アイシン・エィ・ダブリュ株式会社 ステータ、及び、モータ
CN105305739B (zh) * 2014-07-28 2018-04-03 三菱电机株式会社 轴向间隙型旋转电机以及该电机用定子铁芯的制造方法
JP2016059158A (ja) * 2014-09-09 2016-04-21 三菱電機株式会社 固定子およびこの固定子を用いた回転電機
JP2016135063A (ja) * 2015-01-22 2016-07-25 三菱電機株式会社 鉄心、固定子、回転電機
US10461589B2 (en) * 2016-02-09 2019-10-29 Tohoku Magnet Institute Co., Ltd. Magnetic-plate laminated body and motor
CN109155545B (zh) * 2016-05-30 2020-07-28 三菱电机株式会社 定子、电动机、压缩机及制冷空调装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010207028A (ja) * 2009-03-05 2010-09-16 Honda Motor Co Ltd ステータ
JP2014155347A (ja) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp 分割鉄心、及びこの分割鉄心を用いた固定子、並びにこの固定子を備えた回転電機
WO2017208290A1 (ja) * 2016-05-30 2017-12-07 三菱電機株式会社 固定子、電動機、圧縮機、および冷凍空調装置
WO2018069956A1 (ja) * 2016-10-11 2018-04-19 三菱電機株式会社 ステータ、電動機、駆動装置、圧縮機、及び冷凍空調装置、並びにステータの製造方法
WO2019064630A1 (ja) * 2017-09-29 2019-04-04 株式会社日立製作所 ラジアルギャップ型回転電機、その製造装置及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029202A1 (ja) * 2022-08-03 2024-02-08 ミネベアミツミ株式会社 モータ

Also Published As

Publication number Publication date
JPWO2021060298A1 (ja) 2021-10-14
CN114342215A (zh) 2022-04-12
CN114342215B (zh) 2023-10-20
JP6857318B1 (ja) 2021-04-14
US20220344980A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US7626306B2 (en) Laminated core structure of motor
US10491059B2 (en) Rotating electric machine including swaging portions for steel sheets of stator core
KR101501862B1 (ko) 회전 전기 기기용 나선 코어의 제조 방법 및 회전 전기 기기용 나선 코어의 제조 장치
US20110057533A1 (en) Rotating electrical machine
US9553495B2 (en) Wound core, electromagnetic component and manufacturing method therefor, and electromagnetic equipment
EP2693602A1 (en) Rotor for ipm motor, and ipm motor equipped with same
JP2008245384A (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP2008193778A (ja) 固定子及び密閉型圧縮機及び回転機
JP2014079068A (ja) ロータコア及びその製造方法
JP6328263B2 (ja) 電機子の積層鉄心と電機子
JP2011120340A (ja) 固定子積層鉄心
JP7241289B2 (ja) 回転子鉄心の製造方法、および回転子の製造方法
JP2008245346A (ja) 整流子電動機およびそれを用いた電気掃除機
WO2021060298A1 (ja) 回転電機用の固定子および回転電機、ならびに回転電機用の固定子の製造方法および回転電機の製造方法
JP2011019398A (ja) 固定子及び密閉型圧縮機及び回転機
KR100533012B1 (ko) 왕복동식 모터의 고정자 구조
KR20080012811A (ko) 전동 발전기 로터 및 토크 리플을 줄이는 방법
JP2018023232A (ja) 回転電機および回転電機の製造方法
JP2021061677A (ja) 回転電機
KR100556817B1 (ko) 왕복동식 모터의 고정자 구조
JP2020178411A (ja) 固定子鉄心およびモータ
US11881745B2 (en) Stator of an electric machine, method for producing same and electric machine
JPS607892B2 (ja) 回転電機の固定子鉄心
JP2019088163A (ja) 回転電機コア
JP5726118B2 (ja) 積層固定子鉄心、積層固定子鉄心の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020566308

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867715

Country of ref document: EP

Kind code of ref document: A1