WO2021059733A1 - 無線伝送装置 - Google Patents

無線伝送装置 Download PDF

Info

Publication number
WO2021059733A1
WO2021059733A1 PCT/JP2020/029036 JP2020029036W WO2021059733A1 WO 2021059733 A1 WO2021059733 A1 WO 2021059733A1 JP 2020029036 W JP2020029036 W JP 2020029036W WO 2021059733 A1 WO2021059733 A1 WO 2021059733A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
signal
reference signal
band
local oscillator
Prior art date
Application number
PCT/JP2020/029036
Other languages
English (en)
French (fr)
Inventor
直敏 伊藤
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to JP2021548392A priority Critical patent/JP7171937B2/ja
Publication of WO2021059733A1 publication Critical patent/WO2021059733A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a two-piece type wireless transmission device in which a control unit and a high frequency unit are separated.
  • the control unit and high frequency unit are connected by an intermediate frequency cable composed of a coaxial cable or the like. Will be done. Therefore, in the case of the MIMO (Multiple Input Multiple Output) method, since the signal is divided into even waves for transmission and reception, it is necessary to connect an even number of coaxial cables between the control unit and the high frequency unit.
  • MIMO Multiple Input Multiple Output
  • Patent Document 1 is used when the frequency band of the UHF band frequency (for example, 1.2 GHz band or 2.3 GHz band) is low and the number of modulation multi-values is small (for example, 64QAM) and the number of modulation carriers is 2000 or less. It can be adopted. That is, in the FPU standard ARIB-STD B57 that adopts the MIMO method in the 1.2 GHz band and the 2.3 GHz band, the goal is to keep the frequency deviation between systems at 50 Hz or less for stable transmission. It is described that it is a power value, and the technique of Patent Document 1 can satisfy this condition.
  • the frequency band of the UHF band frequency for example, 1.2 GHz band or 2.3 GHz band
  • the number of modulation multi-values for example, 64QAM
  • the number of modulation carriers 2000 or less. It can be adopted. That is, in the FPU standard ARIB-STD B57 that adopts the MIMO method in the 1.2 GHz band and the 2.3 GHz band, the goal is to keep the
  • the frequency synchronization between the control unit and the high frequency unit cannot be achieved, and the difference in frequency deviation between the systems in the high frequency unit becomes large, so that the final transmission output is between the systems.
  • the frequency deviation of the above becomes large and it cannot be applied to the FPU in the microwave band.
  • the maximum number of modulation multi-values is 4096QAM
  • the number of modulation carriers is about 8000, and it is necessary to keep the frequency deviation between transmission and output systems to 10Hz or less for stable transmission. As described, the prior art cannot meet this requirement.
  • FIG. 2 shows a configuration example of the FPU 10 in which the conventional technique is applied to the microwave band.
  • the FPU 10 is composed of two pieces, a control unit 20 and a high frequency unit 30, and is coaxial between the intermediate frequency output terminal X of the control unit 20 and the intermediate frequency input terminal Y of the high frequency unit 30.
  • a single intermediate frequency cable 40 composed of a cable or the like is connected.
  • the control unit 20 includes a digital modulation unit 211, a digital modulation unit 212, a local oscillator 220, a mixer 231 and a mixer 232, a bandpass filter 241 and a bandpass filter 242, and a synthesizer 250. ..
  • f 1 100 MHz
  • a secondary system primary IF signal for example, 70 MHz
  • -F 0 f 1 -f 0 + ⁇ , and each signal has a deviation of ⁇ .
  • the high frequency section 30 includes a distributor 310, a bandpass filter 321 and a bandpass filter 322, a local oscillator 331, a local oscillator 332, a mixer 341, a mixer 342, a bandpass filter 351 and a bandpass filter 352.
  • a variable local oscillator 333, a mixer 361, a mixer 362, a bandpass filter 371, a bandpass filter 372, an amplifier 381, and an amplifier 382 are provided.
  • the local oscillator 331, the local oscillator 332, and the variable local oscillator 333 constitute the synthesizer 330 together with the reference crystal oscillator 334.
  • the combined IF signal from the control unit 20 is distributed by the distributor 310 to the bandpass filter 321 in the (f 1 + f 0 ) band and the bandpass filter 322 in the (f 1 ⁇ f 0 ) band.
  • 1 system secondary IF signal and the 2-based secondary IF signal and the reference signal of frequency f 4 generated by the variable local oscillator 333 are multiplied respectively by the mixer 361 and the mixer 362, Filtering is performed by the bandpass filter 371 and the bandpass filter 372 in the band (f 4 + f 2 + f 1 + f 0).
  • the 1st system secondary IF signal and the 2nd system secondary IF signal are high frequency signals in the band (f 4 + f 2 + f 1 + f 0 ) whose frequency is converted upward from the frequency f 4 (hereinafter referred to as the 1 system RF signal). It is referred to as a two-system RF signal.
  • the 1-system RF signal and the 2-system RF signal are amplified by the amplifier 381 and the amplifier 382, respectively, output from the microwave output terminals Z1 and Z2 to an antenna (not shown), and transmitted wirelessly.
  • the 1st system secondary IF signal is (f 2).
  • the wireless transmission device of the present invention has a control unit that performs frequency conversion between a baseband signal having the same frequency between systems and an intermediate frequency signal that differs for each system, and the intermediate frequency signal and the system that differ for each system. It is provided with a high frequency section that performs frequency conversion between harmonic signals of the same frequency, and between the control section and the high frequency section, the intermediate frequency signal for each system is simply combined as a combined intermediate frequency signal.
  • a wireless transmission device that transmits via one intermediate frequency cable, the first reference signal is used for frequency conversion in the control unit, and the first reference signal is used for frequency conversion between the high frequency units. Using the synchronized second reference signal and third reference signal, the third reference signal is generated based on the first reference signal and the second reference signal.
  • the control unit converts the frequency of the baseband signal of the first system upward from the frequency of the first reference signal to generate the intermediate frequency signal of the first system.
  • the base band signal of the second system is frequency-converted downward from the frequency of the first reference signal to generate the intermediate frequency signal of the second system, and the high frequency portion is the intermediate frequency signal of the first system. Is frequency-converted upward from the frequency of the second reference signal, and the intermediate frequency signal of the second system is frequency-converted downward from the frequency of the third reference signal, and the frequency of the third reference signal is the said.
  • the frequency deviation between the systems at the transmission output can be eliminated, so that the frequency of wireless transmission can be eliminated. It has the effect that it can be applied to a MIMO-type FPU with a microwave band.
  • This embodiment is a MIMO-type FPU 10a in which the frequency of wireless transmission is in the microwave band.
  • the control unit 20a and the high frequency unit 30a are composed of two pieces, the control unit 20a and the control unit 20a.
  • the high frequency portion 30a is connected to the high frequency portion 30a by a single intermediate frequency cable 40 composed of a coaxial cable or the like.
  • the control unit 20a includes a digital modulation unit 211, a digital modulation unit 212, a local oscillator 220a, a mixer 231 and a mixer 232, a bandpass filter 241 and a bandpass filter 242, and a synthesizer 250a. ..
  • f 1 100 MHz
  • a secondary system primary IF signal for example, 70 MHz
  • -F 0 f 1 -f 0 + ⁇ , and each signal has a deviation of ⁇ .
  • the high frequency section 30 includes a distributor 310a, a bandpass filter 321, a bandpass filter 322, a bandpass filter 323, a local oscillator 331a, a local oscillator 332a, a mixer 341, a mixer 342, and a bandpass filter 351.
  • a bandpass filter 352, a variable local oscillator 333, a mixer 361, a mixer 362, a bandpass filter 371, a bandpass filter 372, an amplifier 381, and an amplifier 382 are provided.
  • the local oscillator 331a, the local oscillator 332a, and the variable local oscillator 333 constitute the synthesizer 330a together with the reference crystal oscillator 334.
  • the combined IF signal from the control unit 20a is divided into a bandpass filter 321 in the (f 1 + f 0 ) band, a bandpass filter 322 in the (f 1 ⁇ f 0 ) band, and a band in the (f 1 ) band by the distributor 310a. It is distributed to the pass filter 323.
  • the synthetic IF signal input to the bandpass filter 323 of the (f 1 ) band only the reference signal of the frequency f 1 generated by the local oscillator 220a is extracted and input to the local oscillator 331a and the local oscillator 332a. ..
  • the local oscillator 220a of the control unit 20a is synchronized with the local oscillator 331a and the local oscillator 332a.
  • the local oscillator 332a the local oscillator multiplier circuit for converting the generated frequency f 1 to 2 times the frequency 2f 1 at 220a, the local oscillator 332a reference signal of a frequency f 2 generated by the frequency 2f 1 of the multiplier circuit It can be composed of a mixer that multiplies the multiplication signal output from the mixer and a bandpass filter in the band (f 2 + 2f 1) that filters the output signal from the mixer.
  • the secondary system primary IF signal has an intermediate frequency in the (f 3- (f 1- f 0 )) band whose frequency is converted downward from the frequency f 3 , that is, the same frequency band as the primary system secondary IF signal. It is converted into a signal (hereinafter referred to as a secondary IF signal of the second system.
  • 1 system secondary IF signal and the 2-based secondary IF signal and the reference signal of frequency f 4 generated by the variable local oscillator 333 are multiplied respectively by the mixer 361 and the mixer 362, Filtering is performed by the bandpass filter 371 and the bandpass filter 372 in the band (f 4 + f 2 + f 1 + f 0).
  • the 1st system secondary IF signal and the 2nd system secondary IF signal are high frequency signals in the band (f 4 + f 2 + f 1 + f 0 ) whose frequency is converted upward from the frequency f 4 (hereinafter referred to as the 1 system RF signal). It is referred to as a two-system RF signal.
  • the 1-system RF signal and the 2-system RF signal are amplified by the amplifier 381 and the amplifier 382, respectively, output from the microwave output terminals Z1 and Z2 to an antenna (not shown), and transmitted wirelessly.
  • the frequency deviation due to the accuracy of the local oscillator 331a is ⁇
  • the frequency when the frequency is converted to the microwave band or the like, the same variable local oscillator 333 is distributed, the frequency is converted by the mixer 361 and the mixer 362 that function as the microwave band frequency converter, respectively, and each system is on the upper side or the lower side.
  • the same frequency conversion with it is possible to perform frequency conversion to the microwave band without deviation between systems.
  • the transmission device has been described as an example of the wireless transmission device, but it can also be applied to the reception device by performing an operation opposite to the above-mentioned operation.
  • control unit 20a that performs frequency conversion between the base band signal of the same frequency between the systems and the intermediate frequency signal that is different for each system, and the intermediate frequency signal and the system that are different for each system are used.
  • a high-frequency unit 30a that performs frequency conversion with a harmonic signal of the same frequency is provided, and an intermediate frequency signal for each system is combined between the control unit 20a and the high-frequency unit 30a as a combined intermediate frequency signal.
  • the third reference signal is generated based on the first reference signal and the second reference signal.
  • the control unit 20a converts the frequency f1 of the first system of the base band signal upward from the frequency f1 of the first reference signal to convert the frequency of the first system to the intermediate frequency signal (first system primary IF signal) of the first system. ) Is generated, and the frequency of the second base band signal is converted downward from the frequency of the first reference signal to generate the second intermediate frequency signal (secondary primary IF signal).
  • the 1st system 1st IF signal is frequency-converted upward from the frequency of the 2nd reference signal to generate the 1st system 2nd IF signal, and the 2nd system 1st IF signal is frequencyed downward from the frequency of the 3rd reference signal.
  • the second reference IF signal is generated by conversion, and the frequency f3 of the third reference signal is obtained by multiplying the second reference signal by a multiplication signal obtained by doubling the frequency f1 of the first reference signal. It is set to a value obtained by adding the frequency f2 of the signal and twice the frequency f1 of the second reference signal.
  • the first reference signal is transmitted from the control unit 20a to the high frequency unit 30a in a state of being combined with the combined intermediate frequency signal.
  • the first reference signal can be transmitted from the control unit 20a to the high frequency unit 30a without extra wiring.
  • the embodiment of the present invention can be used for an FPU and a relay transmission device for broadcasting. Further, it can be used in a two-piece type relay transmission device composed of a control unit and a high frequency unit. Further, it can be used for a relay transmission device for broadcasting in which a control unit and a high frequency unit are connected by a coaxial cable or the like, a MIMO type FPU, a transmission device for broadcasting, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

送信出力での系統間の周波数偏差を解消することができる無線伝送装置を提供する。制御部20aと、高周波部30aとを備え、制御部20aと高周波部30aとの間は、系統ごとの中間周波数信号が合成された合成中間周波数信号として単一の中間周波数ケーブル40を経由して伝送する無線伝送装置であって、制御部20aでの周波数変換に第1基準信号(局部発振器220aで生成された周波数fの基準信号)を用いる共に、高周波部30aでの周波数変換に第1基準信号と同期させた第2基準信号(局部発振器331aで生成された周波数fの基準信号)及び第3基準信号(局部発振器332aで生成された周波数fの基準信号)を用い、第3基準信号は、第1基準信号及び第2基準信号に基づいて生成する。

Description

無線伝送装置
 本発明は、制御部と高周波部とが分離した2ピースタイプの無線伝送装置に関する。
 制御部と高周波部とが分離した2ピースタイプのFPU(Field Pickup Unit:可搬型無線伝送装置)において、制御部と高周波部との間は、同軸ケーブル等で構成された中間周波数ケーブルにて接続される。従って、MIMO(Multiple Input Multiple Output)方式の場合は、信号を偶数波に分割し送受信することから、制御部と高周波部間には偶数本の同軸ケーブルを接続することが必要となる。
 しかし、制御部と高周波部との間に接続される同軸ケーブルは、最大で400mなど長い距離を配線することもあるため、複数本を接続することは好ましくない。そこで、単一の同軸ケーブルでMIMO方式を実現する技術が提案されている(例えば、特許文献1参照)。
 特許文献1の技術は、UHF帯周波数(例えば、1.2GHz帯や2.3GHz帯)の周波数帯が低く変調多値数が少ない(例えば64QAM)、変調キャリア数が2000本以下の場合において、採用可能である。すなわち、1.2GHz帯や2.3GHz帯にてMIMO方式を採用したFPUの規格ARIB-STD B57では、系統間の周波数偏差は50Hz以下にすることが安定的な伝送を行う上で目標とすべき値であることが記載され、特許文献1の技術は、この条件を満たすことが可能である。
特開2016-58999号公報
 しかしながら、従来技術では、制御部と高周波部との間の周波数同期が取れないこと、高周波部における系統間の周波数偏差の差が大きく出てきてしまうことで、最終的な送信出力での系統間の周波数偏差が大きくなり、マイクロ波帯のFPUに適用できないという問題点があった。ARIB-STD B71では、変調多値数も最大で4096QAM、変調キャリア数は約8000本となり、送信出力系統間の周波数偏差を10Hz以下にすることが安定的な伝送をする上で必要であると記載され、従来技術では、この条件を満たすことができない。
 図2には、従来技術をマイクロ波帯に適用したFPU10の構成例を示す。
 FPU10は、図2を参照すると、制御部20と、高周波部30との2ピースで構成され、制御部20の中間周波数出力端子Xと、高周波部30の中間周波数入力端子Yとの間に同軸ケーブル等で構成された単一の中間周波数ケーブル40が接続されている。
 制御部20は、デジタル変調ユニット211と、デジタル変調ユニット212と、局部発振器220と、ミキサ231と、ミキサ232と、バンドパスフィルタ241と、バンドパスフィルタ242と、合成器250とを備えている。
 デジタル変調ユニット211で生成されたベースバンド信号である1系統目の周波数f帯の変調波(例えば、f=30MHz)は、局部発振器220で生成された周波数fの基準信号(例えば、f=100MHz)とミキサ231で乗算され、(f+f )帯のバンドパスフィルタ241でフィルタリングされ、周波数fから上側に周波数変換された(f+f)帯の中間周波数信号(以下、1系1次IF信号と称す。例えば、130MHz)に変換される。
 デジタル変調ユニット212で生成されたベースバンド信号である2系統目の周波数f帯の変調波(例えば、f=30MHz)は、局部発振器220で生成された周波数fの基準信号(例えば、f=100MHz)とミキサ232で乗算され、(f-f )帯のバンドパスフィルタ242でフィルタリングされ、周波数fから下側に周波数変換された(f-f)帯の中間周波数信号(以下、2系1次IF信号と称す。例えば、70MHz)に変換される。
 異なる周波数帯の1系1次IF信号と2系1次IF信号とは、合成器250によって合成IF信号として合成され、単一の中間周波数ケーブル40を介して高周波部30に出力される。
 ここで、局部発振器220の精度による周波数偏差をαとすると、1系1次IF信号は、(f+α)+f=f+f+α、2系1次IF信号は、(f+α)-f=f-f+αとなり、それぞれα分の偏差を持った信号となる。
 高周波部30は、分配器310と、バンドパスフィルタ321と、バンドパスフィルタ322と、局部発振器331と、局部発振器332と、ミキサ341と、ミキサ342と、バンドパスフィルタ351と、バンドパスフィルタ352と、可変局部発振器333と、ミキサ361と、ミキサ362と、バンドパスフィルタ371と、バンドパスフィルタ372と、増幅器381と、増幅器382とを備えている。なお、局部発振器331、局部発振器332及び可変局部発振器333は、基準となる水晶振動子334と共にシンセサイザー330を構成している。
 制御部20からの合成IF信号は、分配器310によって(f+f)帯のバンドパスフィルタ321と、(f-f)帯のバンドパスフィルタ322とに分配される。
 (f+f)帯のバンドパスフィルタ321に入力された合成IF信号は、(f+f)帯の1系1次IF信号のみが抽出される。そして、1系1次IF信号は、局部発振器331で生成された周波数fの基準信号(例えば、f=1370MHz)とミキサ341で乗算され、(f+f+f)帯のバンドパスフィルタ242でフィルタリングされる。これにより、1系1次IF信号は、周波数fから上側に周波数変換された(f+f+f)帯の中間周波数信号(以下、1系2次IF信号と称す。例えば、f +f+f=1500MHz)に変換される。
 (f-f)帯のバンドパスフィルタ321に入力された合成IF信号は、(f-f)帯の2系1次IF信号のみが抽出される。そして、2系1次IF信号は、局部発振器332で生成された周波数fの基準信号(例えば、f=1430MHz)とミキサ342で乗算され、(f+f-f)帯のバンドパスフィルタ242でフィルタリングされる。ここで、2系1次IF信号と乗算される周波数fは、1系1次IF信号と乗算される周波数fにベースバンド信号の周波数fの2倍を加算した値に設定され、(f+f+f)=(f+f-f)となっている。これにより、2系1次IF信号は、周波数fから上側に周波数変換された(f+f-f)帯、すなわち1系2次IF信号と同じ周波数帯の中間周波数信号(以下、2系2次IF信号と称す。例えば、f+f-f=1500MHz)に変換される。
 1系2次IF信号と2系2次IF信号とは、可変局部発振器333で生成された周波数fの基準信号(例えば、f=5538MHz)とミキサ361とミキサ362とでそれぞれ乗算され、(f+f+f+f)帯のバンドパスフィルタ371とバンドパスフィルタ372とでフィルタリングされる。これにより、1系2次IF信号と2系2次IF信号は、周波数fから上側に周波数変換された(f+f+f+f)帯の高周波信号(以下、1系RF信号と2系RF信号とそれぞれ称す。例えば、f+f+f+f=7038MHz=略7GHz)に変換される。1系RF信号と2系RF信号とは、増幅器381と増幅器382とによりそれぞれ増幅されてマイクロ波出力端子Z1、Z2から図示しないアンテナに出力され、無線により送信される。
 ここで、局部発振器331の精度による周波数偏差をβ、局部発振器331の精度による周波数偏差をθ、局部発振器331の精度による周波数偏差をηとそれぞれすると、1系2次IF信号は、(f+β)+(f+f+α)=f+f+f+α+β、2系2次IF信号は、(f+θ)+(f-f+α)=f+f-f+α+θ、1系RF信号は、(f+η)+(f+f+f+α+β)=f+f+f+f+α+β+η、2系RF信号は、(f+η)+(f+f-f+α+θ)=f+f+f-f+α+θ+ηとなる。
 そして、(f+f+f)=(f+f-f)であるため、1系2次IF信号と2系2次IF信号との差分と、1系RF信号と2系RF信号との差分とは、いずれもβ-θとなる。
 さらに、(f+f+f)=(f+f-f)=1500MHz、f=1370MHz、f=1430MHzとそれぞれし、水晶振動子334の最大精度を仮に1ppmとした場合、1系統目と2系統目の偏差は、(1430MHz-1370MHz)×1ppm=60Hzがβ‐θの最大値となる。このため、10Hz以下が求められるマイクロ波帯のFPUでは、大きな問題(系統間偏差)となり安定した伝送ができないという問題が発生する。
 この対策として、周波数精度の高い0.1ppmの周波数精度を持った局部発振器を使用することも考えられるが、コスト面、大きさにおいてFPUに実装することは困難である。
 本発明は、このような状況に鑑みなされたもので上記課題を解決し、送信出力での系統間の周波数偏差を解消することができる無線伝送装置を提供することを目的とする。
 本発明の無線伝送装置は、系統間で同一周波数のベースバンド信号と系統ごとに異なる中間周波数信号との間の周波数変換をそれぞれ行う制御部と、系統ごとに異なる前記中間周波数信号と系統間で同一周波数の高調波信号との間の周波数変換をそれぞれ行う高周波部とを備え、前記制御部と前記高周波部との間は、系統ごとの前記中間周波数信号が合成された合成中間周波数信号として単一の中間周波数ケーブルを経由して伝送する無線伝送装置であって、前記制御部での周波数変換に第1基準信号を用いると共に、前記高周波部での間の周波数変換に前記第1基準信号と同期させた第2基準信号及び第3基準信号を用い、前記第3基準信号は、前記第1基準信号及び第2基準信号に基づいて生成されたものであることを特徴とする。
 また、本発明の無線伝送装置において、前記制御部は、1系統目の前記ベースバンド信号を前記第1基準信号の周波数から上側に周波数変換して1系統目の前記中間周波数信号を生成させると共に、2系統目の前記ベースバンド信号を前記第1基準信号の周波数から下側に周波数変換して2系統目の前記中間周波数信号を生成させ、前記高周波部は、1系統目の前記中間周波数信号を前記第2基準信号の周波数から上側に周波数変換させると共に、2系統目の前記中間周波数信号を前記第3基準信号の周波数から下側に周波数変換させ、前記第3基準信号の周波数は、前記第2基準信号に前記第1基準信号の周波数を2倍にした逓倍信号を乗算することで、前記第2基準信号の周波数と前記第1基準信号の周波数の2倍とを加算した値に設定しても良い。
 また、本発明の無線伝送装置において、前記第1基準信号は、前記合成中間周波数信号に合成された状態で前記制御部から前記高周波部に伝送してもよい。
 本発明によれば、制御部と高周波部との間の伝送を単一の中間周波数ケーブル経由で行っても、送信出力での系統間の周波数偏差を解消することができるため、無線伝送の周波数をマイクロ波帯としたMIMO方式のFPUに適用することができるという効果を奏する。
本発明に係る無線伝送装置の実施の形態の構成を示すブロック図である。 従来の無線伝送装置の構成を示すブロック図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
 本実施の形態は、無線伝送の周波数をマイクロ波帯としたMIMO方式のFPU10aであり、図1を参照すると、制御部20aと、高周波部30aとの2ピースで構成され、制御部20aと、高周波部30aとが同軸ケーブル等で構成された単一の中間周波数ケーブル40で接続されている。
 制御部20aは、デジタル変調ユニット211と、デジタル変調ユニット212と、局部発振器220aと、ミキサ231と、ミキサ232と、バンドパスフィルタ241と、バンドパスフィルタ242と、合成器250aとを備えている。
 デジタル変調ユニット211で生成されたベースバンド信号である1系統目の周波数f帯の変調波(例えば、f=30MHz)は、局部発振器220aで生成された周波数fの基準信号(例えば、f=100MHz)とミキサ231で乗算され、(f+f)帯のバンドパスフィルタ241でフィルタリングされ、周波数fから上側に周波数変換された(f+f)帯の中間周波数信号(以下、1系1次IF信号と称す。例えば、130MHz)に変換される。
 デジタル変調ユニット212で生成されたベースバンド信号である2系統目の周波数f帯の変調波(例えば、f=30MHz)は、局部発振器220aで生成された周波数fの基準信号(例えば、f=100MHz)とミキサ232で乗算され、(f-f)帯のバンドパスフィルタ242でフィルタリングされ、周波数fから下側に周波数変換された(f-f)帯の中間周波数信号(以下、2系1次IF信号と称す。例えば、70MHz)に変換される。
 異なる周波数帯の1系1次IF信号と2系1次IF信号は、局部発振器220aで生成された周波数fの基準信号と共に、合成器250によって合成IF信号として合成され、単一の中間周波数ケーブル40を介して高周波部30aに出力される。
 ここで、局部発振器220aの精度による周波数偏差をαとすると、1系1次IF信号は、(f+α)+f=f+f+α、2系1次IF信号は、(f+α)-f=f-f+αとなり、それぞれα分の偏差を持った信号となる。
 高周波部30は、分配器310aと、バンドパスフィルタ321と、バンドパスフィルタ322と、バンドパスフィルタ323と、局部発振器331aと、局部発振器332aと、ミキサ341と、ミキサ342と、バンドパスフィルタ351と、バンドパスフィルタ352と、可変局部発振器333と、ミキサ361と、ミキサ362と、バンドパスフィルタ371と、バンドパスフィルタ372と、増幅器381と、増幅器382とを備えている。なお、局部発振器331a、局部発振器332a及び可変局部発振器333は、基準となる水晶振動子334と共にシンセサイザー330aを構成している。
 制御部20aからの合成IF信号は、分配器310aによって(f+f)帯のバンドパスフィルタ321と、(f-f)帯のバンドパスフィルタ322と、(f)帯のバンドパスフィルタ323とに分配される。
 (f)帯のバンドパスフィルタ323に入力された合成IF信号は、局部発振器220aで生成された周波数fの基準信号のみが抽出され、局部発振器331aと、局部発振器332aとに入力される。これにより、制御部20aの局部発振器220aと、局部発振器331a及び局部発振器332aとの同期を取る。
 (f+f)帯のバンドパスフィルタ321に入力された合成IF信号は、(f+f)帯の1系1次IF信号のみが抽出される。そして、1系1次IF信号は、局部発振器331aで生成された周波数fの基準信号(例えば、f=1370MHz)とミキサ341で乗算され、(f+f+f)帯のバンドパスフィルタ242でフィルタリングされる。これにより、1系1次IF信号は、周波数fから上側に周波数変換された(f+f+f)帯の中間周波数信号(以下、1系2次IF信号と称す。例えば、f+f+f=1500MHz)に変換される。
 (f-f)帯のバンドパスフィルタ321に入力された合成IF信号は、(f-f)帯の2系1次IF信号のみが抽出される。そして、2系1次IF信号は、局部発振器332aで生成された周波数fの基準信号(例えば、f=1430MHz)とミキサ342で乗算され、(f-(f-f))帯のバンドパスフィルタ242でフィルタリングされる。
 局部発振器332aは、局部発振器332aで生成される周波数fの基準信号に、局部発振器220aで生成された基準信号の周波数fを2倍にした逓倍信号を乗算することで、周波数f=f+2fの基準信号を生成する。例えば、局部発振器332aは、局部発振器220aで生成された周波数fを2倍の周波数2fに変換する逓倍回路、局部発振器332aで生成される周波数fの基準信号と周波数2fの逓倍回路から出力される逓倍信号とを乗算するミキサと、当該ミキサからの出力信号をフィルタリングする(f+2f)帯のバンドパスフィルタとで構成することができる。
 従って、(f-(f-f))=((f+2f)-(f-f))=(f +f+f)=となる。これにより、2系1次IF信号は、周波数fから下側に周波数変換された(f-(f-f))帯、すなわち1系2次IF信号と同じ周波数帯の中間周波数信号(以下、2系2次IF信号と称す。例えば、f+f-f=1500MHz)に変換される。
 1系2次IF信号と2系2次IF信号とは、可変局部発振器333で生成された周波数fの基準信号(例えば、f=5538MHz)とミキサ361とミキサ362とでそれぞれ乗算され、(f+f+f+f)帯のバンドパスフィルタ371とバンドパスフィルタ372とでフィルタリングされる。これにより、1系2次IF信号と2系2次IF信号は、周波数fから上側に周波数変換された(f+f+f+f)帯の高周波信号(以下、1系RF信号と2系RF信号とそれぞれ称す。例えば、f+f+f+f=7038MHz=略7GHz)に変換される。1系RF信号と2系RF信号とは、増幅器381と増幅器382とによりそれぞれ増幅されてマイクロ波出力端子Z1、Z2から図示しないアンテナに出力され、無線により送信される。
 ここで、局部発振器331aの精度による周波数偏差をβとすると、局部発振器332aの周波数偏差は、β+2αとなる(αは、局部発振器220aの精度による周波数偏差)。従って、1系2次IF信号は、(f+β)+(f+f+α)=f+f+f+α+β、2系2次IF信号は、(f+β+2α)-(f-f+α)=f-(f-f)+α+βとなり、(f+f+f)=(f-(f-f))であるため、1系2次IF信号と2系2次IF信号との差分は、ゼロになる。そして、局部発振器220a、局部発振器331a及び局部発振器332aとの同期により、系統間の周波数偏差を無くすことが可能となる。
 そして、局部発振器331の精度による周波数偏差をηとそれぞれすると、1系RF信号は、(f+η)+(f+f+f+α+β)=f+f+f+f+α+β+η、2系RF信号は、(f+η)+(f+f-f+α+β)=f+f-(f-f)+α+β+ηとなり、同様に1系RF信号と2系RF信号との差分は、ゼロになる。すなわち、マイクロ波帯などに周波数変換する場合は、同じ可変局部発振器333を分配し、マイクロ波帯周波数変換器として機能するミキサ361とミキサ362とによってそれぞれ周波数変換し、上側または下側と各系統で同じ周波数変換を選択することで系統間の偏差なくマイクロ波帯へ周波数変換することが可能となる。
 なお、上述した実施の形態では、無線伝送装置として送信装置を例にして説明したが、上記した動作とは逆の動作を行うことにより、受信装置にも適用することができる。
 以上のように本実施形態では、系統間で同一周波数のベースバンド信号と系統ごとに異なる中間周波数信号との間の周波数変換をそれぞれ行う制御部20aと、系統ごとに異なる中間周波数信号と系統間で同一周波数の高調波信号との間の周波数変換をそれぞれ行う高周波部30aとを備え、制御部20aと高周波部30aとの間は、系統ごとの中間周波数信号が合成された合成中間周波数信号として単一の中間周波数ケーブル40を経由して伝送する無線伝送装置であって、制御部20aでの周波数変換に第1基準信号(局部発振器220aで生成された周波数fの基準信号)を用いる共に、高周波部30aでの周波数変換に第1基準信号と同期させた第2基準信号(局部発振器331aで生成された周波数fの基準信号)及び第3基準信号(局部発振器332aで生成された周波数fの基準信号)を用い、第3基準信号は、第1基準信号及び第2基準信号に基づいて生成する。
 この構成により、制御部20aと高周波部30aとの間の伝送を単一の中間周波数ケーブル40経由で行っても、送信出力での系統間の周波数偏差を解消することができるため、無線伝送の周波数をマイクロ波帯としたMIMO方式のFPU10aに適用することができる。
 以上のように本実施形態では、制御部20aは、1系統目のベースバンド信号を第1基準信号の周波数f1から上側に周波数変換して1系統目の中間周波数信号(1系1次IF信号)を生成させると共に、2系統目のベースバンド信号を第1基準信号の周波数から下側に周波数変換して2系統目の中間周波数信号(2系1次IF信号)を生成させ、高周波部は、1系1次IF信号を第2基準信号の周波数から上側に周波数変換させて1系2次IF信号を生成すると共に、2系1次IF信号を第3基準信号の周波数から下側に周波数変換させて2系2次IF信号を生成し、第3基準信号の周波数f3は、第2基準信号に第1基準信号の周波数f1を2倍にした逓倍信号を乗算することで、第2基準信号の周波数f2と第2基準信号の周波数f1の2倍とを加算した値に設定されている。
 この構成により、1系2次IF信号と2系2次IF信号との差分は、ゼロになり、局部発振器220a、局部発振器331a及び局部発振器332aとの同期により、系統間の周波数偏差を無くすことが可能となる。
 以上のように本実施形態において、第1基準信号は、合成中間周波数信号に合成された状態で制御部20aから高周波部30aに伝送される。
 この構成により、余分な配線を行うことなく、制御部20aから高周波部30aに第1基準信号を伝送することができる。
 以上、実施の形態をもとに本発明を説明した。この実の施形態は例示であり、それらの各構成要素の組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の実施の形態は、FPU、放送用中継伝送装置に利用することができる。また、制御部と高周波部とより構成させる2ピースタイプの中継伝送装置に利用できる。また、制御部と高周波部が同軸ケーブル等で接続された放送用中継伝送装置や、MIMO方式のFPU、放送用伝送装置等に利用することができる。この出願は、2019年9月26日に出願された日本出願特願2019-175225を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。
10、10a FPU20、20a 制御部30、30a 高周波部40 中間周波数ケーブル211、212 デジタル変調ユニット220、220a 局部発振器231、232 ミキサ241、242 バンドパスフィルタ250、250a 合成器310、310a 分配器321、322、323 バンドパスフィルタ330、330a シンセサイザー331、331a、332、332a 局部発振器333、可変局部発振器334 水晶振動子341、342 ミキサ351、352 バンドパスフィルタ361、362 ミキサ371、372 バンドパスフィルタ381、382 増幅器

Claims (3)

  1.  系統間で同一周波数のベースバンド信号と系統ごとに異なる中間周波数信号との間の周波数変換をそれぞれ行う制御部と、系統ごとに異なる前記中間周波数信号と系統間で同一周波数の高調波信号との間の周波数変換をそれぞれ行う高周波部とを備え、前記制御部と前記高周波部との間は、系統ごとの前記中間周波数信号が合成された合成中間周波数信号として単一の中間周波数ケーブルを経由して伝送する無線伝送装置であって、
     前記制御部での周波数変換に第1基準信号を用いる共に、前記高周波部での周波数変換に前記第1基準信号と同期させた第2基準信号及び第3基準信号を用い、
     前記第3基準信号は、前記第1基準信号及び第2基準信号に基づいて生成されたものであることを特徴とする無線伝送装置。
  2.  前記制御部は、1系統目の前記ベースバンド信号を前記第1基準信号の周波数から上側に周波数変換して1系統目の前記中間周波数信号を生成させると共に、2系統目の前記ベースバンド信号を前記第1基準信号の周波数から下側に周波数変換して2系統目の前記中間周波数信号を生成させ、
     前記高周波部は、1系統目の前記中間周波数信号を前記第2基準信号の周波数から上側に周波数変換させると共に、2系統目の前記中間周波数信号を前記第3基準信号の周波数から下側に周波数変換させ、
     前記第3基準信号の周波数は、前記第2基準信号に前記第1基準信号の周波数を2倍にした逓倍信号を乗算することで、前記第2基準信号の周波数と前記第1基準信号の周波数の2倍とを加算した値に設定されていることを特徴とする請求項1に記載の無線伝送装置。
  3.  前記第1基準信号は、前記合成中間周波数信号に合成された状態で前記制御部から前記高周波部に伝送されることを特徴とする請求項1又は2に記載の無線伝送装置。
PCT/JP2020/029036 2019-09-26 2020-07-29 無線伝送装置 WO2021059733A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021548392A JP7171937B2 (ja) 2019-09-26 2020-07-29 無線伝送装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019175225 2019-09-26
JP2019-175225 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021059733A1 true WO2021059733A1 (ja) 2021-04-01

Family

ID=75166559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029036 WO2021059733A1 (ja) 2019-09-26 2020-07-29 無線伝送装置

Country Status (2)

Country Link
JP (1) JP7171937B2 (ja)
WO (1) WO2021059733A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009639A (ja) * 2000-06-20 2002-01-11 Hitachi Kokusai Electric Inc ディジタル無線伝送fpu装置
WO2003073628A1 (fr) * 2002-02-28 2003-09-04 Sharp Kabushiki Kaisha Dispositif d'emission radio en bande hyperfrequence, dispositif de reception radio en bande hyperfrequence et systeme de communication radio en bande hyperfrequence
JP2010213352A (ja) * 2010-06-14 2010-09-24 Toshiba Corp 信号伝送装置及び信号伝送方法
JP2016058999A (ja) * 2014-09-12 2016-04-21 株式会社日立国際電気 送信装置
JP2017050614A (ja) * 2015-08-31 2017-03-09 株式会社日立国際電気 映像伝送装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210299A (ja) 2004-01-21 2005-08-04 Hitachi Kokusai Electric Inc 無線中継システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002009639A (ja) * 2000-06-20 2002-01-11 Hitachi Kokusai Electric Inc ディジタル無線伝送fpu装置
WO2003073628A1 (fr) * 2002-02-28 2003-09-04 Sharp Kabushiki Kaisha Dispositif d'emission radio en bande hyperfrequence, dispositif de reception radio en bande hyperfrequence et systeme de communication radio en bande hyperfrequence
JP2010213352A (ja) * 2010-06-14 2010-09-24 Toshiba Corp 信号伝送装置及び信号伝送方法
JP2016058999A (ja) * 2014-09-12 2016-04-21 株式会社日立国際電気 送信装置
JP2017050614A (ja) * 2015-08-31 2017-03-09 株式会社日立国際電気 映像伝送装置

Also Published As

Publication number Publication date
JPWO2021059733A1 (ja) 2021-04-01
JP7171937B2 (ja) 2022-11-15

Similar Documents

Publication Publication Date Title
EP1330059B1 (en) Radio communication apparatus, transmitter apparatus and receiver apparatus
JPH03190431A (ja) ケーブルテレビジョン.コンバータ用ホモダイン受信方式とその装置
CN100542010C (zh) 单一转换调谐器
EP1484913B1 (en) Systems and methods for digital RF modulation of television signals
EP1009100B1 (en) Interference canceling device
EP1160992A2 (en) A method for implementing a transceiver and a transceiver
JP5696622B2 (ja) 無線送信装置
WO2021059733A1 (ja) 無線伝送装置
EP1887685B1 (en) Apparatus and method of generating a plurality of synchronized radio frequency signals
JP2020150376A (ja) 送信装置及び無線装置
EP1207627B1 (en) An efficient GS;/DSC/UMTS (UTRA/FDD) RF transceiver architecture
JP2001127736A (ja) Cdma方式移動通信基地局システムの無線周波数送信装置
WO2006003744A1 (ja) 送信装置、受信装置、及び信号伝送装置並びに信号伝送方法
JP4777715B2 (ja) 無線送信装置および無線送受信システム
JP3162215B2 (ja) 無線通信装置
JP2754993B2 (ja) 同相合成スペースダイバーシティ受信装置
JP2011077579A (ja) 光伝送システム
JP7133300B2 (ja) ダイバーシティ型マイクロフォンの受信システム
JP5047307B2 (ja) 周波数変換装置及びこれを用いた送信機
US20220200677A1 (en) Wireless communication apparatus and wireless communication method
JP2011146811A (ja) 信号送信装置、信号処理装置、信号送信システム、信号送信方法及び信号生成方法
JP3941783B2 (ja) レトロディレクティブアンテナ装置
KR200211725Y1 (ko) 주파수변환회로
JPH09191264A (ja) 送受信装置、受信装置、通信システムおよび受信部評価装置
JPH05315989A (ja) 周波数コンバータおよび帯域復元装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867810

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021548392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867810

Country of ref document: EP

Kind code of ref document: A1