WO2021059560A1 - 情報処理装置、ロボット、および情報処理システム - Google Patents

情報処理装置、ロボット、および情報処理システム Download PDF

Info

Publication number
WO2021059560A1
WO2021059560A1 PCT/JP2020/010073 JP2020010073W WO2021059560A1 WO 2021059560 A1 WO2021059560 A1 WO 2021059560A1 JP 2020010073 W JP2020010073 W JP 2020010073W WO 2021059560 A1 WO2021059560 A1 WO 2021059560A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
robot
sensor
unit
person
Prior art date
Application number
PCT/JP2020/010073
Other languages
English (en)
French (fr)
Inventor
火炎 木焦
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2021059560A1 publication Critical patent/WO2021059560A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an information processing device, a robot, an information processing system, and the like.
  • Patent Document 1 discloses a technique for reducing downtime of a robot device while reliably preventing interference or contact between the manipulator of the robot device and a person.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2010-208002
  • a self-propelled robot when used in a space where a passerby or a worker is present, the robot is operated to run at a slow speed in order to avoid a collision with a person.
  • a robot operates at a speed similar to the walking speed of a person. This is because the passerby or the worker moves in the space, but the robot of the prior art cannot recognize the movement path and the position after the movement of the passerby or the worker.
  • One aspect of the present invention is in view of the above problems.
  • One aspect of the present invention is to realize an information processing device or the like capable of causing a robot to recognize a movement path of a person and a position after the movement.
  • the information processing device is an information processing device that communicates with a plurality of self-propelled robots, and is a position information acquisition unit that acquires position information of each robot.
  • the first sensor information acquisition unit that acquires the first sensor information when the first robot detects a person around the first robot by the sensor device, and the objects around the person from the first sensor information.
  • the information to be shown is input to the machine-learned prediction model, and the movement position prediction unit that predicts the movement position at which the person moves from the output of the prediction model, and a robot other than the first robot. However, when the robot is within a predetermined range from the moving position, the robot is provided with a notification unit for notifying other robots of the moving position information indicating the moving position.
  • the robot can recognize the movement path of a person and the position after movement.
  • FIG. 1 is a diagram showing a schematic example of the information processing system 100 according to the present embodiment.
  • the information processing system 100 is a system including at least a plurality of robots 2 installed in a space where a person is present and an edge computer 1 that centrally manages the robots 2. Further, the information processing system 100 may include a server 3 which is an external storage device.
  • the edge computer 1 and the plurality of robots 2 and the edge computer 1 and the server 3 are connected to each other via a base station.
  • a 5G communication method can be adopted.
  • the robot 2 is a self-propelled robot, and each robot communicates with the edge computer 1 via a base station.
  • the robot 2 identifies the position of its own machine and transmits the position information to the edge computer 1 at any time.
  • the robot 2 is equipped with one or more sensor devices (first sensor unit 22 described later).
  • Each robot 2 detects a person in the detection area of the sensor device. For example, as shown in FIG. 1, when a person A enters the detection area of the robot A, the robot A detects the person A.
  • the robot A transmits the first sensor information, which is the information detected by the sensor device, to the edge computer 1.
  • the edge computer 1 predicts the moving position of the person (person A in FIG. 1) indicated by the first sensor information based on the first sensor information received from the robot 2 and the prediction model constructed in advance. .. That is, the edge computer 1 predicts the movement route of the person.
  • the edge computer 1 transmits the movement position information, which is information indicating the movement route, to other robots 2 other than the robot 2 that has detected the person.
  • the robot A detects the person A and transmits the first sensor information to the edge computer 1. Therefore, when the edge computer 1 predicts the moving position of the person A, the edge computer 1 transmits the moving position information to the robots 2 other than the robot A, that is, the robots B, C, and D. As a result, the edge computer 1 can make the robot recognize the movement path of the person A and the position after the movement.
  • the edge computer 1 transmits the movement position information only to the robot 2 that exists within a predetermined range from the predicted movement path of the person. For example, in the example of FIG. 1, the edge computer 1 transmits the movement position information to the robot B existing in the traveling direction of the person A, but moves to the robot C existing at a position away from the traveling direction. Do not send location information. The robot 2 located at a position far from the person A does not need the movement position information of the person A. Therefore, according to the above example, the load on the edge computer 1 can be reduced by unnecessary transmission processing.
  • the edge computer 1 is connected to the server 3 by communication.
  • the server 3 is a database (DB) server that stores various data.
  • the edge computer 1 stores at least one of the first sensor information and the moving position information in the server 3.
  • Robots B, C, and D change at least one of the traveling speed and the traveling route of the own machine based on the moving position information received from the edge computer 1 and the position information of the own machine specified by the own machine. For example, the robot B may slow down the traveling speed of its own machine in order to avoid a collision with the person A. Further, for example, the robot B may change the traveling route of its own machine to a route different from the original route in order to avoid a collision with the person A. More specifically, the robot B may travel on a route that avoids the locus of movement of the person A. As a result, the robot can travel efficiently while avoiding a collision with a human.
  • the data communication method between the edge computer 1 and each of the plurality of robots 2 is the same wireless communication method.
  • the communication method between each robot 2 and the edge computer 1 can all be the same. Therefore, the response speed of communication can be increased as compared with the case where the communication methods are not the same.
  • the data communication method between the edge computer 1 and the server 3 is the same as the data communication method between the edge computer 1 and the robot 2.
  • FIG. 2 is a block diagram showing an example of the configuration of a main part of the device included in the information processing system 100.
  • the robot 2 includes a control unit 20, a first communication unit (information transmission unit) 21, a first sensor unit 22, a drive unit 23, and a first storage unit 24.
  • the control unit 20 controls the robot 2 in an integrated manner.
  • the control unit 20 communicates with the edge computer 1 via the first communication unit 21. Further, the control unit 20 instructs the first sensor unit 22 to perform sensing for detecting a person. Further, the control unit 20 controls various operations of the robot 2 by controlling the drive unit 23. Further, the control unit 20 stores various data in the first storage unit 24.
  • the first communication unit 21 is a communication interface between the edge computer 1 and the robot 2.
  • the communication method between the edge computer 1 and the robot 2 is not particularly limited, but a communication method capable of exchanging relatively large amounts of data such as images taken by a camera in real time is desirable.
  • the first communication unit 21 may communicate with the edge computer 1 by a communication method such as 5G or Wifi (registered trademark) 6.
  • the first sensor unit 22 is a sensor or a group of sensors for detecting a person existing around the robot 2.
  • the first sensor unit 22 can be realized by, for example, a sensor camera, LiDAR (Light Detection and Ranging), RADAR, or a combination thereof.
  • the first sensor unit 22 transmits the acquired or measured information (first sensor information) to the detection unit 202 of the control unit 20.
  • first sensor information the acquired or measured information
  • the sensor camera as the first sensor unit 22 detects the intrusion of a human into the photographing area
  • the sensor camera photographs the human as a subject and outputs the captured image to the control unit 20.
  • the first sensor unit 22 may acquire the sensor information at a predetermined time interval or at any time and transmit it to the control unit 20.
  • the camera as the first sensor unit 22 may record a moving image and transmit it to the control unit 20 at any time.
  • the drive unit 23 performs various operations of the robot 2.
  • the drive unit 23 is, for example, a hardware unit for driving the robot 2, such as a motor, an arm, and a tire of the robot 2.
  • the first storage unit 24 stores various data necessary for driving the robot 2.
  • the first storage unit 24 may store, for example, the first sensor information.
  • the first storage unit 24 may store map information in a space where the robot 2 operates, such as a factory or a warehouse.
  • the first storage unit 24 may store schedule information indicating the operation schedule of the robot 2 in the space. The map information and the schedule information are transmitted from the edge computer 1 described later, acquired by the control unit 20, and stored in the first storage unit 24.
  • control unit 20 includes a position identification unit 201, a detection unit 202, a movement position information acquisition unit 203, and a drive control unit 204.
  • the position specifying unit 201 specifies the position of the robot 2.
  • the position specifying unit 201 identifies the current position of the robot 2 according to, for example, the first sensor information from the first sensor unit 22 and the map information stored in the first storage unit 24.
  • position information the information indicating the current position of the robot 2 is simply referred to as "position information”.
  • the position specifying unit 201 transmits position information to the edge computer 1 at any time via the first communication unit 21. Further, the position specifying unit 201 transmits the position information to the drive control unit 204.
  • the position specifying unit 201 may specify the current position of the robot 2 based on information from a sensor such as a GPS sensor included in the robot 2.
  • the detection unit 202 detects the presence of a person in the detection area of the first sensor unit 22 based on the first sensor information.
  • the detection unit 202 transmits the first sensor information indicating the person to the edge computer 1 via the first communication unit 21.
  • the detection unit 202 does not have to execute the process related to the person detection.
  • the moving position information acquisition unit 203 acquires the moving position information from the edge computer 1.
  • the movement position information acquisition unit 203 transmits the acquired movement position information to the drive control unit 204.
  • the drive control unit 204 controls the drive of the robot 2 based on the position information and the moving position information. Specifically, the drive control unit 204 changes at least one of the traveling speed and the traveling path of the robot 2 based on the position information and the moving position information.
  • the changes in the traveling speed and traveling route in the drive control unit 204 are not particularly limited.
  • the drive control unit 204 may decelerate the robot 2 when the current position of the robot 2 indicated by the position information is within a predetermined range from the movement path of the person indicated by the movement position information. Further, when the current position of the robot 2 indicated by the position information is within a predetermined range from the movement path of the person indicated by the movement position information, the drive control unit 204 sets the travel path of the robot 2 as the movement path of the person. You may change to a route to avoid.
  • the edge computer 1 includes a second control unit (position information acquisition unit, first sensor information acquisition unit, data transmission unit) 10, a second communication unit 11, and a second storage unit 12.
  • the second control unit 10 controls the edge computer 1 in an integrated manner.
  • the second control unit 10 communicates with the robot 2 and the server 3 via the second communication unit 11.
  • the second control unit 10 acquires the position information and the first sensor information from the robot 2. Further, the second control unit 10 stores various data in the second storage unit 12.
  • the second storage unit 12 stores various data required for processing of the edge computer 1.
  • the second storage unit 12 stores, for example, the prediction model 121 and the setting information 122.
  • the prediction model 121 is a pre-built trained model.
  • the type of the prediction model 121 is not particularly limited.
  • the prediction model 121 will be described in detail later.
  • the setting information 122 is data that defines various settings in the edge computer 1.
  • the setting information 122 may include information that defines a time interval for data transmission from the edge computer 1 to the robot 2 and from the edge computer 1 to the server 3. Further, the setting information 122 may include information that defines a time interval for transmission of various instruction commands, requests, notifications, and the like from the edge computer 1 to each robot 2.
  • the second control unit 10 includes an object detection unit 101, a spatial information generation unit 102, a movement information generation unit 103, a movement position prediction unit 104, and a notification unit 105.
  • the object detection unit 101 detects the object indicated by the first sensor information. For example, when the first sensor information is an image captured by a camera, the object detection unit 101 detects an object from the image.
  • the object to be detected includes the person himself / herself indicated by the first sensor information. For example, when the first sensor information is an image, the "person indicated by the first sensor information" indicates a person reflected in the image.
  • the type of the object is not particularly limited as long as it is an object that can be identified by the first sensor information.
  • the object may be a structure such as a wall or a pillar or a part thereof.
  • the object may be a chair, stationery, equipment, or the like that can be moved.
  • the object may be a two-dimensional object such as a character or a symbol drawn on a wall, a floor, or the like.
  • the object may be a moving object such as a person or an animal.
  • Objects other than the person indicated by the first sensor information may directly or indirectly affect the movement of the person.
  • an object that obstructs the passage of a person or an object that exists in a place where a person may stop by may be an object to be detected.
  • the object detection method is not particularly limited.
  • the object may be detected using a trained model constructed by machine learning using the image of each object to be detected as teacher data.
  • a trained model constructed by deep learning from the viewpoint of detection speed and detection accuracy.
  • a trained model such as Faster R-CNN (Regional Convolutional Neural Network) is suitable.
  • the spatial information generation unit 102 generates spatial information regarding the space around the person.
  • Spatial information is information that is a factor existing around a person and indicates a factor related to the movement destination of the person.
  • the movement information generation unit 103 generates locus information indicating the movement locus of the person detected by the object detection unit 101, and generates the movement information by associating this locus information with the spatial information generated by the spatial information generation unit 102. To do.
  • the method of generating the locus information is not particularly limited. For example, the position coordinates in which a person is detected are specified from the first sensor information in the time series, those coordinates are used as the position information of the person, and the position information is used in the time series. It may be arranged in order and used as trajectory information.
  • the movement position prediction unit 104 predicts the position where the person indicated by the first sensor information moves by using the prediction model 121.
  • the position where the person moves is simply referred to as the moving position.
  • the movement position prediction unit 104 predicts the movement position by inputting the movement information generated by the movement information generation unit 103 into the prediction model 121.
  • the prediction model 121 includes time-series position information that is time-series position information of a person, and information that indicates the detection result of the object in each of a plurality of areas set around each position indicated by the time-series position information. It is a trained model in which the correlation of is machine-learned.
  • the prediction model 121 is pre-constructed by, for example, the following method. That is, the movement of the person is sensed by the first sensor unit 22, and the first sensor information obtained by the sensing is used as the teacher data. Then, by inputting the teacher data into the unlearned prediction model, a trained prediction model can be constructed.
  • the notification unit 105 notifies the robot 2 of the prediction result of the movement position prediction unit 104, that is, information indicating the movement position (movement position information). At this time, the notification unit 105 refers to the position information received from each robot 2 by the second control unit 10 and the moving position, and determines whether or not the robot 2 exists within a predetermined range from the moving position. judge. When the robot 2 exists within a predetermined range from the moving position, the notification unit 105 transmits the moving position information to the robot 2.
  • the second control unit 10 may transmit at least one of the first sensor information and the moving position information to the server 3 which is an external storage device at a predetermined timing. Then, the server 3 may store such information. As a result, the first sensor information and the moving position information can be stored in the server 3.
  • FIG. 3 is a flowchart showing an example of the processing flow in the information processing system 100.
  • a robot A and a robot B are shown as an example of the robot 2.
  • Robot A is traveling at a normal speed (S10), identifies the current position of its own machine at any time, and transmits the position information to the edge computer 1 (S12).
  • the second control unit 10 of the edge computer 1 acquires this position information at any time (S24).
  • the first sensor unit 22 of the robot A transmits the first sensor information to the detection unit 202 of the control unit 20.
  • the detection unit 202 detects the presence of a person by referring to the first sensor information (S14). When the detection unit 202 does not detect a person (NO in S14), the detection unit 202 waits for the next first sensor information. On the other hand, when a person is detected (YES in S14), the detection unit 202 transmits the first sensor information to the edge computer 1 via the first communication unit 21 (S16).
  • the drive control unit 204 of the control unit 20 may decelerate the robot 2 by controlling the drive unit 23 (S18).
  • the second control unit 10 of the edge computer 1 acquires the first sensor information (S26).
  • the sensing of the first sensor unit 22 and the detection of the detection unit 202 continue (S20).
  • the detection unit 202 transmits the first sensor information to the edge computer 1 again as in S16.
  • the drive control unit 204 of the control unit 20 returns the traveling speed of the robot 2 decelerated in S18 to the normal speed by controlling the drive unit 23 (NO). S22).
  • the drive control unit 204 may stop the robot 2 instead of decelerating.
  • the second control unit 10 that has acquired the position information and the first sensor information detects an object from the first sensor information in the object detection unit 101 (S28).
  • the object detected by the object detection unit 101 is output to the spatial information generation unit 102 and the movement information generation unit 103.
  • the spatial information generation unit 102 creates spatial information and outputs it to the movement information generation unit 103.
  • the movement information generation unit 103 generates movement information and outputs it to the movement position prediction unit 104.
  • the movement position prediction unit 104 predicts the movement position of a person by inputting the movement information into the prediction model 121 (S30).
  • the moving position prediction unit 104 outputs the moving position information to the notification unit 105.
  • the notification unit 105 When the notification unit 105 acquires the movement position information, the notification unit 105 refers to the position information of each robot 2 connected to the edge computer 1, and the robots other than the robot A move within a predetermined range of the position indicated by the movement position information. It is determined whether or not it exists (S32). When there is no robot other than the robot A within the predetermined range of the position indicated by the movement position information (NO in S32), the notification unit 105 ends the process. On the other hand, when a robot other than the robot A exists within a predetermined range of the position indicated by the moving position information (YES in S32), the notification unit 105 moves the moving position to the other robot (robot B in FIG. 3). Notify the information (S34).
  • the movement position information acquisition unit 203 of the robot B acquires the movement position information (S36).
  • the drive control unit 204 of the robot B changes the traveling mode of the robot B by controlling the drive unit 23 based on the movement position information. For example, the drive control unit 204 decelerates the robot B (S38). In S38, the drive control unit 204 may stop the robot B.
  • the robot B can recognize the movement path of the person and the position after the movement.
  • the edge computer 1 centrally predicts the moving position of a person. Therefore, the information processing system 100 has an advantage that the system can be constructed at low cost as compared with the case where each robot 2 predicts the moving position of the person. Further, since the edge computer 1 can execute the prediction of the moving position by using the calculation unit having higher performance than the robot 2, the performance required for the processing related to the prediction of the moving position can be easily realized. can do.
  • the edge computer 1 may include a second sensor information acquisition unit that acquires the second sensor information acquired by the fixed point sensor in the space. Then, the object detection unit 101 may detect the object based on the first sensor information and the second sensor information.
  • Embodiment 2 of the present invention will be described below.
  • the members having the same functions as the members described in the above-described embodiment are designated by the same reference numerals, and the description thereof will not be repeated.
  • FIG. 4 is a diagram showing a schematic example of the information processing system 200 according to the present embodiment.
  • the information processing system 200 is different from the information processing system 100 according to the first embodiment in that it includes an external sensor 4.
  • the external sensor 4 is a fixed point sensor installed in the space where the robot 2 operates.
  • the external sensor 4 detects a person in the detection area of the own machine. For example, as shown in FIG. 4, when a person B enters the detection area of the external sensor 4, the external sensor 4 detects the person B.
  • the external sensor 4 transmits the second sensor information, which is the detected information, to the edge computer 1.
  • the edge computer 1 predicts the moving position of a person by using the second sensor information instead of the first sensor information or together with the first sensor information.
  • the edge computer 1 notifies the robot 2 existing within a predetermined range from the moving position indicated by the moving position information of the moving position information which is a prediction result. For example, in the illustrated example, the edge computer 1 notifies the robot D of the movement position information.
  • the edge computer 1 does not have to transmit the movement position information to the robot E that exists outside the predetermined range from the movement position (for example, a position away from the person B without a risk of collision).
  • FIG. 5 is a block diagram showing an example of the main configuration of the device included in the information processing system 200.
  • the external sensor 4 is a fixed point sensor that exists independently of the robot 2 and the edge computer 1.
  • the external sensor 4 is installed in the space where the robot 2 operates.
  • the external sensor 4 may be a camera mounted on the ceiling portion of the space.
  • the external sensor 4 may be a camera mounted on the wall of the space.
  • the external sensor 4 includes a control unit 40, a third communication unit 41, a second sensor unit 42, and a third storage unit 43.
  • the function of the third communication unit 41 is the same as that of the first communication unit 21 of the robot 2.
  • the function of the third storage unit 43 is the same as that of the first storage unit 24 of the robot 2.
  • the function of the second sensor unit 42 is the same as that of the first sensor unit 22.
  • the control unit 40 includes a detection unit 402.
  • the detection unit 402 has the same function as the detection unit 202.
  • the third communication unit 41 of the external sensor 4 transmits the sensor information of the first sensor unit 22 as the second sensor information to the edge computer 1.
  • the object detection unit 101 of the edge computer 1 detects an object based on the second sensor information. Alternatively, the object detection unit 101 detects an object by using the first sensor information and the second sensor information in combination. Subsequent processing of the second control unit 10 is the same as the processing of the second control unit 10 according to the first embodiment.
  • the second control unit 10 may transmit at least one of the first sensor information, the second sensor information, and the moving position information to the server 3 which is an external storage device at a predetermined timing.
  • the server 3 which is an external storage device at a predetermined timing.
  • the robot 2 may include a person detection sensor that detects a person around the own device. Then, the drive control unit 204 may change at least one of the traveling speed and the traveling path according to the detection result of the person detection sensor. According to the above configuration, the robot also detects surrounding people with its own device. Then, at least one of the traveling speed and the traveling route is changed based on the detection result, the moving position information received from the information processing device, and the position information of the own device. As a result, the robot can travel efficiently while avoiding a collision with a human.
  • the data communication method between the edge computer 1 and the robot 2, the edge computer 1 and the server 3, and the edge computer 1 and the external sensor 4 is high-speed wireless communication. It is desirable to have. Specifically, it is desirable that these data communication methods are 5G, Wifi6, or the like.
  • first sensor information and second sensor information can be transmitted and received without delay.
  • the first sensor information and the second sensor information are moving image data.
  • the size of the moving image is 1080 ⁇ 720 pixels, for example, when the communication speed is 1 Gbps, the moving image can be transmitted in 0.77 milliseconds.
  • Wifi4 In wireless communication other than high-speed wireless communication, for example, Wifi4, it took 200 ms to transmit the above-mentioned moving image.
  • high-speed wireless communication such as 5G or Wifi6
  • the transmission speed of moving images is improved to about 1.54 milliseconds.
  • the robot 2 can be controlled more accurately in real time from the edge computer 1. For example, since control instructions and the like can be transmitted from the edge computer 1 to the robot 2 more frequently (that is, the control cycle can be shortened), the period during which the robot 2 is stopped or decelerated can be reduced. it can.
  • the wiring of the camera becomes unnecessary, and the setup of the information processing systems 100 and 200 can be simplified. Can be done.
  • control blocks of the edge computer 1, the robot 2, and the external sensor 4 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
  • the edge computer 1, the robot 2, and the external sensor 4 include a computer that executes a program instruction, which is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the object of the present invention is achieved by the processor reading the program from the recording medium and executing the program.
  • the processor for example, a CPU (Central Processing Unit) can be used.
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • a transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • the information processing device is an information processing device that communicates with a plurality of self-propelled robots, and is a position information acquisition unit that acquires position information of each robot and a sensor device by the first robot.
  • a first sensor information acquisition unit that acquires first sensor information when a person around the first robot is detected, an object detection unit that detects an object around the person from the first sensor information, and the person.
  • Machine-learned the time-series position information which is the time-series position information of A movement position prediction unit that inputs to the prediction model and predicts a movement position that is a position where the person moves from the output of the prediction model, and a robot other than the first robot have a predetermined range from the movement position. It is provided with a notification unit that notifies other robots of movement position information indicating the movement position when it exists in the robot.
  • the robot it is possible to predict the position where the person around the first robot moves. That is, the movement route of the person can be predicted. Then, the movement position information indicating the movement route can be notified to robots other than the first robot. This makes it possible for the robot to recognize the movement path of the person and the position after the movement.
  • the information processing device includes a second sensor information acquisition unit that acquires second sensor information acquired by a fixed point sensor in space, and the object detection unit is based on the first sensor information and the second sensor information.
  • the object may be detected. According to the above configuration, the position where the person moves can be predicted more accurately.
  • the data communication method between each of the plurality of robots and the information processing device may be the same wireless communication method.
  • the information processing device may include a data transmission unit that transmits at least one of the first sensor information and the moving position information to an external storage device at a predetermined timing. According to the above configuration, at least one of the first sensor information and the moving position information can be stored in the external storage device.
  • the robot according to one aspect of the present invention is a self-propelled robot that communicates with the information processing device, and has a position specifying unit for specifying the position of the own device, the sensor device, and the position of the own device. From the information transmission unit that transmits the indicated position information and the first sensor information to the information processing device, the drive control unit that controls at least one of the traveling speed and the traveling path of the own device, and the information processing device. A moving position information acquisition unit for acquiring the moving position information is provided, and the drive control unit obtains at least one of the traveling speed and the traveling path based on the position of the own device and the moving position information. change.
  • the robot can decelerate and travel so as not to collide with a person, or can travel while avoiding the position where the person is. Therefore, the robot can travel efficiently while avoiding a collision with a human.
  • the robot may include a person detection sensor that detects a person around the own device, and the drive control unit may use at least one of the traveling speed and the traveling path according to the detection result of the person detection sensor. May be changed.
  • the robot also detects surrounding people with its own device. Then, at least one of the traveling speed and the traveling route is changed based on the detection result, the moving position information received from the information processing device, and the position information of the own device. As a result, the robot can travel efficiently while avoiding a collision with a human.
  • the information processing system includes the information processing device and a plurality of the robots. According to the above configuration, the same effect as that of the information processing apparatus is obtained.
  • Information processing system 100, 200 Information processing system 1 Edge computer 2 Robot 3 Server 4 External sensor 10 Second control unit (information processing device) 11 2nd communication unit 12 2nd storage unit 20, 40 Control unit 21 1st communication unit 22 1st sensor unit 23 Drive unit 24 1st storage unit 41 3rd communication unit 42 2nd sensor unit 43 3rd storage unit 100, 200 Information processing system 101 Object detection unit 104 Movement position prediction unit 102 Spatial information generation unit 103 Movement information generation unit 105 Notification unit 121 Prediction model 122 Setting information 201 Position identification unit 202, 402 Detection unit 203 Movement position information acquisition unit 204 Drive control Department

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

ロボットに人の移動経路および移動後の位置を認識させる。第2制御部(10)は、各ロボットの位置情報を取得し、第1ロボットがセンサ装置で該第1ロボットの周囲の人物を検出した場合の第1センサ情報を取得し、第1センサ情報からオブジェクトを検出するオブジェクト検出部(101)と、時系列位置情報と、オブジェクトの検出結果を示す情報とを、機械学習済みの予測モデル(121)に入力することで、人物の移動位置を予測する移動位置予測部(104)と、他のロボット(2)が、移動位置から所定の範囲内に存在する場合に、移動位置情報を他のロボット(2)に通知する通知部(105)と、を備える。

Description

情報処理装置、ロボット、および情報処理システム
 本発明は情報処理装置、ロボット、および情報処理システム等に関する。
 通行者や作業者が居る空間で自動ロボットを用いる場合、人と衝突しないようにロボットの動作を制御することが求められる。このようなロボットの衝突回避のための技術は、従来種々開発されている。例えば特許文献1には、ロボット装置のマニュピレータと、人との干渉または接触を確実に防止しつつ、装置のダウンタイムを減少させる技術が開示されている。
日本国公開特許公報「特開2010-208002号公報」
 ところで、通行者または作業者が居る空間で自走式のロボットを用いる場合、ロボットは、人との衝突回避のために遅い速度で走行するよう運用される。例えば、ロボットは人の歩く速度と同程度の速度で運用される。通行者または作業者は空間内を移動するが、従来技術のロボットでは、通行者または作業者の移動経路および移動後の位置を認識できないからである。
 そのため、例えばロボットの周囲に人が居ない場合、すなわち、もっと速い速度で走行しても良い場合でも、ロボットは必要以上に低速で走行していた。これにより、ロボットの作業効率が低下していた。
 本発明の一態様は、前記の問題点に鑑みたものである。本発明の一態様は、ロボットに人の移動経路および移動後の位置を認識させることが可能な情報処理装置等を実現することを目的とする。
 前記の課題を解決するために、本発明の一態様に係る情報処理装置は、自走式の複数のロボットと通信する情報処理装置であって、各ロボットの位置情報を取得する位置情報取得部と、第1ロボットがセンサ装置で該第1ロボットの周囲の人物を検出した場合の第1センサ情報を取得する第1センサ情報取得部と、前記第1センサ情報から該人物の周囲のオブジェクトを検出するオブジェクト検出部と、前記人物の時系列の位置情報である時系列位置情報と、当該時系列位置情報の示す各位置の周囲に設定された複数の領域のそれぞれにおける前記オブジェクトの検出結果を示す情報とを、機械学習済みの予測モデルに入力して、前記予測モデルの出力から前記人物が移動する位置である移動位置を予測する移動位置予測部と、前記第1ロボット以外の他のロボットが、前記移動位置から所定の範囲内に存在する場合に、前記移動位置を示す移動位置情報を、他の前記ロボットに通知する通知部と、を備える。
 本発明の一態様によれば、ロボットに人の移動経路および移動後の位置を認識させることができる。
本発明の実施形態1に係る情報処理システムの概要例を示す図である。 前記情報処理システムに含まれる装置の要部構成の一例を示すブロック図である。 前記情報処理システムにおける処理の流れの一例を示すフローチャートである。 本発明の実施形態2に係る情報処理システムの概要例を示す図である。 前記情報処理システムに含まれる装置の要部構成の一例を示すブロック図である。
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。ただし、以下で説明する本実施形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。
 〔実施形態1〕
 §1.適用例
 図1を用いて本発明が適用される場面の一例について説明する。図1は、本実施形態に係る情報処理システム100の概要例を示す図である。情報処理システム100は、少なくとも、人が居る空間に設置された複数のロボット2と、該ロボット2を集中管理するエッジコンピュータ1と、を含むシステムである。また、情報処理システム100は、外部記憶装置であるサーバ3を含んでいてもよい。
 図1の例では、エッジコンピュータ1と複数のロボット2、および、エッジコンピュータ1とサーバ3は、それぞれ基地局を介して通信接続している。各装置間のデータ通信方式としては、例えば5Gの通信方式を採用することができる。
 情報処理システム100において、ロボット2は自走式のロボットであり、それぞれが基地局を介してエッジコンピュータ1と通信接続している。ロボット2は、自機の位置を特定して、位置情報を随時エッジコンピュータ1に送信している。また、ロボット2には1つ以上のセンサ装置(後述する第1センサ部22)が搭載されている。ロボット2はそれぞれ、センサ装置の検出領域内の人物を検出する。例えば図1に示すように、ロボットAの検出領域内に人物Aが入った場合、ロボットAは該人物Aを検出する。ロボットAはセンサ装置の検出した情報である第1センサ情報を、エッジコンピュータ1に送信する。
 エッジコンピュータ1は、ロボット2から受信した第1センサ情報と、予め構築しておいた予測モデルとに基づいて、第1センサ情報が示す人物(図1では人物A)の移動する位置を予測する。すなわち、エッジコンピュータ1は、人物の移動経路を予測する。エッジコンピュータ1は、該移動経路を示す情報である移動位置情報を、該人物を検出したロボット2以外の、他のロボット2に送信する。図1の例の場合は、ロボットAが人物Aを検出して、第1センサ情報をエッジコンピュータ1に送信している。そのため、エッジコンピュータ1は、人物Aの移動する位置を予測すると、その移動位置情報をロボットA以外の他のロボット2、すなわち、ロボットB、C、およびDに送信する。これにより、エッジコンピュータ1は、人物Aの移動経路および移動後の位置を、ロボットに認識させることができる。
 なお、エッジコンピュータ1は、予測される人物の移動経路から所定の範囲内に存在するロボット2にのみ、移動位置情報を送信することが望ましい。例えば、図1の例において、エッジコンピュータ1は、人物Aの進行方向に存在するロボットBには移動位置情報を送信するが、該進行方向とは離れた位置に存在するロボットCには、移動位置情報を送信しない。人物Aから遠い位置に存在するロボット2には、人物Aの移動位置情報は不要である。したがって、上述の例によれば、不要な送信処理でエッジコンピュータ1にかかる負荷を削減することができる。
 エッジコンピュータ1はサーバ3と通信接続している。サーバ3は各種データを格納するデータベース(DB)サーバである。エッジコンピュータ1はサーバ3に、第1センサ情報および移動位置情報の少なくとも一方を格納する。
 ロボットB、C、Dは、エッジコンピュータ1から受信した移動位置情報と、自機で特定する自機の位置情報とに基づいて、自機の走行速度および走行経路の少なくとも一方を変更する。例えば、ロボットBは、人物Aとの衝突を避けるため、自機の走行速度を遅くしてもよい。また例えば、ロボットBは、人物Aとの衝突を避けるため、自機の走行経路を本来の経路と異なる経路に変更してもよい。より具体的には、ロボットBは、人物Aの移動の軌跡を避けるような経路で走行してもよい。これにより、ロボットは人との衝突を回避しつつ、効率よく走行することができる。
 なお、エッジコンピュータ1と、複数のロボット2それぞれとの間のデータ通信方式は、同一の無線通信方式であることが望ましい。これにより、各ロボット2とエッジコンピュータ1との間の通信方式を全て同一にすることができる。そのため、通信方式が同一でない場合に比べて、通信の応答速度を高めることができる。また、エッジコンピュータ1とサーバ3との間のデータ通信方式も、エッジコンピュータ1とロボット2との間のデータ通信方式と同一であることが望ましい。
 §2.構成例
 図2は、情報処理システム100に含まれる装置の要部構成の一例を示すブロック図である。
 ロボット2は、制御部20と、第1通信部(情報送信部)21と、第1センサ部22と、駆動部23と、第1記憶部24と、を含む。制御部20は、ロボット2を統括的に制御するものである。制御部20は、第1通信部21を介しエッジコンピュータ1と通信する。また、制御部20は第1センサ部22に対し、人物検出のためのセンシングを指示する。また、制御部20は、駆動部23を制御することで、ロボット2の各種動作を制御する。また、制御部20は、第1記憶部24に各種データを格納する。
 第1通信部21は、エッジコンピュータ1とロボット2との間の通信インタフェースである。エッジコンピュータ1とロボット2との間の通信方式は特に限定されないが、カメラの撮影画像等、比較的容量の大きいデータをリアルタイムでやりとり可能な通信方式が望ましい。例えば、第1通信部21はエッジコンピュータ1と、5G、Wifi(登録商標)6等の通信方式で通信してもよい。
 第1センサ部22は、ロボット2の周囲に存在する人物を検出するためのセンサまたはセンサ群である。第1センサ部22は、例えば、センサカメラ、LiDAR(Light Detection and Ranging)、RADAR等およびこれらの組合せで実現できる。第1センサ部22は、取得または測定した情報(第1センサ情報)を制御部20の検出部202に送信する。具体的には、例えば第1センサ部22としてのセンサカメラは、撮影領域内への人間の侵入を検知すると、該人間を被写体として撮影し、撮影画像を制御部20に出力する。もしくは、第1センサ部22は、所定の時間間隔または随時、センサ情報を取得し、制御部20に送信してもよい。例えば、第1センサ部22としてのカメラは動画を録画し制御部20に随時送信してもよい。
 駆動部23は、ロボット2の各種動作を行うものである。駆動部23は例えばロボット2のモータ、アーム、タイヤ等、ロボット2の駆動に係るハードウェアユニットである。
 第1記憶部24は、ロボット2の駆動に必要な各種データを記憶する。第1記憶部24は例えば、第1センサ情報を記憶してもよい。また、第1記憶部24は工場または倉庫等、ロボット2が稼働する空間内の地図情報を記憶してもよい。また、第1記憶部24は、該空間内でのロボット2の動作スケジュールを示すスケジュール情報を記憶してもよい。地図情報およびスケジュール情報は、後述するエッジコンピュータ1から送信され、制御部20が取得して、第1記憶部24に記憶させる。
 制御部20は、さらに詳しくは、位置特定部201と、検出部202と、移動位置情報取得部203と、駆動制御部204と、を含む。
 位置特定部201は、ロボット2の位置を特定する。位置特定部201は、例えば第1センサ部22からの第1センサ情報と、第1記憶部24に記憶されている地図情報とに応じて、ロボット2の現在位置を特定する。以降、特段の記載が無ければ、ロボット2の現在位置を示す情報を単に「位置情報」と称する。位置特定部201は、第1通信部21を介して随時、位置情報をエッジコンピュータ1に送信する。また、位置特定部201は位置情報を駆動制御部204に送信する。なお、位置特定部201は、ロボット2が備えるGPSセンサ等のセンサからの情報に基づいて、ロボット2の現在位置を特定してもよい。
 検出部202は、第1センサ情報に基づいて、第1センサ部22の検出領域内における人物の存在を検出する。検出部202は人物を検出すると、該人物を示す第1センサ情報を、第1通信部21を介しエッジコンピュータ1に送信する。なお、第1センサ部22自体が人の存在を検知したことをトリガとして第1センサ情報を取得または測定する場合、検出部202は人物検出に係る処理を実行しなくてもよい。
 移動位置情報取得部203は、エッジコンピュータ1から移動位置情報を取得する。移動位置情報取得部203は、取得した移動位置情報を駆動制御部204に送信する。
 駆動制御部204は、位置情報と移動位置情報とに基づいて、ロボット2の駆動を制御する。具体的には、駆動制御部204は、位置情報と移動位置情報とに基づき、ロボット2の走行速度および走行経路の少なくとも一方を変更する。
 駆動制御部204における走行速度および走行経路の変更内容は特に限定しない。例えば、駆動制御部204は、位置情報が示すロボット2の現在位置が、移動位置情報が示す人物の移動経路から所定範囲内である場合に、ロボット2を減速させてもよい。また、駆動制御部204は、位置情報が示すロボット2の現在位置が、移動位置情報が示す人物の移動経路から所定範囲内である場合に、ロボット2の走行経路を、該人物の移動経路を回避する経路に変更してもよい。
 エッジコンピュータ1は、第2制御部(位置情報取得部、第1センサ情報取得部、データ送信部)10と、第2通信部11と、第2記憶部12と、を含む。第2制御部10は、エッジコンピュータ1を統括的に制御するものである。第2制御部10は、第2通信部11を介しロボット2およびサーバ3と通信する。第2制御部10は、ロボット2から位置情報および第1センサ情報を取得する。また、第2制御部10は、第2記憶部12に各種データを格納する。
 第2記憶部12は、エッジコンピュータ1の処理に必要な各種データを記憶する。第2記憶部12は例えば、予測モデル121と、設定情報122とを記憶する。
 予測モデル121は、予め構築された学習済モデルである。予測モデル121の種類は特に限定されない。予測モデル121については後で詳述する。
 設定情報122は、エッジコンピュータ1における各種設定を規定するデータである。例えば、設定情報122は、エッジコンピュータ1からロボット2、ならびに、エッジコンピュータ1からサーバ3へのデータ送信の時間間隔を規定する情報を含んでいてもよい。また、設定情報122は、エッジコンピュータ1から各ロボット2に対する各種指示命令、リクエスト、および通知等の送信の時間間隔を規定する情報を含んでいてもよい。
 第2制御部10は、さらに詳しくは、オブジェクト検出部101と、空間情報生成部102と、移動情報生成部103と、移動位置予測部104と、通知部105と、を含む。
 オブジェクト検出部101は、第1センサ情報が示すオブジェクトを検出する。例えば、第1センサ情報がカメラの撮影画像である場合、オブジェクト検出部101は、該画像からオブジェクトを検出する。なお、検出対象のオブジェクトには、第1センサ情報が示す人物自身も含まれる。例えば、第1センサ情報が画像である場合、「第1センサ情報が示す人物」とは、画像に写った人物を示す。
 ここで、オブジェクトとは、第1センサ情報で判別可能なオブジェクトであれば、その種類は特に限定されない。例えば、オブジェクトとは、壁や柱等の構造物やその一部分であってもよい。例えば、オブジェクトとは、椅子や文房具、機材等の移動させることが可能なものであってもよい。例えば、オブジェクトとは、壁や床等に描かれた文字や記号等の二次元のものであってもよい。例えば、オブジェクトとは、人や動物等のように移動するものであってもよい。
 第1センサ情報が示す人物以外のオブジェクトは、該人物の移動に直接的または間接的に影響を与えるものであればよい。例えば、人物の通行の妨げになるものや、人物が立ち寄る可能性のある場所に存在するものを検出対象のオブジェクトとしてもよい。
 オブジェクトの検出方法は特に限定されない。例えば、検出対象の各オブジェクトの画像を教師データとした機械学習により構築した学習済みモデルを用いてオブジェクトの検出を行ってもよい。この場合、例えば深層学習によって構築した学習済みモデルを用いることが、検出速度および検出精度の点から好ましい。具体例を挙げれば、Faster R-CNN(Regional Convolutional Neural Network)等の学習済みモデルが好適である。
 空間情報生成部102は、人物の周囲の空間に関する空間情報を生成する。空間情報は、人物の周囲に存在している因子であって、該人物の移動先に関連する因子を示す情報である。
 移動情報生成部103は、オブジェクト検出部101が検出した人物の移動軌跡を示す軌跡情報を生成し、この軌跡情報と、空間情報生成部102が生成した空間情報とを対応付けて移動情報を生成する。軌跡情報の生成方法は特に限定されず、例えば時系列の第1センサ情報から、人物が検出された位置座標をそれぞれ特定し、それらの座標を人物の位置情報とし、それらの位置情報を時系列順に配列して軌跡情報としてもよい。
 移動位置予測部104は、予測モデル121を用いて、第1センサ情報が示す人物が移動する位置を予測する。以降、人物が移動する位置のことを単に移動位置と称する。移動位置予測部104は、予測モデル121に、移動情報生成部103が生成した移動情報を入力することで、移動位置を予測する。
 (予測モデル121)
 予測モデル121は、人物の時系列の位置情報である時系列位置情報と、当該時系列位置情報の示す各位置の周囲に設定された複数の領域のそれぞれにおける前記オブジェクトの検出結果を示す情報との相関関係を機械学習させた、学習済モデルである。予測モデル121は、例えば以下の方法で予め構築される。すなわち、人物が移動する様子を第1センサ部22でセンシングし、センシングによって得られた第1センサ情報を教師データとする。そして、該教師データを未学習の予測モデルに入力することで、学習済の予測モデルを構築することができる。
 通知部105は、移動位置予測部104の予測結果、すなわち移動位置を示す情報(移動位置情報)を、ロボット2に通知する。このとき、通知部105は、第2制御部10が各ロボット2から受信した位置情報と、移動位置とを参照して、前記移動位置から所定の範囲内にロボット2が存在するか否かを判定する。移動位置から所定の範囲内にロボット2が存在する場合、通知部105は、該ロボット2に対して移動位置情報を送信する。
 なお、第2制御部10は、第1センサ情報、および、移動位置情報のうち少なくとも一方を、所定のタイミングで外部記憶装置であるサーバ3に送信してもよい。そして、サーバ3はこれらの情報を記憶してもよい。これにより、サーバ3に第1センサ情報および移動位置情報を蓄積することができる。
 ≪処理の流れ≫
 図3は、情報処理システム100における処理の流れの一例を示すフローチャートである。図3では、ロボット2の一例として、ロボットAとロボットBを示している。
 ロボットAは通常の速度で走行中(S10)、随時、自機の現在位置を特定し、位置情報をエッジコンピュータ1に送信する(S12)。エッジコンピュータ1の第2制御部10はこの位置情報を随時取得する(S24)。
 ロボットAの第1センサ部22は、第1センサ情報を制御部20の検出部202に送信する。検出部202は、第1センサ情報を参照し人物の存在を検出する(S14)。検出部202は、人物を検出していない場合(S14でNO)、次の第1センサ情報を待つ。一方、人物を検出した場合(S14でYES)、検出部202は第1通信部21を介して第1センサ情報をエッジコンピュータ1に送信する(S16)。ここで、制御部20の駆動制御部204は、駆動部23を制御することによって、ロボット2を減速させてもよい(S18)。エッジコンピュータ1の第2制御部10は第1センサ情報を取得する(S26)。
 第1センサ情報を送信した後も、第1センサ部22のセンシングおよび検出部202の検出は継続する(S20)。人物を検出した場合、検出部202はS16と同様、第1センサ情報を再度エッジコンピュータ1へ送信する。一方、人物が検出できなくなった場合(S20でNO)、制御部20の駆動制御部204は、駆動部23を制御することによって、S18で減速したロボット2の走行速度を通常の速度に戻す(S22)。なお、S18およびS22において、駆動制御部204は、ロボット2を減速ではなく停止させることとしてもよい。
 位置情報および第1センサ情報を取得した第2制御部10は、オブジェクト検出部101において、第1センサ情報からオブジェクトを検出する(S28)。オブジェクト検出部101が検出したオブジェクトは、空間情報生成部102および移動情報生成部103に出力される。空間情報生成部102は空間情報を作成し、移動情報生成部103へ出力する。移動情報生成部103は移動情報を生成して、移動位置予測部104に出力する。移動位置予測部104は、移動情報を予測モデル121に入力することによって、人物の移動位置を予測する(S30)。移動位置予測部104は移動位置情報を通知部105に出力する。
 通知部105は、移動位置情報を取得すると、エッジコンピュータ1と接続されている各ロボット2の位置情報を参照し、移動位置情報が示す位置の所定範囲内に、ロボットA以外の他のロボットが存在するか否かを判定する(S32)。移動位置情報が示す位置の所定範囲内に、ロボットA以外の他のロボットが存在しない場合(S32でNO)、通知部105は処理を終了する。一方、移動位置情報が示す位置の所定範囲内に、ロボットA以外の他のロボットが存在する場合(S32でYES)、通知部105は該他のロボット(図3ではロボットB)に、移動位置情報を通知する(S34)。ロボットBの移動位置情報取得部203は、移動位置情報を取得する(S36)。ロボットBの駆動制御部204は、移動位置情報に基づいて駆動部23を制御することにより、ロボットBの走行態様を変更する。例えば、駆動制御部204は、ロボットBを減速させる(S38)。なお、S38において、駆動制御部204はロボットBを停止させてもよい。
 前記の処理によれば、ロボットA(第1ロボット)の周囲に居る人物が移動する位置を予測することができる。すなわち、該人物の移動経路を予測することができる。そして、該移動経路を示す移動位置情報を、ロボットA以外の他のロボット(ロボットB)に通知することができる。これにより、ロボットBに人の移動経路および移動後の位置を認識させることができる。
 また、情報処理システム100において、人物の移動位置の予測は、エッジコンピュータ1で一元的に行っている。そのため、情報処理システム100は、ロボット2それぞれが人物の移動位置の予測を行う場合と比較して、安価にシステムを構築できるという利点を有する。また、エッジコンピュータ1で、ロボット2よりも高性能な演算部を利用して移動位置の予測を実行することができるので、移動位置の予測に係る処理に必要とされる性能を、容易に実現することができる。
 〔実施形態2〕
 エッジコンピュータ1は、空間内の定点センサの取得した第2センサ情報を取得する第2センサ情報取得部を備えていてもよい。そして、オブジェクト検出部101は、前記第1センサ情報および前記第2センサ情報に基づいてオブジェクトを検出してもよい。
 本発明の実施形態2について、以下に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 ≪システム概要≫
 図4は、本実施形態に係る情報処理システム200の概要例を示す図である。情報処理システム200は、外部センサ4を含む点で、実施形態1に係る情報処理システム100と異なる。
 外部センサ4は、ロボット2が動作する空間内に設置される定点センサである。外部センサ4は自機の検出領域内の人物を検出する。例えば図4に示すように、外部センサ4の検出領域内に人物Bが入った場合、外部センサ4は該人物Bを検出する。外部センサ4は検出した情報である第2センサ情報を、エッジコンピュータ1に送信する。エッジコンピュータ1は、第1センサ情報の代わりに、または第1センサ情報とともに第2センサ情報を用いて、人物の移動位置を予測する。エッジコンピュータ1は予測結果である移動位置情報を、該移動位置情報が示す移動位置から所定範囲内に存在するロボット2に通知する。例えば、図示の例では、エッジコンピュータ1はロボットDに移動位置情報を通知する。これにより、図示のように柵等の影になって、ロボットDからは検出できないような人物を外部センサ4で検出し、移動位置を予測することができる。また、第1センサ情報と第2センサ情報とを併用する場合、より正確に人物の移動位置を予測することができる。なお、移動位置から所定範囲外(例えば、人物Bと衝突の危険性の無い、離れた位置)に存在するロボットEには、エッジコンピュータ1は移動位置情報を送信しなくてよい。
 ≪要部構成≫
 図5は、情報処理システム200に含まれる装置の要部構成の一例を示すブロック図である。
 外部センサ4は、ロボット2およびエッジコンピュータ1と独立して存在する定点センサである。外部センサ4は、ロボット2が稼働する空間内に設置される。例えば、外部センサ4は該空間の天井部分に取り付けられたカメラであってもよい。また、外部センサ4は、該空間の壁に取り付けられたカメラであってもよい。
 外部センサ4は、制御部40と、第3通信部41と、第2センサ部42と、第3記憶部43とを備える。第3通信部41の機能は、ロボット2の第1通信部21と同様である。第3記憶部43の機能は、ロボット2の第1記憶部24と同様である。第2センサ部42の機能は、第1センサ部22と同様である。制御部40は、検出部402を含む。検出部402は、検出部202と同様の機能を有する。外部センサ4の第3通信部41は、第1センサ部22のセンサ情報を第2センサ情報として、エッジコンピュータ1に送信する。
 エッジコンピュータ1のオブジェクト検出部101は、第2センサ情報に基づいて、オブジェクトを検出する。もしくは、オブジェクト検出部101は、第1センサ情報と、第2センサ情報とを併用して、オブジェクトを検出する。以降の第2制御部10の処理は、実施形態1に係る第2制御部10における処理と同様である。
 なお、第2制御部10は、第1センサ情報、第2センサ情報、および、移動位置情報のうち少なくとも1つを、所定のタイミングで外部記憶装置であるサーバ3に送信してもよい。これにより、サーバ3に第1センサ情報、第2センサ情報、および移動位置情報のうち少なくとも1つを蓄積することができる。
 〔変形例〕
 なお、ロボット2は、第1センサ部22とは別に、自装置の周囲の人物を検出する人物検出センサを備えていてもよい。そして駆動制御部204は、人物検出センサの検出結果に応じて、走行速度および走行経路の少なくとも一方を変更してもよい。前記の構成によれば、ロボットは周囲の人物を自装置でも検出する。そして、検出結果と、情報処理装置から受信した移動位置情報と、自装置の位置情報と、に基づいて、走行速度および走行経路の少なくとも一方を変更する。これにより、ロボットは人との衝突を回避しつつ、効率よく走行することができる。
 前記各実施形態に記載の情報処理システム100および200において、エッジコンピュータ1とロボット2、エッジコンピュータ1とサーバ3、およびエッジコンピュータ1と外部センサ4との間のデータ通信方式は、高速無線通信であることが望ましい。具体的には、これらのデータ通信方式は、5GまたはWifi6等であることが望ましい。
 高速無線通信を採用することによって、大容量の第1センサ情報および第2センサ情報を、遅滞なく送受信することができる。例えば、第1センサ情報および第2センサ情報が動画データであると仮定する。この場合、動画のサイズを1080×720ピクセルと仮定すると、例えば通信速度が1gbpsである場合は、0.77ミリ秒で動画を送信することができる。高速無線通信でない無線通信、例えばWifi4では、前述の動画であれば送信に200msの時間がかかっていた。一方、5GまたはWifi6等の高速無線通信であれば、動画の送信速度が約1.54ミリ秒まで向上する。
 このように、高速無線通信で情報処理システム100および200を実現することで、第1センサ情報および第2センサ情報の送受信における通信ロスを減少させることができる。これにより、エッジコンピュータ1からロボット2を、リアルタイムでより正確に制御することができる。例えば、より頻繁にエッジコンピュータ1からロボット2へ制御指示等を送信することができる(すなわち、制御周期を短くすることができる)ため、ロボット2が停止または減速している期間を減少させることができる。
 また、エッジコンピュータ1とロボット2、またはエッジコンピュータ1と外部センサ4との間の通信を無線通信にすることで、カメラの配線が不要となり、情報処理システム100および200のセットアップを簡易化することができる。
 〔ソフトウェアによる実現例〕
 エッジコンピュータ1、ロボット2、および外部センサ4の制御ブロックは、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
 後者の場合、エッジコンピュータ1、ロボット2、および外部センサ4は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、前記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、前記コンピュータにおいて、前記プロセッサが前記プログラムを前記記録媒体から読み取って実行することにより、本発明の目的が達成される。前記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。前記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、前記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、前記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して前記コンピュータに供給されてもよい。なお、本発明の一態様は、前記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の一態様に係る情報処理装置は、自走式の複数のロボットと通信する情報処理装置であって、各ロボットの位置情報を取得する位置情報取得部と、第1ロボットがセンサ装置で該第1ロボットの周囲の人物を検出した場合の第1センサ情報を取得する第1センサ情報取得部と、前記第1センサ情報から該人物の周囲のオブジェクトを検出するオブジェクト検出部と、前記人物の時系列の位置情報である時系列位置情報と、当該時系列位置情報の示す各位置の周囲に設定された複数の領域のそれぞれにおける前記オブジェクトの検出結果を示す情報とを、機械学習済みの予測モデルに入力して、前記予測モデルの出力から前記人物が移動する位置である移動位置を予測する移動位置予測部と、前記第1ロボット以外の他のロボットが、前記移動位置から所定の範囲内に存在する場合に、前記移動位置を示す移動位置情報を、他の前記ロボットに通知する通知部と、を備える。
 前記の構成によれば、第1ロボットの周囲に居る人物が移動する位置を予測することができる。すなわち、該人物の移動経路を予測することができる。そして、該移動経路を示す移動位置情報を、第1ロボット以外の他のロボットに通知することができる。これにより、ロボットに人の移動経路および移動後の位置を認識させることができる。
 前記情報処理装置は、空間内の定点センサの取得した第2センサ情報を取得する第2センサ情報取得部を備え、前記オブジェクト検出部は、前記第1センサ情報および前記第2センサ情報に基づいて前記オブジェクトを検出してもよい。前記の構成によれば、人物が移動する位置をより正確に予想することができる。
 前記情報処理装置において、前記複数のロボットそれぞれと前記情報処理装置との間のデータ通信方式は、同一の無線通信方式であってよい。
 前記の構成によれば、各ロボットと情報処理装置との間の通信方式が全て同一であるため、同一でない場合に比べて、通信の応答速度を高めることができる。
 前記情報処理装置は、前記第1センサ情報、および、前記移動位置情報のうち少なくとも一方を、所定のタイミングで外部記憶装置に送信するデータ送信部を備えていてもよい。前記の構成によれば、第1センサ情報、および、移動位置情報の少なくとも一方を、外部記憶装置に記憶させておくことができる。
 本発明の一態様に係るロボットは、前記情報処理装置と通信する、自走式のロボットであって、自装置の位置を特定する位置特定部と、前記センサ装置と、前記自装置の位置を示す位置情報と、前記第1センサ情報と、を前記情報処理装置に送信する情報送信部と、自装置の走行速度および走行経路の少なくとも一方を制御する駆動制御部と、前記情報処理装置から、前記移動位置情報を取得する移動位置情報取得部と、を備え、前記駆動制御部は、前記自装置の位置と、前記移動位置情報とに基づいて、前記走行速度および前記走行経路の少なくとも一方を変更する。
 前記の構成によれば、自装置の位置と、情報処理装置から受信した移動位置情報とに基づいて、ロボットの走行速度および走行経路の少なくとも一方を変更することができる。例えば、ロボットは、人物と衝突しないように、減速して走行したり、該人物の居る位置を避けて走行したりすることができる。したがって、ロボットは人との衝突を回避しつつ、効率よく走行することができる。
 前記ロボットは、自装置の周囲の人物を検出する人物検出センサを備えていてもよく、前記駆動制御部は、前記人物検出センサの検出結果に応じて、前記走行速度および前記走行経路の少なくとも一方を変更してもよい。
 前記の構成によれば、ロボットは周囲の人物を自装置でも検出する。そして、検出結果と、情報処理装置から受信した移動位置情報と、自装置の位置情報と、に基づいて、走行速度および走行経路の少なくとも一方を変更する。これにより、ロボットは人との衝突を回避しつつ、効率よく走行することができる。
 本発明の一態様に係る情報処理システムは、前記情報処理装置と、複数台の前記ロボットと、を含む。前記の構成によれば、前記情報処理装置と同様の効果を奏する。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
100、200 情報処理システム
1 エッジコンピュータ
2 ロボット
3 サーバ
4 外部センサ
10 第2制御部(情報処理装置)
11 第2通信部
12 第2記憶部
20、40 制御部
21 第1通信部
22 第1センサ部
23 駆動部
24 第1記憶部
41 第3通信部
42 第2センサ部
43 第3記憶部
100、200 情報処理システム
101 オブジェクト検出部
104 移動位置予測部
102 空間情報生成部
103 移動情報生成部
105 通知部
121 予測モデル
122 設定情報
201 位置特定部
202、402 検出部
203 移動位置情報取得部
204 駆動制御部

Claims (7)

  1.  自走式の複数のロボットと通信する情報処理装置であって、
     各ロボットの位置情報を取得する位置情報取得部と、
     第1ロボットがセンサ装置で該第1ロボットの周囲の人物を検出した場合の第1センサ情報を取得する第1センサ情報取得部と、
     前記第1センサ情報から該人物の周囲のオブジェクトを検出するオブジェクト検出部と、
     前記人物の時系列の位置情報である時系列位置情報と、当該時系列位置情報の示す各位置の周囲に設定された複数の領域のそれぞれにおける前記オブジェクトの検出結果を示す情報とを、機械学習済みの予測モデルに入力して、前記予測モデルの出力から前記人物が移動する位置である移動位置を予測する移動位置予測部と、
     前記第1ロボット以外の他のロボットが、前記移動位置から所定の範囲内に存在する場合に、前記移動位置を示す移動位置情報を、他の前記ロボットに通知する通知部と、を備える、情報処理装置。
  2.  空間内の定点センサの取得した第2センサ情報を取得する第2センサ情報取得部を備え、
     前記オブジェクト検出部は、前記第1センサ情報および前記第2センサ情報に基づいて前記オブジェクトを検出する、請求項1に記載の情報処理装置。
  3.  前記複数のロボットそれぞれと前記情報処理装置との間のデータ通信方式は、同一の無線通信方式である、請求項1または2に記載の情報処理装置。
  4.  前記第1センサ情報、および、前記移動位置情報のうち少なくとも一方を、所定のタイミングで外部記憶装置に送信するデータ送信部を備える、請求項1~3のいずれか1項に記載の情報処理装置。
  5.  請求項1から4のいずれか1項に記載の情報処理装置と通信する、自走式のロボットであって、
     自装置の位置を特定する位置特定部と、
     前記センサ装置と、
     前記自装置の位置を示す位置情報と、前記第1センサ情報と、を前記情報処理装置に送信する情報送信部と、
     自装置の走行速度および走行経路の少なくとも一方を制御する駆動制御部と、
     前記情報処理装置から、前記移動位置情報を取得する移動位置情報取得部と、を備え、
     前記駆動制御部は、前記自装置の位置と、前記移動位置情報とに基づいて、前記走行速度および前記走行経路の少なくとも一方を変更する、ロボット。
  6.  自装置の周囲の人物を検出する人物検出センサを備え、
     前記駆動制御部は、前記人物検出センサの検出結果に応じて、前記走行速度および前記走行経路の少なくとも一方を変更する、請求項5に記載のロボット。
  7.  請求項1~4のいずれか1項に記載の情報処理装置と、
     複数台の、請求項5または6に記載のロボットと、を含む、情報処理システム。
PCT/JP2020/010073 2019-09-27 2020-03-09 情報処理装置、ロボット、および情報処理システム WO2021059560A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019177504A JP7272221B2 (ja) 2019-09-27 2019-09-27 情報処理装置、ロボット、および情報処理システム
JP2019-177504 2019-09-27

Publications (1)

Publication Number Publication Date
WO2021059560A1 true WO2021059560A1 (ja) 2021-04-01

Family

ID=75166913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010073 WO2021059560A1 (ja) 2019-09-27 2020-03-09 情報処理装置、ロボット、および情報処理システム

Country Status (2)

Country Link
JP (1) JP7272221B2 (ja)
WO (1) WO2021059560A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542004A (zh) * 2021-06-01 2021-10-22 浙江捷创方舟数字技术有限公司 基于5G网络和WiFi6技术的用于PLC控制系统的冗余系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11296229A (ja) * 1998-02-13 1999-10-29 Komatsu Ltd 車両の誘導装置
JP2000263489A (ja) * 1999-03-16 2000-09-26 Denso Corp 移動ロボットの安全装置
JP2012200818A (ja) * 2011-03-25 2012-10-22 Advanced Telecommunication Research Institute International 歩行者の軌跡を予測して自己の回避行動を決定するロボット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11296229A (ja) * 1998-02-13 1999-10-29 Komatsu Ltd 車両の誘導装置
JP2000263489A (ja) * 1999-03-16 2000-09-26 Denso Corp 移動ロボットの安全装置
JP2012200818A (ja) * 2011-03-25 2012-10-22 Advanced Telecommunication Research Institute International 歩行者の軌跡を予測して自己の回避行動を決定するロボット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATO, YUKA ET AL.: "A Method Predicting the Destination of a Pedestrian for Voice Guidance of Communication Robots", TRANSACTIONS OF INFORMATION PROCESSING SOCIETY OF JAPAN (JOURNAL), vol. 60, no. 2, 15 February 2019 (2019-02-15), pages 572 - 580 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113542004A (zh) * 2021-06-01 2021-10-22 浙江捷创方舟数字技术有限公司 基于5G网络和WiFi6技术的用于PLC控制系统的冗余系统
CN113542004B (zh) * 2021-06-01 2023-05-16 浙江捷创方舟数字技术有限公司 基于5G网络和WiFi6技术的用于PLC控制系统的冗余系统

Also Published As

Publication number Publication date
JP7272221B2 (ja) 2023-05-12
JP2021056639A (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
US11016493B2 (en) Planning robot stopping points to avoid collisions
CN109933064B (zh) 用于自主车辆的多传感器安全路径系统
US11014238B2 (en) Dynamic navigation of autonomous vehicle with safety infrastructure
CN105094005B (zh) 光学安全系统、用于控制机动化工业设备的方法和计算机可读介质
US10948907B2 (en) Self-driving mobile robots using human-robot interactions
WO2020182470A1 (en) Route planning in an autonomous device
US10239692B2 (en) Article transport facility
JP2009545457A (ja) 機械の衝突防止のためのカメラを利用した監視方法及び装置
JP2014176933A (ja) ロボットシステム、及び、ロボットシステムの制御方法
JP6575493B2 (ja) 制御装置、移動体の分散制御プログラム
JP2022522284A (ja) 安全定格マルチセル作業空間マッピングおよび監視
WO2021059560A1 (ja) 情報処理装置、ロボット、および情報処理システム
Boehning Improving safety and efficiency of AGVs at warehouse black spots
JP7014289B2 (ja) 移動体制御装置、移動体、移動体制御システム、移動体制御方法および移動体制御プログラム
JP2019109769A (ja) 移動体
WO2022116628A1 (zh) 避障控制系统、方法、存储介质、计算机程序产品及移动设备
WO2022153669A1 (ja) 分散協調システム、及びタスク実行方法
JP7342664B2 (ja) ロボット、制御方法、およびプログラム
CN115565058A (zh) 机器人、避障方法、装置和存储介质
JP7135322B2 (ja) 移動体の監視対象追従制御装置、監視対象追従制御プログラム
CN117105097B (zh) 一种智能塔机控制系统、方法及控制设备
JP6795730B2 (ja) 移動体の管理システム、移動体、走行管理装置およびコンピュータプログラム
CN117111054A (zh) 使用传感器融合优化工业中人机协作的人类的检测和追踪
US20240123619A1 (en) Control device, control system, control method, and program
US20240152154A1 (en) Multi-traffic control method for plurality of robots performing autonomous driving

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867456

Country of ref document: EP

Kind code of ref document: A1