WO2021057109A1 - 一种基于3d打印的mems封装件及封装方法 - Google Patents

一种基于3d打印的mems封装件及封装方法 Download PDF

Info

Publication number
WO2021057109A1
WO2021057109A1 PCT/CN2020/096328 CN2020096328W WO2021057109A1 WO 2021057109 A1 WO2021057109 A1 WO 2021057109A1 CN 2020096328 W CN2020096328 W CN 2020096328W WO 2021057109 A1 WO2021057109 A1 WO 2021057109A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
package
packaging
printing
cover
Prior art date
Application number
PCT/CN2020/096328
Other languages
English (en)
French (fr)
Inventor
刘翊
李林
刘凯
段辉高
周剑
陈皓
吴晗
Original Assignee
株洲国创轨道科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲国创轨道科技有限公司 filed Critical 株洲国创轨道科技有限公司
Publication of WO2021057109A1 publication Critical patent/WO2021057109A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0016Protection against shocks or vibrations, e.g. vibration damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0019Protection against thermal alteration or destruction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0035Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS
    • B81B7/0038Packages or encapsulation for maintaining a controlled atmosphere inside of the chamber containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0083Temperature control
    • B81B7/009Maintaining a constant temperature by heating or cooling
    • B81B7/0093Maintaining a constant temperature by heating or cooling by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00277Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
    • B81C1/00285Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components

Definitions

  • the present invention mainly relates to the technical field of MEMS packaging, and specifically refers to a MEMS packaging component and packaging method based on 3D printing.
  • MEMS packaging refers to the housing used to install MEMS devices, which are connected to the pins of the package housing with wires through the contacts on the device, and these pins are connected to other devices through slots on the printed circuit board.
  • MEMS packaging plays the role of mechanical protection and electrical connection, protecting precision integrated circuits from mechanical and environmental damage, and ensuring the transmission of energy and signal conversion between the inside and outside of the device and between the components.
  • the general process consists of four major steps: device preparation, surface bonding, wire bonding and packaging.
  • MEMS bonding technology is the most challenging and important technology in MEMS packaging. Bonding technologies include anodic bonding, silicon fusion bonding, glass paste bonding, eutectic bonding, and cold pressure welding bonding technologies.
  • the packaging cover plates used in MEMS packaging and bonding technology are all solid and simple structures, which cannot meet the needs of application scenarios such as getter placement in a sealed cavity, multi-channel MEMS device packaging, etc., and its mold opening cost is high, and the development cycle is high. long.
  • the traditional getter is directly placed on the substrate.
  • the getter occupies the MEMS packaging space, resulting in lower output than the MEMS package without getter.
  • the getter directly placed on the substrate is heated A large amount of heat generated during activation is transferred to the MEMS device through the package substrate.
  • the technical problem to be solved by the present invention is that: in view of the technical problems existing in the prior art, the present invention provides a 3D printing-based MEMS package with low cost, good thermal conductivity, good impact resistance and high vacuum, and correspondingly Provide a simple packaging method.
  • a MEMS package based on 3D printing including a substrate, a MEMS device, a lead frame, and a 3D printed hollow package cover; the substrate is provided with pads; the package cover is formed by aligning and bonding with the substrate A hollow package, the MEMS device is mounted in the cavity of the package and fixed on the substrate, the signal pins of the MEMS device are electrically connected to the pads on the substrate, and the pads are connected to the leads
  • the frame is electrically connected; a receiving groove is printed on the side of the packaging cover away from the MEMS device, and a getter is placed in the receiving groove.
  • the hollow structure of the packaging cover plate is a honeycomb structure, a concave quadrilateral structure, a chiral structure or a circular structure.
  • the packaging cover plate and the substrate are aligned and bonded to form a plurality of cavities, and adjacent cavities are sealed with each other or are provided with venting grooves.
  • the invention also discloses a 3D printing-based MEMS package packaging method as described above, which includes the steps:
  • the packaging cover plate and the substrate are aligned and bonded to form a packaging body.
  • step S02 the MEMS device is pasted and fixed on the substrate, and the specific processes are: dispensing, sticking, curing and baking; the signal pins of the MEMS device and the pads of the substrate are connected by wire bonding or cooling.
  • the electrical connection is made by brazing.
  • step S03 the encapsulation cover plate and the substrate are aligned and bonded in a vacuum environment, and the bonding method is cold brazing bonding, organic adhesive bonding or glass paste bonding; among them, cold brazing
  • the metal solder used for bonding is tin, lead or silver; the organic adhesive used for organic adhesive bonding is epoxy resin; the glass paste bonding method uses glass paste.
  • step S03 the epoxy bonding pattern is printed by screen printing, the package cover is buckled with the substrate, and epoxy resin is directly bonded in a vacuum environment; or the package cover is first bonded with glass, ceramic, silicon, The silicon oxide or silicon carbide or lithium phosphate material is bonded, and then indirectly bonded with the substrate.
  • step S03 post-processing of the package body is performed according to process requirements, and the post-processing includes injection molding, electroplating, or rib cutting.
  • the materials required to print the package cover include 40 parts of cyanate resin, 30 parts of oxygen resin, 28 parts of acrylate, 1.5 parts of photoinitiator, 0.2 part of defoamer, 0.2 part of polymerization inhibitor and light absorption. Agent 0.1 part.
  • step S01 the printed package cover is post-processed: when the package cover is made of resin material, second exposure is performed; when the package cover is made of ceramic material, it is post-sintered; when the package cover is made of metal material, it is annealed , Shot peening.
  • the 3D printing-based MEMS package and packaging method of the present invention adopts micro-nano 3D printing technology to integrally form a hollow package cover. Compared with the current traditional micromachining method of package cover, it can save the cost of mold opening and injection molding process, thereby Reduce packaging costs and shorten the product development cycle; the packaging cover adopts a hollow structure, which improves the thermal conductivity, impact resistance and strength/quality ratio of the packaging cover; a getter is installed in the cavity of the package to increase the hollowness of the package.
  • the degree of vacuum in the cavity, while the getter is placed in the accommodating groove of the package cover on the side away from the MEMS device can save the packaging space for directly placing the getter, and at the same time avoid the heat transfer generated when the getter is activated. To the MEMS device, and affect the normal operation of the MEMS device.
  • the present invention creatively combines the advantages of 3D printing technology with MEMS packaging, designing and optimizing a more reasonable, economical and satisfying MEMS packaging structure for specific application scenarios, and using 3D printing technology to form one
  • the MEMS package cover can be indirectly or directly bonded to the substrate; it saves the mold opening cost and injection process of the traditional package cover, and is suitable for small batch, multi-variety, customized MEMS sensor packaging, and shortens the sensor development cycle.
  • the thermal conductivity, impact resistance and strength/quality of the package can also be improved by designing and optimizing the structure of the package cover.
  • FIG. 1 is a schematic diagram of the structure of the MEMS package of the present invention in an embodiment (a package cover plate with a honeycomb structure).
  • FIG. 2 is a schematic diagram of the structure of the MEMS package of the present invention in an embodiment (a package cover with a concave quadrilateral structure).
  • FIG. 3 is a schematic diagram of the structure of the MEMS package of the present invention in an embodiment (a package cover plate with a circular structure).
  • Fig. 4 is a schematic structural diagram (with a receiving groove) of the MEMS package of the present invention in an embodiment.
  • Fig. 5 is a schematic structural diagram (dual cavity) of the MEMS package of the present invention in an embodiment.
  • Fig. 6 is a comparison diagram of the energy absorption effects of various MEMS packages of the present invention.
  • the reference numerals in the figure indicate: 1. substrate; 2. adhesive; 3. silicon wafer; 4. MEMS device; 5. pad; 6. lead frame; 7. package cover; 8. cavity; 9. ventilation groove ; 10. Containment tank.
  • the 3D printing-based MEMS package of this embodiment includes a substrate 1, a MEMS device 4, a lead frame 6 and a 3D printed hollow package cover plate 7; a pad 5 is provided on the substrate 1
  • the package cover 7 and the substrate 1 are aligned and bonded to form a hollow package body, the MEMS device 4 is mounted in the cavity 8 of the package body and fixed on the substrate 1, and the signal pins of the MEMS device 4 are welded to the substrate 1
  • the disk 5 is electrically connected, the pad 5 is electrically connected to the lead frame 6, and the lead frame 6 is connected to the outside; the side of the package cover 7 away from the MEMS device 4 is printed with a receiving groove 10, and a getter ( Not shown in the figure).
  • the 3D printing-based MEMS package of the present invention adopts micro-nano 3D printing technology to integrally form a hollow package cover 7. Compared with the current traditional micromachining method of the package cover 7, it can save the cost of mold opening and injection molding process, thereby reducing Packaging cost, shorten the product development cycle; the packaging cover plate 7 adopts a hollow structure, which improves the thermal conductivity, impact resistance and strength/quality ratio of the packaging cover plate 7; a getter is provided in the cavity 8 of the package body to improve the packaging The degree of vacuum in the body cavity 8, while the getter is placed in the accommodating groove 10 of the packaging cover 7 on the side away from the MEMS device 4, which can save the packaging space for directly placing the getter and avoid the activation of the getter. The heat generated during the treatment is transferred to the MEMS device 4 and affects the normal operation of the MEMS device 4.
  • the hollow structure of the package cover 7 is a honeycomb structure, a concave quadrilateral structure, a chiral molecular structure, or a circular structure, and the thermal conductivity, impact resistance, and strength/mass ratio are improved through the above structure.
  • the overall shape of the packaging cover 7 is square or round, or the packaging cover 7 is an integrally formed packaging cover 7 with multiple cavities 8 connected by a vent 9 and the packaging cover 7 is aligned with the substrate 1 A plurality of cavities 8 are formed by bonding, and the adjacent cavities 8 are communicated with each other through the vent groove 9.
  • the cavities 8 can also be sealed.
  • the present invention also correspondingly discloses a packaging method of a MEMS package based on 3D printing, which includes the steps:
  • the package cover 7 and the substrate 1 are aligned and bonded to form a package body, wherein the MEMS device 4 is packaged in the cavity of the package body, and is connected to the outside of the package body through the lead frame 6.
  • step S03 post-processing is performed according to process requirements, such as injection molding, electroplating or rib cutting.
  • the micro-nano 3D printing technology in step S01 may be micro-stereolithography 3D printing technology (Stereo lithography appearance, SLA), selective laser sintering technology (Selective laser sintering, SLS), fused deposition molding technology (Fused) Deposition modeling, FDM), layered object manufacturing (LOM), direct metal laser sintering (DMLS) or electron beam melting (EBM), etc.; in addition, to ensure the MEMS bond
  • the materials are selected from high-temperature resistant and high-strength materials.
  • the printed package cover plate 7 is then subjected to post-processing. For example, the resin material needs secondary exposure, the ceramic material needs post-sintering, and the metal material undergoes annealing and shot peening.
  • the wafer thinning in step S01 may be thinner thinning or chemical mechanical polishing (CMP), and the scribing can be wheel scribing, laser scribing, plasma scribing, or the like.
  • CMP chemical mechanical polishing
  • step S02 the MEMS device 4 is pasted and fixed to the predetermined position of the silicon wafer 3 on the substrate 1 through the adhesive 2, and the specific processes are: dispensing, bonding, curing and baking; MEMS The signal pins of the device 4 and the pad 5 of the substrate 1 are electrically connected by wire bonding or cold soldering or other electrical connection methods.
  • step S03 the encapsulation cover 7 and the substrate 1 are aligned and bonded under a vacuum environment, and the bonding method is cold brazing bonding, epoxy bonding, or glass paste bonding.
  • cold brazing uses metal solders such as commonly used tin, lead, silver and other low-temperature metal solders; organic adhesives used for bonding such as epoxy resin; glass paste bonding uses glass pastes.
  • the printing method of metal paste, organic adhesive and glass paste may be screen printing, mask printing, casting type printing and the like.
  • the packaging cover 7 is a hemisphere with a radius of 2.5 mm and a wall thickness of 1 mm, and 12 honeycomb structures with a circumscribed circle of 0.5 mm are evenly distributed in the packaging cover 7;
  • the material is made of high temperature resistant resin, which contains 40 parts of cyanate resin, 30 parts of oxygen resin, 28 parts of acrylate, 1.5 parts of photoinitiator, 0.2 parts of defoamer, 0.2 parts of polymerization inhibitor, 0.1 part of light absorber;
  • the printing parameter settings are not the same.
  • Adopt IC device sticking technology to stick the MEMS device 4 to the lead frame 6.
  • the specific process is: dispensing-sticking-curing-baking four steps;
  • the lead frame 6 is placed, and the pad 5 of the MEMS device 4 and the lead frame 6 are electrically connected by ultrasonic ball welding with 70 ⁇ m gold wire;
  • the epoxy bonding pattern is printed by screen printing, the 3D printed package cover 7 and the substrate 1 are paired, and epoxy resin is directly bonded in a vacuum environment.
  • the package cover plate 7 can also be indirectly bonded with the substrate 1.
  • the package cover plate 7 is first bonded with glass, ceramic, silicon, silicon oxide, silicon carbide, lithium phosphate and other materials, and then bonded with the substrate. 1 Perform bonding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Micromachines (AREA)

Abstract

一种基于3D打印的MEMS封装件,包括基底(1)、MEMS器件(4)、引线框架(6)和3D打印的空心封装盖板(7);基底(1)上设置有焊盘(5);封装盖板(7)与基底(1)对准键合形成中空的封装体,MEMS器件(4)安装于空腔(8)内且固定于基底(1)上,MEMS器件(4)与基底(1)上的焊盘(5)电气连接,焊盘(5)与引线框架(6)电气连接;封装盖板(7)远离MEMS器件(4)的一侧打印有容纳槽(10),容纳槽(10)内放置有吸气剂。基于3D打印的MEMS封装件的导热性好、抗冲击性能好、真空度高、制作工艺简单、成本低。还提供了一种基于3D打印的MEMS封装件的封装方法。

Description

一种基于3D打印的MEMS封装件及封装方法 【技术领域】
本发明主要涉及MEMS封装技术领域,特指一种基于3D打印的MEMS封装件及封装方法。
【背景技术】
MEMS封装是指安装MEMS器件用的外壳,通过器件上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的插槽与其他器件相连接。MEMS封装起着进行机械保护和电连接,保护精密的集成电路避免由于机械和环境方面的侵害,并保证在器件的内外之间和各组成部分之间的能源的传递和信号的变换的作用,其一般过程为器件准备、表面键合、引线键合和封装四大步。目前,MEMS键合技术是MEMS封装中最富有挑战性和重要性的技术。键合技术有阳极键合、硅融合键合、玻璃浆料键合、共晶键合、冷压焊键合技术等键合技术。
目前,MEMS封装键合技术采用的封装盖板都是实心简单结构,不能满足如密封空腔内的吸气剂放置、多通道MEMS器件封装等应用场景需求,且其开模成本高昂,研发周期长。传统吸气剂是直接放置在基板上的,一方面吸气剂占用了MEMS封装空间,导致产量低于无吸气剂的MEMS封装,另一方面,直接放置在基板上的吸气剂在加热激活时产生的热量通过封装基板大量传至MEMS器件上。
【发明内容】
本发明要解决的技术问题就在于:针对现有技术存在的技术问题,本发明提供一种低成本、导热性好、抗冲击性能好且真空度高的基于3D打印的MEMS封装件,并相应提供一种步骤简单的封装方法。
为解决上述技术问题,本发明提出的技术方案为:
一种基于3D打印的MEMS封装件,包括基底、MEMS器件、引线框架和3D打印的空心封装盖板;所述基底上设置有焊盘;所述封装盖板与所述基底对准键合形成中空的封装体,所述MEMS器件安装于封装体的空腔内且固定于基底上,所述MEMS器件的信号引脚与所述基底上的焊盘电气连接,所述焊盘与所述引线框架电气连接;所述封装盖板远离MEMS器件的一侧打印有容纳槽,所述容纳槽内放置有吸气剂。
作为上述技术方案的进一步改进:
所述封装盖板的空心结构为蜂窝结构、内凹四边形结构、手性结构或圆形结构。
所述封装盖板与所述基底对准键合形成多个空腔,相邻空腔之间相互密封或设有通气槽。
本发明还公开了一种如上所述的基于3D打印的MEMS封装件的封装方法,包括步骤:
S01、通过3D打印技术打印空心封装盖板;采用减薄或划片处理圆片得到基底;
S02、将MEMS器件固定于基底上,并通过信号引脚与所述基底上的焊盘连接,再将焊盘与引线框架相连;
S03、所述封装盖板与所述基底对准键合形成封装体。
作为上述技术方案的进一步改进:
在步骤S02中,将MEMS器件粘贴固定于基底上,具体工艺依次为:点胶、粘片、固化和烘烤;所述MEMS器件信号引脚与基底的焊盘之间通过引线键合或冷钎焊进行电气连接。
在步骤S03中,在真空环境下进行封装盖板与所述基底的对准键合,键合方式为冷钎焊键合、有机粘合剂键合或玻璃浆料键合;其中冷钎焊键合采用的金属焊料为锡、铅或银;有机粘合剂键合采用的有机粘合剂为环氧树脂;玻璃浆料键合方式采用玻浆料。
在步骤S03中,以丝网印刷方式印刷环氧粘接图形,将封装盖板与基底对扣,在真空环境下采用环氧树脂直接键合;或者封装盖板先与玻璃、陶瓷、硅、硅的氧化物或碳化硅或磷酸锂材料键合,再与基底进行间接键合。
在步骤S03之后,根据工艺需求进行封装体后处理,所述后处理包括注塑、电镀或切筋成型。
在步骤S01中,打印封装盖板所需的材料包括氰酸酯树脂40份、氧树脂30份、丙烯酸酯28份、光引发剂1.5份、消泡剂0.2份、阻聚剂0.2份和光吸收剂0.1份。
在步骤S01中,打印完成的封装盖板再进行后处理:当封装盖板为树脂材料时进行二次曝光;当封装盖板为陶瓷材料时后期烧结,当封装盖板为金属材料时进行退火、喷丸处理。
与现有技术相比,本发明的优点在于:
本发明的基于3D打印的MEMS封装件及封装方法,采用微纳3D打印技术一体成型空心的封装盖板,相对于目前传统封装盖板微加工的方式,能够节省开模成本和注塑工序,从而降低封装成本,缩短产品研发周期;封装盖板采用空心结构,提升了封装盖板导热性、抗冲击性能和强度/质量比;在封装体的空腔内设有吸气剂,提高封装件空腔内的真空度,同时吸气剂放置于远离MEMS器件一侧的封装盖板的容纳槽内,能够省去直接放置吸气剂 的封装空间,同时避免在激活吸气剂时产生的热量传至MEMS器件,而影响MEMS器件正常工作。
本发明针对新型MEMS传感器研发与批量化生产,创造性地将3D打印技术优势与MEMS封装结合,通过设计和优化出更合理、更经济、满足特定应用场景的MEMS封装结构,运用3D打印技术一次成型MEMS封装盖板,进而可间接或直接的与基板键合;节省了传统封装盖板的开模成本和注塑工序,适用于少批量、多品种、定制化的MEMS传感器封装,缩短传感器研发周期,也能通过设计和优化封装盖板结构提高封装的导热性、抗冲击性和强度/质量。
【附图说明】
图1为本发明的MEMS封装件在实施例中的结构示意图(蜂窝结构的封装盖板)。
图2为本发明的MEMS封装件在实施例中的结构示意图(内凹四边形结构的封装盖板)。
图3为本发明的MEMS封装件在实施例中的结构示意图(圆形结构的封装盖板)。
图4为本发明的MEMS封装件在实施例中的结构示意图(带容纳槽)。
图5为本发明的MEMS封装件在实施例中的结构示意图(双空腔)。
图6为本发明的各MEMS封装件的能量吸收效果对比图。
图中标号表示:1、基底;2、粘结剂;3、硅片;4、MEMS器件;5、焊盘;6、引线框架;7、封装盖板;8、空腔;9、通气槽;10、容纳槽。
【具体实施方式】
以下结合说明书附图和具体实施例对本发明作进一步描述。
如图1至图5所示,本实施例的基于3D打印的MEMS封装件,包括基底1、MEMS器件4、引线框架6和3D打印的空心封装盖板7;基底1上设置有焊盘5;封装盖板7与基底1对准键合形成中空的封装体,MEMS器件4安装于封装体的空腔8内且固定于基底1上,MEMS器件4的信号引脚与基底1上的焊盘5电气连接,焊盘5与引线框架6电气连接,引线框架6则与外界连接;封装盖板7远离MEMS器件4的一侧打印有容纳槽10,容纳槽10内放置有吸气剂(图中未示出)。
本发明的基于3D打印的MEMS封装件,采用微纳3D打印技术一体成型空心的封装盖板7,相对于目前传统封装盖板7微加工的方式,能够节省开模成本和注塑工序,从而降低封装成本,缩短产品研发周期;封装盖板7采用空心结构,提升了封装盖板7导热性、抗冲击性能和强度/质量比;在封装体的空腔8内设有吸气剂,提高封装体空腔8内的真空度,同时吸气剂放置于远离MEMS器件4一侧的封装盖板7的容纳槽10内,能够省去直 接放置吸气剂的封装空间,同时避免在激活吸气剂时产生的热量传至MEMS器件4上,影响MEMS器件4正常工作。
本实施例中,封装盖板7的空心结构为蜂窝结构、内凹四边形结构、手性分子结构或圆形结构,通过上述结构提升导热性、抗冲击性能和强度/质量比。另外,封装盖板7的整体形状呈方形或圆拱形,或者封装盖板7为一体成型的由通气槽9相连多个空腔8的封装盖板7,封装盖板7与基底1对准键合形成多个空腔8,相邻空腔8之间通过通气槽9连通,当然,各空腔8之间也可以密封。通过对以上的结构的封装盖板7在有限元软件ABAQUS中以相同材料参数、边界条件的得到的能量吸收效果的对比图,由图6中可知,其能量吸收能力为:圆形结构>内凹四边形=蜂窝结构>实心结构。
本发明还相应公开了一种基于3D打印的MEMS封装件的封装方法,包括步骤:
S01、通过3D打印技术打印空心封装盖板7;采用减薄或划片处理圆片得到基底1;
S02、将MEMS器件4固定于基底1上,并通过信号引脚与基底1上的焊盘5连接,再将焊盘5与引线框架6相连;
S03、封装盖板7与基底1对准键合形成封装体,其中MEMS器件4被封装在封装体的腔体内,通过引线框架6与封装体外部连接。
本实施例中,在步骤S03之后,根据工艺需求进行后处理,如注塑、电镀或切筋成型。
本实施例中,步骤S01中的微纳3D打印技术可以为微立体光刻3D打印技术(Stereo lithography appearance,SLA)、选择性激光烧结技术(Selective laser sintering,SLS)、熔融沉积成型技术(Fused deposition modeling,FDM)、分层实体制造技术(Laminated object manufacturing,LOM)、直接金属激光烧结(Direct metal laser sintering,DMLS)或电子束熔炼技术(Electron beam melting,EBM)等;另外为了保证MEMS键合质量和工艺要求,材料选用耐高温、高强度的材料。其中打印完成的封装盖板7再进行后处理,如树脂材料需要二次曝光,陶瓷材料需要后期烧结,金属材料进行退火、喷丸处理等。
本实施例中,步骤S01中的圆片减薄可以是减薄机减薄或化学机械抛光(CMP),划片可采用车轮划片、激光划片或等离子体划片等。
本实施例中,在步骤S02中,将MEMS器件4通过粘结剂2粘贴固定于基底1上的硅片3的预定位置,具体工艺依次为:点胶、粘片、固化和烘烤;MEMS器件4信号引脚与基底1的焊盘5之间通过引线键合或冷钎焊或其它电气连接方法进行电气连接。
本实施例中,在步骤S03中,在真空环境下进行封装盖板7与基底1的对准键合,键合方式为冷钎焊键合、环氧树脂键合或玻璃浆料键合。其中冷钎焊采用的金属焊料如常用的锡、铅、银等低温金属焊料;有机粘合剂键合采用的有机粘合剂如环氧树脂;玻璃浆料 键合方式采用玻浆料等。金属浆料、有机粘合剂和玻璃浆料的印刷方法可以是丝网印刷、掩模印刷、流延型印刷等。
下面结合一完整实施例对本发明的上述方法做进一步说明,具体为:
(1)封装盖板7建模
封装盖板7为半径2.5mm,壁厚1mm的半球,12个外接圆为0.5mm的蜂窝结构均匀分布在封装盖板7中;
(2)模型切片
以sliceshop切片软件将模型居中放置并以20微米层厚切片;
(3)材料选择
为保证MEMS键合质量,材料选用耐高温树脂,其包含氰酸酯树脂份40、氧树脂30份、丙烯酸酯28份、光引发剂1.5份、消泡剂0.2份、阻聚剂0.2份、光吸收剂0.1份;
(4)3D打印平台放置
选用P140(摩方材料,深圳)PμSL 3D打印设备,将打印平台清洁并水平放置;
(5)封装盖板7的3D打印参数设置并打印
根据不同树脂材料、光机参数、层厚其打印参数设置不尽相同,以光强45mw/mm2、曝光时间4s、打印层厚20μm为具体参数并开始打印;
(6)取出封装盖板7并后处理
取出封装盖板7后用酒精超声处理、超声处理后放入二次固化箱内固化半个小时到2小时即可;
(7)圆片减薄/划片
同普通塑封集成电路晶圆减薄,采用金刚石刀片划片,划片进刀速度控制在小于10mm/s;
(8)粘片
采用IC器件粘片技术将MEMS器件4粘接到引线框架6上,具体工艺过程为:点胶-粘片-固化-烘烤四个步骤;
(9)引线键合
放置引线框架6,采用超声波球焊接70μm金丝将MEMS器件4的焊盘5与引线框架6进行电气连接;
(10)键合
以丝网印刷方式印刷环氧粘接图形,将3D打印封装盖板7和基底1对扣,在真空环境下采用环氧树脂直接键合。在其它实施例,封装盖板7也可以间接与基底1进行键合, 如封装盖板7先与玻璃、陶瓷、硅、硅的氧化物、碳化硅、磷酸锂等材料键合,再与基底1进行键合。
虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

Claims (10)

  1. 一种基于3D打印的MEMS封装件,其特征在于,包括基底(1)、MEMS器件(4)、引线框架(6)和3D打印的空心封装盖板(7);所述基底(1)上设置有焊盘(5);所述封装盖板(7)与所述基底(1)对准键合形成中空的封装体,所述MEMS器件(4)安装于封装体的空腔(8)内且固定于基底(1)上,所述MEMS器件(4)的信号引脚与所述基底(1)上的焊盘(5)电气连接,所述焊盘(5)与所述引线框架(6)电气连接;所述封装盖板(7)远离MEMS器件(4)的一侧打印有容纳槽(10),所述容纳槽(10)内放置有吸气剂。
  2. 根据权利要求1所述的基于3D打印的MEMS封装件,其特征在于,所述封装盖板(7)的空心结构为蜂窝结构、内凹四边形结构或圆形结构。
  3. 根据权利要求1所述的基于3D打印的MEMS封装件,其特征在于,所述封装盖板(7)与所述基底(1)对准键合形成多个空腔(8),相邻空腔(8)之间相互密封或设有通气槽(9)。
  4. 一种如权利要求1或2或3所述的基于3D打印的MEMS封装件的封装方法,其特征在于,包括步骤:
    S01、通过3D打印技术打印空心封装盖板(7);采用减薄或划片处理圆片得到基底(1);
    S02、将MEMS器件(4)固定于基底(1)上,并通过信号引脚与所述基底(1)上的焊盘(5)连接,再将焊盘(5)与引线框架(6)相连;
    S03、所述封装盖板(7)与所述基底(1)对准键合形成封装体。
  5. 根据权利要求4所述的封装方法,其特征在于,在步骤S02中,将MEMS器件(4)粘贴固定于基底(1)上,具体工艺依次为:点胶、粘片、固化和烘烤;所述MEMS器件(4)信号引脚与基底(1)的焊盘(5)之间通过引线键合或冷钎焊进行电气连接。
  6. 根据权利要求4所述的封装方法,其特征在于,在步骤S03中,在真空环境下进行封装盖板(7)与所述基底(1)的对准键合,键合方式为冷钎焊键合、有机粘合剂键合或玻璃浆料键合;其中冷钎焊键合采用的金属焊料为锡、铅或银;有机粘合剂键合采用的有机粘合剂为环氧树脂;玻璃浆料键合方式采用玻浆料。
  7. 根据权利要求4所述的封装方法,其特征在于,在步骤S03中,以丝网印刷方式印刷环氧粘接图形,将封装盖板(7)与基底(1)对扣,在真空环境下采用环氧树脂直接键合;或者封装盖板(7)先与玻璃、陶瓷、硅、硅的氧化物或碳化硅或磷酸锂材料键合,再与基底(1)进行间接键合。
  8. 根据权利要求4至7中任意一项所述的封装方法,其特征在于,在步骤S03之后, 根据工艺需求进行封装体后处理,所述后处理包括注塑、电镀或切筋成型。
  9. 根据权利要求4至7中任意一项所述的封装方法,其特征在于,在步骤S01中,打印封装盖板(7)所需的材料包括氰酸酯树脂40份、氧树脂30份、丙烯酸酯28份、光引发剂1.5份、消泡剂0.2份、阻聚剂0.2份和光吸收剂0.1份。
  10. 根据权利要求4至7中任意一项所述的封装方法,其特征在于,在步骤S01中,打印完成的封装盖板(7)再进行后处理:当封装盖板(7)为树脂材料时进行二次曝光;当封装盖板(7)为陶瓷材料时后期烧结,当封装盖板(7)为金属材料时进行退火、喷丸处理。
PCT/CN2020/096328 2019-09-27 2020-06-16 一种基于3d打印的mems封装件及封装方法 WO2021057109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910923585.7 2019-09-27
CN201910923585.7A CN111017864A (zh) 2019-09-27 2019-09-27 一种基于3d打印的mems封装件及封装方法

Publications (1)

Publication Number Publication Date
WO2021057109A1 true WO2021057109A1 (zh) 2021-04-01

Family

ID=70199549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096328 WO2021057109A1 (zh) 2019-09-27 2020-06-16 一种基于3d打印的mems封装件及封装方法

Country Status (2)

Country Link
CN (1) CN111017864A (zh)
WO (1) WO2021057109A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021109180A1 (de) 2021-04-13 2022-10-13 Tdk Corporation Deckel, MEMS-Sensorbauelement und Herstellungsverfahren

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111017864A (zh) * 2019-09-27 2020-04-17 株洲国创轨道科技有限公司 一种基于3d打印的mems封装件及封装方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773358A (zh) * 2004-09-27 2006-05-17 Idc公司 具有吸气剂的mems装置及系统,及其封装方法
CN102583219A (zh) * 2012-03-29 2012-07-18 江苏物联网研究发展中心 一种晶圆级mems器件的真空封装结构及封装方法
US20140252584A1 (en) * 2013-03-05 2014-09-11 Global Circuit Innovations Incorporated Method and apparatus for printing integrated circuit bond connections
CN104882418A (zh) * 2014-02-28 2015-09-02 英飞凌科技股份有限公司 封装半导体芯片的方法及具有倾斜表面的半导体封装体
CN106964306A (zh) * 2017-05-12 2017-07-21 中国科学院上海高等研究院 具有分形蜂窝结构的微通道板、气液反应器及反应系统
US20190207582A1 (en) * 2017-12-29 2019-07-04 Texas Instruments Incorporated 3d printing of protective shell structures for stress sensitive circuits
CN111017864A (zh) * 2019-09-27 2020-04-17 株洲国创轨道科技有限公司 一种基于3d打印的mems封装件及封装方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431510B2 (en) * 2017-10-09 2019-10-01 Global Circuit Innovations, Inc. Hermetic lid seal printing method
CN208862029U (zh) * 2018-08-01 2019-05-14 云谷(固安)科技有限公司 显示面板及设有其的显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773358A (zh) * 2004-09-27 2006-05-17 Idc公司 具有吸气剂的mems装置及系统,及其封装方法
CN102583219A (zh) * 2012-03-29 2012-07-18 江苏物联网研究发展中心 一种晶圆级mems器件的真空封装结构及封装方法
US20140252584A1 (en) * 2013-03-05 2014-09-11 Global Circuit Innovations Incorporated Method and apparatus for printing integrated circuit bond connections
CN104882418A (zh) * 2014-02-28 2015-09-02 英飞凌科技股份有限公司 封装半导体芯片的方法及具有倾斜表面的半导体封装体
CN106964306A (zh) * 2017-05-12 2017-07-21 中国科学院上海高等研究院 具有分形蜂窝结构的微通道板、气液反应器及反应系统
US20190207582A1 (en) * 2017-12-29 2019-07-04 Texas Instruments Incorporated 3d printing of protective shell structures for stress sensitive circuits
CN111017864A (zh) * 2019-09-27 2020-04-17 株洲国创轨道科技有限公司 一种基于3d打印的mems封装件及封装方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021109180A1 (de) 2021-04-13 2022-10-13 Tdk Corporation Deckel, MEMS-Sensorbauelement und Herstellungsverfahren
US11956579B2 (en) 2021-04-13 2024-04-09 Tdk Corporation Lid, MEMS sensor component and methods of manufacturing

Also Published As

Publication number Publication date
CN111017864A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
JP3137322B2 (ja) 半導体装置の製造方法及び半導体装置製造用金型及び半導体装置
TWI466200B (zh) 用於模塑底膠填充之方法及裝置
JP5732286B2 (ja) 半導体装置の製造方法
EP0853337B1 (en) Method for manufacturing semiconductor device
WO2021057109A1 (zh) 一种基于3d打印的mems封装件及封装方法
CN105895539B (zh) 芯片倒装封装中间结构和倒装封装结构及倒装封装方法
JPH08107161A (ja) 電子部品、電子部品素材および電子部品の製造方法
WO2001043518A1 (en) Chip package with molded underfill
CN105762084B (zh) 倒装芯片的封装方法及封装装置
EP3038144B1 (en) A process for manufacturing a package for a surface-mount semiconductor device
CN112750934A (zh) 紫外led封装结构及其封装方法
CN106653626A (zh) 用于半导体封装件的再制工艺和工具设计
CN111226308A (zh) 一种具有高稳定性粘结层的半导体装置及其制备方法
JPH11307586A (ja) 半導体装置とその製造方法、実装方法および用途
KR101525158B1 (ko) 인쇄회로기판 조립체 및 그 제조방법
CN110556343A (zh) 一种预防分层的封装结构及封装工艺
JP4594777B2 (ja) 積層型電子部品の製造方法
CN106158783B (zh) 具有防溢胶结构的散热片装置
JP2000294578A (ja) 半導体装置の製造方法及び半導体装置製造用金型及び半導体装置及びその実装方法
JP5795411B2 (ja) 半導体装置
CN111540691A (zh) 半导体封装结构及其封装方法
CN114759139B (zh) 滤波器低成本封装工艺
CN117153994A (zh) MiniLED显示模组的制备方法
CN100411121C (zh) 散热型封装结构及其制法
CN108598044A (zh) 塑封方法及采用该塑封方法制备的封装体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867727

Country of ref document: EP

Kind code of ref document: A1