WO2021056894A1 - 一种公交车动力锂电池保温机务管理方法和云管理服务器 - Google Patents

一种公交车动力锂电池保温机务管理方法和云管理服务器 Download PDF

Info

Publication number
WO2021056894A1
WO2021056894A1 PCT/CN2019/128602 CN2019128602W WO2021056894A1 WO 2021056894 A1 WO2021056894 A1 WO 2021056894A1 CN 2019128602 W CN2019128602 W CN 2019128602W WO 2021056894 A1 WO2021056894 A1 WO 2021056894A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
target
power
battery
heating
Prior art date
Application number
PCT/CN2019/128602
Other languages
English (en)
French (fr)
Inventor
林春敏
李鸿海
林佳享
孙玮佳
陈龙志
潘玉晶
彭振文
柯志达
苏亮
陈卫强
Original Assignee
厦门金龙联合汽车工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门金龙联合汽车工业有限公司 filed Critical 厦门金龙联合汽车工业有限公司
Publication of WO2021056894A1 publication Critical patent/WO2021056894A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of bus maintenance management, in particular to a bus maintenance maintenance management method of lithium battery power and a cloud management server.
  • the purpose of the present invention is to provide a maintenance management method for bus power lithium battery heat preservation, which can intelligently manage the cell temperature and remaining power (SOC) of the power battery to ensure operation Driving safety at the stage; at the same time, reasonably arrange the charging time and the power and duration of auxiliary heating for the buses returning to the field under low temperature environment to ensure the normal operation of the vehicle the next day and avoid untimely management of lithium battery temperature and remaining power at low temperature The delay caused by the departure of the vehicle.
  • SOC cell temperature and remaining power
  • a maintenance management method for the power lithium battery of a bus including: establishing a battery heating curve function, the battery heating curve function is a function based on the charging and holding strategy, and inputting the starting time point and the starting temperature and starting temperature at the time point For the remaining power, the target temperature and the target remaining power at the target time are calculated according to the charging and holding strategy; the charging and holding strategy includes: auxiliary heating power, heating time, charging power, charging time, and heating and charging sequence;
  • the return to field charging and heat preservation management process is executed, and the return to field charging and heat preservation management process includes:
  • Obtain charging and heat preservation target parameters the parking lot off-duty time point, that is, the first target time point, and the first target battery cell temperature and the first target remaining power at the first target time point;
  • auxiliary heating power, heating time, charging power, charging time, and the sequence of heating and charging required for the selection of the charging and heat preservation strategy are fitted to the battery heating curve function to meet the expectations at the first target time point
  • the cell temperature is greater than or equal to the first target cell temperature
  • the expected remaining power at the first target time point is greater than or equal to the first target remaining power, including the steps:
  • auxiliary heating power Set the auxiliary heating power to zero. According to the vehicle’s return parameters and charging power, predict the first charging time when the remaining power from the return to the first target remaining power, and the remaining power from the return to the first target. The temperature of the first battery cell when the battery is remaining;
  • the process of determining the auxiliary heating simultaneous charging strategy or the determining process of the heating first and then charging strategy is executed;
  • the first return duration is the duration between the first target time point and the return time point.
  • the process of determining the heating first and then charging strategy includes:
  • the current auxiliary heating power calculate the first heating duration from the return cell temperature to the first target cell temperature
  • the output will be the first auxiliary heating and then the charging strategy, and the charging power under the first auxiliary heating and then the charging strategy, the first charging duration, the auxiliary heating power, and the second A heating time;
  • the current auxiliary heating power is increased and updated, and the process of determining the heating first and then charging strategy is executed again.
  • the process of determining the auxiliary heating simultaneous charging strategy includes:
  • auxiliary heating power and charging power re-predict the first charging time and the first battery cell temperature when the remaining power from the return field reaches the first target remaining power under the combined action of the auxiliary heating power and the charging power;
  • the auxiliary heating power is increased, and the auxiliary heating simultaneous charging strategy determination process is executed again;
  • the auxiliary heating time is the second charging time ;
  • the auxiliary heating power is increased, and the auxiliary heating simultaneous charging strategy determination process is executed again;
  • the second heating time when the cell temperature reaches the first target cell temperature is calculated to continue heating after charging;
  • the first charging duration and the second heating duration When the sum of the first charging duration and the second heating duration is less than or equal to the duration of the first return field, output the auxiliary heating while charging and then the independent heating strategy, and the auxiliary heating simultaneously charging and then the charging power under the independent heating strategy, the first charging
  • the duration, the auxiliary heating power and the second heating duration, the duration of the auxiliary heating is the sum of the first charging duration and the second heating duration.
  • the battery cooling curve function is matched, and the battery cooling curve function is a decreasing function of battery cell temperature-time;
  • the second starting time point is the first target time point
  • the second starting temperature is the minimum value of the first target cell temperature
  • the battery heat preservation function is a cell temperature-time relation function based on the ambient temperature and the battery heat preservation coefficient.
  • start-up power supplement and heating management process when the vehicle is in preparation for the first departure, and the start-up power supplement and heating management process includes:
  • the battery heating curve function is fitted to obtain the charging and heat preservation strategy
  • the required auxiliary heating power, heating time, charging power, and charging time are such that the expected battery cell temperature at the third target time point is not lower than the third target battery temperature, and the expected remaining power at the third target time is not lower than The third target remaining power.
  • the operation stage management process includes:
  • the method for pushing the anchorage warning information includes at least one of short message sending, Web page, and APP push, and is used to notify the maintenance management personnel of the anchorage warning information on the way.
  • a cloud management server which includes an application server, a database server, a Web server, and a communication server; the application server is used to execute a heat preservation maintenance management program, which implements the above-mentioned bus power lithium battery Insulation machinery management method;
  • the database server is used to provide an access service, and the access service stores at least a battery heating curve function and its associated database, a charging and heat preservation strategy, and historical records of the battery power and cell temperature of the bus;
  • the communication server is used to establish communication between the cloud management server, buses and parking lots.
  • APP server which is used to provide smart terminal APP invocation service.
  • the bus power lithium battery thermal maintenance management method of the present invention uses the Internet of Vehicles technology to obtain vehicle thermal insulation related data and form a battery temperature function, and provides an intelligent bus power lithium battery maintenance management program in a low temperature environment.
  • the management method By obtaining the real-time data related to the vehicle and heat preservation, and then predicting the remaining return time and return temperature in the operation phase in real time through the operation battery temperature function, so as to ensure the driving safety in the operation phase; at the same time, in the return phase, through the battery heating curve function, Predict the required auxiliary heating power/duration, and charging time, and arrange charging and auxiliary heating reasonably to ensure that the battery cell temperature and remaining power of the vehicle are in the preset range before the next day of operation in the low temperature environment to ensure that the vehicle It can operate normally, avoiding the delay of departure caused by the temperature of the lithium battery and the untimely management of the remaining power at low temperatures.
  • Figure 1 is a block diagram of the maintenance management process of the bus power lithium battery thermal insulation of the present invention
  • Figure 2 is a flow chart of temperature and remaining power management during operation
  • Figure 3 is a flow chart of determining various parameters in the return stage
  • Figures 4, 5, and 6 are flowcharts of determining the charging and keeping warm strategy during the return phase
  • Fig. 7 is a functional block diagram of the bus power lithium battery heat preservation maintenance management system of the present invention.
  • the present invention discloses a maintenance management method for bus power lithium battery thermal insulation, which includes data preparation, operation phase management process, and return phase management process.
  • the customized simulation results are equivalent to obtaining the battery temperature function of the specific power lithium battery of a specific vehicle under a specific use condition, and inputting the corresponding situation can map the temperature state of the battery at this time, including the battery heating curve function and battery cooling Curve function.
  • the vehicle will perform 2C fast charging at 5:30/10:30/15:50 every day to achieve a power SOC of 100%/80%/75%, 6:00/11:00/16 Starting at 30:30 and carrying passengers at a specific average power, the vehicle will return to the field at 21:30. It can be predicted by the battery cooling curve function in the battery temperature function: when the vehicle’s return cell temperature is 20°C, heat preservation measures (such as Cover the battery with thermal insulation cotton, etc.).
  • the battery cooling curve function is the cell temperature-time curve under the setting of a low-temperature environment temperature and the insulation coefficient of the insulation measures. The cell temperature under natural cooling can be predicted through the cooling time.
  • the battery cooling curve function also includes a remaining power-time curve under a set low-temperature ambient temperature and a heat preservation coefficient of the heat preservation measure, and the remaining power under natural cooling can be predicted by the length of the temperature reduction.
  • the temperature that the power battery can reach after a certain period of time can be calculated by charging, heating and keeping warm.
  • the locomotive management system automatically plans the battery insulation strategy according to the battery temperature function, and then performs operation and maintenance arrangements according to the battery insulation strategy and the specific needs of the locomotive manager to ensure that the vehicle is charged and discharged on time.
  • step S20 operation phase management process, as shown in Figure 2.
  • Step S201 Match the operating battery temperature function: match the corresponding operating battery temperature function from the operating function library of the locomotive system according to the vehicle model, operating route, driver and other information.
  • Step S202 Calculate by operating battery temperature function: obtain the predicted value Temp6 of the return cell temperature and the predicted value of the remaining return duration tt1 according to the real-time data related to the vehicle battery insulation.
  • Steps S203 and S204 safe return prediction predict whether the vehicle will break down on the way based on the predicted value of the return cell temperature Temp6 and the remaining return time prediction value tt1: the predicted value of the return cell temperature Temp6 is too low or the remaining return time The predicted value tt1 is too short and the vehicle may not be able to return to the designated parking lot.
  • Step S205 If it is predicted that the vehicle will break down on the way due to temperature and other reasons, notify the maintenance management personnel of the break down warning information on the way through SMS, web, APP push and other methods.
  • the maintenance personnel take relevant measures based on the actual situation: stop the vehicle from carrying passengers on the way, and replace them with other vehicles to continue to carry passengers, and the vehicle will recharge the nearby battery and implement battery insulation maintenance.
  • the management process in the operation phase is updated periodically to adapt to changes in operating conditions, usually every 5-10 minutes.
  • step S30 the management process of the return phase is performed, as shown in Figs. 3-6.
  • the system parameters set in the return phase are: buffering time (vehicle power battery standing time) is tt2, the parking lot off time of the day (hereinafter referred to as the first target time point) is t1, and the parking lot on the next day (hereinafter referred to as the first target time) is t1.
  • the second target time point) is t2
  • the first departure time (hereinafter referred to as the third target time point) is t3
  • the battery remaining power target value at the first departure hereeinafter referred to as the third target remaining power
  • SOC3 battery remaining power target value
  • the battery cell temperature target value (hereinafter referred to as the third target cell temperature) is Temp3.
  • the operating conditions for the first shift of the next day at the second target time point t2, the remaining power of the vehicle reaches the second target Remaining power SOC2; the cell temperature reaches the second target cell temperature Temp2.
  • Step S301 Obtain the initial state of the vehicle returning to the field: return time point t4; return remaining power SOC4; return cell temperature Temp4, battery resting time tt2.
  • Step S302 Predetermined battery core insulation target: the first target battery cell temperature Temp1 at the first target time point t1 (ie, the parking lot off-duty time point).
  • Step S303 Matching the battery heating curve function: according to the vehicle conditions (model, battery cell, operating conditions, heat preservation conditions, etc.), matching the battery heating curve function for specific charging and auxiliary heating conditions;
  • Step S304 Set the operating conditions for the first shift of the next day, that is, the remaining power of the vehicle battery reaches the second target remaining power SOC2 and the cell temperature reaches the second target cell temperature Temp2; execute the return battery insulation target management process, which is functioned by the battery temperature
  • the battery cooling curve function in predicts the first target battery cell temperature Temp1 of the vehicle when the parking lot is off work (the first target time point t1) (the battery cell needs to be heated in a cold environment, and the battery cell temperature is determined by the return cell temperature Temp4
  • the temperature is raised to the first target cell temperature Temp1 to ensure that under natural heat dissipation conditions, the temperature of the battery cells when they go to work in the parking lot the next day will not be too low. At this temperature, the vehicle can still be warmed up normally).
  • the input parameters of the battery heating curve function the initial state of the vehicle return to the field and output parameters: the charging and heat preservation target, select the charging and auxiliary heating strategy to meet the requirements of heating the cell temperature by the return cell temperature during the first return period
  • the first target battery cell temperature is reached, and the remaining power is charged from the return remaining power to the first target remaining power; wherein, the first return time is the length of time from the time of return to the time when the parking lot is off duty.
  • the charging power W1 is taken as a constant according to the model parameters of the charging pile.
  • Step S403 Determine whether to assist heating: if the first time point t5 is greater than the first target time point t1, the charging time is insufficient; or the first cell temperature Temp5 is less than the first target cell temperature Temp1, which indicates that the Joule heat for charging is not enough to support The power battery reaches the first target cell temperature Temp1 on time.
  • the system determines that auxiliary heating of the power battery is needed, and then adjusts to execute the auxiliary heating determination process; when the first time point t5 is less than or equal to the first target time point t1, and the first time point t5 is less than or equal to the first target time point t1, and the first time point t5 is less than or equal to the first target time point t1, and the first time point t5 is less than or equal to the first target time point t1, If the cell temperature Temp5 is greater than or equal to the first target cell temperature Temp1, the system judges that the cell can meet the cell insulation target by only raising the temperature of the cell by Joule heat during charging, and then proceeds to step S404.
  • Step S404 Execute the charging strategy.
  • auxiliary heating needs to be provided, and the auxiliary heating method and auxiliary heating power W2 are determined through the auxiliary heating determination process.
  • auxiliary heating There are two methods for auxiliary heating, one is heating first and then charging, and the other is charging at the same time as auxiliary heating.
  • the heating mode can be manually or automatically selected.
  • the auxiliary heating power W2 is set in multiple gears, preset to the lowest gear, and the heating time required to reach the heat preservation target can be reduced by increasing the auxiliary heating power.
  • Step S601 In the case of heating first and then charging, priority is given to ensuring the heating time, and the system queries the auxiliary heating temperature rise curve table or calculates the auxiliary heating temperature rise curve function to obtain the required battery cell temperature to reach the first target battery temperature Temp1
  • the first heating time is tt4.
  • Step S602 According to the actual situation of the vehicle, confirm whether charging is required after auxiliary heating, and recalculate the required charging time, that is, the first charging time tt3. At this time, the charging target does not require the remaining power to reach 100%.
  • Step S603 Calculate the second time point t6 after auxiliary heating from t4+tt2+tt4+tt3.
  • Step S604 when the second time point t6 is greater than or equal to the first target time point t1, skip to step S605; when the second time point t6 is less than the first target time point t1, skip to step S606.
  • Step S605 Increase the auxiliary heating power W2, and jump back to step S601 to re-execute the judgment process that the auxiliary heating is not charged at the same time.
  • Step S606 using the current auxiliary heating power W2, execute the strategy of first auxiliary heating and then charging.
  • Step S501 In the case of selecting auxiliary heating while charging, the auxiliary heating power W2 is set, and the first cell temperature Temp5 and the first time point t5 are recalculated.
  • Step S502 When the first cell temperature Temp5 is greater than or equal to the first target cell temperature Temp1, skip to step S503; when the second time point t6 is greater than the first target time point t1, then skip to S510; If the core temperature Temp5 is less than the first target cell temperature Temp1, and the first time point t5 is less than the first target time point t1, then jump to S506.
  • Step S503 Calculate the second time point t6 at which the cell temperature reaches the first target cell temperature Temp1 during the charging process.
  • Step S504 when the second time point t6 is less than or equal to the first target time point t1, go to step S505; when the second time point t6 is greater than the first target time point t1, go to step S510.
  • Step S505 Using the current auxiliary heating power W2, execute the auxiliary charging simultaneous charging strategy.
  • Step S506 continue heating after charging, and the second heating time required to heat the cell temperature to the first target cell temperature Temp1 is tt5.
  • Step S508 When the second time point t6 is less than or equal to the first target time point t1, go to step S509; when the second time point t6 is greater than the first target time point t1, go to step S510.
  • Step S509 using the current auxiliary heating power W2, execute the auxiliary heating and simultaneous charging and then a separate heating strategy.
  • Step S510 Increase the auxiliary heating power W2, and return to step S501.
  • the auxiliary heating power W2 is finally determined.
  • the independent heating strategy or the auxiliary heating simultaneous heating strategy is executed, and the first cell temperature Temp5 is guaranteed before the first target time point t1. Heat to the first target cell temperature Temp1.
  • Plan notification Push the plan to the maintenance manager via SMS, web or APP.
  • the battery heating curve function is fitted to obtain the charging insulation
  • the auxiliary heating power, heating time, charging power, and charging time required by the strategy are such that the expected cell temperature at the third target time point is not lower than the third target cell temperature, and the expected remaining power at the third target time is not low The remaining power at the third target.
  • the bus power lithium battery thermal insulation management method of the present invention obtains the vehicle thermal insulation related data through the Internet of Vehicles technology and forms the battery temperature function, and provides an intelligent bus power lithium battery maintenance management method in a low temperature environment.
  • the method obtains real-time data related to the vehicle and heat preservation, and then predicts the remaining return time and return temperature during the operation phase through the battery temperature function in the operation phase, so as to ensure driving safety in the operation phase; at the same time, the battery heating curve is used in the return phase Function, predict the required auxiliary heating power/duration, charging time (usually the charging power is a certain value, determined by the matching charging pile), reasonably arrange the charging and auxiliary heating to ensure that the vehicle will start the next day in a low temperature environment
  • the battery cell temperature and remaining power of the preceding vehicle are within a safe range to ensure that the vehicle can operate normally, and to avoid delays caused by untimely management of the lithium battery temperature and SOC at low temperatures.
  • the present invention also discloses a cloud management server 10.
  • the cloud management server 10, the bus 31, and the parking lot 32 constitute a bus power lithium battery thermal insulation maintenance management method.
  • the cloud management server 10 includes a business server 102 (Or called application server), database server 103, web server 105 and communication server 101; among them, the business server 102 exposes the business logic to the client program through various protocols. It provides access to business logic for use by client applications.
  • One or more computers running in the local area network and database management system software together constitute the database server 103.
  • the database server 103 provides services for client applications.
  • the Web server 105 specializes in processing HTTP requests, allowing the administrator to access by web browsing on the PC terminal 42.
  • the server also provides an APP server 104, which can push information to the administrator's smart terminal APP41, providing administrators with convenient management services anytime and anywhere.
  • the bus power lithium battery thermal insulation maintenance management program runs in the business server 102, and communicates in real time through the communication server 101, the mobile communication network 20, the bus 31, and the parking lot 32 to realize the cloud management server 10, the bus 31, and the parking lot 32. According to the temperature information of today and tomorrow, the information of bus 31 and parking lot 32, implement the maintenance management method of bus power lithium battery insulation in time.
  • the management method obtains the temperature information of today and tomorrow, the real-time data related to the vehicle and heat preservation, and the basic information of the parking lot, and then predicts the remaining return time and return temperature during the operation stage through the operation battery temperature function, and sends it to the bus in time Early warning to ensure driving safety in the operation phase; at the same time, in the return phase, through the battery heating curve function, predict the required auxiliary heating power/duration, and charging time, and reasonably arrange the vehicle for charging and auxiliary heating to ensure the low temperature Environment
  • the bus power lithium battery thermal insulation maintenance management program caches real-time data in the database server 103, and then stores the operating data in the archive database and historical database according to business needs, such as storing the daily charging schedule execution status in the archive database .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种公交车动力锂电池保温机务管理方法和云管理服务器,本管理方法利用车联网技术获取车辆的保温相关数据并形成电池升温曲线函数和电池降温曲线函数,进而在运营阶段通过电池降温曲线函数实时预测剩余回场时长和回场温度,从而保证运营阶段的行车安全;同时在回场阶段,选择充电保温策略所需的辅助加热功率、加热时间、充电功率、充电时间及加热充电的顺序,对电池升温曲线函数进行拟合,合理地安排充电和辅助加热,以保证在低温环境下,车辆的电芯温度和剩余电量满足次日首班运营条件,避免低温下锂电池的电芯温度、剩余电量管理不及时造成的出车延误。

Description

一种公交车动力锂电池保温机务管理方法和云管理服务器 技术领域
本发明涉及公交车机务管理领域,尤其涉及一种公交车动力锂电池保温机务管理方法和云管理服务器。
背景技术
在能源危机共识下,新能源纯电汽车是全球范围内公认的可有效缓解危机替代传统燃油车的解决方案,因此也需要发展出适应纯电能源环境下的各种车载动力电池的运行环境保证系统。为保证寒冷地区的电力驱动车辆在-20℃以下的气温情况下正常行驶,根据GBT31467.2-2015《电动汽车用锂离子动力蓄电池包和系统第二部分高能量应用测试规程》7.1.4中规定:蓄电池包和系统需要测试0℃和-20℃下的1/3C,1C和Imax(T)能量和容量。按照目前的锂电池低温性能水平,绝大部分厂家的锂电池都无法在无电芯加热保温措施的情况下满足-20℃低温环境能量和容量的性能指标。如中国北纬45°以上的高纬度地区,冬天气温常常低于-30℃,在这种情况下,公交车运营机务管理中,避免纯电公交车的动力锂电池在低温环境下静置过度降温无法顺利启动的电池温度管理系统闲的尤为重要。传统的纯电公交车锂电池低温温度管理方案一个缺陷是依靠人工经验判断,没有系统的对动力电池的热特性进行定量分析,通过人工记忆和经验行车的车辆动力电池温度管理过于粗放,电池加热时机、加热时间、功率等相关管理参数没有系统的理论依据,缺乏可靠性。
发明内容
有鉴于现有技术的上述缺陷,本发明的目的是提供一种公交车动力锂电池保温机务管理方法,能智能化的对动力电池的电芯温度和剩余电量(SOC)进行管理,从而保证运营阶段的行车安全;同时为低温环境下的回场的公交车合理的安排充电时间和辅助加热的功率、时长,以保证次日车辆能正常运营,避免低温下锂电池温度、剩余电量管理不及时造成的出车延误。
为实现上述目的,本发明提供了以下技术方案:
一种公交车动力锂电池保温机务管理方法,包括:建立电池升温曲线函数,所述电池升温曲线函数是基于充电保温策略的函数,输入起始时间点及该时间点的起始温度、起始剩余电量,根据充电保温策略,计算获得在目标时间点的目标温度和目标剩余电量;所述充电保温策略包括:辅助加热功率、加热时间、充电功率、充电时间及加热充电的顺序;
当车辆回场时,执行回场充电保温管理流程,所述回场充电保温管理流程包括:
获取回场参数:回场时间点,及回场时间点的回场温度和回场剩余电量;
获取充电保温目标参数:停车场下班时间点,即第一目标时间点,及第一目标时间点的 第一目标电芯温度和第一目标剩余电量;
以回场时间点,回场温度和回场剩余电量为所述起始时间点、起始温度和起始剩余电量;
及以第一目标时间点,第一目标电芯温度和第一目标剩余电量为所述目标时间点、目标温度和目标剩余电量;
选择充电保温策略所需的辅助加热功率、加热时间、充电功率、充电时间及加热充电的顺序,对所述电池升温曲线函数拟合,以满足在第一目标时间点的预期电芯温度大于等于第一目标电芯温度,在第一目标时间点的预期剩余电量大于等于第一目标剩余电量。
进一步的,所述选择充电保温策略所需的辅助加热功率、加热时间、充电功率、充电时间及加热充电的顺序,对所述电池升温曲线函数拟合,以满足在第一目标时间点的预期电芯温度大于等于第一目标电芯温度,在第一目标时间点的预期剩余电量大于等于第一目标剩余电量,包括步骤:
设置辅助加热功率为零,根据车辆的回场参数和充电功率,预测剩余电量从回场剩余电量达到第一目标剩余电量时的第一充电时长,和剩余电量从回场剩余电量达到第一目标剩余电量时的第一电芯温度;
当第一充电时长大于第一回场时长,或第一电芯温度小于第一目标电芯温度时,执行辅助加热同时充电策略的判定流程或先加热后充电策略的判定流程;
当第一充电时长小于等于第一回场时长,且第一电芯温度大于等于第一目标电芯温度时,输出充电策略,及充电策略下的充电功率和第一充电时长;
所述第一回场时长为第一目标时间点和回场时间点之间的时长。
进一步的,所述先加热后充电策略的判定流程,包括:
根据当前的辅助加热功率,计算电芯温度从回场电芯温度达到第一目标电芯温度的第一加热时长;
在电芯温度为第一目标电芯温度的条件下,重新计算第一充电时长;
当第一加热时长和第一充电时长之和小于等于第一回场时长,输出先辅助加热后充电策略,及先辅助加热后充电策略下的充电功率、第一充电时长、辅助加热功率、第一加热时长;
当第一加热时长和第一充电时长之和大于第一回场时长,加大并更新当前的辅助加热功率,重新执行先加热后充电策略判定流程。
进一步的,所述辅助加热同时充电策略判定流程,包括:
根据当前的辅助加热功率和充电功率,重新预测在辅助加热功率和充电功率共同作用下,剩余电量从回场剩余电量达到第一目标剩余电量时的第一充电时长和第一电芯温度;
当第一电芯温度大于等于第一目标电芯温度,则根据当前的辅助加热功率和充电功率计 算充电过程中电芯温度从回场电芯温度达到第一目标电芯温度的第二充电时长;
当第二充电时长大于第一回场时长,则加大辅助加热功率,重新执行辅助加热同时充电策略判定流程;
当第二充电时长小于等于第一回场时长,则输出辅助加热同时充电策略,及辅助加热同时充电策略下的充电功率、辅助加热功率和第二充电时长,辅助加热的时长为第二充电时长;
当第一电芯温度小于第一目标电芯温度,且第一充电时长大于等于第一回场时长,则加大辅助加热功率,重新执行辅助加热同时充电策略判定流程;
当第一电芯温度小于第一目标电芯温度,且第一充电时长小于第一回场时长,则计算充电后继续加热,电芯温度达到第一目标电芯温度的第二加热时长;
当第一充电时长和第二加热时长之和大于第一回场时长,则加大辅助加热功率,重新执行辅助加热同时充电策略判定流程;
当第一充电时长和第二加热时长之和小于等于第一回场时长,则输出辅助加热同时充电后再单独加热策略,及辅助加热同时充电后再单独加热策略下的充电功率、第一充电时长、辅助加热功率和第二加热时长,辅助加热的时长为第一充电时长和第二加热时长之和。
进一步的,还包括回场电池保温目标管理流程:
建立电池降温曲线函数,每个所述电池降温曲线函数的控制参数包括环境温度和电池保温系数;
根据环境温度和电池保温系数,匹配电池降温曲线函数,所述电池降温曲线函数是一个电芯温度-时间的递减函数;
设定第二目标时间点的第二目标电芯温度,所述第二目标时间点为停车场次日上班时间点;
根据电池降温曲线函数,获得第二起始时间点及该时间点的第二起始温度;
所述第二起始时间点为第一目标时间点,所述第二起始温度为第一目标电芯温度的最小值。
进一步的,所述电池保温函数的是基于环境温度、电池保温系数的电芯温度-时间的关系函数。
进一步的,还包括当车辆处于首班发车准备时,执行发车补电加温管理流程,所述发车补电加温管理流程包括:
设定第三目标时间点及该时间点的第三目标电芯温度、第三目标剩余电量;
以第二目标时间点的实时电芯温度和实时剩余电量,及第三目标时间点、第三目标电芯 温度、第三目标剩余电量,通过所述电池升温曲线函数拟合,获得充电保温策略所需的辅助加热功率、加热时间、充电功率、充电时间,使得在第三目标时间点的预期电芯温度不低于第三目标电芯温度,在第三目标时间的预期剩余电量不低于第三目标剩余电量。
进一步的,还包括当车辆处于运营状态时,执行运营阶段管理流程;所述运营阶段管理流程包括:
实时获取车辆的实时电芯温度和实时剩余电量;
根据实时电芯温度、实时剩余电量和位置信息获得车辆的回场电芯温度预测值和剩余回场时长预测值;
根据回场电芯温度预测值、剩余回场时长预测值,预测车辆是否能安全回场,并发出抛锚预警信息。
进一步的,所述抛锚预警信息的推送方法,包括短信发送、Web页面、APP推送中的至少一种,用于将途中的抛锚预警信息通知机务管理人员。
一种云管理服务器,其包括应用程序服务器、数据库服务器、Web服务器和通信服务器;所述应用程序服务器用于执行保温机务管理程序,所述保温机务管理程序实现如上所述的公交车动力锂电池保温机务管理方法;
所述数据库服务器用于提供存取服务,所述存取服务至少存储有电池升温曲线函数及其关联数据库,充电保温策略及公交车的电池电量和电芯温度的历史记录;
所述通信服务器用于建立所述云管理服务器和公交车、停车场之间的通信。
进一步的,还包括APP服务器,所述APP服务器用于提供智能终端APP的调用服务。
本发明的公交车动力锂电池保温机务管理方法利用车联网技术获取车辆的保温相关数据并形成电池温度函数,给出在低温环境下的智能化的公交车动力锂电池机务管理方案,该管理方法通过获取车辆与保温相关的实时数据,进而通过运营电池温度函数在运营阶段实时预测剩余回场时长和回场温度,从而保证运营阶段的行车安全;同时在回场阶段,通过电池升温曲线函数,预测所需的辅助加热功率/时长,和充电时长,合理地安排充电和辅助加热,以保证在低温环境下次日车辆在运营前处于车辆的电芯温度和剩余电量处于预设范围,保证车辆能正常运营,避免低温下锂电池温度、剩余电量管理不及时造成的出车延误。
附图说明
图1是本发明的公交车动力锂电池保温机务管理流程框图;
图2是运营阶段温度及剩余电量管理流程图;
图3是回场阶段的各参数的确定流程图;
图4、图5、图6是回场阶段的充电保温策略判定流程图;
图7是本发明的公交车动力锂电池保温机务管理系统的功能框图。
附图标记:
t1-第一目标时间点;
t2-第二目标时间点;
t3-第三目标时间点;
t4-回场时间点;
t5-第一时间点;
t6-第二时间点;
SOC1-第一目标剩余电量
SOC2-第二目标剩余电量;
SOC3-第三目标剩余电量;
SOC4-回场剩余电量;
Temp1-第一目标电芯温度;
Temp2-第二目标电芯温度;
Temp3-第三目标电芯温度;
Temp4-回场电芯温度;
Temp5-第一电芯温度;
Temp6-回场电芯温度预测值;
W1-充电功率;
W2-辅助加热功率;
tt1-剩余回场时长预测值;
tt2-缓冲时长;
tt3-第一充电时长;
tt4-第一加热时长;
tt5-第二加热时长。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
现结合附图和具体实施方式对本发明进一步说明。
如图1-图6所示,本发明公开了一种公交车动力锂电池保温机务管理方法,包括数据准备、运营阶段管理流程和回场阶段管理流程。
一、数据准备
步骤S10:
(1)通过车型数据远程采集系统和试验中心的数据库,筛选出目标车型和目标锂电池的相关数据,如:-20℃左右环境下的特定运营工况车辆回场时电池温度统计、该型号电池在此车型保温措施的影响下的冷却温度变化、该车型水暖装置的热通量等;
(2)对上述数据进行统计处理,对互相影响的数据建立互相映射的关系数据库,同时建立系统迭代仿真的初始边界条件和物理属性初始赋值参数,如:环境温度-20℃、回场状态电芯初始温度为25℃、集电金属为铜、电芯纵向传热系数34.958w/(m.k)、电芯横向传热系数0.87451w/(m.k)、电芯间缝隙为空气对流传热、钢制电箱外壳、铝制水冷板(系统自动进行相关材料属性赋值)、电芯和电箱外壳间硅胶垫传热等;
(3)根据公交车客户使用场景对数据库进行查询,得出概率上最符合的定制化充放电工况下的电池温度变化数据表,但此表不能覆盖所有使用情况;
(4)对上述定制化情况进行同条件初始仿真,仿真的结果数据和定制化数据参数表进行对比计算,对仿真的初始设定参数进行修正,根据再次得出的仿真结果和定制数据对比再次调整参数设定进行仿真计算,如此迭代直到仿真结果和实测采集的数据符合拟合条件;
(5)定制化仿真结果相当于得到了特定车型特定动力锂电池在特定使用工况的电池温度函数,输入相应的情况就能映射出电池此时的温度状态,包括电池升温曲线函数和电池降温曲线函数。比如:-20℃环境温度下,车辆每天分别在5:30/10:30/15:50进行2C快速充电达到电量SOC为100%/80%/75%、6:00/11:00/16:30开始以特定平均功率运营载客,21:30车辆回场,可通过电池温度函数中的电池降温曲线函数预测:当车辆的回场电芯温度20℃时,在未实施保温措施(如给电池覆盖保温棉等)下,经自然冷却次日3:00电芯温度降至-20℃,在该温度下,车辆无法正常加热和充电;在采取保温措施下,经自然冷却,次日3:00电芯温度降至5℃,在该温度下,车辆可以正常加热和充电,但不适合出车,需要辅助加热。电池降温曲线函数是在设定低温的环境温度和保温措施的保温系数下的电芯温度-时间的曲线,可通过降温的时长预测自然冷却下的电芯温度。可选的,电池降温曲线函数还包括在设定低温的环境温度和保温措施的保温系数下的剩余电量-时间的曲线,可通过降温的时长预测自然冷却下的剩余电量。通过电池升温曲线函数,可计算出动力电池通过充电、加热保温等方式进行升温,在一定时间后能达到的温度。
二、运营阶段管理流程
机务管理系统根据电池温度函数,自动规划出电池保温策略,进而根据电池保温策略和机车管理者具体需要进行运维安排,保证车辆按时充电出车。
1、接收车辆电池保温相关实时数据:电芯温度、剩余电量、环境温度、放电电流和当前GPS位置等。
2、根据排班信息和当前GPS位置信息,判断车辆是否正在运营。
3、若车辆在运营中,则执行步骤S20:运营阶段管理流程,如图2所示。
步骤S201:匹配运营电池温度函数:根据车辆车型、运营线路、司机等信息从机务系统的运营函数库中匹配相应的运营电池温度函数。
步骤S202:通过运营电池温度函数计算:根据车辆电池保温相关实时数据得出回场电芯温度预测值Temp6、剩余回场时长预测值tt1。
步骤S203、S204安全回场预测:根据回场电芯温度预测值Temp6、剩余回场时长预测值tt1,预测车辆是否会途中抛锚:因回场电芯温度预测值Temp6过低或者剩余回场时长预测值tt1过短导致车辆可能无法回到指定停车场。
步骤S205:若预测车辆将会因温度等原因途中抛锚,则通过短信、web、APP推送等方式将途中抛锚预警信息通知机务管理人员。机务人员根据实际情况采取相关措施:让车辆途中停止载客,由其他车辆替代继续载客,而该车则就近补电和实施电池保温维护。
运营阶段管理流程为周期性更新,以适应运营工况的变化,通常每5-10分钟更新一次。
三、回场阶段管理流程
若车辆已回场,则执行步骤S30:回场阶段管理流程,如图3-图6所示。
在回场阶段设置的系统参数有:缓冲时长(车辆动力电池静置时长)为tt2,当日停车场下班时间(以下称第一目标时间点)为t1,次日停车场上班时间(以下称第二目标时间点)为t2,首班发车时间点(以下称第三目标时间点)为t3,首班发车时的电池的剩余电量目标值(以下称第三目标剩余电量)为SOC3,首班发车时的电池的电芯温度目标值(以下称第三目标电芯温度)为Temp3。
为保证车辆次日停车场上班时间时能正常加温、补电,并保证车辆能按时首班发车,设定次日首班运营条件:在第二目标时间点t2,车辆的剩余电量达到第二目标剩余电量SOC2;电芯温度达到第二目标电芯温度Temp2。
步骤S301:获得车辆回场的初始状态:回场时间点t4;回场剩余电量SOC4;回场电芯温度Temp4,电池静置时间tt2。
步骤S302:预定电芯保温目标:在第一目标时间点t1(即停车场下班时间点)的第一目标电芯温度Temp1。
步骤S303:匹配电池升温曲线函数:根据车辆情况(车型、电芯、运营工况、保温情况等),匹配特定充电及辅助加热工况的电池升温曲线函数;
步骤S304:设定次日首班运营条件,即车辆电池的剩余电量达到第二目标剩余电量SOC2、电芯温度达到第二目标电芯温度Temp2;执行回场电池保温目标管理流程,由电池温度函数中的电池降温曲线函数预估出停车场下班(第一目标时间点t1)时车辆的第一目标电芯温度Temp1(在严寒环境电池电芯需要加热,电芯温度由回场电芯温度Temp4升温到第一目标电芯温度Temp1,保证在自然散热条件下,电池电芯到次日停车场上班时的温度不会太低,在该温度下,车辆仍能正常补温出车)。
获得电池升温曲线函数的输入参数:车辆回场的初始状态和输出参数:充电保温目标,选择充电及辅助加热策略,以满足在第一回场时长内将电芯温度由回场电芯温度加热到第一目标电芯温度,且将剩余电量由回场剩余电量充电到第一目标剩余电量;其中,所述第一回场时长为回场时间点到停车场下班时间点的时长。
由于车辆在充电的同时,会产生焦耳热,会让电池温度上升。因此,在选择充电及辅助加热策略时,优先考虑充电策略,即通过给电池充电即可完成充电保温目标。
步骤S401:充电计算:在充电功率为W1的情况下,根据电芯充电的电芯升温曲线函数(电芯内阻产生的焦耳热I2R)计算第一电芯温度Temp5,其中第一电芯温度Temp5为充电至电池的剩余电量等于第一目标剩余电量SOC1(第一目标剩余电量SOC1可以是100%或其它值,在本实施例中SOC1=100%)时的电芯温度,所需充电时间为第一充电时长tt3。为保护电池寿命,充电功率W1根据充电桩的型号参数取常量。
步骤S402:计算充电后的第一时间点t5,t5=t4+tt2+tt3。
步骤S403:判断是否辅助加热:如果第一时间点t5大于第一目标时间点t1说明充电时间不够;或者第一电芯温度Temp5小于第一目标电芯温度Temp1,说明充电的焦耳热不足以支持动力电池按时达到第一目标电芯温度Temp1,这时系统判断需要对动力电池进行辅助加热,则调整到执行辅助加热判定流程;当第一时间点t5小于等于第一目标时间点t1,且第一电芯温度Temp5大于等于第一目标电芯温度Temp1,系统判断电芯仅靠充电时的焦耳热升温即可满足电芯保温目标,则进入步骤S404。
步骤S404:执行充电策略。
当单独通过充电不足以完成充电保温目标时,则需要提供辅助加热,并通过辅助加热判定流程,确定辅助加热方式和辅助加热功率W2。
辅助加热可采用两种方式,一种是先加热后充电,一种是在辅助加热同时充电。该加热模式可通过手动或自动选择。
辅助加热功率W2设置有多档,预设为最低档位,可通过加大辅助加热功率减少达到保温目标所需的加热时间。
(1)先加热后充电策略判定流程:
步骤S601:在选择先加热后充电的情况下,优先保证加热时长,系统查询辅助加热升温曲线表或通过辅助加热升温曲线函数计算,得出电芯温度达到第一目标电芯温度Temp1所需的第一加热时长tt4。
步骤S602:根据车辆的实际情况,确认在辅助加热后是否需要充电,并重新计算所需充电时间,即第一充电时长tt3,此时充电目标不要求剩余电量达到100%。
步骤S603:由t4+tt2+tt4+tt3计算出辅助加热后的第二时间点t6。
步骤S604:当第二时间点t6大于等于第一目标时间点t1,则跳转到步骤S605;当第二时间点t6小于第一目标时间点t1,则跳转到步骤S606。
步骤S605:加大辅助加热功率W2,并跳转回步骤S601重新执行辅助加热不同时充电的判定流程。
步骤S606:采用当前的辅助加热功率W2,执行先辅助加热后充电的策略。
先加热后充电策略判定流程,在保证一定的充电时间下,在第一目标时间点t1前保证将第一电芯温度Temp5加热到第一目标电芯温度Temp1。
(2)辅助加热同时充电策略判定流程:
步骤S501:在选择辅助加热同时充电的情况下,设置辅助加热功率W2,重新计算第一电芯温度Temp5和第一时间点t5。
步骤S502:当第一电芯温度Temp5大于等于第一目标电芯温度Temp1,则跳转步骤S503;当第二时间点t6大于第一目标时间点t1,则跳转到S510;当第一电芯温度Temp5小于第一目标电芯温度Temp1,且第一时间点t5小于第一目标时间点t1,则跳转到S506。
步骤S503:计算充电过程中电芯温度达到第一目标电芯温度Temp1的第二时间点t6。
步骤S504:当第二时间点t6小于等于第一目标时间点t1,则进入步骤S505;当第二时间点t6大于第一目标时间点t1,则跳转到步骤S510。
步骤S505:采用当前的辅助加热功率W2,执行辅助充电同时充电策略。
步骤S506:则充电后继续加热,将电芯温度加热到第一目标电芯温度Temp1所需的第二加热时长为tt5。
步骤S507:计算辅助加热后的第二时间点t6,t6=t2+tt5。
步骤S508:当第二时间点t6小于等于第一目标时间点t1,则转步骤S509;当第二时间点t6大于第一目标时间点t1,则转步骤S510。
步骤S509:采用当前的辅助加热功率W2,执行辅助加热同时充电后再单独加热策略。
步骤S510:加大辅助加热功率W2,并返回步骤S501。
通过辅助加热同时充电策略判定流程,最终确定辅助加热功率W2,执行辅助加热同时充电后再单独加热策略或执行辅助加热同时加热策略,在第一目标时间点t1前保证将第一电芯温度Temp5加热到第一目标电芯温度Temp1。
5、方案告知:通过短信、web或者APP向机务管理员推送方案。
6、次日运营前准备方案确定:在次日停车场上班时间(即第二目标时间点t2)时获取实时数据:车辆的剩余电量和电芯温度,不低于第二目标剩余电量SOC2和第二目标电芯温度Temp2。在运营前需要满足第三目标电芯温度Temp3和第三目标剩余电量SOC3。
在运营车辆的首班发车时间t3前预留准备时间,执行发车补电加温管理流程。具体方案判定可参考图6的先加热后充电策略判定流程或图5的辅助加热同时充电策略判定流程,确认是否充电或者辅助加热(电池静置时会出现电量和温度下降)。即以第二目标时间点的实时电芯温度和实时剩余电量,及第三目标时间点、第三目标电芯温度、第三目标剩余电量,通过所述电池升温曲线函数拟合,获得充电保温策略所需的辅助加热功率、加热时间、充电功率、充电时间,使得在第三目标时间点的预期电芯温度不低于第三目标电芯温度,在第三目标时间的预期剩余电量不低于第三目标剩余电量。
7、次日运营前准备方案告知:通过短信、web或者APP向机务管理员推送方案。
本发明的公交车动力锂电池保温机务管理方法是通过车联网技术获取车辆的保温相关数据并形成电池温度函数,给出在低温环境下的智能化的公交车动力锂电池机务管理方法,该管理方法通过获取车辆与保温相关的实时数据,进而通过运营阶段的电池温度函数在运营阶段预测剩余回场时长和回场温度,从而保证运营阶段的行车安全;同时在回场阶段,通过电池升温曲线函数,预测所需的辅助加热功率/时长、充电时长(通常充电功率为一定值,由匹配的充电桩决定),合理地安排充电和辅助加热,以保证在低温环境下车辆在次日首班发车前车辆的电芯温度和剩余电量处于安全范围,保证车辆能正常运营,避免低温下锂电池温度、SOC管理不及时造成的出车延误。
实施例二
如图7所示,本发明还公开了一种云管理服务器10,云管理服务器10和公交车31、停车场32构成公交车动力锂电池保温机务管理方法,该云管理服务器10包括业务服务器102(或称应用程序服务器)、数据库服务器103、Web服务器105和通信服务器101;其中,业务服务器102通过各种协议把商业逻辑曝露给客户端程序。它提供了访问商业逻辑的途径以供客户端应用程序使用。运行在局域网中的一台或多台计算机和数据库管理系统软件共同构 成了数据库服务器103,数据库服务器103为客户应用提供服务,这些服务包括查询、更新、事务管理、索引、高速缓存、查询优化、安全及多用户存取控制等,Web服务器105专门处理HTTP请求,允许管理员通过在PC终端42上以web浏览的方式访问。为实现多元化的管理手段,该服务器还提供APP服务器104,可将信息推送到管理员的智能终端APP41中,为管理员提供随时随地的便捷管理服务。
公交车动力锂电池保温机务管理程序运行于业务服务器102中,通过通信服务器101、移动通信网络20和公交车31、停车场32进行实时通信,实现云管理服务器10和公交车31、停车场32的信息交互,及时根据今明两天的温度信息、公交车31和停车场32的信息,执行公交车动力锂电池保温机务管理方法。该管理方法通过获取今明两天的温度信息、车辆与保温相关的实时数据和停车场的基础信息,进而通过运营电池温度函数在运营阶段预测剩余回场时长和回场温度,及时向公交车发出预警,从而保证运营阶段的行车安全;同时在回场阶段,通过电池升温曲线函数,预测所需的辅助加热功率/时长,和充电时长,合理地安排车辆进行充电和辅助加热,以保证在低温环境下次日车辆在运营前处于车辆的电芯温度和剩余电量处于预设范围,保证车辆能正常运营,避免低温下锂电池温度、剩余电量管理不及时造成的出车延误。该公交车动力锂电池保温机务管理程序将实时数据缓存于数据库服务器103中,进而根据业务需要将运行数据存储于档案数据库和历史数据库,如将每日的充电调度的执行情况存储于档案数据库中。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (10)

  1. 一种公交车动力锂电池保温机务管理方法,其特征在于,包括:
    建立电池升温曲线函数,所述电池升温曲线函数是基于充电保温策略的函数,输入起始时间点及该时间点的起始温度、起始剩余电量,根据充电保温策略,计算获得在目标时间点的目标温度和目标剩余电量;所述充电保温策略包括:辅助加热功率、加热时间、充电功率、充电时间及加热充电的顺序;
    当车辆回场时,执行回场充电保温管理流程,包括:
    获取回场参数:回场时间点,及回场时间点的回场温度和回场剩余电量;
    获取充电保温目标参数:停车场下班时间点,即第一目标时间点,及第一目标时间点的第一目标电芯温度和第一目标剩余电量;
    以回场时间点,回场温度和回场剩余电量为所述起始时间点、起始温度和起始剩余电量;
    及以第一目标时间点,第一目标电芯温度和第一目标剩余电量为所述目标时间点、目标温度和目标剩余电量;
    选择充电保温策略所需的辅助加热功率、加热时间、充电功率、充电时间及加热充电的顺序,对所述电池升温曲线函数拟合,以满足在第一目标时间点的预期电芯温度大于等于第一目标电芯温度,在第一目标时间点的预期剩余电量大于等于第一目标剩余电量。
  2. 如权利要求1所述的公交车动力锂电池保温机务管理方法,其特征在于,所述选择充电保温策略所需的辅助加热功率、加热时间、充电功率、充电时间及加热充电的顺序,对所述电池升温曲线函数拟合,以满足在第一目标时间点的预期电芯温度大于等于第一目标电芯温度,在第一目标时间点的预期剩余电量大于等于第一目标剩余电量,包括步骤:
    设置辅助加热功率为零,根据车辆的回场参数和充电功率,预测剩余电量从回场剩余电量达到第一目标剩余电量时的第一充电时长,和剩余电量从回场剩余电量达到第一目标剩余电量时的第一电芯温度;
    当第一充电时长大于第一回场时长,或第一电芯温度小于第一目标电芯温度时,执行辅助加热同时充电策略的判定流程或先加热后充电策略的判定流程;
    当第一充电时长小于等于第一回场时长,且第一电芯温度大于等于第一目标电芯温度时,输出充电策略,及充电策略下的充电功率和第一充电时长;
    所述第一回场时长为第一目标时间点和回场时间点之间的时长。
  3. 如权利要求2所述的公交车动力锂电池保温机务管理方法,其特征在于,所述先加热后充电策略的判定流程,包括:
    根据当前的辅助加热功率,计算电芯温度从回场电芯温度达到第一目标电芯温度的第一加热时长;
    在电芯温度为第一目标电芯温度的条件下,重新计算第一充电时长;
    当第一加热时长和第一充电时长之和小于等于第一回场时长,输出先辅助加热后充电策略,及先辅助加热后充电策略下的充电功率、第一充电时长、辅助加热功率、第一加热时长;
    当第一加热时长和第一充电时长之和大于第一回场时长,加大并更新当前的辅助加热功率,重新执行先加热后充电策略判定流程。
  4. 如权利要求2所述的公交车动力锂电池保温机务管理方法,其特征在于,所述辅助加热同时充电策略判定流程,包括:
    根据当前的辅助加热功率和充电功率,重新预测在辅助加热功率和充电功率共同作用下,剩余电量从回场剩余电量达到第一目标剩余电量时的第一充电时长和第一电芯温度;
    当第一电芯温度大于等于第一目标电芯温度,则根据当前的辅助加热功率和充电功率计算充电过程中电芯温度从回场电芯温度达到第一目标电芯温度的第二充电时长;
    当第二充电时长大于第一回场时长,则加大辅助加热功率,重新执行辅助加热同时充电策略判定流程;
    当第二充电时长小于等于第一回场时长,则输出辅助加热同时充电策略,及辅助加热同时充电策略下的充电功率、辅助加热功率和第二充电时长,辅助加热的时长为第二充电时长;
    当第一电芯温度小于第一目标电芯温度,且第一充电时长大于等于第一回场时长,则加大辅助加热功率,重新执行辅助加热同时充电策略判定流程;
    当第一电芯温度小于第一目标电芯温度,且第一充电时长小于第一回场时长,则计算充电后继续加热,电芯温度达到第一目标电芯温度的第二加热时长;
    当第一充电时长和第二加热时长之和大于第一回场时长,则加大辅助加热功率,重新执行辅助加热同时充电策略判定流程;
    当第一充电时长和第二加热时长之和小于等于第一回场时长,则输出辅助加热同时充电后再单独加热策略,及辅助加热同时充电后再单独加热策略下的充电功率、第一充电时长、辅助加热功率和第二加热时长,辅助加热的时长为第一充电时长和第二加热时长之和。
  5. 如权利要求1所述的公交车动力锂电池保温机务管理方法,其特征在于,还包括回场电池保温目标管理流程:
    建立电池降温曲线函数,每个所述电池降温曲线函数的控制参数包括环境温度和电池保温系数;
    根据环境温度和电池保温系数,匹配电池降温曲线函数,所述电池降温曲线函数是一个电芯温度-时间的递减函数;
    设定第二目标时间点的第二目标电芯温度,所述第二目标时间点为停车场次日上班时间点;
    根据电池降温曲线函数,获得第二起始时间点及该时间点的第二起始温度;
    所述第二起始时间点为第一目标时间点,所述第二起始温度为第一目标电芯温度的最小值。
  6. 如权利要求1所述的公交车动力锂电池保温机务管理方法,其特征在于,还包括当车辆处于首班发车准备时,执行发车补电加温管理流程,所述发车补电加温管理流程包括:
    设定第三目标时间点及该时间点的第三目标电芯温度、第三目标剩余电量;
    以第二目标时间点的实时电芯温度和实时剩余电量,及第三目标时间点、第三目标电芯温度、第三目标剩余电量,通过所述电池升温曲线函数拟合,获得充电保温策略所需的辅助加热功率、加热时间、充电功率、充电时间,使得在第三目标时间点的预期电芯温度不低于第三目标电芯温度,在第三目标时间的预期剩余电量不低于第三目标剩余电量。
  7. 如权利要求1所述的公交车动力锂电池保温机务管理方法,其特征在于,还包括当车辆处于运营状态时,执行运营阶段管理流程;所述运营阶段管理流程包括:
    实时获取车辆的实时电芯温度和实时剩余电量;
    根据实时电芯温度、实时剩余电量和位置信息获得车辆的回场电芯温度预测值和剩余回场时长预测值;
    根据回场电芯温度预测值、剩余回场时长预测值,预测车辆是否能安全回场,并发出抛锚预警信息。
  8. 如权利要求7所述的公交车动力锂电池保温机务管理方法,其特征在于:所述抛锚预警信息的推送方法,包括短信发送、Web页面、APP推送中的至少一种,用于将途中的抛锚预警信息通知机务管理人员。
  9. 一种云管理服务器,其特征在于:包括应用程序服务器、数据库服务器、Web服务器和通信服务器;
    所述应用程序服务器用于执行保温机务管理程序,所述保温机务管理程序实现如权利要求1-8任一项所述的公交车动力锂电池保温机务管理方法;
    所述数据库服务器用于提供存取服务,所述存取服务至少存储有电池升温曲线函数及其关联数据库,充电保温策略及公交车的电池电量和电芯温度的历史记录;
    所述通信服务器用于建立所述云管理服务器和公交车、停车场之间的通信联系。
  10. 如权利要求9所述的云管理服务器,其特征在于:还包括APP服务器,所述APP服务器用于提供智能终端APP的调用服务。
PCT/CN2019/128602 2019-09-24 2019-12-26 一种公交车动力锂电池保温机务管理方法和云管理服务器 WO2021056894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910903773.3A CN110581320B (zh) 2019-09-24 2019-09-24 一种公交车动力锂电池保温机务管理方法和云管理服务器
CN201910903773.3 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021056894A1 true WO2021056894A1 (zh) 2021-04-01

Family

ID=68813543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128602 WO2021056894A1 (zh) 2019-09-24 2019-12-26 一种公交车动力锂电池保温机务管理方法和云管理服务器

Country Status (2)

Country Link
CN (1) CN110581320B (zh)
WO (1) WO2021056894A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581320B (zh) * 2019-09-24 2021-05-04 厦门金龙联合汽车工业有限公司 一种公交车动力锂电池保温机务管理方法和云管理服务器
CN111123946B (zh) * 2019-12-30 2023-04-11 广东智源机器人科技有限公司 云轨送餐车的功率调控方法、装置、送餐车和存储介质
CN114619925B (zh) * 2022-03-30 2023-08-25 重庆金康赛力斯新能源汽车设计院有限公司 锂离子电池低温快充加热方法、装置、设备和存储介质
CN116945969B (zh) * 2023-07-19 2024-02-09 隆瑞三优新能源汽车科技有限公司 一种新能源公交车充电监测方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150120226A1 (en) * 2013-10-31 2015-04-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Battery degradation monitoring system
CN106143203A (zh) * 2016-08-28 2016-11-23 安徽安凯汽车股份有限公司 一种适用于寒冷地区纯电动客车的电池热管理系统
CN106558736A (zh) * 2015-09-25 2017-04-05 江苏威能汽车工业发展有限公司 一种电动汽车锂电池管理系统
CN108987829A (zh) * 2018-07-26 2018-12-11 刘宗锋 一种电动汽车锂电池保温系统
CN208596762U (zh) * 2018-07-26 2019-03-12 山东科技大学 一种电动汽车锂电池保温系统
CN110176655A (zh) * 2019-05-16 2019-08-27 江苏金派克新能源有限公司 新型锂电池散热保温系统
CN110581320A (zh) * 2019-09-24 2019-12-17 厦门金龙联合汽车工业有限公司 一种公交车动力锂电池保温机务管理方法和云管理服务器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3798217B2 (ja) * 2000-03-30 2006-07-19 Tdk株式会社 2次電池用保護回路
JP6134863B2 (ja) * 2013-05-08 2017-05-24 ボルボトラックコーポレーション 非鉄道車両のためのエネルギー制御システム
CN107972500A (zh) * 2016-10-21 2018-05-01 法乐第(北京)网络科技有限公司 动力电池管理系统和包括其的电动汽车
CN108717986B (zh) * 2018-05-31 2021-04-27 北京新能源汽车股份有限公司 一种动力电池预加热方法及系统
CN108878997B (zh) * 2018-06-04 2023-09-26 四川野马汽车股份有限公司 一种基于移动客户端的电动汽车动力电池预热系统及其预热方法
CN109934391B (zh) * 2019-02-26 2020-11-10 北京邮电大学 一种纯电动公交车辆的智能调度方法
CN110077281B (zh) * 2019-04-30 2020-12-15 浙江吉利控股集团有限公司 一种插电式混合动力车动力电池的充电加热方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150120226A1 (en) * 2013-10-31 2015-04-30 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Battery degradation monitoring system
CN106558736A (zh) * 2015-09-25 2017-04-05 江苏威能汽车工业发展有限公司 一种电动汽车锂电池管理系统
CN106143203A (zh) * 2016-08-28 2016-11-23 安徽安凯汽车股份有限公司 一种适用于寒冷地区纯电动客车的电池热管理系统
CN108987829A (zh) * 2018-07-26 2018-12-11 刘宗锋 一种电动汽车锂电池保温系统
CN208596762U (zh) * 2018-07-26 2019-03-12 山东科技大学 一种电动汽车锂电池保温系统
CN110176655A (zh) * 2019-05-16 2019-08-27 江苏金派克新能源有限公司 新型锂电池散热保温系统
CN110581320A (zh) * 2019-09-24 2019-12-17 厦门金龙联合汽车工业有限公司 一种公交车动力锂电池保温机务管理方法和云管理服务器

Also Published As

Publication number Publication date
CN110581320B (zh) 2021-05-04
CN110581320A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2021056894A1 (zh) 一种公交车动力锂电池保温机务管理方法和云管理服务器
US20220371473A1 (en) Battery thermal management system and methods of use
US11126932B2 (en) Reservation management for electric vehicle charging
WO2021121110A1 (zh) 一种预估充电时间的方法,装置及存储介质
US8525475B2 (en) Management system for exchange electric storage devices and management method for exchange electric storage devices
US10931124B2 (en) Battery preconditioning for charging
US20170043671A1 (en) Control system for electric vehicle service network
CN108312862A (zh) 电动车辆
CN105680541B (zh) 一种低温充电策略的充电方法
US20180345808A1 (en) Vehicle charging station having degraded energy storage units for charging an incoming vehicle and methods thereof
KR20140078623A (ko) 전기차량 네트워크에서의 부하 추정 및 관리
CN104044479A (zh) 用于在充电时控制电动车辆的方法
JP7019827B2 (ja) 配置計画装置
JP7230705B2 (ja) 配車管理方法、配車管理プログラム及び配車管理装置
JP2013027163A (ja) 蓄電池充電計画支援システム
CN113752900B (zh) 蓄电系统以及车辆
JP7230704B2 (ja) エネルギマネージメント方法、及びエネルギマネージメント装置
JP2015171189A (ja) 充放電管理装置、充放電管理方法及びプログラム
WO2022052043A1 (zh) 一种车辆充电的方法和装置
JP2024031460A (ja) サーバおよび車両管理方法
CN115817282A (zh) 车辆电池加热方法、车辆及存储介质
CN115534706A (zh) 新能源汽车充电方法、装置、计算机设备和存储介质
CN112810555A (zh) 用于车辆的智能能量管理系统及相应方法
WO2024092779A1 (zh) 车辆的充电热管理方法、设备和介质
WO2024093622A1 (zh) 车辆的充电控制方法、设备和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946397

Country of ref document: EP

Kind code of ref document: A1