WO2024093622A1 - 车辆的充电控制方法、设备和介质 - Google Patents

车辆的充电控制方法、设备和介质 Download PDF

Info

Publication number
WO2024093622A1
WO2024093622A1 PCT/CN2023/123638 CN2023123638W WO2024093622A1 WO 2024093622 A1 WO2024093622 A1 WO 2024093622A1 CN 2023123638 W CN2023123638 W CN 2023123638W WO 2024093622 A1 WO2024093622 A1 WO 2024093622A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
vehicle
interface
charging device
Prior art date
Application number
PCT/CN2023/123638
Other languages
English (en)
French (fr)
Inventor
冯阳
张传辉
李宝
魏书源
Original Assignee
宁德时代新能源科技股份有限公司
宁德时代(上海)智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司, 宁德时代(上海)智能科技有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024093622A1 publication Critical patent/WO2024093622A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating

Definitions

  • the present disclosure relates to the technical field of battery thermal management, and in particular to a vehicle charging control method, device and medium.
  • the present disclosure aims to solve at least one of the technical problems existing in the background technology.
  • one object of the present disclosure is to provide a vehicle charging control method, device, equipment and medium to solve the problems in the background technology.
  • An embodiment of the first aspect of the present disclosure provides a vehicle charging thermal management method, which includes the following steps: obtaining the current vehicle position, the current battery power, the current battery temperature, and battery charging parameter information; based on the aforementioned current vehicle position, obtaining the charging device charging parameter information of the corresponding charging device; based on the aforementioned current battery power, the aforementioned current battery temperature, the aforementioned battery charging parameter information, and the aforementioned charging device charging parameter information, determining the thermal management strategy of the aforementioned battery.
  • the step of determining the thermal management strategy of the aforementioned battery based on the aforementioned current battery power, the aforementioned battery temperature, the aforementioned battery charging parameter information, and the aforementioned charging device charging parameter information includes: determining matching charging parameters based on the aforementioned battery charging parameter information and the aforementioned charging device charging parameter information; confirming the target battery temperature based on the matching charging parameters; confirming the thermal management strategy of the aforementioned battery based on the aforementioned current battery temperature and the aforementioned target battery temperature.
  • the step of confirming the thermal management strategy of the aforementioned battery based on the aforementioned current battery temperature and the aforementioned target battery temperature also includes: confirming the first remaining power after the aforementioned current battery temperature is adjusted to the aforementioned target battery temperature; confirming the compensated target battery temperature based on the aforementioned first remaining power; and determining the aforementioned thermal management strategy of the aforementioned battery based on the current battery temperature and the aforementioned compensated target battery temperature.
  • the step of confirming the thermal management strategy of the aforementioned battery based on the aforementioned current battery temperature and the aforementioned target battery temperature also includes: confirming the second remaining power of the aforementioned vehicle from the aforementioned current vehicle position to the position of the aforementioned charging device based on the aforementioned current vehicle position and the position of the aforementioned charging device; confirming the compensated target battery temperature based on the aforementioned second remaining power; and determining the aforementioned thermal management strategy of the aforementioned battery based on the current battery temperature and the aforementioned compensated target battery temperature.
  • the step of confirming the thermal management strategy of the battery according to the current battery temperature and the target battery temperature further includes: confirming a first remaining battery charge after the current battery temperature is adjusted to the target battery temperature; confirming a second remaining battery charge when the vehicle travels from the current vehicle position to the position of the charging device according to the current vehicle position and the position of the charging device; confirming a compensated target battery temperature according to the first remaining battery charge and the second remaining battery charge; confirming a second remaining battery charge when the vehicle travels from the current vehicle position to the position of the charging device according to the current vehicle position and the position of the charging device ... Determine the aforementioned thermal management strategy for the aforementioned battery.
  • the step of confirming the thermal management strategy of the battery based on the current battery temperature and the target battery temperature also includes: determining the arrival distance of the vehicle to the charging device based on the current vehicle position and the position of the charging device; determining the thermal management strategy of the battery based on the temperature difference between the current battery temperature and the target battery temperature, and the arrival distance, wherein the thermal management strategy includes the corresponding relationship between the arrival distance of the vehicle and the battery temperature.
  • the step of confirming the thermal management strategy of the battery based on the current battery temperature and the target battery temperature also includes: determining the arrival time of the vehicle at the charging device based on the current vehicle position and the position of the charging device; determining the thermal management strategy of the battery based on the temperature difference between the current battery temperature and the target battery temperature, and the arrival time, wherein the thermal management strategy includes the corresponding relationship between the arrival time of the vehicle and the battery temperature.
  • the step of determining the thermal management strategy of the battery according to the current battery power, the current battery temperature, the battery charging parameter information, and the charging parameter information of the charging device includes: obtaining the charging waiting time from the charging device, and determining the thermal management strategy of the battery according to the charging waiting time, the current battery power, the current battery temperature, the battery charging parameter information, and the charging parameter information of the charging device.
  • the charging waiting time is obtained according to the usage status and reservation status of the charging device.
  • the aforementioned step of obtaining the charging device charging parameter information of the corresponding charging device based on the aforementioned current vehicle position also includes: querying the charging device charging parameter information of one or more charging devices within a preset range based on the aforementioned current vehicle position; determining the predicted charging time corresponding to the aforementioned one or more charging devices based on the charging device charging parameter information and battery charging parameters of the aforementioned one or more charging devices; providing the user with an option for selecting a charging device based on the aforementioned predicted charging time; and determining the charging device charging parameter information of the corresponding charging device in response to the aforementioned option selected by the user.
  • the method further includes the steps of: regulating the temperature of the battery according to the thermal management strategy; and adjusting the charging current for charging the battery according to the battery temperature and battery power of the battery in response to a charging instruction.
  • the battery charging parameter information includes at least one of the battery charging current or charging voltage corresponding to the battery, and the corresponding relationship between the battery power and the battery temperature.
  • the charging device charging parameter information includes the charging current or charging voltage corresponding to the charging device.
  • the aforementioned matching charging parameters include a charging current or a charging voltage supported by both the aforementioned battery charging parameter information and the aforementioned charging device charging parameter information.
  • the aforementioned matching charging parameters include a maximum charging current jointly supported by the aforementioned battery charging parameter information and the aforementioned charging device charging parameter information.
  • the thermal management strategy includes adjusting the temperature of the battery to the target battery temperature by controlling at least one of a heater, a cooler, a motor operation mode, or a kinetic energy recovery mode.
  • An embodiment of the second aspect of the present disclosure provides a vehicle charging control method, which includes the following steps: displaying a first interface and detecting a first operation, wherein the first interface is used to detect the first operation, and the first operation is used to trigger a query of a first charging device; in response to the detected first operation, displaying a second interface, wherein the second interface includes charging device identifiers and charging times of more than one first charging device; detecting a second operation, wherein the second operation is used to select a second charging device from the more than one first charging devices; in response to the detected second operation, displaying a third interface, wherein the third interface includes the charging time of the second charging device, wherein the charging time is determined based on the charging parameters of the charging device.
  • the method further includes the following steps: updating the charging time of the third interface in response to a change in at least one of the position of the vehicle, the battery level, and the usage status of the second charging device.
  • the aforementioned method further includes the following steps: in response to the received second operation, executing a thermal management strategy on the aforementioned vehicle according to the aforementioned second charging device to adjust the battery temperature of the vehicle.
  • the second operation is a voice command operation including a charging device identifier of the first charging device
  • the first operation is a voice command operation or a touch operation.
  • the aforementioned method further includes the step of: reserving a second charging device for the vehicle in response to receiving a second operation.
  • the step of displaying a second interface in response to the detected first operation, wherein the second interface includes charging device identifications and charging times of more than one first charging devices includes the following sub-steps: determining matching charging parameters based on the battery charging parameter information of the vehicle and the charging device charging parameter information of the more than one first charging devices; obtaining charging times corresponding to the more than one first charging devices based on the battery power of the vehicle and the matching charging parameters; determining arrival times for the vehicle to reach the more than one first charging devices based on the position of the vehicle and the positions of the more than one first charging devices; obtaining the charging time based on the charging time and the arrival time; and displaying the second interface, wherein the second interface includes charging device identifications and charging times of more than one first charging devices.
  • the aforementioned battery charging parameter information includes the correspondence between the battery power, battery temperature and battery charging current of the aforementioned battery; the aforementioned charging device charging parameter information includes the charging current corresponding to the aforementioned charging device.
  • the aforementioned battery charging parameter information includes the correspondence between the battery power, battery temperature and battery charging voltage of the aforementioned battery; the aforementioned charging device charging parameter information includes the charging voltage corresponding to the aforementioned charging device.
  • the aforementioned charging time includes: charging time, or the total time of arrival time and charging time.
  • the thermal management strategy includes adjusting the temperature of the battery to a target battery temperature corresponding to the second charging device by controlling at least one of a heater, a cooler, a motor operation mode, or a kinetic energy recovery mode.
  • An embodiment of the third aspect of the present disclosure provides a computer device, including a processor and a memory, wherein the memory stores a computer program, and when the computer program is executed by the processor, the processor implements any one of the methods in the above embodiments.
  • An embodiment of the fourth aspect of the present disclosure provides a computer-readable storage medium storing a computer program, which implements any one of the methods in the above embodiments when the computer program is executed by a processor.
  • An embodiment of the fifth aspect of the present disclosure provides a computer program product, including a computer program, wherein the computer program implements any one of the methods in the above embodiments when executed by a processor.
  • An embodiment of the sixth aspect of the present disclosure provides a vehicle, comprising a battery and the computer device of the above embodiment, wherein the computer device is electrically connected to the battery for controlling the thermal management of the battery.
  • FIG1 is a schematic structural diagram of a vehicle according to some embodiments of the present disclosure.
  • FIG2 is a schematic diagram of an exploded structure of a battery according to some embodiments of the present disclosure.
  • FIG3 is a schematic diagram of a vehicle charging at a charging station according to some embodiments of the present disclosure.
  • FIG4 is a schematic diagram of a battery charging curve provided by some embodiments of the present disclosure.
  • FIG5 is a schematic diagram of a vehicle remotely reserving a charging station according to some embodiments of the present disclosure
  • FIG6 is a flow chart of a battery charging thermal management control method provided by some embodiments of the present disclosure.
  • FIG7a is a schematic diagram of a data frame structure sent by a vehicle to a server in some embodiments of the present disclosure
  • FIG7b is a schematic diagram of a data frame structure sent by a charging station to a server in some embodiments of the present disclosure
  • FIG7c is a schematic diagram of a data frame structure sent by a vehicle server to a vehicle in some embodiments of the present disclosure
  • FIG8 is a hardware schematic diagram of a thermal management system provided by some embodiments of the present disclosure.
  • FIG9 is a schematic diagram of a battery charging curve provided by some embodiments of the present disclosure.
  • FIG10 is a schematic diagram of a mobile terminal remotely reserving a charging pile according to some embodiments of the present disclosure
  • FIG11 is a flow chart of a battery charging thermal management control method provided by some embodiments of the present disclosure.
  • FIG12 is a schematic diagram of a vehicle reserving a charging pile at a charging station according to some embodiments of the present disclosure
  • FIG13 is a flow chart of a battery charging thermal management control method provided by some embodiments of the present disclosure.
  • FIG14 is a first schematic diagram of a human-computer interaction interface provided by some embodiments of the present disclosure.
  • FIG15 is a second schematic diagram of a human-computer interaction interface provided by some embodiments of the present disclosure.
  • FIG16 is a third schematic diagram of a human-computer interaction interface provided by some embodiments of the present disclosure.
  • FIG17 is a fourth schematic diagram of a human-computer interaction interface provided by some embodiments of the present disclosure.
  • FIG18 is a first schematic diagram of a human-computer interaction interface provided by some embodiments of the present disclosure.
  • FIG19 is a flowchart of a method for querying a charging device provided in some embodiments of the present disclosure.
  • FIG. 20 is a schematic diagram of a computer device provided in some embodiments of the present disclosure.
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • orientations or positional relationships indicated by technical terms such as “center”, “longitudinal”, “lateral”, “length”, “width”, “thickness”, “up”, “down”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside”, “clockwise”, “counterclockwise”, “axial”, “radial”, and “circumferential” are based on the orientations or positional relationships shown in the accompanying drawings, which are only for the convenience of describing the embodiments of the present disclosure and simplifying the description, and do not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as limiting the embodiments of the present disclosure.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields. With the continuous expansion of the application field of power batteries, the market demand is also constantly expanding.
  • the present inventors provide a vehicle charging thermal management method, so that before the vehicle arrives at the charging station, the thermal state of the battery is pre-adjusted to match the fast charging requirements of the charging pile.
  • the battery cells disclosed in the embodiments of the present disclosure can be used, but not limited to, in electrical devices such as vehicles, ships or aircraft.
  • a power supply system comprising the battery cells and batteries disclosed in the present disclosure can be used to form the electrical device.
  • the embodiments of the present disclosure provide a charging thermal management method and device for a vehicle, wherein the vehicle includes but is not limited to a passenger car, a commercial vehicle, an engineering vehicle, an automated guided vehicle (AGV), etc.
  • the vehicle battery may be a non-replaceable battery that supports charging of the entire vehicle, or a replaceable battery that supports charging after being separated from the vehicle body.
  • FIG. 1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present disclosure.
  • Vehicle 1000 may be a pure electric vehicle, a hybrid electric vehicle, or an extended-range vehicle, etc. (hereinafter referred to as an electric vehicle).
  • a battery 100 is disposed inside vehicle 1000, and battery 100 may be disposed at the bottom, head, or tail of vehicle 1000. Battery 100 may be used to power vehicle 1000, for example, battery 100 may be used as an operating power source for vehicle 1000.
  • the battery 100 can be used not only as an operating power source for the vehicle 1000, but also as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • FIG. 2 is an exploded view of a battery provided in some embodiments of the present disclosure.
  • the battery 100 includes a box body 10 and a battery cell 20, and the battery cell 20 is contained in the box body 10.
  • the box body 10 is used to provide a storage space for the battery cell 20, and the box body 10 can adopt a variety of structures.
  • the box body 10 may include a first part 11 and a second part 12, and the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a storage space for accommodating the battery cell 20.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure, and the first part 11 covers the open side of the second part 12, so that the first part 11 and the second part 12 jointly define a storage space; the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 covers the open side of the second part 12.
  • the box body 10 formed by the first part 11 and the second part 12 may be in a variety of shapes, such as a cylinder, a cuboid, etc.
  • the battery 100 there may be multiple battery cells 20, and the multiple battery cells 20 may be connected in series, in parallel, or in a mixed connection.
  • a mixed connection means that the multiple battery cells 20 are both connected in series and in parallel.
  • the multiple battery cells 20 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 20 is accommodated in the box 10; of course, the battery 100 may also be a battery module formed by connecting multiple battery cells 20 in series, in parallel, or in a mixed connection, and then the multiple battery modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 10.
  • the battery 100 may also include other structures, for example, the battery 100 may also include a busbar component for realizing electrical connection between the multiple battery cells 20.
  • Each battery cell 20 may be a secondary battery or a primary battery, or a lithium-sulfur battery, a sodium-ion battery, or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be cylindrical, flat, rectangular, or in other shapes.
  • FIG. 3 is a schematic diagram of a scene of a vehicle charging at a charging station provided by some embodiments of the present disclosure.
  • a charging station refers to a facility or place including one or more on-board chargers or non-on-board chargers (charging piles) for charging electric vehicles and monitoring the status of charging equipment.
  • a charging pile refers to a special device for providing electric energy to the power battery of an electric vehicle, including an AC charging pile, a DC charging pile, an off-board charger, etc.
  • a charging pile 400 is provided in a charging station 2000. The charging pile 400 is electrically connected to the vehicle 1000 through a charging gun to charge the battery 100 of the vehicle 1000.
  • the charging station 2000 here can be a charging station set up by a commercial organization in a public parking lot, a highway toll station, etc., including a plurality of public charging piles with a power ranging from 200 kilowatts to 600 kilowatts; it can also be set up by an individual user in a residential parking lot, including a parking space for a home charging device with a power of 5-10 kilowatts. No restrictions are made here.
  • the ideal operating temperature of power batteries and the ideal high-current charging temperature often do not completely coincide.
  • the ideal operating temperature of lithium batteries is usually between 20 and 35 degrees Celsius.
  • the battery temperature is below this range, the battery capacity decays and the power release performance decreases; when the battery temperature is above this range, the risk of self-discharge of the battery increases, and both the available capacity and service life will decrease.
  • the ideal charging temperature of lithium batteries is often higher than this temperature range.
  • SoC state of charge
  • the ideal charging temperature, and the charging current can be referred to in the following Table 1.
  • the battery capacity is usually expressed as the state of charge (SoC), but the battery capacity can also be expressed in ampere hours (Ah).
  • the charging MAP can also be expressed as the corresponding relationship between the state of charge, charging temperature and charging voltage of the lithium battery, which will not be repeated here.
  • the maximum charging current corresponding to the period when the lithium battery is charged from 30% to 40% is 400A (see the "Temperature 13" row and the "40%” column in Table 1).
  • the ideal charging temperature of the lithium battery is about 50 degrees Celsius. That is, the lithium battery can be charged with a maximum charging current of 400A when the battery temperature is about 50 degrees Celsius. If the temperature of the lithium battery drops to 25 degrees Celsius, the charging equipment can only charge the lithium battery with a maximum current of 270A (see the "Temperature 11" row and the "40%” column in Table 1).
  • FIG. 4 is a schematic diagram of the SoC and charging current curves of the vehicle 1000 changing over time when charging.
  • the thermal management system of the vehicle 1000 adjusts the temperature of the battery 100 to a range of 20 to 35 degrees Celsius (for example, 30 degrees Celsius).
  • the battery management system of the vehicle 1000 first preheats the battery 100 to the charging temperature (45 degrees Celsius) of the maximum charging current corresponding to the current battery power (SoC is 30%) in the first 5 minutes of charging. No charging current flows during the preheating stage of the battery 100.
  • the charging pile 400 When the temperature of the battery 100 reaches 45 degrees Celsius, the charging pile 400 quickly charges the battery 100 with a maximum charging current of 320 amps, and gradually lowers the maximum charging current as the battery power increases. Referring to FIG. 4 , the total time consumed to charge the battery 100 from 30% to 80% is 23.7 minutes.
  • the thermal management system heats the battery 100 by, but is not limited to, utilizing high-frequency charging and discharging between battery packs, utilizing an electric heating network wrapped around the outside of the battery cell for heating, and utilizing the heat generated by the battery during charging. It can be seen that the charging pile 400 needs to wait for the battery 100 to be heated to a specific temperature before it can charge the battery 100 using the high-rate charging protocol it supports. The charging capacity of the charging pile 400 is not utilized in the preheating stage, resulting in a waste of time.
  • the charging station 400 when the temperature of the battery 100 is lower than the ideal charging temperature, the charging station 400 first charges the battery 100 of the vehicle 1000 with a small current (e.g., 250 amperes) lower than the maximum charging current, and gradually increases the charging current as the temperature of the battery 100 rises until the maximum charging current is reached. There is no separate preheating stage in the solution, but the charging pile 400 cannot quickly charge the battery 100 at the maximum charging current during the entire charging stage, which also prolongs the charging time of the battery 100.
  • a small current e.g. 250 amperes
  • the thermal management system of the vehicle 1000 first cools the battery 100 to below 50 degrees Celsius before charging the battery 100. This will not be described in detail here.
  • Some embodiments of the present disclosure provide a method for charging thermal management of a vehicle.
  • the method of the embodiment of the present disclosure can be performed by the vehicle 1000 and the server 3000 of Figure 5 respectively, or a part of the steps are performed separately, without limitation.
  • the steps of the method are performed by the vehicle 1000.
  • the vehicle 1000 establishes a communication link with the server 3000 through a wireless communication method such as a cellular network.
  • a communication link is established between the server 3000 and the charging station 2000 through wireless or wired communication.
  • the server 3000 can be directly connected to the charging station 2000, or it can be indirectly obtained through one or more other servers.
  • the status information of the charging station 2000 can be performed by the charging station 2000.
  • the server 3000 is a management platform built by a vehicle manufacturing company or a battery manufacturing company, and the vehicle 1000 can exchange information with the server 3000 through an on-board application (Application).
  • the server 3000 obtains the status information of the charging station 2000 by connecting to an information service platform set up by the charging station operator, wherein the information service platform is used to summarize information such as the location of the charging station, the charging pile information, whether it is being used, and the time period that can be reserved.
  • the method of this embodiment includes the following steps: the vehicle 1000 obtains the current vehicle position of the vehicle 1000, the current remaining power of the battery 100, the current battery temperature, and the battery charging parameter information.
  • the vehicle 1000 obtains the charging device charging parameter information of the corresponding charging device (charging pile 400) according to the current vehicle position.
  • the vehicle 1000 determines the thermal management strategy of the battery 100 according to the current remaining power, the current battery temperature, the battery charging parameter information, and the charging device charging parameter information.
  • the battery charging parameter information includes the battery capacity of the battery 100, and also includes the correspondence between the maximum charging current, state of charge and battery temperature of the battery 100.
  • the charging parameter information of the charging device includes the maximum charging voltage, maximum charging current and whether reservation is available supported by the charging pile 400.
  • the battery capacity reflects the amount of power stored in the battery, usually expressed in ampere-hours (Ah).
  • the thermal management strategy of the battery 100 includes adjusting the operating parameters of at least one of the heater, cooling pipe, motor 300 operation mode and kinetic energy recovery mode, raising or lowering the battery 100 to the target temperature, or changing the control strategy of the uniformity of the target temperature of each battery pack in the battery 100.
  • the aforementioned target temperature is determined based on the correspondence between the maximum charging current, battery power and battery temperature of the battery 100 and the correspondence between the maximum charging current supported by the charging pile 400.
  • the user can determine in advance a plan to adjust the thermal management strategy of the battery 100 while driving the vehicle 1000 to the charging station 2000, so that when the vehicle 1000 arrives at the charging station 2000 for charging, the battery temperature of the battery 100 is adapted to the output capacity of the charging pile 400, thereby effectively reducing the charging time.
  • Some embodiments of the present disclosure also provide a charging thermal management method for a vehicle.
  • FIG6 is an interactive diagram of the battery charging control method provided in this embodiment.
  • the method can be performed by the vehicle 1000 or the server 3000 of FIG5 separately in all steps, or separately in part of the steps, which is not limited here.
  • the method includes the following steps:
  • Step S101 Obtaining a charging query request from a user.
  • the vehicle system (in-vehicle infotainment system, hereinafter referred to as the vehicle system) of the vehicle 1000 receives a charging query request from a user.
  • the user wakes up the voice assistant application installed in the vehicle system in any interface, and inputs the command word "I want to charge" to the vehicle system through voice to trigger the vehicle 1000 to execute the operation of querying the charging station.
  • it can also be triggered by the user clicking on the human-computer interaction interface of the display screen of the vehicle system.
  • the server 3000 can The user's charging inquiry request is obtained via the vehicle 1000 .
  • the vehicle 1000 when the vehicle 1000 detects that the current remaining power (SoC) of the battery 100 is lower than a set threshold, the vehicle 1000 actively triggers a charging query request without obtaining a charging query request from the user, thereby reducing the user's operating burden.
  • SoC current remaining power
  • Step S102 Query the information of surrounding charging stations based on the current vehicle location and battery information.
  • the vehicle 1000 sends the current vehicle position and battery information to the server 3000 via a 4G/5G wireless link, and the server 3000 queries the charging station located near the vehicle 1000 based on the received vehicle position.
  • the vehicle position may be a geographical coordinate position obtained by a global positioning system (GPS) or the like set on the vehicle 1000 or the user's mobile phone terminal.
  • GPS global positioning system
  • the vehicle position may also be obtained based on indoor positioning technology, for example, by receiving a short-range iBeacon signal from an iBeacon base station set in the charging station for positioning, thereby ensuring that the battery temperature can be pre-adjusted when queuing in the charging station.
  • the above-mentioned battery information may include the battery power (SoC), state of health (SoH) and battery identification, battery model, battery temperature, and battery charging parameter information of the battery 100. At least a portion of the above-mentioned parameters may be viewed through the vehicle system or dashboard of the vehicle 1000.
  • the battery charging parameter information includes the required charging current, required charging voltage, required charging power, charging protocol identifier supported by the battery, or at least a part of a mapping table (such as Table 1) that characterizes the corresponding relationship between the state of charge, temperature and charging current of the battery.
  • the required charging current is the maximum charging current supported by the battery; the required charging voltage is the maximum charging voltage supported by the battery; and the required charging power is the maximum charging power supported by the battery. In other embodiments, for safety and other considerations, the required charging current may be slightly lower than the maximum charging current supported by the battery.
  • the battery charging parameter information includes the maximum charging current and battery capacity corresponding to the battery 100 under the current SoC. In some embodiments, the battery charging parameter information is stored in the storage chip of the battery management system of the battery 100 during the manufacturing stage of the battery 100. In other embodiments, the server 3000 may also store all or at least a part of the battery charging parameter information corresponding to the battery model of the battery 100.
  • the server 3000 stores a mapping table (see Table 1) of the corresponding relationship between the state of charge, battery temperature and battery charging current of the battery 100.
  • the server 3000 receives the battery information containing the identification of the battery 100 from the vehicle 1000, the server 3000 queries and obtains the mapping table of the corresponding relationship between the state of charge, battery temperature and battery charging current of the battery 100 according to the identification of the battery 100.
  • the battery charging parameter information may not contain the mapping table, but only contains the identification of the battery 100 and the maximum charging current or maximum charging voltage of the battery 100.
  • the aforementioned battery charging parameter information may be the same as all or part of the information in the handshake message between the vehicle and the charging pile when the vehicle establishes an electrical connection with the non-vehicle charger (charging pile).
  • the battery temperature of the battery 100 may be the highest temperature, average temperature of the multiple battery cells 20 constituting the battery 100, or the battery temperature displayed by the vehicle system/instrument panel, etc.
  • the data frame sent by the vehicle 1000 to the server 3000 for querying the surrounding charging stations can be referred to FIG. 7a.
  • the charging parameter information of the battery 100 can be obtained.
  • Step S103 Obtain the location of the charging station, reservation availability, and supported charging protocol information.
  • server 3000 Based on the geographic coordinates of vehicle 1000 (or a combination of geographic coordinates and current SoC), server 3000 queries charging stations within a certain distance from vehicle 1000 through the geographic information system, and obtains the geographic location of these charging stations, the availability of charging piles, and the supported charging protocol information. Exemplarily, server 3000 regularly receives the geographic location of each charging station, the availability of charging piles, the name of the charging protocol supported by the charging piles, the maximum output power, the maximum output voltage, or the maximum output current, and caches them in the database. When server 3000 receives the charging information sent by vehicle 1000, it will receive the information. When a query request is made, the location, reservation availability and supported charging parameter information of the charging station are directly queried from the database, thereby increasing the speed of the query operation.
  • the data frame sent by each charging station to the server 3000 can refer to FIG. 7b
  • the charging parameter information of the charging device can be obtained by reading the data message sent by the charging station to the server.
  • the geographical location can be a geographical location coordinate;
  • the available reservation status can include one or more charging piles being in use, idle, idle after 15 minutes, waiting for the charging queue to be 2 vehicles, etc.;
  • the supported charging protocol information can include the maximum output voltage, maximum output current or maximum output power supported by the charging pile and other charging parameter information.
  • the information of the charging pile sent by the charging station 2000 to the server 3000 may include the available reservation status and supported charging protocols of all charging piles, or may only include the available reservation status and the maximum charging current and/or maximum charging voltage supported by one or more charging piles that are idle and support the fast charging protocol.
  • each charging pile can also send the charging parameter information of the charging pile to the server separately.
  • the charging parameter information sent by the charging pile to the server can be substantially the same as the handshake message between the charging pile and the vehicle when the vehicle and the charging pile establish an electrical connection.
  • Step S104 Send the screened charging thermal management strategy.
  • Server 3000 selects one or more charging stations with idle or soon-to-be idle reservable charging piles based on the usage of the queried charging piles, and then determines the predicted arrival time or predicted arrival time of vehicle 1000 from its current location to each charging station based on information such as the model of vehicle 1000, current geographic coordinates, SoC, geographic location of the charging station, road planning, etc., and sends the information to vehicle 1000.
  • the server 3000 or the vehicle 1000 matches the battery charging parameters supported by the battery 100 of the vehicle 1000 and the charging parameters of the charging equipment supported by the reservable charging pile, and determines the shortest predicted total charging time T total for the vehicle 1000 to charge to the preset charging power at each charging station according to the matched charging parameters.
  • the predicted total charging time T total can be obtained by adding the predicted arrival time T jouney and the predicted shortest charging time T charge .
  • the server 3000 or the vehicle 1000 recommends a charging station to the user according to the predicted total charging time T total or the predicted shortest charging time T charge .
  • the preset charging power can be set by the user according to his own car usage habits (for example, 100% or 80%), because the charging speed of the vehicle battery drops rapidly when the last 20% is charged, which takes a long time. Setting the preset charging power by the user can help the user better predict the actual charging time.
  • the data frame provided by the server 3000 to the vehicle 1000 can refer to Figure 7c. By reading the data message sent by the server to the vehicle, information related to the thermal management strategy can be obtained. According to the data frame, the vehicle 1000 provides a human-computer interaction interface (refer to FIG.
  • the time from the current time to the time when the user makes an appointment to start charging at the charging pile 400 can also be used as the arrival time. For example, the current time is 9 o'clock in the evening, and the user has made an appointment to charge at the charging pile 400 at 9:30, then the arrival time is 30 minutes.
  • the server 3000 calculates the shortest charging time based on the matching of the battery 100 of the vehicle 1000 under the current SoC with at least one of the maximum charging current, maximum charging voltage, or maximum charging power supported by the charging pile. In this embodiment, the server 3000 calculates the estimated shortest charging time based on the matching of the maximum charging current of the battery 100 of the vehicle 1000 under the current SoC with the maximum charging current supported by the charging pile.
  • the charging MAP of the charging protocol supported by the vehicle 1000 and the idle charging pile 400 at the charging station 2000 is shown in Table 1.
  • the battery 100 supports a maximum charging current of no more than 400A when the SoC is 30%
  • the charging pile 400 supports a charging protocol with a maximum charging current of no more than 670A. Therefore, the charging protocol matched by the battery 100 and the charging pile 400 is a maximum charging current of 400A. That is, the matching charging parameters include a maximum charging current of no more than 400A.
  • the server 3000 can obtain by querying Table 1 that the SoC corresponding to the battery 100 is 30% of the battery capacity, and the target battery temperature matching the charging parameter of 400A is 50 degrees Celsius (see the "Temperature 13" row).
  • the matching charging parameter may also be less than the maximum charging current, for example, the matching charging parameter is 370A. In some embodiments, the matching charging parameter may also be the maximum charging voltage supported by the battery 100 and the charging pile 400.
  • the server 3000 may also adjust the target battery temperature and the shortest charging time according to the distance traveled by the vehicle 1000 to the charging station and/or the battery power consumed by the battery being heated to the target battery temperature. For another example, if it is determined that the current temperature of the battery 100 cannot meet the maximum charging current that can be reached corresponding to the current SoC in the charging MAP, the server 3000 determines the temperature that the battery 100 can be adjusted to before the vehicle arrives at the charging station 2000, and the SoC after adjusting to the temperature, based on the predicted arrival time T jouney and the heating performance of the thermal management system of the vehicle 1000, to compensate for the predicted shortest charging time.
  • the charging MAP of the charging protocol supported by the vehicle 1000 and the charging pile 400 located at the charging station 2000 is shown in Table 1.
  • the server 3000 queries the location, reservation status and supported charging protocol information of the charging station 2000, as well as the energy consumption big data information of the vehicle model according to the vehicle location and battery information received from the vehicle 1000.
  • the server 3000 can determine that the current temperature of the battery 100 of the vehicle 1000 is 20 degrees Celsius, the current SoC of the battery 100 is 30%, and the maximum charging current of the charging protocol supported by the battery 100 and the charging pile 400 when the SoC is 30% is 400A (the 5th column of "Temperature 13"), and the ideal charging temperature corresponding to the maximum charging current is 50 degrees Celsius.
  • the predicted arrival time of the vehicle 1000 to reach the charging station 2000 is 15 minutes, and the battery 100 can rise from 20 degrees Celsius to 45 degrees Celsius during the 15-minute driving process.
  • the battery 100 is heated from 20 degrees Celsius to 45 degrees Celsius by the battery heating device, and it is estimated that 8% of SoC is consumed.
  • the vehicle 1000 is expected to consume 2% of SoC when driving for 15 minutes at the current battery power. Therefore, the vehicle driving and battery heating together consume about 10% of SoC.
  • the power consumed by heating the battery 100 can be compensated.
  • the distance between the vehicle 1000 and the charging station is greater than the preset threshold, only the battery power consumed by the vehicle 1000 when driving to the charging pile can be compensated, or the battery power consumed by heating and the battery power at the arrival can be compensated at the same time, so as to achieve a higher remaining power prediction accuracy.
  • the current battery power is compensated by the power consumed by heating and the battery power at the arrival, so as to obtain the target battery power.
  • the ideal charging temperature corresponding to the target battery power of 20% is 50 degrees Celsius, so the target charging temperature can be compensated to 50 degrees Celsius.
  • the target charging temperature is still set at 45 degrees Celsius.
  • Server 3000 compensates the target temperature according to the battery capacity and SoC of battery 100 of vehicle 1000, i.e., the temperature of the maximum charging current corresponding to SoC of 30% is compensated to the temperature of the maximum charging current corresponding to SoC of 20%, and the minimum value of the compensated temperature and 45 degrees Celsius is taken.
  • the predicted shortest charging time after compensation T charge-fix t1 + t2 + t3 + t4 + t5 + t6 .
  • T total T charge-fix + T jouney .
  • the server 3000 sends the predicted total charging time T total corresponding to multiple charging stations to the vehicle 1000, so that the user can make an appointment for a charging station that can complete charging faster. Referring to FIG.
  • the vehicle 1000 receives information about 5 charging stations from the server 3000, and displays the options of 2 charging stations with a predicted charging time of less than 60 minutes to the user through the display screen of the vehicle system for the user to choose.
  • the vehicle 1000 sends the identifier of the charging station A selected by the user to the server 3000.
  • the server 3000 uses the charging parameter information of the charging equipment of charging station A as the charging equipment information of the corresponding charging equipment (charging pile).
  • the server 3000 calculates the expected shortest charging time according to the matching of the maximum charging voltage of the battery 100 of the vehicle 1000 under the current SoC and the maximum charging voltage supported by the charging pile.
  • Step 105 Make a reservation for a charging station according to the selected charging thermal management strategy.
  • the user selects the charging pile 400 of the charging station 2000 that he wishes to reserve through the vehicle system of the vehicle 1000, and sends the identification (ID) of the charging pile 400 to the server 3000.
  • the server 3000 reserves the charging pile 400 for the vehicle 1000 according to the identification of the charging pile 400 and the identification of the vehicle 1000. Specifically, the server 3000 sends the identification of the vehicle 1000, the predicted arrival time, the commonly supported charging protocol, the predicted shortest charging time, etc. to the charging pile 400, and the charging pile 400 reserves the use time of the vehicle 1000 according to the above information.
  • the current time is 20:10
  • the predicted arrival time of the vehicle 1000 is 15 minutes
  • the predicted shortest charging time is 20 minutes
  • the preset redundant time is 30 minutes
  • the charging pile 400 reserves the reservation use time from 20:10 to 21:15.
  • the server 3000 further sends a thermal management strategy to the vehicle 1000, so that the vehicle 1000 adjusts the temperature of the battery 100 to a temperature close to the ideal charging temperature (e.g., 45 degrees Celsius) while driving to the charging pile 400.
  • the ideal charging temperature corresponds to at least one of the maximum charging current, maximum charging voltage, or maximum charging power supported by the battery 100 and the charging pile 400.
  • Step 106 Perform thermal management on the battery of the vehicle according to the charging preheating plan and the actual position of the vehicle.
  • the vehicle 1000 uses the thermal management system to execute the aforementioned thermal management strategy of the charging pile 400 corresponding to the charging station 2000 on the battery 100, so that the temperature of the battery 100 reaches or approaches the ideal charging temperature before the vehicle 1000 arrives at the charging station 2000.
  • the hardware structure of the thermal management system of the vehicle 1000 can be seen in Figure 10.
  • the battery 100 is composed of multiple battery packs.
  • the battery management system Battery Manage System, BMS
  • the heater is composed of a positive temperature coefficient heating resistor element or a silicone heating film, which is used to heat the battery pack.
  • the refrigerator is composed of a coolant circulation pipeline connected to the air conditioning system of the vehicle 1000, which is used to reduce the temperature of the battery pack.
  • the BMS periodically monitors the temperature of the battery cells in the battery pack through temperature sensors, and uses heaters and refrigerators to manage the temperature of the battery 100, thereby ensuring that the battery 100 is kept at a constant temperature while the vehicle 1000 is driving.
  • the temperature is kept within the set temperature range.
  • the vehicle control unit (VCU) and the in-vehicle infotainment system also known as the vehicle system
  • the thermal management strategy may also include the degree of balance between the temperatures of each battery cell, etc.
  • executing a thermal management strategy to change the temperature of the battery pack includes starting the heater, increasing or decreasing the operating power of the refrigerator, decreasing the operating efficiency of the motor, and changing one or more of the kinetic energy recovery modes.
  • the battery temperature can be increased more quickly than heating the battery when the vehicle is stationary, so that the battery reaches the temperature required for high-speed charging.
  • the kinetic energy recovery mode level of the vehicle 1000 may be increased to convert the kinetic energy recovered during the deceleration or braking phase into thermal energy of the battery, thereby increasing the temperature of the battery.
  • the thermal management strategy includes a target battery temperature. In some other embodiments, the thermal management strategy also includes a correspondence between the distance of the actual position of the vehicle 1000 from the charging station 2000, the arrival distance of the vehicle 1000, or at least one of the arrival time and the battery temperature. For example, when the arrival time T jouney is 20 minutes, the current battery temperature is 30 degrees Celsius, and the target battery temperature is 50 degrees Celsius, the thermal management strategy may be that the thermal management system raises the temperature of the battery 100 by 1 degree Celsius for every 1 minute of travel of the vehicle 1000 until the temperature of the battery 100 reaches 50 degrees Celsius. Among them, the arrival time may be the reservation time from the reserved charging pile 400, or it may be the predicted time for the vehicle 1000 to move to the charging pile 400.
  • the distance between the current position of the vehicle 1000 and the charging station 2000 is 20 kilometers.
  • the vehicle 1000 detects the distance to the charging station 2000 every 30 seconds during a certain period.
  • the battery 100 is heated to 35 degrees Celsius;
  • the distance between the vehicle 1000 and the charging station 2000 is 10 kilometers to 15 kilometers, the battery 100 is heated to 40 degrees Celsius;
  • the distance between the vehicle 1000 and the charging station 2000 is more than 25 kilometers, the battery heating is stopped. In this way, the flexibility of heating is improved and unnecessary power consumption is avoided.
  • Step 107 Charge the battery of the vehicle according to the charging preheating plan and the battery information.
  • the vehicle 1000 After the vehicle 1000 enters the charging station 2000, the vehicle 1000 is connected to the charging pile 400 via a charging cable. After the charging pile 400 authenticates the vehicle 1000, it charges the vehicle 1000 according to the received commonly supported charging protocol (refer to Table 1 and Figure 8). According to the thermal management strategy, the vehicle 1000 continues to adjust the temperature of the battery 100 during the charging stage so that the battery 100 can charge the battery 100 at a larger charging power at each state of charge.
  • the commonly supported charging protocol is sent to the vehicle 1000 and the charging pile 400 by the server 3000 during steps 103 to 105.
  • the commonly supported charging protocol can be obtained through the handshake protocol message sent when the vehicle 1000 and the charging pile 400 are connected via a charging cable. Thereby, it is ensured that the vehicle 1000 can maintain a larger charging power during the charging process, thereby shortening the charging time.
  • the battery can be heated in advance according to the matching condition between the battery and the charging device, thereby effectively reducing the charging time of the vehicle.
  • Some embodiments of the present disclosure also provide a charging thermal management method for a vehicle.
  • FIG10 is a schematic diagram of a mobile terminal remotely reserving a charging station provided in some embodiments of the present disclosure.
  • a vehicle 1000 establishes a wireless communication link with a server 3000 via a cellular network or other communication method.
  • a communication link is established between the server 3000 and the charging station 2000 via wireless or wired communication methods.
  • the server 3000 may be directly connected to the charging station 2000 without going through other servers, or may indirectly obtain the status information of the charging station 2000 via one or more other servers (for example, a server set up by a power company, etc., which aggregates the status information of multiple charging stations). This is not discussed here. Restriction.
  • the user establishes a wireless communication link between the mobile terminal 5000 and the vehicle 1000 through a smart phone.
  • the wireless communication link between the mobile terminal 5000 and the vehicle 1000 can be based on wide area communication technologies such as cellular networks such as 4G/5G, as well as near field communication technologies such as WiFi and Bluetooth.
  • a wireless communication link can also be established between the mobile terminal 5000 and the server 3000 to obtain information about the charging station 2000 and reserve the charging pile 400.
  • the mobile terminal 5000 can also be used to trigger the method disclosed in the present invention. This method can be performed by the vehicle 1000, the mobile terminal 5000 or the server 3000 of Figure 10 to perform all the steps separately, or to perform part of the steps separately.
  • the mobile terminal 5000 will be used as an example to illustrate below.
  • FIG11 is an interactive diagram of a battery charging control method provided in this embodiment. Referring to FIG11 , this embodiment includes the following steps:
  • S201 queries the user's charging query request.
  • the user triggers a charging query request through the human-computer interaction interface of the mobile terminal 5000 (see Figures 14-16).
  • S202 obtains vehicle location and battery information.
  • the mobile terminal 5000 queries the vehicle 1000 for the vehicle location and battery information of the vehicle 1000.
  • the battery information includes the geographic coordinates of the vehicle 1000, the ambient temperature, the state of charge of the battery 100, the state of health (SoH), the battery model, battery temperature, and supported charging protocols of the battery 100.
  • the battery temperature of the battery 100 may be the highest temperature or average temperature of the battery cell, or the battery chart viewed by the user through the vehicle system.
  • the mobile terminal 5000 communicates with the vehicle 1000 via near field communication technologies such as WiFi and Bluetooth, it is also possible to use the address location information of the mobile terminal 5000 itself as the vehicle location of the vehicle 1000 without querying the vehicle 1000 for the geographic location of the vehicle 1000.
  • near field communication technologies such as WiFi and Bluetooth
  • Step S203 Query the information of surrounding charging stations based on the vehicle location and battery information.
  • the mobile terminal 5000 sends the current vehicle location and battery information to the server 3000 via a wireless link, and queries the charging station information near the current location of the vehicle 1000. This step is substantially the same as step S102 of the previous embodiment, and will not be described in detail herein.
  • Step S204 Obtain the location of the charging station, reservation availability, and supported charging parameters.
  • the server 3000 queries the charging station locations, available reservations, and supported charging parameters from multiple charging stations including the charging station 2000. This step is substantially the same as step S103 of the previous embodiment, and will not be described in detail herein.
  • Step S205 Send the screened charging management plan.
  • the server 3000 screens the charging stations according to the preset standard, and sends the charging thermal management solutions of the screened charging stations to the mobile terminal 5000. This step is substantially the same as step S104 of the previous embodiment, and will not be described in detail herein.
  • Step S206 Make a reservation for a charging station according to the selected charging management solution.
  • the mobile terminal 5000 receives the charging management scheme selection command from the user, and reserves the charging station 2000 according to the selected charging management scheme. This step is substantially the same as step S105 of the previous embodiment, and will not be described in detail here.
  • Step S207 Sending an instruction to execute the selected charging thermal management solution.
  • the mobile terminal 5000 sends a command for executing the selected charging thermal management scheme to the vehicle 1000 .
  • Step S208 Execute a thermal management plan for the battery of the vehicle according to the charging preheating plan and the real-time position of the vehicle.
  • the vehicle 1000 executes a thermal management plan for the battery 100 according to the charging preheating plan and the real-time position of the vehicle 1000. This step is substantially the same as step S106 of the previous embodiment and will not be described in detail herein.
  • Step S209 charging the battery of the vehicle according to the charging preheating plan and the vehicle information.
  • the battery management system (BMS) of the vehicle 1000 charges the battery of the vehicle according to the charging preheating scheme and vehicle information.
  • the step S107 is basically the same as that of FIG. 1 and will not be described in detail here.
  • the vehicle 1000 can still be remotely controlled to preheat the battery.
  • Some embodiments of the present disclosure also provide a vehicle charging thermal management method, which is applicable to a situation where the vehicle is located near a charging device.
  • vehicle 4000 occupies charging pile 400 for charging.
  • Vehicle 1000 queues in charging station 2000, waiting for an idle charging pile.
  • vehicle 1000 can establish a communication link with charging station 2000 through near-field communication methods such as Bluetooth and RFID, make an appointment for a charging pile that is about to be idle (such as charging pile 400), and perform thermal management on battery 100 in advance during the waiting period, thereby reducing the total charging time.
  • near-field communication methods such as Bluetooth and RFID
  • this embodiment includes the following steps:
  • Step 301 Broadcast the reservation status and charging parameters of the charging pile.
  • the charging station 2000 periodically transmits a Bluetooth beacon frame in the station, and the Bluetooth beacon frame includes the reservation status and charging information of one or more charging piles in the charging station 2000.
  • the reservation status includes the predicted idle time of each charging pile, the queue waiting time, etc.
  • the charging parameters include the maximum charging voltage and/or maximum charging current supported by each charging pile.
  • the charging station 2000 may also send information such as the usage of one or more charging piles and the supported charging protocols to the server 3000 , so that the vehicle 1000 can obtain the above information by querying the server 3000 .
  • Step 302 Display optional thermal management strategies based on the available reservation status and charging parameters of the charging pile, as well as battery information.
  • the vehicle 1000 receives information about one or more charging piles from the charging station 2000, matches the battery information with the charging parameter information of each charging pile, and obtains matching charging parameters.
  • the battery information includes the battery capacity, remaining power, charging current, and charging voltage of the battery 100.
  • the matching charging parameter may be the maximum charging voltage supported by both the charging pile and the battery 100.
  • the vehicle 1000 calculates the target temperature and predicted charging time of the battery 100 for each charging pile, and prompts the user with the above-mentioned one or more charging piles and their corresponding predicted charging time through the display screen of the vehicle system.
  • Step 303 Reserve a charging station according to the selected charging thermal management strategy.
  • Step 304 Perform thermal management on the battery of the vehicle according to the selected charging thermal management strategy.
  • Step 305 Perform thermal management on the battery of the vehicle according to the charging preheating plan and vehicle information.
  • the vehicle 1000 reserves the charging pile 400 and executes the thermal management strategy of the corresponding charging pile 400 on the battery 100.
  • the thermal management strategy includes raising or lowering the battery 100 to the target temperature by adjusting the working parameters of the heater and the cooling pipe. No further details are given here.
  • Some embodiments of the present disclosure also provide a vehicle charging control method, which can be applied to a vehicle system (vehicle multimedia entertainment terminal), a vehicle dashboard, a smart phone, a computer and other electronic devices.
  • vehicle system vehicle multimedia entertainment terminal
  • vehicle dashboard vehicle dashboard
  • smart phone smart phone
  • computer computer and other electronic devices.
  • the method of this embodiment is described below using a vehicle system as an example.
  • the vehicle can refer to FIG5 .
  • the method comprises the following steps:
  • Step S401 displaying a first interface and detecting a first operation, where the first operation is used to trigger a query of a charging device.
  • the vehicle 1000 displays a first interface U810 for receiving user operation commands through the display screen of the vehicle system.
  • the first interface may be a page of a voice assistant, a page of a navigation system, or any other page that can receive voice or touch operation commands (for example, referring to FIG. 18 , the desktop main interface of the vehicle operating system).
  • the vehicle system receives the user's voice operation command "I want to charge" through the first interface U810, and displays a second interface U820 on the display screen.
  • Step S402 In response to the received first operation, a second interface is displayed, where the second interface includes charging device identifiers and charging times of one or more first charging devices.
  • the vehicle 1000 displays the second interface U820 on the display screen.
  • the second interface can be displayed as replacing the first interface as a whole, and can be displayed in different display screen areas from the first interface, covering a portion of the first interface, or as a graphic element of the first interface, which is not limited here.
  • the second interface U820 includes one or more charging device identifiers of the first charging device and the predicted charging time corresponding to the first charging device.
  • the first charging device can be a charging station or a charging pile.
  • the charging device identifier is used to distinguish different charging devices, and the charging device identifier can be obtained from a server or a charging device.
  • the vehicle 1000 queries the charging stations or charging piles within a certain distance from the vehicle 1000 through the geographic information system according to its geographical coordinates (or a combination of geographical coordinates and current SoC), and uses these charging stations or charging piles as first charging devices, and displays them in the second interface U802 according to the charging time sequence.
  • the vehicle 1000 also obtains the battery power (SoC) of its power battery, the battery charging parameter information, and the charging parameters of the first charging device, so as to calculate the predicted charging time corresponding to one or more of the first charging devices.
  • the battery charging parameter information includes the corresponding relationship between the battery power (state of charge), the battery temperature and the battery charging current of the battery; the charging device charging parameter information includes the charging current corresponding to the first charging device.
  • the battery charging parameter information includes the corresponding relationship between the battery power, the battery temperature and the battery charging voltage of the battery; the charging device charging parameter information includes the charging voltage corresponding to the first charging device.
  • the charging time can be calculated based on the matching of the battery charging parameter information and the charging parameter information of the charging device (for example, the maximum charging current supported by the battery and the first charging device) and the battery power.
  • the charging time may be a predicted minimum charging time or a predicted total charging time.
  • the predicted shortest charging time is calculated based on the matching of the maximum charging current or maximum charging voltage supported by the battery 100 of the vehicle 1000 and the charging pile under the current SoC.
  • the predicted total charging time includes the shortest charging time and the predicted arrival time.
  • the predicted arrival time is the time required for the vehicle 1000 to travel to the first charging device, calculated based on the position of the vehicle 1000 and the position of each first charging device.
  • the specific calculation method of the charging time can be referred to step S104 of the embodiment of the present disclosure, which will not be repeated here.
  • the second interface may also include charging parameter information, location information, estimated arrival time, etc. of the first charging device, so as to help the user comprehensively select the reserved charging device.
  • the charging parameter information includes at least one of the charging rate, maximum charging current, and maximum charging voltage supported by the charging pile.
  • the method further includes step S400, obtaining a preset charging power set by the user.
  • the vehicle displays an interactive interface U805 on the display screen, and the user inputs a preset charging power for predicting the charging time.
  • the preset charging power is 80% SoC.
  • the vehicle 1000 calculates the shortest charging time of the battery 100 when charging at the charging pile based on the difference between the current battery power of the battery 100 and the preset charging power, the battery capacity of the battery 100, and the maximum charging current supported by the battery 100 and the charging pile under the current SoC, and displays it on the second interface.
  • the preset charging power can be set by the user according to his or her own car usage habits (for example, 100% or 80%). Due to the vehicle's power When the battery is charged to the last 20%, the charging speed drops rapidly and takes a long time. Setting the preset charging capacity by the user can help the user better predict the actual charging time.
  • Step S403 Detect a second operation, where the second operation is used to select a second charging device from one or more of the first charging devices. While the second interface is displayed, the vehicle 1000 detects a second operation from the user on the second interface. The second operation may be clicking on the option of the first charging device on the second interface with a finger, or a voice operation instruction. The charging device identifier of the first charging device displayed on the second interface may be used to prompt the user to trigger the second operation. In addition, while the first interface and the second interface are displayed at the same time, receiving a voice operation command from the user is deemed to have received an operation on the second interface. Exemplarily, the vehicle 1000 detects a voice operation command of "charging station A (charging device identifier)" issued by the user, uses “charging station A" as the second charging device, and displays the third interface U830 on the display screen of the vehicle system.
  • a voice operation command of "charging station A (charging device identifier)" issued by the user, uses “charging station A”
  • Step S404 In response to the second operation, display a third interface, wherein the third interface includes the charging time of the second charging device.
  • the third interface U803 is used to prompt the user with the real-time predicted charging time corresponding to “Charging Station A”.
  • the third interface is an interface of a navigation application.
  • the third interface simultaneously displays the predicted shortest charging time and the arrival time of the vehicle at “Charging Station A” (second charging device).
  • Step S405 In response to a change in at least one of the vehicle's location, battery power, and a usage status of the second charging device, updating the charging time of the third interface.
  • the predicted charging time is affected by factors such as the location of the vehicle, the battery level (SoC), and the usage of the second charging device
  • the predicted charging time needs to be recalculated and updated on the third interface, so as to display the real-time predicted charging time to the user.
  • the usage of the second charging device may include whether the second charging device is being used or the reservation status. In some embodiments, if other vehicles that are using "Charging Station A" end charging ahead of schedule, the predicted charging time of the vehicle 1000 may be shortened, so the charging time on the third interface can also be updated.
  • Step S406 In response to the received second operation, executing a thermal management strategy for the vehicle according to the second charging device.
  • the thermal management strategy includes adjusting the temperature of the battery to a charging temperature corresponding to the "charging station A" that can provide the maximum charging speed for the current battery power by controlling at least one of the heater, the cooler, the motor operation mode or the kinetic energy recovery mode.
  • the current battery power (SoC) of the vehicle 1000 is 30%, and the current battery temperature is 35 degrees Celsius.
  • SoC the current battery power
  • Table 1 it can be obtained that the maximum charging current supported by the battery 100 and the charging equipment of the charging station A is 400 amps, and the target battery temperature matching the charging parameter of 400 amps is 50 degrees Celsius (see the "Temperature 13" row).
  • the vehicle 1000 then executes the thermal management strategy, that is, heating the battery 100 from 35 degrees Celsius to 50 degrees Celsius through the electric heating network.
  • the method according to this embodiment can help users understand the actual charging time of each charging device, thereby saving charging time.
  • the computer device includes a processor, a memory, a communication interface, a display screen, and an input device connected via a system bus.
  • the processor is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory The memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the computer device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be implemented through WIFI, an operator network, NFC (near field communication) or other technologies.
  • WIFI wireless fidelity
  • NFC near field communication
  • the computer program is executed by the processor, a data acquisition method as involved in the above embodiments is implemented.
  • the display screen of the computer device can be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer device can be a touch layer covered on the display screen, or a button, trackball or touchpad provided on the housing of the computer device, or an external keyboard, touchpad or mouse, etc.
  • Some embodiments of the present disclosure further provide a computer device, including a memory and a processor, wherein a computer program is stored in the memory, and the processor implements the steps of the method of any one of the above embodiments when executing the computer program.
  • Some embodiments of the present disclosure further provide a vehicle, which includes the computer device of the above embodiments and a battery, wherein the computer is electrically connected to the battery and is used to execute the steps of the method of any one of the above embodiments.
  • Some embodiments of the present disclosure further provide a computer-readable storage medium storing a computer program, which implements the steps of the method of any of the above embodiments when executed by a processor.
  • Some embodiments of the present disclosure also provide a computer program product or a computer program, which includes a computer instruction stored in a computer-readable storage medium.
  • a processor of a computer device reads the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device performs the steps of the method of any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本公开提供车辆的充电控制方法、设备和介质。该方法包括步骤:显示第一界面,并检测第一操作,第一界面用于检测第一操作,第一操作用于触发查询第一充电设备;响应于检测到的第一操作,显示第二界面,第二界面包括一个以上的第一充电设备的充电设备标识和充电时间;检测第二操作,第二操作用于从一个以上的第一充电设备中选择第二充电设备;响应于检测到的第二操作,显示第三界面,第三界面包括第二充电设备的充电时间,其中,充电时间是根据充电设备的充电设备充电参数决定的。本公开可以帮助用户了解实际的充电时间,从而有效减少充电时长。

Description

车辆的充电控制方法、设备和介质
本公开要求于2022年11月04日在中国专利局提交的、申请号为202211378287.2、发明名称为“车辆的充电控制方法、设备和介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电池热管理技术领域,尤其涉及一种车辆的充电控制方法、设备和介质。
背景技术
近年来,整车制造商和电池制造商陆续推出6C充电、670A充电等新型高充电倍率的充电协议。随着大电流充电标准不断普及和推陈出新,市场上新旧快速充电桩混杂,充电桩充电输出范围差异也越来越大,公用充电桩的最大输出电流从几十安培到几百安培不等,为车主选择充电桩带来了困难。
申请内容
本公开旨在至少解决背景技术中存在的技术问题之一。为此,本公开的一个目的在于提供一种车辆的充电控制方法、装置、设备和介质,以解决背景技术中的问题。
本公开第一方面的实施例提供一种车辆的充电热管理方法,本方法包括以下步骤:获取当前车辆位置、当前电池电量、当前电池温度、电池充电参数信息;根据前述当前车辆位置,获取对应的充电设备的充电设备充电参数信息;根据前述当前电池电量、前述当前电池温度、前述电池充电参数信息、前述充电设备充电参数信息,确定前述电池的热管理策略。
在一些实施例中,根据前述当前电池电量、前述电池温度、前述电池充电参数信息和前述充电设备充电参数信息,确定前述电池的热管理策略的步骤包括:根据前述电池充电参数信息和前述充电设备充电参数信息,确定匹配充电参数;根据匹配充电参数,确认目标电池温度;根据前述当前电池温度和前述目标电池温度,确认前述电池的热管理策略。
在一些实施例中,根据前述当前电池温度和前述目标电池温度,确认前述电池的热管理策略的步骤还包括:确认前述当前电池温度调整至前述目标电池温度后的第一剩余电量;根据前述第一剩余电量,确认补偿后的目标电池温度;根据当前电池温度和前述补偿后的目标电池温度,确定前述电池的前述热管理策略。
在一些实施例中,根据前述当前电池温度和前述目标电池温度,确认前述电池的热管理策略的步骤还包括:根据前述当前车辆位置和前述充电设备的位置,确认前述车辆从前述当前车辆位置行驶至前述充电设备的位置的第二剩余电量;根据前述第二剩余电量,确认补偿后的目标电池温度;根据当前电池温度和前述补偿后的目标电池温度,确定前述电池的前述热管理策略。
在一些实施例中,根据前述当前电池温度和前述目标电池温度,确认前述电池的热管理策略的步骤还包括:确认前述当前电池温度调整至前述目标电池温度后的第一剩余电池电量;根据前述当前车辆位置和前述充电设备的位置,确认前述车辆从前述当前车辆位置行驶至前述充电设备的位置的第二剩余电量;根据前述第一剩余电池电量和前述第二剩余电量,确认补偿后的目标电池温度;根据当前电池温度和前述补偿后的目标电池温度,确 定前述电池的前述热管理策略。
在一些实施例中,根据前述当前电池温度和前述目标电池温度,确认前述电池的热管理策略的步骤还包括:根据前述当前车辆位置和前述充电设备的位置,确定前述车辆到达前述充电设备处的到达距离;根据前述当前电池温度与前述目标电池温度的温度差,和前述到达距离,确定前述电池的热管理策略,其中,前述热管理策略包括前述车辆的到达距离与电池温度的对应关系。
在一些实施例中,根据前述当前电池温度和前述目标电池温度,确认前述电池的热管理策略的步骤还包括:根据前述当前车辆位置和前述充电设备的位置,确定前述车辆到达前述充电设备处的到达时长;根据前述当前电池温度与前述目标电池温度的温度差,和前述到达时长,确定前述电池的热管理策略,其中,前述热管理策略包括前述车辆的到达时长与电池温度的对应关系。
在一些实施例中,根据前述当前电池电量、前述当前电池温度、前述电池充电参数信息、和前述充电设备充电参数信息,确定前述电池的热管理策略的步骤包括:从前述充电设备处获得充电等待时长,根据前述充电等待时长、前述当前电池电量、前述当前电池温度、前述电池充电参数信息、和前述充电设备充电参数信息,确定前述电池的热管理策略。其中,前述充电等待时长是根据前述充电设备的其使用状态和预约状态得到的。
在一些实施例中,前述根据前述当前车辆位置,获取对应的充电设备的充电设备充电参数信息的步骤还包括:根据前述当前车辆位置,查询预设范围内的一个或多个充电设备的充电设备充电参数信息;根据前述一个或多个充电设备的充电设备充电参数信息和电池充电参数,确定对应前述一个或多个充电设备的预测充电时长;根据前述预测充电时长,向用户提供用于选择充电设备的选项;响应于用户选择的前述选项,确定对应的充电设备的充电设备充电参数信息。
在一些实施例中,前述方法还包括步骤:根据前述热管理策略,调节前述电池的温度;响应于充电指令,根据前述电池的电池温度和电池电量,调整为前述电池充电的充电电流。
在一些实施例中,前述电池充电参数信息包括前述电池对应的电池充电电流或者充电电压中的至少一者,与电池电量、电池温度之间的对应关系。在一些实施例中,前述充电设备充电参数信息包括前述充电设备对应的充电电流或者充电电压。
在一些实施例中,前述匹配充电参数包括前述电池充电参数信息和前述充电设备充电参数信息共同支持的充电电流或者充电电压。
在一些实施例中,前述匹配充电参数包括前述电池充电参数信息和前述充电设备充电参数信息共同支持的最大充电电流。
在一些实施例中,前述热管理策略包括通过控制加热器、制冷器、电机运转模式或动能回收模式中的至少一者,将前述电池的温度调整为前述目标电池温度。
本公开第二方面的实施例提供一种车辆的充电控制方法,本方法包括以下步骤:显示第一界面,并检测第一操作,前述第一界面用于检测前述第一操作,前述第一操作用于触发查询第一充电设备;响应于检测到的前述第一操作,显示第二界面,前述第二界面包括一个以上的第一充电设备的充电设备标识和充电时间;检测第二操作,前述第二操作用于从前述一个以上的第一充电设备中选择第二充电设备;响应于检测到的第二操作,显示第三界面,前述第三界面包括前述第二充电设备的充电时间,其中,充电时间是根据充电设备的充电设备充电参数决定的。
在一些实施例中,前述方法还包括以下步骤:响应于前述车辆的位置、电池电量和前述第二充电设备的使用状态中的至少一者的变化,更新前述第三界面的充电时间。
在一些实施例中,前述方法还包括以下步骤:响应于接收到的第二操作,根据前述第二充电设备,对前述车辆执行热管理策略,调整车辆的电池温度。
在一些实施例中,前述第二操作为包含前述第一充电设备的充电设备标识的语音命令操作,前述第一操作为语音命令操作或者触控操作。
在一些实施例中,前述方法还包括步骤:响应于接收到的第二操作,为车辆预约第二充电设备。
在一些实施例中,前述响应于检测到的前述第一操作,显示第二界面,前述第二界面包括一个以上的第一充电设备的充电设备标识和充电时间的步骤,包括以下子步骤:根据前述车辆的电池充电参数信息和前述一个以上的第一充电设备的充电设备充电参数信息,确定匹配充电参数;根据车辆的电池电量和前述匹配充电参数,获取对应前述一个以上的第一充电设备的充电时长;根据前述车辆的位置和前述一个以上的第一充电设备的位置,确定前述车辆到达前述一个以上的第一充电设备处的到达时长;根据前述充电时长和前述到达时长,获取前述充电时间;显示前述第二界面,前述第二界面包括一个以上的第一充电设备的充电设备标识和前述充电时间。
在一些实施例中,前述电池充电参数信息包括前述电池的电池电量、电池温度和电池充电电流之间的对应关系;前述充电设备充电参数信息包括前述充电设备对应的充电电流。
在一些实施例中,前述电池充电参数信息包括前述电池的电池电量、电池温度和电池充电电压之间的对应关系;前述充电设备充电参数信息包括前述充电设备对应的充电电压。
在一些实施例中,前述充电时间包括:充电时长,或者到达时长与充电时长的总时长。
在一些实施例中,前述热管理策略包括通过控制加热器、制冷器、电机运转模式或动能回收模式中的至少一者,将前述电池的温度调整为对应前述第二充电设备的目标电池温度。
本公开第三方面的实施例提供一种计算机设备,包括处理器和存储器,前述存储器存储有计算机程序,前述计算机程序在由前述处理器执行时,使得前述处理器实现上述实施例中任一项的方法。
本公开第四方面的实施例提供一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述实施例中任一项的方法。
本公开第五方面的实施例提供一种计算机程序产品,包括计算机程序,其中,该计算机程序被处理器执行时实现上述实施例中任一项的方法。
本公开第六方面的实施例提供一种车辆,包括电池和上述实施例的计算机设备,前述计算机电池与电池电连接,用于控制前述电池的热管理。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本公开公 开的一些实施方式,而不应将其视为是对本公开范围的限制。
图1为本公开一些实施例的车辆的结构示意图;
图2为本公开一些实施例的电池的分解结构示意图;
图3为本公开一些实施例的车辆在充电站充电的示意图;
图4为本公开一些实施例提供的电池充电曲线的示意图;
图5为本公开一些实施例提供的车辆远程预约充电桩的示意图;
图6为本公开一些实施例提供的电池的充电热管理控制方法的流程图;
图7a为本公开一些实施例车辆发送给服务器的数据帧结构的示意图;
图7b为本公开一些实施例充电站发送给服务器的数据帧结构的示意图;
图7c为本公开一些实施例车辆服务器给车辆的数据帧结构的示意图;
图8为本公开一些实施例提供的热管理系统的硬件示意图;
图9为本公开一些实施例提供的电池充电曲线的示意图;
图10为本公开一些实施例提供的移动终端远程预约充电桩的示意图;
图11为本公开一些实施例提供的电池的充电热管理控制方法的流程图;
图12为本公开一些实施例提供的车辆在充电站预约充电桩的示意图;
图13为本公开一些实施例提供的电池的充电热管理控制方法的流程图;
图14为本公开一些实施例提供的人机交互界面的第一示意图;
图15为本公开一些实施例提供的人机交互界面的第二示意图;
图16为本公开一些实施例提供的人机交互界面的第三示意图;
图17为本公开一些实施例提供的人机交互界面的第四示意图;
图18为本公开一些实施例提供的人机交互界面的第一示意图;
图19为本公开一些实施例提供的查询充电设备的方法的流程图;
图20为本公开一些实施例提供的计算机装置的示意图。
附图标记说明:
1000车辆;100电池;200控制器;300马达;
10箱体;11第一部分;12第二部分;20电池单体;
2000充电站;400充电桩;
3000服务器;
5000移动终端;
4000车辆;
800显示屏;U805第四界面;U810第一界面;U820第二界面;U830第三界面。
具体实施方式
下面将结合附图对本公开技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本公开的技术方案,因此只作为示例,而不能以此来限制本公开的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本公开;本公开的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本公开实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不 能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本公开实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本公开的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本公开实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本公开实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本公开实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为根据附图所示的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开实施例的限制。
在本公开实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动车辆等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
本公开人注意到,近年来,随着越来越多的整车制造商和电池制造商不断推出新的高充电倍率的充电协议,市场上非车载充电器(充电桩)支持的充电功率的输出范围差异巨大。公用充电桩的最大输出电流从几十安培到几百安培不等。如何帮助车主(用户)充分利用充电桩的充电能力,减少充电时间是一个迫在眉睫的问题。
根据以上考虑,本公开人提供出了一种车辆的充电热管理方法,从而在车辆到达充电站之前,预先将电池的热状态调整至匹配充电桩的快速充电的要求。
本公开实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本公开公开的电池单体、电池等组成该用电装置的电源系统。
本公开实施例提供一种车辆的充电热管理方法和装置,车辆包括但不限于乘用车、商用车、工程车辆、自动导航车(Automated Guided Vehicle,简称AGV)等等。其中,车辆电池可以是支持整车充电的不可更换的电池,也可以是支持与车体分离后再充电的可更换的电池。
以下实施例为了方便说明,以本公开一实施例的车辆1000为例进行说明。
请参照图1,图1为本公开一些实施例提供的车辆的结构示意图。车辆1000可以是纯电动车辆、混合动力汽车或增程式汽车等(以下均简称为电动车辆)。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。
在本公开一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本公开一些实施例提供的电池的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
参照图3,图3为本公开一些实施例提供的车辆在充电站充电的场景示意图。充电站是指包括1台以上的车载式充电器或者未车载式充电器(充电桩),用于为电动车辆进行充电,并对充电设备进行状态监控的设施或场所。充电桩是指为电动车辆动力蓄电池提供电能的专用设备,包括交流充电桩、直流充电桩、非车载充电机等。示例性的,在图3中充电站2000内设有1台充电桩400。充电桩400通过充电枪与车辆1000电连接,为车辆1000的电池100充电。此处的充电站2000既可以是由商业机构架设在公共停车场、高速公路收费站等位置,包括功率在200千瓦至600千瓦不等的多个公用充电桩的充电站;也可以是由个人用户架设在居民区停车场,包括功率为5-10千瓦的家庭充电设备的停车位。在此不做限制。
本公开人注意到,动力电池的理想的工作温度与理想的大电流充电温度经常不完全重合。例如,锂电池的理想的工作温度通常在20至35摄氏度之间。当电池的温度低于这一范围时,电池的容量衰减,释放功率性能下降;当电池的温度高于这一范围时,电池的自放电风险增加,可用容量和使用寿命都将降低。在快速充电时,锂电池的理想的充电温度往往高于这个温度范围。以某型号的锂电池为例,锂电池的荷电状态(State of Charge,以下简称SoC)、理想的充电温度和充电电流之间的对应关系可参照以下表1。在本公开中,电 池电量通常表示为荷电状态(SoC),但是电池电量也可以表示为安时(Ah)。此外,充电MAP也可以表示为锂电池的荷电状态、充电温度和充电电压之间的对应关系,在此不再赘述。
表1锂电池电芯充电MAP
参照表1,以锂电池的SoC为30%为例,该锂电池从30%充电至40%期间对应的最大充电电流是400安(参见表1的“温度13”行,“40%”列)。当以400安的最大充电电流充电时,该锂电池的理想的充电温度是50摄氏度左右。即该锂电池在电池温度在50摄氏度左右的情况下,能够以400安的最大充电电流充电。假如该锂电池的温度下降到25摄氏度,则充电设备最大仅能以270安的电流为该锂电池充电(参见表1的“温度11”行,“40%”列)。
参照图3和图4。图4是车辆1000在充电时SoC和充电电流随时间变化曲线的示意图。在车辆1000处于行驶状态下,车辆1000的热管理系统将电池100的温度调节到20至35摄氏度的范围之间(例如30摄氏度)。当车辆1000行驶至充电站2000,连接充电桩400对电池100进行充电时,车辆1000的电池管理系统在开始充电的前5分钟,电池管理系统首先将电池100预加热到当前电池电量(SoC为30%)对应的最大充电电流的充电温度(45摄氏度),在电池100的预加热阶段没有充电电流流过。当电池100的温度达到45摄氏度后,充电桩400再以320安的最大充电电流对电池100进行快速充电,并随着电池电量的增加,逐渐调低最大充电电流。参见图4,将电池100的电池电量从30%充至80%所消耗的总时间为23.7分钟。对热管理系统对电池100加热的方式包括但不限于利用电池组之间的高频充放电、利用包裹在电芯外部的电热网加热、利用电池在充电时产生的热量等。由此可见,充电桩400需要等待电池100加热到特定温度后才能够以其支持的大倍率充电协议对电池100进行充电,预加热阶段并没有发挥充电桩400的充电能力,造成了时间的浪费。
另外,根据本公开人已知的其它充电方案,当电池100的温度低于理想的充电温度时,充电桩400首先以低于最大充电电流的中小电流(例如250安培)对车辆1000的电池100进行充电,并随着电池100温度升高逐渐调高充电电流,直到达到最大充电电流。尽管本 方案中没有设置单独的预加热阶段,但充电桩400无法在整个充电阶段以最大充电电流对电池100进行快速充电,这也延长了电池100的充电时间。
另一方面,假如车辆1000在充电前,电池100的温度高于55摄氏度,则车辆1000的热管理系统首先将电池100降温至50摄氏度以下,再对电池100进行充电。在此不再赘述。
本公开的一些实施例提供了一种车辆的充电热管理方法。本公开实施例的方法可以由图5的车辆1000和服务器3000分别单独执行全部的步骤,或者分别执行其中的一部分步骤,在此不做限制。示例性的,在本实施例中,由车辆1000执行该方法的步骤。参见图5,车辆1000通过蜂窝网络等无线通信方式与服务器3000之间建立通信链路。服务器3000与充电站2000之间通过无线或者有线通信方式建立通信链路。其中,服务器3000可以直接连接充电站2000,也可以是经由一个或多个其它服务器间接获得充电站2000的状态信息。例如,服务器3000是车辆制造公司或者电池制造公司搭建的管理平台,车辆1000可以通过车载应用程序(Application)与服务器3000进行信息交互。服务器3000通过连接由充电站运营商架设的信息服务平台获得充电站2000的状态信息,其中,该信息服务平台用于将充电站位置、充电桩信息、是否正在被使用、可预约的时间段等信息进行汇总。
本实施例的方法包括以下步骤:车辆1000获取车辆1000的当前车辆位置、电池100的当前剩余电量、当前电池温度、电池充电参数信息。车辆1000根据当前车辆位置,获取对应的充电设备(充电桩400)的充电设备充电参数信息。车辆1000根据当前剩余电量、当前电池温度、电池充电参数信息、充电设备充电参数信息,确定电池100的热管理策略。
在一个或多个实施例中,电池充电参数信息包括电池100的电池容量,还包括电池100的最大充电电流、荷电状态和电池温度之间的对应关系。充电设备充电参数信息包括充电桩400支持的最大充电电压、最大充电电流和是否可预约等。电池容量反映了电池存储电量的大小,通常用安时(Ah)来表示。电池100的热管理策略包括将调整加热器、冷却管、马达300运转模式和动能回收模式中至少一者的运行参数,将电池100升高或降低到目标温度,或者改变电池100的中各电池包的目标温度均一性的控制策略。在一些实施例中,前述目标温度是根据电池100的最大充电电流、电池电量和电池温度之间的对应关系与充电桩400支持的最大充电电流的对应关系决定的。
由此,根据本实施例的方法,用户可以在驾驶车辆1000去到充电站2000的路途中提前确定对电池100调整热管理策略的方案,以使得车辆1000到达充电站2000充电时,电池100的电池温度适配该充电桩400的输出能力,从而有效减少充电时长。
本公开的一些实施例还提供了一种车辆的充电热管理方法。
图6为本实施例提供的电池充电的控制方法的交互图。本方法可以由图5的车辆1000或者服务器3000分别单独执行全部的步骤,或者分别执行其中的一部分步骤,在此不做限定。本方法包括以下步骤:
步骤S101:获取用户的充电查询请求。
参见附图14,车辆1000的车机系统(车载信息娱乐系统,以下简称车机系统)通过接收来自用户的充电查询请求。例如,用户在任意界面下唤醒安装在车机系统的语音助手应用程序,通过语音向车机系统输入命令词“我要充电”来触发车辆1000执行查询充电站的操作。此外,也可以由用户点击车机系统的显示屏的人机交互界面来触发。服务器3000可 以经由车辆1000获取用户的充电查询请求。
在其它的实施例中,当车辆1000检测到电池100的当前剩余电量(SoC)低于设定的阈值时,车辆1000主动触发充电查询请求,无需从用户处获得充电查询请求,从而降低用户的操作负担。
步骤S102:根据当前车辆位置和电池信息,查询周围充电站的信息。
车辆1000通过4G/5G无线链路将当前的车辆位置和电池信息发送到服务器3000,服务器3000根据接收到的车辆位置查询位于车辆1000附近的充电站。其中,车辆位置可以是通过设置在车辆1000或者用户的手机终端上的全球定位系统(Global Positioning System,GPS)等得到的地理坐标位置。在一些实施例中,车辆位置也可以基于室内定位技术得到,例如,通过接收来自设置在充电站内的iBeacon基站发出的近距离的iBeacon信号来进行定位,从而确保在充电站内排队时也能够预先调整电池的温度。上述电池信息可以包括电池100的电池电量(SoC)、健康度(State of Health,SoH)及电池标识、电池型号、电池温度,以及电池充电参数信息。上述参数的至少一部分可以通过车辆1000的车机系统或者仪表盘进行查看。其中,电池充电参数信息包括电池支持的需求充电电流、需求充电电压、需求充电功率、充电协议标识,或者表征了电池的荷电状态、温度和充电电流之间对应关系的映射表(例如表1)等中的至少一部分。在一些实施例中,需求充电电流是电池支持的最大充电电流;需求充电电压是电池支持的最大充电电压;需求充电功率是电池支持的最大充电功率。在其它实施例中,处于安全等方面考虑,需求充电电流可以略低于电池支持的最大充电电流。在本实施例中,电池充电参数信息包括电池100在当前SoC下对应的最大充电电流和电池容量。在一些实施例中,电池充电参数信息在电池100制造阶段存储在电池100的电池管理系统的存储芯片内。在另一些实施例中,服务器3000上也可以存储有对应电池100的电池型号的电池充电参数信息的全部或者至少一部分。例如,服务器3000上存储了电池100的荷电状态、电池温度和电池充电电流之间对应关系的映射表(参见表1)。当服务器3000收到来自车辆1000的含有电池100的标识的电池信息时,服务器3000根据电池100的标识,查询获得电池100的荷电状态、电池温度和电池充电电流之间对应关系的映射表,此时电池充电参数信息中可以不包含该映射表,仅包含电池100的标识,以及电池100的最大充电电流或者最大充电电压。由此,一方面节省了车辆1000与服务器3000之间传输的数据量,另一方面还便于电池的制造厂家及时地更新存储在服务器3000的映射表。前述电池充电参数信息可以与当车辆与非车载充电机(充电桩)建立电连接时,车辆与充电桩之间的握手报文中的信息全部或者部分相同。
电池100的电池温度可以是构成电池100的多个电池单体20的最高温度、平均温度或者由车机系统/仪表盘等显示的电池温度。车辆1000发给服务器3000的用于查询周围充电站的数据帧可参照图7a,通过读取车辆1000与服务器3000之间的数据报文,可以得到电池100的充电参数信息。
步骤S103:获取充电站位置、可预约情况及支持的充电协议信息。
服务器3000根据车辆1000的地理坐标(或者地理坐标和当前SoC的组合),通过地理信息系统查询距离车辆1000一定距离范围内的充电站,并获取这些充电站的地理位置、充电桩的可预约情况及支持的充电协议信息。示例性的,服务器3000定期接收各充电站的地理位置、充电桩可预约情况、充电桩支持的充电协议名称、最大输出功率、最大输出电压或者最大输出电流,并缓存在数据库中。当服务器3000接收来自车辆1000发送的充电 查询请求时,从数据库中直接查询充电站的位置、可预约情况及支持的充电参数信息,由此提高了查询操作的速度。
在一些实施例中,各充电站发送给服务器3000的数据帧可以参照图7b,通过读取充电站发送给服务器的数据报文,可以得到充电设备充电参数信息。地理位置可以是地理位置坐标;可预约情况可以包括一个或多个充电桩正在使用、空闲中、15分钟后空闲、等待充电队列为2辆车等;支持的充电协议信息可以包括充电桩支持的最大输出电压、最大输出电流或者最大输出功率等充电参数信息。示例性的,充电站2000发送给服务器3000的充电桩的信息可以包括所有的充电桩的可预约情况和支持的充电协议,也可以只包括空闲且支持快速充电协议的1台或2台以上充电桩的可预约情况和支持的最大充电电流和/或最大充电电压。另外,每个充电桩也可以单独向服务器发送充电桩的充电参数信息。在一些实施例中,充电桩发送给服务器充电参数信息可以与在车辆与充电桩建立电连接时充电桩与车辆之间的握手报文基本相同。
步骤S104:发送筛选后的充电热管理策略。
服务器3000根据查询到的充电桩的使用情况,筛选出具有空闲或者即将空闲的可预约充电桩的一个或多个充电站,然后根据车辆1000的型号、当前地理坐标、SoC、充电站的地理位置、道路规划等信息,确定车辆1000从当前位置出发到达各充电站的预测到达时长或预测达到时刻等信息,并将该信息发送至车辆1000。
服务器3000或者车辆1000根据车辆1000的电池100支持的电池充电参数以及可预约的充电桩支持的充电设备充电参数进行匹配,并根据匹配的充电参数来确定车辆1000在各充电站充电至预设充电电量的最短的预测充电总时长Ttotal。其中,预测充电总时长Ttotal可以由预测到达时长Tjouney和预测最短充电时长Tcharge相加得到。服务器3000或者车辆1000根据预测充电总时长Ttotal或者预测最短充电时长Tcharge,向用户推荐充电站。在一些实施例中,预设充电电量可以由用户根据自身用车习惯来自行设定(例如,100%或者80%),由于车辆的电池在充最后20%时充电速度快速下降,耗时较长。由用户自行设定预设充电电量可以帮助用户更好的预测实际充电时间。服务器3000提供给车辆1000的数据帧可以参照图7c,通过读取服务器发送给车辆的数据报文,可以得到与热管理策略相关的信息。车辆1000根据该数据帧,向用户提示的充电站信息的人机交互界面(参照图15),该界面可以包括充电站名称、充电站位置、预计到达充电站的时间、预测充电时间、以及到达充电站时剩余的SoC等,从而向用户提示更精确的充电预测时间。另外,在一些实施例中,也可以将从当前时间到用户预约在充电桩400开始充电的时刻之间的时长作为到达时长。例如,当前时间为晚上9点,用户预约了9点30分到充电桩400进行充电,则到达时长为30分钟。
关于预测充电时间,服务器3000根据车辆1000的电池100的在当前SoC下与充电桩支持的最大充电电流、最大充电电压、或者最大充电功率的至少一者的匹配情况计算得到的最短充电时长,在本实施例中,服务器3000根据车辆1000的电池100的在当前SoC下的最大充电电流与充电桩支持的最大充电电流的匹配情况计算预计的最短充电时长。
具体而言,车辆1000与位于充电站2000的空闲的充电桩400共同支持的充电协议的充电MAP如表1所示。电池100在SoC为30%时支持最大不超过400安的充电电流,充电桩400支持最大充电电流为不高于670安的充电协议。因此,电池100与充电桩400所匹配的充电协议就是最大充电电流为400安。即匹配充电参数包括最大不超过400安的充 电电流。另外,服务器3000通过查询表1可以得到,对应电池100的SoC为30%电池容量,且匹配充电参数为400安的目标电池温度为50摄氏度(参见“温度13”行)。由此,可以得到用于预加热的目标温度。在一些实施例中,出于提高安全性等因素考虑,在一些实施例中,匹配充电参数也可以小于最大充电电流,例如匹配充电参数为370安。在一些实施例中,匹配充电参数也可以是电池100和充电桩400共同支持的最大充电电压。
服务器3000根据车辆1000的电池100的电池容量和SoC,参照表1的“温度13”行,分别计算出以最大充电电流400安的电流将电池100从30%的SoC充至40%的时长t1,以最大充电电流390安的电流充电SoC从40%到50%的时长t2,以最大充电电流380安的电流充电SoC从50%到60%的时长t3,以最大充电电流370安的电流充电SoC从60%到70%的时长t4,以最大充电电流280安的电流充电SoC从70%到80%的时长t5,得到预测最短充电时长Tcharge=t1+t2+t3+t4+t5。其中,以时长t1的计算方法为例,时长t1=电池容量×SoC的变化量/(充电电流×充电电压)=60kwh×10%/(400A×700V)=1.4min,其中电池容量为60kwh,最大充电电压为700V。充电电流、SoC随时间的变化曲线可参照图9。由此,可以准确计算出理想的最短充电时长Tcharge=2.8分钟+2.9分钟+3分钟+3.1分钟+3.5分钟+4.5分钟=19.8分钟。
此外,服务器3000根据还可以根据车辆1000行驶达充电站的距离和/或由于电池加热到目标电池温度的所消耗的电池电量,而调整目标电池温度及最短充电时间。又例如,假如判断电池100的当前温度不能满足充电MAP中对应于当前SoC能达到的最大充电电流,则服务器3000根据预测到达时长Tjouney和车辆1000的热管理系统的加热性能,判断车辆在到达充电站2000前,电池100可以调整到的温度,以及调整至该温度后的SoC来对预测最短充电时长进行补偿。
示例性的,车辆1000与位于充电站2000的充电桩400共同支持的充电协议的充电MAP如表1所示,服务器3000根据从车辆1000处接收的车辆位置和电池信息,查询充电站2000位置、可预约情况及支持的充电协议信息,以及该车型的能耗大数据信息。由此,服务器3000可以确定车辆1000的电池100的当前温度是20摄氏度,电池100的当前的SoC是30%,在SoC为30%的情况下电池100与充电桩400共同支持的充电协议的最大充电电流是400A(“温度13”的第5列),对应该最大充电电流的理想的充电温度是50摄氏度。经过计算得到,车辆1000行驶到达充电站2000的预测到达时长是15分钟,并且电池100在15分钟的行驶过程中可以20摄氏度上升到45摄氏度。其中,根据对同类车型的大数据分析得知,通过电池加热装置将电池100从20摄氏度升温至45摄氏度预计消耗8%的SoC,车辆1000在当前电池电量下行驶15分钟预计消耗2%的SoC,因此车辆行驶和电池加热共同消耗大约10%的SoC。在一些实施例中,当车辆1000与充电站之间的距离小于预设阈值的情况下,鉴于车辆行驶消耗的电能通常远小于快速升温产生的电能,因此,可以补偿因加热电池100的所消耗的电量(SoC)。当车辆1000距离充电站大于预设阈值的情况下,可以仅补偿车辆1000行驶到充电桩所消耗的到达电池电量,也可以同时补偿因加热消耗的电池电量和到达电池电量,从而达到更高的剩余电量预测精度。在本示例中,利用加热消耗的电量和到达电池电量一起对当前电池电量进行补偿,从而得到目标电池电量。其中,目标电池电量=当前电池电量-因加热消耗的电量-到达电池电量=30%-8-2%=20%。查询表1可知,对应目标电池电量为20%的理想的充电温度为50摄氏度,由此可以将目标充电温度补偿为50摄氏度,但在本示例中,鉴于车辆的电池加热能力的限制,无法在行驶过程中将 电池100的温度加热到50摄氏度,因此依然将目标充电温度设定在45摄氏度。
服务器3000根据车辆1000的电池100的电池容量和SoC对目标温度进行的补偿,即从SoC为30%对应的最大充电电流的温度补偿为SoC为20%对应的最大充电电流的温度,并取该补偿后温度与45摄氏度的最小值。参照表1的“温度12”行,分别计算出以330安的充电电流将电池100从20%的SoC充电到30%的SoC的时长t1,以320安的充电电流从30%的SoC充电到40%的SoC的时长t2,以310安的充电电流从40%的SoC充电到50%的SoC的时长t3,以300安的充电电流从50%的SoC充电到60%的SoC的时长t4,以290安的充电电流从60%的SoC充电到70%的SoC的时长t5,以260安的充电电流从70%的SoC充电到80%的SoC的时长t6。补偿后的预测最短充电时长Tcharge-fix=t1+t2+t3+t4+t5+t6。补偿后预测到达时长Tjouney和预测最短充电时长Tcharge相加可以得到预测充电总时长,即Ttotal=Tcharge-fix+Tjouney。由此,可以得到更准确的最短充电时间。服务器3000将对应多个充电站的预测充电总时长Ttotal发送到车辆1000,以供用户预约能够更快完成充电的充电站。参见附图15,在一些实施例中,车辆1000从服务器3000处收到5个充电站的信息,并通过车机系统的显示屏向用户显示其中预测充电时间小于60分钟的2个充电站的选项,供用户进行选择。当用户点击充电站A后,车辆1000将对应用户选择的充电站A的标识发送给服务器3000。服务器3000将充电站A的充电设备充电参数信息作为对应的充电设备(充电桩)的充电设备信息。
在一些实施例中,服务器3000根据车辆1000的电池100的在当前SoC下的最大充电电压与充电桩支持的最大充电电压的匹配情况计算预计的最短充电时长。在此不再赘述。
步骤105:根据选定的充电热管理策略,预约充电站。
用户通过车辆1000的车机系统选定的希望预约的充电站2000的充电桩400,并将该充电桩400的标识(ID)发送到服务器3000。服务器3000根据该充电桩400的标识、车辆1000的标识,为车辆1000预约充电桩400。具体而言,服务器3000将车辆1000的标识、预测到达时长和共同支持的充电协议、预测最短充电时长等发送到充电桩400,充电桩400根据以上信息预定车辆1000的使用时间。例如,参照图15,当前时间是20点10分,车辆1000的预测到达时长是15分钟,预测最短充电时长是20分钟,预设冗余时间是30分钟,则充电桩400保留20点10分至21点15分的预约使用时间。服务器3000还进一步向车辆1000发送热管理策略,以使得车辆1000在行驶至充电桩400的途中将电池100的温度调整到接近理想的充电温度(例如45摄氏度)。该理想的充电温度对应电池100和充电桩400共同支持的最大充电电流、最大充电电压或最大充电功率中的至少一者。
步骤106:根据充电预热方案和车辆的实际位置,对车辆的电池进行热管理。
车辆1000响应于用户选择的充电站2000,利用热管理系统对电池100执行对应充电站2000的充电桩400的前述热管理策略,以使得车辆1000到达充电站2000前,电池100的温度达到或者接近理想的充电温度。
车辆1000的热管理系统的硬件结构可参见图10,电池100由多个电池包构成,电池管理系统(Battery Manage System,BMS)、驱动模块、高压继电器、加热器、制冷器和温度传感器组共同构成了电池100的热管理系统。加热器由正温度系数加热电阻元件或者硅胶加热膜构成,用于为电池包加热。制冷器由与车辆1000的空调系统连通的冷却液循环管路构成,用于降低电池包的温度。BMS通过温度传感器周期性地监控电池包内电芯的温度,并利用加热器和制冷器管理电池100的温度,从而确保车辆1000在行驶过程中,电池100 的温度保持在设定的温度区间内。整车控制器(Vehicle Control Unit,VCU)和车载信息娱乐系统(又称车机系统)通过T-box(TelematicBOX)内置的蜂窝通信模块连接服务器3000,向服务器3000发送车辆1000和电池100的信息,并接收来自服务器3000的指令,从而命令BMS对电池100进行热管理。可选的,除了电池100的电芯的温度外,热管理策略还可以包括各电池电芯温度之间的均衡程度等。此外,执行热管理策略来改变电池包的温度包括启动加热器、提高或者降低制冷器的运行功率、降低电机运转效率、以及改变动能回收模式中的一种或者多种。其中,通过改变电机的运行逻辑来降低车辆1000再行驶中电机运转效率,相较于车辆静止阶段为电池加热,能够更加快速的提升电池的温度,从而使电池达到高速充电所需的温度。又例如,当当前温度低于目标温度时,可以提高车辆1000的动能回收模式等级,将减速或刹车阶段回收的动能转化为电池的热能,从而提高电池的温度。
在一些实施例中,热管理策略包括目标电池温度。在又一些实施例中,热管理策略还包括车辆1000的实际位置距充电站2000的距离、车辆1000的到达距离或者到达时间中的至少一者与电池温度的对应关系。例如,在到达时长Tjouney是20分钟,当前电池温度是30摄氏度,目标电池温度是50摄氏度的情况下,热管理策略可以是车辆1000每行驶1分钟,热管理系统将电池100的温度提升1摄氏度,直到电池100的温度达到50摄氏度。其中,到达时间可以是从预约充电桩400的预约时间,也可以是预测的车辆1000移动到充电桩400的时间。又例如,车辆1000的当前位置与充电站2000之间的距离是20公里,车辆1000在一定期间内每30秒定时检测距离充电站2000之间的距离,当车辆1000与充电站2000之间的距离为15公里至25公里时,将电池100加热到35摄氏度;当车辆1000与充电站2000之间的距离为10公里至15公里时,将电池100加热到40摄氏度;当车辆1000与充电站2000之间的距离为25公里以上时,停止对电池进行加热。由此,提高了加热的灵活性,避免了不必要的电量消耗。
步骤107:根据充电预热方案和电池信息,对车辆的电池进行充电。
在车辆1000驶入充电站2000后,车辆1000通过充电线缆连接充电桩400。充电桩400认证车辆1000后,根据收到的共同支持的充电协议对车辆1000进行充电(参照表1和图8)。车辆1000根据热管理策略,在充电阶段对电池100继续进行温度调整,以使得电池100能够在各荷电状态下均以较大的充电功率对电池100进行充电。在又一些实施例中,该共同支持的充电协议是在步骤103到105期间通过服务器3000发送给车辆1000与充电桩400。在又一些实施例中,该共同支持的充电协议可以通过车辆1000与充电桩400之间通过充电线缆连接时发送的握手协议的报文来获得。由此,确保车辆1000在充电过程中都能维持较大的充电功率,从而缩短充电时间。
基于本公开的上述实施例,可以根据电池与充电设备的匹配情况,预先对电池进行加热,从而有效减少车辆的充电时间。
本公开的一些实施例还提供了一种车辆的充电热管理方法。
图10为本公开一些实施例提供的移动终端远程预约充电桩的示意图。参照图10,车辆1000通过蜂窝网络等通信方式与服务器3000之间建立无线通信链路。服务器3000与充电站2000之间通过无线或者有线通信方式建立通信链路。服务器3000可以不经由其它服务器直接连接充电站2000,也可以是经由一个或多个其它服务器(例如,电力公司等架设的服务器,将多个充电站的状态信息进行汇总)间接获得充电站2000的状态信息,在此不做 限制。此外,用户通过智能手机等移动终端5000与车辆1000之间建立无线通信链路。其中,移动终端5000与车辆1000之间的无线通信链路可以根据4G/5G等蜂窝网络等广域通信技术,以及WiFi、蓝牙等近场通信技术。另外,移动终端5000与服务器3000之间也可建立无线通信链路,用于获得充电站2000的信息和预约充电桩400。由此,当用户位于车辆1000的外部时,也可以利用移动终端5000来触发本公开的方法。本方法可以由图10的车辆1000、移动终端5000或者服务器3000分别单独执行全部的步骤,或者分别执行其中的一部分步骤,下面将以移动终端5000为例进行说明。
图11为本实施例提供的电池充电的控制方法的交互图.参照图11,本实施例包括以下步骤:
S201查询用户的充电查询请求。
用户通过移动终端5000的人机交互界面来触发充电查询请求(参照附图14-16)。
S202获取车辆位置和电池信息。
移动终端5000向车辆1000查询车辆1000的车辆位置和电池信息。其中电池信息包括车辆1000的地理坐标、周围环境温度、电池100的荷电状态、健康度(State of Health,SoH)及电池100的电池型号、电池温度、支持的充电协议等。电池100的电池温度可以是电芯的最高温度、平均温度或者由用户通过车机系统等查看到电池文图。
当移动终端5000通过WiFi、蓝牙等近场通信技术与车辆1000通信时,也可以不查询向车辆1000查询车辆1000的地理位置,将移动终端5000本身的地址位置信息作为车辆1000的车辆位置。
步骤S203:根据车辆位置和电池信息,查询周围充电站的信息。
移动终端5000通过无线链路将当前的车辆位置和电池信息发送到服务器3000,并查询车辆1000当前位置附近的充电站信息。本步骤与上一实施例的步骤S102基本相同,在此不再赘述。
步骤S204:获取充电站位置、可预约情况及支持的充电参数。
服务器3000向充电站2000在内的多个充电站查询充电站位置、可预约情况及支持的充电参数。本步骤与上一实施例的步骤S103基本相同,在此不再赘述。
步骤S205:发送筛选后的充电管理方案。
服务器3000根据预设标准对充电站进行筛选,并将对应筛选后的充电站的充电热管理方案发送到移动终端5000。本步骤与上一实施例的步骤S104基本相同,在此不再赘述。
步骤S206:根据选定的充电管理方案,预约充电站。
移动终端5000接收来自用户的充电管理方案选择命令,根据选定的充电管理方案预约充电站2000。本步骤与上一实施例的步骤S105基本相同,在此不再赘述。
步骤S207:发送执行选定的充电热管理方案的指令。
移动终端5000向车辆1000发送用于执行选定的充电热管理方案的指令。
步骤S208:根据充电预热方案和车辆的实时位置,对车辆的电池执行热管理方案。
车辆1000根据充电预热方案和车辆1000的实时位置,对电池100执行热管理方案。本步骤与上一实施例的步骤S106基本相同,在此不再赘述。
步骤S209:根据充电预热方案和车辆信息,对车辆的电池执行充电。
在车辆1000抵达充电站2000,并连接充电桩400的情况下,车辆1000的电池管理系统(BMS)根据充电预热方案和车辆信息,对车辆的电池执行充电。本步骤与上一实施例 的步骤S107基本相同,在此不再赘述。
由此,在用户不在车辆1000内的情况下,依然能够远程控制车辆1000进行电池预加热。
本公开的一些实施例还提供了一种车辆的充电热管理方法,适用于车辆位于充电设备附近的情况。
本实施例可执行在图12所示的系统上。例如,参照图12,车辆4000占据了充电桩400充电。车辆1000在充电站2000内排队,等待空闲的充电桩。此时,车辆1000可以通过蓝牙、RFID等近场通信方式与充电站2000建立通信链路,预约即将空闲的充电桩(例如充电桩400),并在等待期间预先对电池100进行热管理,从而减少充电的总时长。
参照图13,本实施例包含以下步骤:
步骤301:广播充电桩的可预约状态及充电参数。
充电站2000通过在站内周期性的发射蓝牙信标(Beacon)帧,在该蓝牙信标帧内包括了充电站2000内的一个或多个充电桩的可预约状态和充电信息。该可预约状态包括各充电桩的预测空闲时刻、排队等待时间等。充电参数包括各充电桩所支持的最大充电电压和/或最大充电电流。
可选的,充电站2000也可将一个或多个充电桩的使用情况和支持的充电协议等信息发送至服务器3000,从而使车辆1000通过查询服务器3000来获得以上信息。
步骤302:根据充电桩的可预约状态及充电参数,以及电池信息,显示可选的热管理策略。
车辆1000接收到来自充电站2000发出的一个或多个充电桩的信息,将电池信息与各充电桩的充电参数信息进行匹配,得到匹配的充电参数。其中电池信息包括电池100的电池容量、剩余电量、充电电流和充电电压等。示例性的,匹配的充电参数可以是充电桩和电池100共同支持的最大的充电电压。车辆1000基于匹配的充电参数、电池100的电池容量、电池100的剩余电量以及各充电桩的排队等待时间,计算得到针对各充电桩的电池100的目标温度和预测充电时间,并通过车机系统的显示屏向用户提示上述一个或多个充电桩及其对应的预测充电时间。
步骤303:根据选定的充电热管理策略,预约充电桩。
步骤304:根据选定的充电热管理策略,对车辆的电池执行热管理。
步骤305:根据充电预热方案和车辆信息,对车辆的电池执行热管理。
根据用户从上述一个或多个充电桩中选定的充电桩400,车辆1000预约充电桩400,并对电池100执行对应充电桩400的热管理策略。其中,热管理策略包括通过调整加热器、冷却管的工作参数,将电池100升高或降低到目标温度。在此不再赘述。
由于车辆1000此时停靠在充电站2000的站内,因此在本实施例中不传输车辆1000的和充电站2000的位置信息。
本公开的一些实施例还提供了一种车辆的充电控制方法,本方法可以适用于车辆的车机系统(车载多媒体娱乐终端)、车载仪表盘、智能手机、计算机等电子设备。下面以车机系统为例说明本实施例的方法。车辆可参考图5。
参照图19,该方法包括以下步骤:
步骤S401:显示第一界面,并检测第一操作,该第一操作用于触发查询充电设备。
参照图14,车辆1000通过车机系统的显示屏显示用于接收用户操作命令的第一界面U810。其中,该第一界面可以是语音助手的页面、导航系统的页面、或者其它能够接收语音或触控操作指令的任意页面(例如参照图18,车机操作系统的桌面主界面)。在本实施例中,车机系统通过第一界面U810接收用户的“我要充电”的语音操作命令,并在显示屏上显示第二界面U820。
步骤S402:响应于接收到的所述第一操作,显示第二界面,该第二界面包括一个以上的第一充电设备的充电设备标识和充电时间。
参照图15,响应于接收到的用户的第一操作,车辆1000在显示屏上显示第二界面U820。其中,第二界面可以显示为整体地替换第一界面,与第一界面分别显示在不同的显示屏区域,覆盖第一界面的一部分,或者作为第一界面的图形元素,在此不做限定。第二界面U820包括一个以上的第一充电设备的充电设备标识和对应该第一充电设备的预测充电时间。其中,第一充电设备可以是充电站或者充电桩。充电设备标识用于区分不同的充电设备,充电设备标识可以从服务器或者充电设备处取得。
示例性的,车辆1000根据其所在的地理坐标(或者地理坐标和当前SoC的组合),通过地理信息系统查询距离车辆1000一定距离范围内的充电站或充电桩,将这些充电站或充电桩作为第一充电设备,并根据充电时间顺序显示在第二界面U802处。车辆1000还获取其动力电池的电池电量(SoC)、电池充电参数信息,以及第一充电设备的充电参数,从而计算对应一个以上的所述第一充电设备的预测充电时间。其中,在一些实施例中,电池充电参数信息包括电池的电池电量(荷电状态)、电池温度和电池充电电流之间的对应关系;充电设备充电参数信息包括第一充电设备对应的充电电流。在另一些实施例中,电池充电参数信息包括电池的电池电量、电池温度和电池充电电压之间的对应关系;充电设备充电参数信息包括第一充电设备对应的充电电压。根据电池充电参数信息和充电设备充电参数信息的匹配情况(例如,电池和第一充电设备共同支持的最大充电电流)和电池电量,可以计算得到充电时间。
在一些实施例中,充电时间可以是预测最短充电时长或者预测充电总时长。其中,预测最短充电时长是根据车辆1000的电池100的在当前SoC下与充电桩共同支持的最大充电电流或最大充电电压的匹配情况计算得到的。预测充电总时长包括最短充电时长和预测到达时长,预测到达时长是根据车辆1000的位置与每个第一充电设备的位置计算得到的车辆1000行驶至该第一充电设备时所需要消耗的时长。关于充电时间的具体计算方法可参照本公开实施例的步骤S104,在此不再赘述。
可选的,第二界面还可以包括第一充电设备的充电参数信息、位置信息、预计到达时间等,从而帮助用户综合性地选择预约的充电设备。示例性的,充电参数信息包括充电桩支持的充电倍率、最大充电电流、最大充电电压的至少一者。
参照图17,在一些实施例中,本方法还包括步骤S400,获取用户设定的预设充电电量。示例性的,车辆在显示屏上显示交互界面U805,由用户输入用于预测充电时间的预设充电电量。预设充电电量是80%的SoC。车辆1000根据电池100的当前电池电量于预设充电电量的差值,电池100的电池容量以及电池100的在当前SoC下与充电桩共同支持的最大充电电流,计算电池100在该充电桩充电时的最短充电时长,并显示在第二界面上。预设充电电量可以由用户根据自身用车习惯来自行设定(例如,100%或者80%),由于车辆的电 池在充最后20%时充电速度快速下降,耗时较长。由用户自行设定预设充电电量可以帮助用户更好的预测实际充电时间。
步骤S403:检测第二操作,所述第二操作选择用于从一个以上的所述第一充电设备中,选择第二充电设备。在显示第二界面的状态下,车辆1000检测来自用户针对第二界面的第二操作。第二操作可以是用手指点击第二界面的第一充电设备的选项,或者语音操作指令。第二界面上显示的第一充电设备的充电设备标识可以用于提示用户触发第二操作。另外,在同时显示第一界面和第二界面的状态下,接收用户的语音操作命令,则被视为接收了针对第二界面的操作。示例性的,车辆1000检测到用户发出的“充电站A(充电设备标识)”的语音操作命令,将“充电站A”作为第二充电设备,并在车机系统的显示屏上显示第三界面U830。
步骤S404:响应于第二操作,显示第三界面,所述第三界面包括所述第二充电设备的充电时间。
参照图16,第三界面U803用于向用户提示对应“充电站A”的实时的预测充电时间。在本实施例中,第三界面是导航应用程序的界面。在一些实施例中,第三界面同时显示预测的最短充电时长和车辆到达“充电站A”(第二充电设备)到达时长。
步骤S405:响应于车辆的位置、电池电量和第二充电设备的使用状态中的至少一者的变化,更新第三界面的充电时间。
由于预测充电时间受车辆的位置、电池电量(SoC)、第二充电设备的使用情况等因素的影响,因此,当车辆1000的位置、到达充电设备的距离、到达充电设备的时长、电池电量、第二充电设备的使用情况发生变化时,需要重新计算预测的充电时间,并在第三界面上对预测的充电时间进行更新,从而向用户显示实时的预测充电时间。第二充电设备的使用情况可以包括第二充电设备是否被正在使用、或者预约情况。在一些实施例中,在正在使用“充电站A”的其它车辆提前结束充电的情况下,车辆1000的预测的充电时间可能会缩短,因此同样可以更新第三界面的充电时间。
步骤S406:响应于接收到的第二操作,根据所述第二充电设备,对车辆执行热管理策略。
热管理策略包括通过控制加热器、制冷器、电机运转模式或动能回收模式中的至少一者,将电池的温度调整为对应该“充电站A”的能够为当前电池的电量提供最大充电速度的充电温度。示例性的,车辆1000的当前电池电量(SoC)为30%,当前电池温度为35摄氏度。此时,通过查询表1可以得到电池100与充电站A的充电设备共同支持的最大充电电流为400安,且匹配充电参数为400安的目标电池温度为50摄氏度(参见“温度13”行)。于是车辆1000执行热管理策略,即通过电热网将电池100从35摄氏度加热到50摄氏度。
根据本实施例的方法,能够帮助用户了解各充电设备的实际充电时间,从而节省了充电时间。
本公开的一些实施例还提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图20所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内 存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种如上述各实施例中涉及的数据获取方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本公开的一些实施例还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述任意一个实施例的方法的步骤。
本公开的一些实施例还提供了一种车辆,该车辆包括上述实施例的计算机设备和电池,前述计算机与电池电连接,用于执行上述任意一个实施例的方法的步骤。
本公开的一些实施例还提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序被处理器执行时实现上述任意一个实施例的方法的步骤。
本公开的一些实施例还提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述任意一个实施例的方法的步骤。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围,其均应涵盖在本公开的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种车辆的充电控制方法,其特征在于,包括以下步骤:
    显示第一界面,并检测第一操作,所述第一界面用于检测所述第一操作,所述第一操作用于触发查询第一充电设备;
    响应于检测到的所述第一操作,显示第二界面,所述第二界面包括一个以上的所述第一充电设备的充电设备标识和充电时间;
    检测第二操作,所述第二操作用于从一个以上的所述第一充电设备中选择第二充电设备;
    响应于检测到的所述第二操作,显示第三界面,所述第三界面包括所述第二充电设备的充电时间,
    其中,充电时间是根据充电设备的充电设备充电参数决定的。
  2. 根据权利要求1所述的方法,其中,所述方法还包括以下步骤:
    响应于所述车辆的位置、电池电量和所述第二充电设备的使用状态中的至少一者的变化,更新所述第三界面的充电时间。
  3. 根据权利要求1所述的方法,其中,所述方法还包括以下步骤:
    响应于接收到的第二操作,根据所述第二充电设备的充电参数,调整所述车辆的电池温度。
  4. 根据权利要求1所述的方法,其中,所述方法还包括以下步骤:
    响应于接收到的第二操作,为所述车辆预约所述第二充电设备。
  5. 根据权利要求1所述的方法,其中,所述第二操作为包含所述第一充电设备的充电设备标识的语音命令操作。
  6. 根据权利要求1至5中任一项所述的方法,其中,所述响应于检测到的所述第一操作,显示第二界面,所述第二界面包括一个以上的第一充电设备的充电设备标识和充电时间的步骤,包括以下子步骤:
    根据所述车辆的电池充电参数和一个以上的所述第一充电设备的充电设备充电参数,确定匹配充电参数;
    根据所述车辆的电池电量和所述匹配充电参数,获取对应一个以上的所述第一充电设备的所述充电时间;
    显示所述第二界面,所述第二界面包括一个以上的第一充电设备的充电设备标识和所述充电时间。
  7. 根据权利要求1至5中任一项所述的方法,其中,所述方法还包括以下步骤:获取用户设定的预设充电电量,
    所述响应于检测到的所述第一操作,显示第二界面,所述第二界面包括一个以上的第一充电设备的充电设备标识和充电时间的步骤,包括以下子步骤:
    根据所述车辆的电池充电参数和一个以上的所述第一充电设备的充电设备充电参数,确定匹配充电参数;
    根据所述车辆的电池电量、所述预设充电电量和所述匹配充电参数,获取对应一个以上的所述第一充电设备的所述充电时间;
    显示所述第二界面,所述第二界面包括一个以上的第一充电设备的充电设备标识和所述充电时间。
  8. 根据权利要求1至5中任一项所述的方法,其中,所述响应于检测到的所述第一操作,显示第二界面,所述第二界面包括一个以上的第一充电设备的充电设备标识和充电时间的步骤,包括以下子步骤:
    根据所述车辆的电池充电参数和一个以上的所述第一充电设备的充电设备充电参数,确定匹配充电参数;
    根据所述车辆的电池电量和所述匹配充电参数,获取对应一个以上的所述第一充电设备的充电时长;
    根据所述车辆的位置和一个以上的所述第一充电设备的位置,确定所述车辆到达一个以上的所述第一充电设备处的到达时长;
    根据所述充电时长和所述到达时长,确定所述充电时间;
    显示所述第二界面,所述第二界面包括一个以上的第一充电设备的充电设备标识和所述充电时间。
  9. 根据权利要求6所述的方法,其中,所述电池充电参数信息包括所述电池的电池电量、电池温度和电池充电电流之间的对应关系;所述充电设备充电参数信息包括所述充电设备对应的充电电流。
  10. 根据权利要求6所述的方法,其中,所述电池充电参数信息包括所述电池的电池电量、电池温度和电池充电电压之间的对应关系;所述充电设备充电参数信息包括所述充电设备对应的充电电压。
  11. 一种计算机设备,包括处理器和存储器,所述存储器存储有计算机程序,其特征在于,所述计算机程序在由所述处理器执行时,使得所述处理器实现权利要求1至5中任意一项所述的方法的步骤。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至5中任意一项所述的方法的步骤。
PCT/CN2023/123638 2022-11-04 2023-10-09 车辆的充电控制方法、设备和介质 WO2024093622A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211378287.2A CN118024956A (zh) 2022-11-04 2022-11-04 车辆的充电控制方法、设备和介质
CN202211378287.2 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024093622A1 true WO2024093622A1 (zh) 2024-05-10

Family

ID=90929687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123638 WO2024093622A1 (zh) 2022-11-04 2023-10-09 车辆的充电控制方法、设备和介质

Country Status (2)

Country Link
CN (1) CN118024956A (zh)
WO (1) WO2024093622A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368318A (zh) * 2017-07-24 2017-11-21 万帮充电设备有限公司 充电应用的显示系统及充电应用终端
CN111391700A (zh) * 2020-03-20 2020-07-10 重庆工业职业技术学院 纯电动汽车电池充电状态信息共享方法及控制方法
DE102019212784B3 (de) * 2019-08-27 2021-02-25 Volkswagen Aktiengesellschaft Verfahren zum Laden einer Fahrzeugbatterie eines Kraftfahrzeugs
CN114793005A (zh) * 2022-05-24 2022-07-26 上海洛轲智能科技有限公司 无线充电方法、装置、设备、车辆及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107368318A (zh) * 2017-07-24 2017-11-21 万帮充电设备有限公司 充电应用的显示系统及充电应用终端
DE102019212784B3 (de) * 2019-08-27 2021-02-25 Volkswagen Aktiengesellschaft Verfahren zum Laden einer Fahrzeugbatterie eines Kraftfahrzeugs
CN111391700A (zh) * 2020-03-20 2020-07-10 重庆工业职业技术学院 纯电动汽车电池充电状态信息共享方法及控制方法
CN114793005A (zh) * 2022-05-24 2022-07-26 上海洛轲智能科技有限公司 无线充电方法、装置、设备、车辆及存储介质

Also Published As

Publication number Publication date
CN118024956A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
EP3358703B1 (en) Charge rate optimization
TWI694936B (zh) 充電電池的預約方法及電動載具系統
US11498452B2 (en) Vehicle charging control systems and methods
CN108973744B (zh) 蓄电池交换系统、管理伺服器及蓄电池管理方法
EP2686195B1 (en) Systems and methods for controlling multiple storage devices
CN109103525A (zh) 用于运行动力电池的方法和电池管理系统以及机动车
CN105680541B (zh) 一种低温充电策略的充电方法
KR101317686B1 (ko) 온라인 전기자동차의 전주기 공조제어 장치 및 방법
CN113472885B (zh) 电池包远程预热控制方法及控制系统
CN104044479A (zh) 用于在充电时控制电动车辆的方法
KR20140078622A (ko) 전력 보급소에 인접한 전기차량 식별
CN104704673A (zh) 用于延长的旅行的快速充电模式
JP2014003803A (ja) 電気自動車、バッテリー充電ステーション、これを含む電気自動車のバッテリー交換予約システム、及びその予約方法
US20220072975A1 (en) Confidence-based vehicle charge control
WO2021056894A1 (zh) 一种公交车动力锂电池保温机务管理方法和云管理服务器
JP7156012B2 (ja) ハイブリッド車両およびハイブリッド車両の制御方法
US20230066396A1 (en) Method of providing guidance for use of electric power of electric vehicle
CN114161920A (zh) 电池系统、充电控制方法、装置、电子设备和存储介质
CN113994407A (zh) 车辆调度管理方法以及车辆调度管理装置
CN115071503A (zh) 基于用户预约出行的动力电池保温控制方法及控制系统
KR101646342B1 (ko) 고효율 충전 장치 및 방법
WO2024093622A1 (zh) 车辆的充电控制方法、设备和介质
WO2024092779A1 (zh) 车辆的充电热管理方法、设备和介质
US20220289060A1 (en) Control system and energy management method
CN114801837A (zh) 服务器、电力管理系统以及能量管理方法