WO2021056877A1 - 触控电极层及触控显示装置 - Google Patents

触控电极层及触控显示装置 Download PDF

Info

Publication number
WO2021056877A1
WO2021056877A1 PCT/CN2019/127323 CN2019127323W WO2021056877A1 WO 2021056877 A1 WO2021056877 A1 WO 2021056877A1 CN 2019127323 W CN2019127323 W CN 2019127323W WO 2021056877 A1 WO2021056877 A1 WO 2021056877A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
backbone
layer
touch
branch
Prior art date
Application number
PCT/CN2019/127323
Other languages
English (en)
French (fr)
Inventor
叶剑
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/763,330 priority Critical patent/US11579735B2/en
Publication of WO2021056877A1 publication Critical patent/WO2021056877A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the present invention relates to the field of touch display, in particular to a touch electrode layer and a touch display device.
  • Capacitive touch screens are widely used in various electronic interactive scene devices due to their high durability, long life, and support for multi-touch functions.
  • the capacitive touch screen detects the specific position touched by the finger by detecting the change in capacitance at the position where the finger touches. Therefore, when the amount of capacitance change caused by the touch is small, the conventional capacitive touch screen may not be able to accurately detect whether there is a touch input.
  • the touch electrode pattern usually needs to be made directly on the upper surface of the film encapsulation layer.
  • the encapsulation layer is relatively thin (usually thickness ⁇ 10um), so the touch electrode and the cathode The distance is small, which results in a large parasitic capacitance between the driving electrode (TX)/sensing electrode (RX) and the cathode, which results in a large RC delay and reduces touch sensitivity.
  • the current flexible AMOLED display screen, and the touch electrode material is usually hollow metal mesh material, its conductive area is relatively small compared to the traditional full-surface transparent ITO material touch electrode, its actual effective conductive electrode area is smaller, so the touch
  • the mutual capacitance induction between the electrodes TX and RX is very small, resulting in a smaller capacitance change caused by a finger touch, which is not easy to be detected by the touch chip.
  • the purpose of the present invention is to provide a touch electrode layer and a touch display device.
  • the mutual capacitance value between the touch driving electrode and the touch sensing electrode can be effectively improved, and the mutual capacitance electric field distribution in the entire touch screen structure can be made more uniform, which is more conducive to improving the resolution and accuracy of detecting the touch position.
  • the present invention provides a touch electrode layer, including: a plurality of first electrode chains arranged along a first direction, each of the first electrode chains includes a plurality of first electrodes electrically connected to each other; A plurality of second electrode chains are arranged in two directions, each second electrode chain includes a plurality of second electrodes electrically connected to each other, and each first electrode chain and each second electrode chain are insulated from each other; wherein, each first electrode chain The electrodes intersect with the second electrodes corresponding to each of the first electrodes to form a touch electrode unit.
  • Each first electrode includes a first electrode backbone and a plurality of first electrode branches.
  • Each first electrode branch is obliquely connected to the The first electrode trunk; each second electrode includes a second electrode trunk and a plurality of second electrode branches, each second electrode branch is diagonally connected to the second electrode trunk, each first electrode branch and each second electrode The branches are insulated from each other and arranged alternately, and each first electrode branch is arranged in a gap between two adjacent second electrode branches.
  • the third electrode is insulated from the first electrode and the second electrode, and is arranged between the first electrode branch and the second electrode branch.
  • the first electrode backbone includes a first electrode longitudinal backbone and two first electrode transverse backbones respectively located at both ends of the first electrode longitudinal backbone, and the first electrode longitudinal backbone vertically connects the two The first electrode transverse trunk, and the first electrode branches are all obliquely connected to the first electrode longitudinal trunk or the second electrode transverse trunk.
  • the second electrode backbone includes a second electrode horizontal backbone and two second electrode vertical backbones respectively located at both ends of the second electrode horizontal backbone, and the second electrode horizontal backbone vertically connects the two second electrode horizontal backbones.
  • the two electrode longitudinal backbones, and the second electrode branches are all obliquely connected to the second electrode longitudinal backbone or the second electrode transverse backbone.
  • first electrode and the transverse stems of the second electrode intersect to form an intersecting area.
  • the first electrode and the second electrode are insulated from each other.
  • the first electrode longitudinal backbone includes an upper electrode backbone, a lower electrode backbone, and a first connection portion, the first connection portion connects the upper electrode backbone and the lower electrode backbone; the upper electrode backbone and the lower electrode backbone
  • the electrode trunks are symmetrical up and down; a part of the first electrode branches are connected to each other through the upper electrode trunk and one of the first electrode transverse trunks, and the other part of the first electrode branches is connected through the lower electrode trunk and the other first electrode transverse trunk Form interconnections.
  • first intermediate portion is provided between the first electrode branch and the first electrode trunk; a second intermediate portion is provided between the second electrode branch and the second electrode trunk.
  • the shape of the first middle part and the second middle part includes: a triangle or a trapezoid.
  • the second electrode lateral trunk includes a left electrode trunk, a right electrode trunk, and a second connecting portion, the second connecting portion connects the left electrode trunk and the right electrode trunk; the left electrode trunk and the right electrode trunk
  • the electrode trunks are symmetrical; a part of the second electrode branches are connected to each other through the left electrode trunk and one of the second electrode longitudinal trunks, and the other part of the second electrode branches is connected through the right electrode trunk and the other second electrode transverse trunk Form interconnections.
  • it further includes: a buffer layer; an insulating layer arranged on the buffer layer; a first metal layer arranged in the insulating layer, and the first electrode chain is formed in the first metal layer; Two metal layers are provided on the insulating layer, and the second electrode chain is formed in the second metal layer.
  • a buffer layer an insulating layer, arranged on the buffer layer, having a connecting bridge and corresponding to the intersection area; a first metal layer, arranged on the insulating layer, and the first electrode chain is formed on the In the first metal layer; a second metal layer is provided on the insulating layer and is provided in the same layer as the first metal layer, the second electrode chain is formed in the second metal layer, in the In the cross area, the first connecting portion is the connecting bridge, and the upper electrode backbone and the lower electrode backbone are electrically connected through the connecting bridge.
  • the touch electrode unit includes a first center line arranged in a first direction and a second center line arranged in a second direction; the first electrode backbone is bilaterally symmetrical about the first center line, and The second centerline is symmetrical up and down; the second electrode backbone is symmetrical about the first centerline, and symmetrical about the second centerline.
  • the inclination angle of the first electrode branch is the same as the inclination angle of the second electrode branch.
  • a third electrode is provided between the first electrode and the second electrode.
  • the third electrode is symmetrical up and down and the upper and lower parts are not connected together.
  • the third electrode and the first electrode And the second electrode is insulated.
  • the first electrode branch has at least one electrode protrusion, the electrode protrusion is perpendicular to the first electrode branch; the second electrode branch has at least one groove, and the electrode protrusion is clamped in In the groove.
  • the present invention also provides a touch display device, including: a substrate; a thin film transistor layer provided on the substrate; a display layer provided on the thin film transistor layer; the aforementioned touch electrode layer, the touch The control electrode layer is arranged on the display layer, and the touch electrode layer is connected to the integrated chip through wires.
  • a thin film encapsulation layer is also provided between the display layer and the touch electrode layer.
  • the present invention provides a touch electrode layer and a touch display device.
  • the first electrode has a first electrode and a second electrode.
  • the first electrode has a first electrode backbone and a plurality of first electrode branches arranged obliquely along the first electrode backbone.
  • the two electrodes have a second electrode trunk and a plurality of second electrode branches obliquely arranged along the second electrode trunk.
  • Both the first electrode and the second electrode are arranged in a symmetrical structure, and the inclination angles of the first electrode branch and the second electrode branch the same.
  • the shape and size of the first electrode and the second electrode are almost the same, and the shape and size of the first electrode branch and the second electrode branch that are intersected are also almost the same.
  • the mutual capacitance value between the touch driving electrode and the touch sensing electrode can be effectively improved, and the mutual capacitance electric field distribution in the entire touch screen structure can be made more uniform, which is more conducive to improving the resolution and accuracy of detecting the touch position.
  • FIG. 1 is a schematic plan view of Embodiment 1 of the touch electrode layer provided by the present invention.
  • FIG. 2 is a schematic diagram of the planar layout simulation of Embodiment 1 of the touch electrode layer provided by the present invention.
  • FIG. 3 is a schematic diagram of the structure of the touch electrode layer provided by the present invention.
  • FIG. 4 is a cross-sectional view of the touch electrode layer provided by the present invention along the direction of the first electrode backbone in the intersection area.
  • FIG. 5 is a schematic diagram of the planar layout simulation of Embodiment 2 of the touch electrode layer provided by the present invention.
  • FIG. 6 is a schematic diagram of the planar layout simulation of Embodiment 3 of the touch electrode layer provided by the present invention.
  • FIG. 7 is a schematic diagram of the planar layout simulation of Embodiment 4 of the touch electrode layer provided by the present invention.
  • FIG. 8 is a schematic structural diagram of a touch display device provided by the present invention.
  • Touch electrode unit 100 first center line 110; second center line 120;
  • Insulation layer 202 touch display device 300; encapsulation layer 304
  • Polarizer 305 Polarizer 305; Glass cover plate 306; Substrate 301;
  • Encapsulation layer 305 first electrode backbone 10; second electrode backbone 20;
  • the present invention provides a touch electrode layer 200.
  • it includes a plurality of first electrode chains 11 arranged along a first direction 21, and each of the first electrode chains includes a plurality of mutual electrical contacts.
  • each second electrode chain 12 includes a plurality of second electrodes 102 electrically connected to each other, each first electrode chain 11 and each The second electrode chains 12 are insulated from each other.
  • the first direction 21 is perpendicular to the second direction 22.
  • the first electrode chain 11 is marked by a vertical dashed diamond-shaped frame marked in FIG. 1, and the second electrode chain 12 is a horizontal diamond-shaped dashed frame marked in FIG. 1.
  • Each first electrode 101 crosses the second electrode 102 corresponding to each first electrode 101 to form a touch electrode unit 100; to put it another way, the touch electrode units 100 are distributed in an array on the insulating layer 202 Above, the touch electrode unit 100 is connected to the driving chip by a wire.
  • each first electrode 101 includes a first electrode trunk 10 and a plurality of first electrode branches 1013, and each first electrode branch 1013 is connected to the first electrode trunk 10 obliquely.
  • Each second electrode 102 includes a second electrode trunk 20 and a plurality of second electrode branches 1023.
  • Each second electrode branch 1023 is obliquely connected to the second electrode trunk 20, and each first electrode branch 1013 is connected to each second electrode branch 1023.
  • the electrode branches 1023 are insulated from each other and arranged alternately, and each first electrode branch 1013 is arranged in a gap between two adjacent second electrode branches 1023.
  • the first electrode 101 is a driving electrode, which is a light-colored area in the figure; the second electrode 102 is a sensing electrode, which is a dark-colored area in the figure.
  • the material of the first electrode 101 and the second electrode 102 may be indium tin oxide on the entire surface; it may also be a hollow metal mesh structure as in this embodiment, and the material may be Ti/Al/Mo/Ag /Cu and other metal materials or alloys of the above-mentioned metal materials.
  • the first electrode backbone 10 includes a first electrode longitudinal backbone 1011 and two first electrode horizontal backbones 1012 respectively located at two ends (ie, upper and lower ends) of the first electrode longitudinal backbone 1011.
  • the first electrode longitudinal backbone 1011 is vertically connected to the two first electrode transverse backbones 1012, and the first electrode longitudinal backbone 1011 is bilaterally symmetrical. As shown in FIG. 1, the first electrode longitudinal backbone 1011 is arranged along the first center line 110 and is bilaterally symmetrical with respect to the first center line 110.
  • the first electrode longitudinal backbone 1011 includes an upper electrode backbone 1011a, a lower electrode backbone 1011b, and a first connection portion 104, and the first connection portion 104 is connected to the upper electrode backbone 1011a and the lower electrode backbone 1011b.
  • the upper electrode backbone 1011a and the lower electrode backbone 1011b are symmetrical up and down. Specifically, as shown in FIG. 1, the upper electrode backbone 1011 a and the lower electrode backbone 1011 b are symmetrical about the second center line 120, and the second center line 120 is perpendicular to the first center line 110.
  • the two first electrode lateral backbones 1012 are symmetrical about the second center line 120 and parallel to the second center line 120.
  • the first electrode branches 1013 are symmetrically distributed in the touch electrode unit 100. Specifically, the first electrode branches 1013 are symmetrically distributed on both sides of the first electrode longitudinal backbone 1011, that is, the first electrode branches 1013 are symmetrical about the first center line 110, and so The first electrode branch 1013 is symmetrical up and down along the second center line 120.
  • a part of the first electrode branches 1013 are connected to each other through the upper electrode trunk 1011a and one of the first electrode lateral trunks 1012, and the other part of the first electrode branches 1013 are connected through the lower electrode trunk 1011b and the other.
  • a first electrode lateral backbone 1012 is connected to each other. It can be seen that the two parts of the first electrode branch 1013 are not directly connected to each other. That is, one part of the first electrode branch and the other part of the first electrode branch are not directly connected to each other.
  • the first electrode branches 1013 that are symmetrical about the second center line 120 are not directly connected to each other, but are indirectly connected through the upper and lower electrode trunks and the first connecting portion. That is, the second center line 120 divides all the first electrode branches 1013 into two upper and lower parts.
  • the first electrode branch 1013 is connected to the first electrode longitudinal trunk 1011 or the first electrode transverse trunk 1012.
  • the first electrode branches 1013 connected to both sides of the first electrode longitudinal backbone 1011 are bilaterally symmetrical about the first center line 110, and the first electrode branches 1013 connected to the first electrode transverse backbone 1012 are also about the first electrode branch 1013.
  • the center line 110 is bilaterally symmetrical.
  • a first intermediate portion (reference numerals 140 and 130) is provided between the first electrode branch 1013 and the first electrode trunk 10, wherein the mark 130 is the first electrode longitudinal trunk 1011 and the first electrode branch 1013
  • the first middle part, marked 140 is the first middle part of the first electrode transverse trunk 1012 and the first electrode branch 1013; the shape of the first middle part is a right triangle, and the hypotenuse of the right triangle is connected to the first electrode longitudinal trunk 1011 or
  • the first electrode transverse backbone 1012, and the first electrode branch 1013 is perpendicular to the first middle portion 130 or 140, especially refers to the right-angled side perpendicular to the first middle portion.
  • the second electrode backbone 20 includes two second electrode longitudinal backbones 1021 and a second electrode horizontal backbone 1022 located between the two second electrode longitudinal backbones 1021.
  • the two second electrode longitudinal trunks 1021 are vertically connected to the second electrode transverse trunk 1022, and the second electrode transverse trunk 1022 is arranged along the second center line 120 and is bilaterally symmetrical with respect to the first center line 110.
  • the second electrode lateral backbone 1022 includes a left electrode backbone 1022a, a right electrode backbone 1022b, and a second connection portion 105, and the second connection portion 105 is connected to the left electrode backbone 1022a and the right electrode backbone 1022b.
  • the left electrode backbone 1022a and the right electrode backbone 1022b are bilaterally symmetrical. Specifically, as shown in FIG. 1, the left electrode backbone 1022a and the right electrode backbone 1022b are bilaterally symmetrical about the first center line 110.
  • the second electrode branches 1023 are symmetrically distributed in the touch electrode unit 100. Specifically, the second electrode branches 1023 are symmetrically distributed on both sides (upper and lower sides) of the second electrode lateral trunk 1022, that is, the second electrode branches 1023 are relative to the second center line 110. Up and down symmetrical, and the second electrode branch 1023 is symmetrical left and right along the first center line 110.
  • a part of the second electrode branches 1023 are connected to each other through the left electrode trunk 1022a and one of the second electrode longitudinal trunks 1021, and another part of the second electrode branches 1023 are connected through the right electrode trunk 1022b and the other.
  • a second electrode lateral backbone 1022 is connected to each other.
  • the second electrode branches 1023 of the two parts are not directly connected to each other. That is, a part of the second electrode branch and the other part of the second electrode branch are not directly connected to each other.
  • the second electrode branches 1023 that are symmetric about the first center line 110 are not directly connected to each other, but are indirectly connected through the left and right electrode trunks 1022a, 1022b and the second connecting portion 105. That is, the first center line 110 divides all the second electrode branches 1023 into two left and right parts.
  • the second electrode branch 1023 is connected to the second electrode longitudinal trunk 1021 or the second electrode transverse trunk 1022.
  • a second intermediate portion (reference numerals 150 and 160) is provided between the second electrode branch 1023 and the second electrode trunk 20, where the mark 150 is the second electrode lateral trunk 1022 and the second electrode branch 1023
  • the second middle part, marked 160 is the second middle part of the second electrode longitudinal trunk 1021 and the first electrode branch 1023; the shape of the second middle part is a right triangle, and the hypotenuse of the right triangle is connected to the second electrode longitudinal trunk 1021 or
  • the second electrode transverse main body 1022, and the second electrode branch 1023 are perpendicular to the second middle portion 150 or 160, especially the right-angled side perpendicular to the second middle portion.
  • the first electrode branch 1013 is diagonally connected to the first electrode trunk 10
  • the second electrode branch 1023 is diagonally connected to the second electrode trunk 20.
  • the inclination angle of the first electrode branch 1013 and the inclination angle of the second electrode branch 1023 are the same, for example, both are between 0 degrees and 90 degrees.
  • first electrode branches 1013 are obliquely connected to the first electrode horizontal trunk 1012, and the remaining part of the first electrode branches 1013 are obliquely connected to the first electrode longitudinal trunk 1011.
  • a part of the second electrode branches 1023 are obliquely connected to the second electrode horizontal trunk 1022, and the remaining part of the second electrode branches 1023 are obliquely connected to the second electrode longitudinal trunk 1021.
  • the inclination angles of the first electrode branch 1013 and the second electrode branch 1023 are the same, for example, both are between 0 degrees and 90 degrees. It can be seen that the first electrode branch 1013 and the second electrode branch 1023 are parallel to each other.
  • first electrode 101 and the second electrode 102 are insulated from each other.
  • the first electrode lateral stem 1012 and the second electrode longitudinal stem 1021 intersect to form an intersection area.
  • the first electrode 101 and the second electrode 102 are also insulated from each other.
  • Each first electrode branch 1013 is arranged in the gap between two adjacent second electrode branches 1023.
  • the above-mentioned structural design can realize that the first electrode branch 1013 and the second electrode branch 1023 are coupled to each other, can effectively increase the mutual capacitance value between the first electrode 101 and the second electrode 102, and at the same time make the mutual capacitance electric field line distribution It is more uniform, which is more conducive to improving the resolution and accuracy of detecting the touch position.
  • the cross-sectional structure of the touch electrode layer 200 includes: a buffer layer 201, an insulating layer 202, a first metal layer 23, and a second metal layer 24.
  • the insulating layer 202 is provided on the buffer layer 201.
  • the first electrode chain 11 is formed with the first metal layer 23, and the second electrode chain 12 is formed with the second metal layer 24.
  • the first metal layer 23 and the second metal layer 24 are provided in the same layer.
  • the first connecting portion 104 is a connecting bridge, which is provided in the insulating layer 202 for connecting the first electrode 101; the second connecting portion 105 It is arranged on the same layer as the second electrode 102 (see FIG. 1 for reference numerals), and both the first connection portion 104 and the second connection portion 105 are metal wires.
  • the first metal layer and the second metal layer can be arranged in different layers, thereby avoiding the cross connection of the intersection area. In the intersection area, the first electrode 101 and the second electrode 102 can be directly connected. There is no need to set up a connecting bridge.
  • the first metal layer is disposed in the insulating layer, and the second metal layer is disposed on the insulating layer.
  • the present invention does not limit the number and structure of the connecting bridges. It adopts a double-bridge structure, and the two connecting bridges are independent and are not connected to each other.
  • Embodiment 1 provides a touch electrode single layer 200.
  • the first electrode 101 and the second electrode 102 respectively have a first electrode trunk 10 and a second electrode trunk 20 along the first electrode trunk 10 and the second electrode trunk 20, respectively.
  • the first electrode branch and the second electrode branch are arranged obliquely.
  • the first electrode 101 and the second electrode are symmetric about the first center line and the second center line respectively, and the inclination angles of the electrode branches are the same.
  • the shape and size of the first electrode 101 and the second electrode 102 are almost the same, and the shape and size of the adjacent and intersecting electrode branches on the first electrode and the second electrode are also almost the same.
  • the mutual capacitance value between the touch driving electrode and the touch sensing electrode can be effectively improved, and the mutual capacitance electric field distribution in the entire touch screen structure can be made more uniform, which is more conducive to improving the resolution and accuracy of detecting the touch position.
  • the present invention provides a touch electrode layer 200a of Embodiment 2.
  • the difference between Embodiment 2 and Embodiment 1 is that the first electrode branch 1013a and the first electrode 10a trunk
  • the shape of a middle portion 130a is a right-angled trapezoid, and the height of the right-angled trapezoid is perpendicular to the first electrode backbone 10a.
  • the shape of the second intermediate portion 140a between the second electrode branch 1014a and the trunk of the second electrode 20a is also a right-angled trapezoid, and the height of the right-angled trapezoid is perpendicular to the second electrode trunk 20a.
  • the present invention provides a touch electrode layer 200b of Embodiment 3.
  • the difference between Embodiment 3 and Embodiment 2 is that the first electrode branch 1013b has at least one electrode protrusion 1014b.
  • the start 1014b is perpendicular to the first electrode branch 1013b.
  • the second electrode branch 1023b has a groove 1024b, and the electrode protrusion 1013b is clamped into the groove 1024b.
  • the electrode protrusion 1014b can further increase the coupling area of the adjacent Tx/Rx boundary to increase the mutual capacitance signal variation ⁇ Cm when the finger is touched, thereby effectively improving the touch sensitivity.
  • the present invention provides a touch electrode layer 200c of Embodiment 4.
  • the difference between Embodiment 4 and Embodiment 1 is that a first electrode 101c and a second electrode 102c are provided between the first electrode 101c and the second electrode 102c.
  • the third electrode 103c is symmetrical with respect to the second center line 120c, and the upper and lower parts are not connected to each other.
  • the third electrode 103c is electrically insulated from the first electrode and the second electrode and is not connected to each other.
  • the grid structure constituting the third electrode 103c at least surrounds more than one sub-pixel.
  • Embodiment 4 can effectively reduce the basic mutual capacitance value Cm, thereby increasing the rate of change of Cm when a finger is touched.
  • the present invention provides four embodiments of the touch electrode unit. The embodiments are not isolated, and different embodiments can be combined again to obtain better effects.
  • the present invention also provides a touch display device 300, including: a substrate 301, a thin film transistor layer 302, a display layer 303, and an encapsulation layer 304, the touch electrode layer 200, a polarizer 305, and a glass cover ⁇ 306 ⁇ Board 306.
  • the thin film transistor is a low temperature polysilicon transistor
  • the thin film transistor layer 302 is provided on the substrate 301
  • the display layer 303 is provided on the thin film transistor layer 302
  • the packaging layer 304 is provided on the display layer 303 on.
  • the touch electrode layer 200 is disposed on the display layer 303, the touch electrode layer 200 is connected to an integrated chip through a wire 203; the polarizer 305 is disposed on the touch electrode layer 200, and the glass cover The plate 306 is disposed on the polarizer 306, and the glass cover 306 and the polarizer 305 are glued to each other by optical glue.
  • the glass cover 306 can be made of a transparent film, and the touch display device can be made into a folded display device.
  • the electrode grid lines of the touch electrode layer 200 avoid the sub-pixels of the touch display device 300, and the electrode wiring should be arranged between the sub-pixels.
  • An embodiment of the present invention provides a touch display device 300 having a touch electrode layer 200.
  • the touch electrode layer 200 has touch electrode units 100 arranged in an array.
  • the touch electrode unit 100 has first electrodes 101 and The second electrode 102, and the first electrode 101 and the second electrode 102 respectively have a first electrode trunk 10 and a second electrode trunk 20, and first electrode branches arranged obliquely along the first electrode trunk 10 and the second electrode trunk 20, respectively And the second electrode branch, the first electrode 101 and the second electrode are symmetric about the first center line and the second center line respectively, and the inclination angles of the electrode branches with respect to the electrode stem are equal.
  • the shape and size of the first electrode 101 and the second electrode 102 are almost the same, and the shape and size of the adjacent and intersecting electrode branches on the first electrode and the second electrode are also almost the same.
  • the mutual capacitance value between the touch driving electrode and the touch sensing electrode can be effectively improved, and the mutual capacitance electric field distribution in the entire touch screen structure can be made more uniform, which is more conducive to improving the resolution and accuracy of detecting the touch position.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控电极层(200)及触控显示装置(300),具有第一电极(101)和第二电极(102),第一电极(101)具有第一电极主干(10)以及若干个沿着第一电极主干(10)倾斜设置的第一电极分支(1013),第二电极(102)具有第二电极主干(20)以及若干个沿着第二电极主干(20)倾斜设置的第二电极分支(1023),第一电极(101)与第二电极(102)均设置为对称结构,且第一电极分支(1013)与第二电极分支(1023)倾斜角度相同。在触控电极单元内,第一电极(101)与第二电极(102)的形状大小几乎相同,且交叉设置的第一电极分支(1013)与第二电极分支(1023)的形状大小也几乎相同。可以有效提高触控驱动电极与触控感应电极之间的互容值,同时使整个触摸屏结构中的互容电场分布的更加均匀,更加有利于提高检测触摸位置的分辨率和精准度。

Description

触控电极层及触控显示装置
本申请要求于2019年09月26日提交中国专利局、申请号为201910915878.0、发明名称为“触控电极层及触控显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及触控显示领域,尤其是涉及一种触控电极层及触控显示装置。
背景技术
电容式触摸屏由于其高耐久性,长寿命,并且支持多点触控的功能,广泛应用于各种电子交互场景设备中。电容式触摸屏,通过检测手指触摸位置处电容量的变化,来检测手指触摸的具体位置。因此,当触摸时引起的电容变化量较小时,传统的电容式触摸屏可能无法准确检测到是否有触摸输入。
技术问题
由于触摸屏的结构设计方案是检测电容改变量非常重要的因素,因此开发出一种能够检测较小电容改变量的触摸屏设计方案将是非常有必要的。目前针对柔性有源矩阵有机发光二极体(Active-matrix organic light-emitting diode,AMOLED)显示屏,其触控电极图案通常需要直接制作在薄膜封装层上表面,然而由于封装层较薄(通常厚度<10um),因此该触控电极与阴极之间的距离小,从而导致驱动电极(TX)/感应电极(RX)与阴极之间的寄生电容较大,从而导致RC延迟较大,降低触控灵敏度。并且目前柔性AMOLED显示屏,而且触控电极的材质通常为镂空的金属网格材质,其导电面积相对传统的整面透明ITO材质的触控电极,其实际有效导电电极面积较小,因此触控电极TX与RX之间的互容感应量非常小,导致手指触摸时,引起的电容变化量更小,不容易被触控芯片检测到。
因此,急需提供一种新的触控电极层及触控显示装置,用以提高触控显示装置的触摸位置检测的分辨率和精准度。
技术解决方案
本发明的目的在于,提供一种触控电极层及触控显示装置。可以有效提高触控驱动电极与触控感应电极之间的互容值,同时使整个触摸屏结构中的互容电场分布的更加均匀,更加有利于提高检测触摸位置的分辨率和精准度。
为了可以达到上述目的,本发明提供一种触控电极层,包括:沿第一方向设置的多条第一电极链,每条第一电极链包括多个相互电连接的第一电极;沿第二方向设置的多条第二电极链,每条第二电极链包括相互电连接的多个第二电极,每条第一电极链和每条第二电极链相互绝缘;其中,每根第一电极与所述每根第一电极交叉对应的第二电极形成一触控电极单元,每根第一电极包括第一电极主干以及多个第一电极分支,每根第一电极分支倾斜连接所述第一电极主干;每根第二电极包括第二电极主干以及多个第二电极分支,每根第二电极分支倾斜连接所述第二电极主干,每根第一电极分支和每根第二电极分支相互绝缘且交错设置,每根第一电极分支均设于相邻的两第二电极分支的间隙中。
进一步地,第三电极,与所述第一电极以及所述第二电极绝缘,设置于所述第一电极分支以及所述第二电极分支之间。
进一步地,所述第一电极主干包括第一电极纵向主干以及两个分别位于所述第一电极纵向主干的两端的第一电极横向主干,所述第一电极纵向主干垂直连接所述的两个第一电极横向主干,所述第一电极分支均倾斜连接于所述第一电极纵向主干或所述第二电极横向主干。
进一步地,所述第二电极主干包括第二电极横向主干以及两个分别位于所述第二电极横向主干两端的第二电极纵向主干,所述第二电极横向主干垂直连接所述的两个第二电极纵向主干,所述第二电极分支均倾斜连接于所述第二电极纵向主干或所述第二电极横向主干。
进一步地,所述第一电极纵向主干与所述第二电极横向主干相交形成一交叉区,在所述交叉区,所述第一电极与所述第二电极互相绝缘。
进一步地,所述第一电极纵向主干包括上电极主干、下电极主干以及第一连接部,所述第一连接部连接所述上电极主干以及下电极主干;所述上电极主干与所述下电极主干上下对称;其中一部分第一电极分支通过所述上电极主干及其中一个第一电极横向主干形成相互连接,而另一部分第一电极分支通过所述下电极主干及另一个第一电极横向主干形成相互连接。
进一步地,所述第一电极分支与所述第一电极主干之间设有一第一中间部;所述第二电极分支与所述第二电极主干之间设有一第二中间部。
进一步地,所述第一中间部以及第二中间部的形状包括:三角形或梯形。
进一步地,所述第二电极横向主干包括左电极主干、右电极主干以及第二连接部,所述第二连接部连接所述左电极主干以及右电极主干;所述左电极主干与所述右电极主干左右对称;其中一部分第二电极分支通过所述左电极主干及其中一个第二电极纵向主干形成相互连接,而另一部分第二电极分支通过所述右电极主干及另一个第二电极横向主干形成相互连接。
进一步地,还包括:缓冲层;绝缘层,设于所述缓冲层上;第一金属层,设于所述绝缘层中,所述第一电极链形成于所述第一金属层中;第二金属层,设于所述绝缘层上,所述第二电极链形成于所述第二金属层中。
进一步地,缓冲层;绝缘层,设于所述缓冲层上,具有一连接桥且对应所述交叉区;第一金属层,设于所述绝缘层上,所述第一电极链形成于所述第一金属层中;第二金属层,设于所述绝缘层上且与所述第一金属层同层设置,所述第二电极链形成于所述第二金属层中,在所述交叉区,所述第一连接部为所述连接桥,所述上电极主干与所述下电极主干通过所述连接桥电连接。
进一步地,所述触控电极单元包括沿第一方向设置的第一中心线以及沿第二方向设置的第二中心线;所述第一电极主干关于所述第一中心线左右对称,关于所述第二中心线上下对称;所述第二电极主干关于所述第一中心线左右对称,关于所述第二中心线上下对称。
进一步地,所述第一电极分支的倾斜角度与所述第二电极分支的倾斜角度相同。
进一步地,在所述第一电极以及所述第二电极之间设有一第三电极,所述第三电极上下对称且上下两部分未连接在一起,所述第三电极与所述第一电极以及第二电极绝缘。
进一步地,所述第一电极分支具有至少一电极凸起,所述电极凸起垂直于所述第一电极分支;所述第二电极分支具有至少一凹槽,所述电极凸起卡设于所述凹槽中。
本发明还提供一种触控显示装置,包括:基板;薄膜晶体管层,设于所述基板上;显示层,设于所述薄膜晶体管层上;前文所述的触控电极层,所述触控电极层设于所述显示层上,所述触控电极层通过导线连接至集成芯片。
进一步地,所述显示层与所述触控电极层之间还设有薄膜封装层。
有益效果
本发明提供一种触控电极层及触控显示装置,具有第一电极和第二电极,第一电极具有第一电极主干以及若干个沿着第一电极主干倾斜设置的第一电极分支,第二电极具有第二电极主干以及若干个沿着第二电极主干倾斜设置的第二电极分支,第一电极以及第二电极均设置为对称结构,且第一电极分支以及第二电极分支的倾斜角度相同。在触控电极单元内,第一电极与第二电极的形状大小几乎相同,且交叉设置的第一电极分支与第二电极分支的形状大小也几乎相同。可以有效提高触控驱动电极与触控感应电极之间的互容值,同时使整个触摸屏结构中的互容电场分布的更加均匀,更加有利于提高检测触摸位置的分辨率和精准度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的触控电极层实施例1的的平面示意图。
图2为本发明提供的触控电极层实施例1的平面布局模拟示意图。
图3为本发明提供的触控电极层的结构示意图。
图4为本发明提供的触控电极层在所述交叉区沿第一电极主干方向的剖面图。
图5为本发明提供的触控电极层实施例2的平面布局模拟示意图。
图6为本发明提供的触控电极层实施例3的平面布局模拟示意图。
图7为本发明提供的触控电极层实施例4的平面布局模拟示意图。
图8为本发明提供的触控显示设备的结构示意图。
触控电极单元100;第一中心线110;第二中心线120;
第一电极101;第二电极102;第一电极纵向主干1011;
第一电极横向主干1012;第一电极分支1013;上电极主干1011a;
下电极主干1011b;第一连接部104;第二电极纵向主干1021;
第二电极横向主干1022;第二电极分支1023;左电极主干1022a
右电极主干1022b;第二连接部105;第一电极主干10;
第二电极主干20;触控电极层200;缓冲层201;
绝缘层202;触控显示装置300;封装层304
偏光片305;玻璃盖板306;基板301;
薄膜晶体管层302;显示层303;
封装层305;第一电极主干10;第二电极主干20;
第一电极链11;第二电极链12。
本发明的实施方式
以下是各实施例的说明是参考附加的图式,用以例示本发明可以用实施的特定实施例。
本文将参照附图来详细描述本发明的实施例。本发明可以表现为许多不同形式,本发明不应仅被解释为本文阐述的具体实施例。本发明提供实施例是为了解释本发明的实际应用,从而使本领域其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改方案。
实施例1
如图1所示,本发明提供一种触控电极层200,在实施例1中,包括沿第一方向21设置的多条第一电极链11,每条第一电极链包括多个相互电连接的第一电极101;沿第二方向22设置的多条第二电极链12,每条第二电极链12包括相互电连接的多个第二电极102,每条第一电极链11和每条第二电极链12相互绝缘。所述第一方向21垂直所述第二方向22。所述第一电极链11为图1标记的纵向虚线菱形框标注,所述第二电极链12为图1标记的横向菱形虚线框。
每根第一电极101与所述每根第一电极101交叉对应的第二电极102形成一触控电极单元100;换个方式讲,所述触控电极单元100阵列式分布于所述绝缘层202上,所述触控电极单元100由导线连接至驱动芯片上。
如图2所示,每根第一电极101包括第一电极主干10以及多个第一电极分支1013,每根第一电极分支1013倾斜连接所述第一电极主干10。
每根第二电极102包括第二电极主干20以及多个第二电极分支1023,每根第二电极分支1023倾斜连接所述第二电极主干20,每根第一电极分支1013和每根第二电极分支1023相互绝缘且交错设置,每根第一电极分支1013均设于相邻的两第二电极分支1023的间隙中。
所述第一电极101为驱动电极,如图中浅色区域;所述第二电极102为感应电极,如图中深色区域。
所述第一电极101以及所述第二电极102的材质可以为整面的氧化铟锡;也可以为如本实施例中的镂空的金属网格结构,材料可以为Ti/Al/Mo/Ag/Cu等金属材料或者上述几种金属材料的合金。
所述第一电极主干10包括第一电极纵向主干1011以及两个分别位于所述第一电极纵向主干1011两端(即上下端)的第一电极横向主干1012。
所述第一电极纵向主干1011垂直连接所述的两个第一电极横向主干1012,所述第一电极纵向主干1011左右对称。如图1所示,所述第一电极纵向主干1011沿着第一中心线110设置且关于所述第一中心线110左右对称。
所述第一电极纵向主干1011包括上电极主干1011a、下电极主干1011b以及第一连接部104,所述第一连接部104连接所述上电极主干1011a以及下电极主干1011b。
所述上电极主干1011a以及所述下电极主干1011b上下对称。具体地讲,如图1所示,所述上电极主干1011a以及所述下电极主干1011b关于第二中心线120上下对称,并且所述第二中心线120垂直于所述第一中心线110。
所述的两个第一电极横向主干1012关于所述第二中心线120上下对称,且平行于所述第二中心线120。
所述第一电极分支1013对称地分布于所述触控电极单元100中。具体地讲,所述第一电极分支1013左右对称地分布于所述第一电极纵向主干1011的两侧,亦即所述第一电极分支1013关于所述第一中心线110左右对称,并且所述第一电极分支1013沿着所述第二中心线120上下对称。
如图2所示,其中一部分第一电极分支1013通过所述上电极主干1011a及其中一个第一电极横向主干1012形成相互连接,而另一部分第一电极分支1013通过所述下电极主干1011b及另一个第一电极横向主干1012形成相互连接。可见,所述第一电极分支1013的这两部分相互之间不直接连接。亦即,所述的其中一部分第一电极分支与所述的另一部分第一电极分支相互之间不直接连接。换句话讲,关于所述第二中心线120上下对称的所述第一电极分支1013相互之间不直接连接,而是通过上下电极主干以及第一连接部进行间接连接。亦即,所述第二中心线120将所有的第一电极分支1013分成上下两部分。
换个方式讲,所述第一电极分支1013连接至所述第一电极纵向主干1011或所述第一电极横向主干1012。
其中连接至所述第一电极纵向主干1011两侧的第一电极分支1013关于所述第一中心线110左右对称,连接至所述第一电极横向主干1012的第一电极分支1013也关于第一中心线110左右对称。
所述第一电极分支1013与所述第一电极主干10之间设有一第一中间部(附图标记的140及130),其中,标记130为第一电极纵向主干1011与第一电极分支1013的第一中间部,标记140为第一电极横向主干1012与第一电极分支1013的第一中间部;第一中间部的形状为直角三角形,直角三角形的斜边连接第一电极纵向主干1011或第一电极横向主干1012,第一电极分支1013垂直于所述第一中间部130或140,尤其是指垂直于所述第一中间部的直角边。
所述第二电极主干20包括两个第二电极纵向主干1021以及一位于所述的两个第二电极纵向主干1021之间的第二电极横向主干1022。
所述的两个第二电极纵向主干1021垂直连接所述第二电极横向主干1022,所述第二电极横向主干1022沿着第二中心线120设置且关于所述第一中心线110左右对称。
所述第二电极横向主干1022包括左电极主干1022a、右电极主干1022b以及第二连接部105,所述第二连接部105连接所述左电极主干1022a以及右电极主干1022b。
所述左电极主干1022a以及所述右电极主干1022b左右对称,具体地讲,如图1所示,所述左电极主干1022a以及所述右电极主干1022b关于第一中心线110左右对称。
所述第二电极分支1023对称地分布于所述触控电极单元100中。具体地讲,所述第二电极分支1023左右对称地分布于所述第二电极横向主干1022的两侧(上下两侧),亦即所述第二电极分支1023关于所述第二中心线110上下对称,并且所述第二电极分支1023沿着所述第一中心线110左右对称。
如图2所示,其中一部分第二电极分支1023通过所述左电极主干1022a及其中一个第二电极纵向主干1021形成相互连接,而另一部分第二电极分支1023通过所述右电极主干1022b及另一个第二电极横向主干1022形成相互连接。这两部分的第二电极分支1023相互之间不直接连接。亦即,所述的其中一部分第二电极分支与所述的另一部分第二电极分支相互之间不直接连接。换句话讲,关于所述第一中心线110左右对称的所述第二电极分支1023相互之间不直接连接,而是通过左右电极主干1022a、1022b以及第二连接部105形成间接连接。亦即,所述第一中心线110将所有的第二电极分支1023分成左右两部分。
换个方式讲,所述第二电极分支1023连接至所述第二电极纵向主干1021或所述第二电极横向主干1022。
所述第二电极分支1023与所述第二电极主干20之间设有一第二中间部(附图标记的150及160),其中,标记150为第二电极横向主干1022与第二电极分支1023的第二中间部,标记160为第二电极纵向主干1021与第一电极分支1023的第二中间部;第二中间部的形状为直角三角形,直角三角形的斜边连接第二电极纵向主干1021或第二电极横向主干1022,第二电极分支1023垂直于所述第二中间部150或160,尤其是指垂直于所述第二中间部的直角边。
所述第一电极分支1013倾斜连接至所述第一电极主干10,所述第二电极分支1023倾斜连接至所述第二电极主干20。所述第一电极分支1013的倾斜角度与所述第二电极分支1023的倾斜角度相同,例如均在0度至90度之间。
更具体的讲,一部分第一电极分支1013倾斜连接至所述第一电极横向主干1012,而其余部分第一电极分支1013倾斜连接至所述第一电极纵向主干1011。同样地,一部分第二电极分支1023倾斜连接至所述第二电极横向主干1022,而其余部分第二电极分支1023倾斜连接至所述第二电极纵向主干1021。所述第一电极分支1013与所述第二电极分支1023倾斜角度相同,例如均在0度至90度之间。可见,所述第一电极分支1013与所述第二电极分支1023相互平行。
其中,所述第一电极101与所述第二电极102互相绝缘。所述第一电极横向主干1012与所述第二电极纵向主干1021相交形成一交叉区,在所述交叉区,所述第一电极101与所述第二电极102也是互相绝缘。每根第一电极分支1013设于相邻两第二电极分支1023的间隙中。
因此,上述结构设计可以实现所述第一电极分支1013与第二电极分支1023彼此耦合,可以有效的提高第一电极101与第二电极102之间的互容值,同时使得互容电场线分布的更加均匀,更加有利于提高检测触摸位置的分辨率和精准度。
这样通过TX/RX之间的极致耦合,从而增大TX/RX相邻交界耦合面积来提高手指触摸时的电容信号变化量△Cm,从而有效提高触摸灵敏度。
如图3所示,具体地所述触控电极层200的剖面结构包括:缓冲层201、绝缘层202、第一金属层23、第二金属层24。
所述绝缘层202设于缓冲层201上。所述第一电极链11形成与第一金属层23中,所述第二电极链12形成与所述第二金属层中24。本实施例中,所述第一金属层23与所述第二金属层24同层设置。
如图4所示,在所述交叉区150,所述第一连接部104为连接桥,设于所述绝缘层202中,用来连接所述第一电极101;所述第二连接部105与所述第二电极102(标号见图1)同层设置,所述第一连接部104以及所述第二连接部105皆为金属导线。
在其它实施例中,所述第一金属层与所述第二金属层可以不同层设置,进而避免交叉区的交叉连接,在交叉区,第一电极101和第二电极102可以直接相连接,不用设置连接桥。具体的讲,所述第一金属层设置于所述绝缘层中,所述第二金属层设于所述绝缘层上。
在一实施例中,本发明对连接桥数量和结构的并没有做出限定,其采用双桥结构,两根连接桥是独立的,相互之间并没有连接。
实施例1提供一种触控电极单层200,第一电极101和第二电极102分别具有第一电极主干10以及第二电极主干20,沿着第一电极主干10以及第二电极主干20分别倾斜设置的第一电极分支以及第二电极分支,第一电极101以及第二电极分别以第一中心线以及第二中心线为中心轴对称,电极分支的倾斜角度相同。在触控电极单元内,第一电极101与第二电极102的形状大小几乎相同,位于第一电极与第二电极上的相邻交叉设置的电极分支形状大小也几乎相同。可以有效提高触控驱动电极与触控感应电极之间的互容值,同时使整个触摸屏结构中的互容电场分布的更加均匀,更加有利于提高检测触摸位置的分辨率和精准度。
实施例2
如图5所示,本发明提供实施例2的触控电极层200a,实施例2与实施例1不同之处在于,所述第一电极分支1013a与所述第一电极10a主干之间的第一中间部130a的形状为直角梯形,直角梯形的高垂直于所述第一电极主干10a。
所述第二电极分支1014a与所述第二电极20a主干之间的第二中间部140a的形状也为直角梯形,直角梯形的高垂直于所述第二电极主干20a。
实施例3
如图6所示,本发明提供实施例3的触控电极层200b,实施例3与实施例2不同之处在于,所述第一电极分支1013b具有至少一电极凸起1014b,所述电极凸起1014b垂直于所述第一电极分支1013b。所述第二电极分支1023b具有一凹槽1024b,所述电极凸起1013b卡设至所述凹槽1024b中。
电极凸起1014b可以进一步增大Tx/Rx相邻交界耦合面积来提高手指触摸时的互电容信号变化量△Cm,从而有效提高触摸灵敏度。
实施例4
如图7所示,本发明提供实施例4的触控电极层200c,实施例4与实施例1不同之处在于,在所述第一电极101c以及所述第二电极102c之间设有一第三电极103c。所述第三电极103c关于所述第二中心线120c上下对称,且上下两部分互相不连接,所述第三电极103c与第一电极和第二电极均电性绝缘,彼此不连接。而且构成第三电极103c的网格结构至少围绕一个以上子像素。
实施例4可以有效降低基础互电容值Cm,从而提高手指触摸时Cm的变化率。本发明提供触控电极单元的四个实施例,实施例之间并不是孤立的,不同实施例之间是可以再次进行组合进而得到更好的效果。
如图8所示,本发明还提供一种触控显示装置300,包括:基板301、薄膜晶体管层302、显示层303以及封装层304、所述触控电极层200、偏光片305以及玻璃盖板306。
所述薄膜晶体管为低温多晶硅晶体管,所述薄膜晶体管层302设于所述基板301上,所述显示层303设于所述薄膜晶体管层302上,所述封装层304设于所述显示层303上。
所述触控电极层200设于所述显示层303上,所述触控电极层200通过导线203连接集成芯片;所述偏光片305设于所述触控电极层200上,所述玻璃盖板306设于所述偏光片306上,所述玻璃盖板306与所述偏光片305通过光学胶相互粘贴。
其中所述玻璃盖板306可以用透明薄膜,所述触控显示装置可以制成折叠的显示设备。
所述触控电极层200的电极网格走线避开触控显示装置300的子像素,电极布线应设于子像素之间。
本发明一实施例提供一种触控显示装置300,具有一触控电极层200,所述触控电极层200具有阵列分布的触控电极单元100,触控电极单元100具有第一电极101和第二电极102,而第一电极101和第二电极102分别具有第一电极主干10以及第二电极主干20,沿着第一电极主干10以及第二电极主干20分别倾斜设置的第一电极分支以及第二电极分支,第一电极101以及第二电极分别以第一中心线以及第二中心线为中心轴对称,电极分支相对于电极主干的倾斜角度相等。在触控电极单元内,第一电极101与第二电极102的形状大小几乎相同,位于第一电极与第二电极上的相邻交叉设置的电极分支形状大小也几乎相同。可以有效提高触控驱动电极与触控感应电极之间的互容值,同时使整个触摸屏结构中的互容电场分布的更加均匀,更加有利于提高检测触摸位置的分辨率和精准度。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
本发明的技术范围不仅仅局限于所述说明中的内容,本领域技术人员可以在不脱离本发明技术思想的前提下,对所述实施例进行多种变形和修改,而这些变形和修改均应当属于本发明的范围内。

Claims (30)

  1. 一种触控电极层,其中,包括:
    沿第一方向设置的多条第一电极链,每条第一电极链包括多个相互电连接的第一电极;沿第二方向设置的多条第二电极链,每条第二电极链包括相互电连接的多个第二电极,每条第一电极链和每条第二电极链相互绝缘;
    其中,每根第一电极与所述每根第一电极交叉对应的第二电极形成一触控电极单元,每根第一电极包括第一电极主干以及多个第一电极分支,每根第一电极分支倾斜连接所述第一电极主干;
    每根第二电极包括第二电极主干以及多个第二电极分支,每根第二电极分支倾斜连接所述第二电极主干,每根第一电极分支和每根第二电极分支相互绝缘且交错设置,每根第一电极分支均设于相邻的两第二电极分支的间隙中。
  2. 根据权利要求1所述的触控电极层,其中,还包括:
    第三电极,与所述第一电极以及所述第二电极绝缘,设置于所述第一电极分支以及所述第二电极分支之间。
  3. 根据权利要求1所述的触控电极层,其中,
    所述第一电极主干包括第一电极纵向主干以及两个分别位于所述第一电极纵向主干的两端的第一电极横向主干,所述第一电极纵向主干垂直连接所述的两个第一电极横向主干,所述第一电极分支均倾斜连接于所述第一电极纵向主干或所述第二电极横向主干。
  4. 根据权利要求3所述的触控电极层,其中,
    所述第二电极主干包括第二电极横向主干以及两个分别位于所述第二电极横向主干两端的第二电极纵向主干,所述第二电极横向主干垂直连接所述的两个第二电极纵向主干,所述第二电极分支均倾斜连接于所述第二电极纵向主干或所述第二电极横向主干。
  5. 根据权利要求4所述的触控电极层,其中,
    所述第一电极纵向主干与所述第二电极横向主干相交形成一交叉区,在所述交叉区,所述第一电极与所述第二电极互相绝缘。
  6. 根据权利要求5所述的触控电极层,其中,
    所述第一电极纵向主干包括上电极主干、下电极主干以及第一连接部,所述第一连接部连接所述上电极主干以及下电极主干;
    所述上电极主干与所述下电极主干上下对称;
    其中一部分第一电极分支通过所述上电极主干及其中一个第一电极横向主干形成相互连接,而另一部分第一电极分支通过所述下电极主干及另一个第一电极横向主干形成相互连接。
  7. 根据权利要求1所述的触控电极层,其中,
    所述第一电极分支与所述第一电极主干之间设有一第一中间部;
    所述第二电极分支与所述第二电极主干之间设有一第二中间部。
  8. 根据权利要求7所述的触控电极层,其中,
    所述第一中间部以及第二中间部的形状包括:三角形或梯形。
  9. 根据权利要求4所述的触控电极层,其中,
    所述第二电极横向主干包括左电极主干、右电极主干以及第二连接部,所述第二连接部连接所述左电极主干以及右电极主干;
    所述左电极主干与所述右电极主干左右对称;
    其中一部分第二电极分支通过所述左电极主干及其中一个第二电极纵向主干形成相互连接,而另一部分第二电极分支通过所述右电极主干及另一个第二电极横向主干形成相互连接。
  10.   根据权利要求1所述的触控电极层,其中,包括:
    缓冲层;
    绝缘层,设于所述缓冲层上;
    第一金属层,设于所述绝缘层中,所述第一电极链形成于所述第一金属层中;
    第二金属层,设于所述绝缘层上,所述第二电极链形成于所述第二金属层中。
  11.   根据权利要求6所述的触控电极单层,其中,
    缓冲层;
    绝缘层,设于所述缓冲层上,具有一连接桥且对应所述交叉区;
    第一金属层,设于所述绝缘层上,所述第一电极链形成于所述第一金属层中;
    第二金属层,设于所述绝缘层上且与所述第一金属层同层设置,所述第二电极链形成于所述第二金属层中,在所述交叉区,所述第一连接部为所述连接桥,所述上电极主干与所述下电极主干通过所述连接桥电连接。
  12.   根据权利要求1所述的触控电极层,其中,
    所述触控电极单元包括沿第一方向设置的第一中心线以及沿第二方向设置的第二中心线;
    所述第一电极主干关于所述第一中心线左右对称,关于所述第二中心线上下对称;
    所述第二电极主干关于所述第一中心线左右对称,关于所述第二中心线上下对称。
  13.   根据权利要求1所述的触控电极层,其中,
    所述第一电极分支的倾斜角度与所述第二电极分支的倾斜角度相同。
  14.   根据权利要求1所述的触控电极层,其中,
    在所述第一电极以及所述第二电极之间设有一第三电极,所述第三电极上下对称且上下两部分未连接在一起,所述第三电极与所述第一电极以及第二电极绝缘。
  15.   根据权利要求1所述的触控电极层,其中,
    所述第一电极分支具有至少一电极凸起,所述电极凸起垂直于所述第一电极分支;所述第二电极分支具有至少一凹槽,所述电极凸起卡设于所述凹槽中。
  16.   一种触控显示装置,其中,包括:
    基板;
    薄膜晶体管层,设于所述基板上;
    显示层,设于所述薄膜晶体管层上;以及
    触控电极层,所述触控电极层设于所述显示层上,所述触控电极层通过导线连接至集成芯片;
    所述触控电极层包括沿第一方向设置的多条第一电极链,每条第一电极链包括多个相互电连接的第一电极;沿第二方向设置的多条第二电极链,每条第二电极链包括相互电连接的多个第二电极,每条第一电极链和每条第二电极链相互绝缘;
    其中,每根第一电极与所述每根第一电极交叉对应的第二电极形成一触控电极单元,每根第一电极包括第一电极主干以及多个第一电极分支,每根第一电极分支倾斜连接所述第一电极主干;
    每根第二电极包括第二电极主干以及多个第二电极分支,每根第二电极分支倾斜连接所述第二电极主干,每根第一电极分支和每根第二电极分支相互绝缘且交错设置,每根第一电极分支均设于相邻的两第二电极分支的间隙中。
  17.   根据权利要求16所述的触控显示装置,其中,所述触控电极层还包括:
    第三电极,与所述第一电极以及所述第二电极绝缘,设置于所述第一电极分支以及所述第二电极分支之间。
  18.   根据权利要求16所述的触控显示装置,其中,
    所述第一电极主干包括第一电极纵向主干以及两个分别位于所述第一电极纵向主干的两端的第一电极横向主干,所述第一电极纵向主干垂直连接所述的两个第一电极横向主干,所述第一电极分支均倾斜连接于所述第一电极纵向主干或所述第二电极横向主干。
  19.   根据权利要求18所述的触控显示装置,其中,
    所述第二电极主干包括第二电极横向主干以及两个分别位于所述第二电极横向主干两端的第二电极纵向主干,所述第二电极横向主干垂直连接所述的两个第二电极纵向主干,所述第二电极分支均倾斜连接于所述第二电极纵向主干或所述第二电极横向主干;
    所述第一电极纵向主干与所述第二电极横向主干相交形成一交叉区,在所述交叉区,所述第一电极与所述第二电极互相绝缘。
  20.   根据权利要求19所述的触控显示装置,其中,
    所述第一电极纵向主干包括上电极主干、下电极主干以及第一连接部,所述第一连接部连接所述上电极主干以及下电极主干;
    所述上电极主干与所述下电极主干上下对称;
    其中一部分第一电极分支通过所述上电极主干及其中一个第一电极横向主干形成相互连接,而另一部分第一电极分支通过所述下电极主干及另一个第一电极横向主干形成相互连接。
  21.   根据权利要求16所述的触控显示装置,其中,
    所述第一电极分支与所述第一电极主干之间设有一第一中间部;
    所述第二电极分支与所述第二电极主干之间设有一第二中间部。
  22.   根据权利要求21所述的触控显示装置,其中,
    所述第一中间部以及第二中间部的形状包括:三角形或梯形。
  23.   根据权利要求19所述的触控显示装置,其中,
    所述第二电极横向主干包括左电极主干、右电极主干以及第二连接部,所述第二连接部连接所述左电极主干以及右电极主干;
    所述左电极主干与所述右电极主干左右对称;
    其中一部分第二电极分支通过所述左电极主干及其中一个第二电极纵向主干形成相互连接,而另一部分第二电极分支通过所述右电极主干及另一个第二电极横向主干形成相互连接。
  24.   根据权利要求16所述的触控显示装置,其中,所述触控电极层还包括:
    缓冲层;
    绝缘层,设于所述缓冲层上;
    第一金属层,设于所述绝缘层中,所述第一电极链形成于所述第一金属层中;
    第二金属层,设于所述绝缘层上,所述第二电极链形成于所述第二金属层中。
  25.   根据权利要求16所述的触控显示装置,其中,所述触控电极层还包括:
    缓冲层;
    绝缘层,设于所述缓冲层上,具有一连接桥且对应所述交叉区;
    第一金属层,设于所述绝缘层上,所述第一电极链形成于所述第一金属层中;
    第二金属层,设于所述绝缘层上且与所述第一金属层同层设置,所述第二电极链形成于所述第二金属层中,在所述交叉区,所述第一连接部为所述连接桥,所述上电极主干与所述下电极主干通过所述连接桥电连接。
  26.   根据权利要求16所述的触控显示装置,其中,
    所述触控电极单元包括沿第一方向设置的第一中心线以及沿第二方向设置的第二中心线;
    所述第一电极主干关于所述第一中心线左右对称,关于所述第二中心线上下对称;
    所述第二电极主干关于所述第一中心线左右对称,关于所述第二中心线上下对称。
  27.   根据权利要求16所述的触控显示装置,其中,
    所述第一电极分支的倾斜角度与所述第二电极分支的倾斜角度相同。
  28.   根据权利要求16所述的触控显示装置,其中,
    在所述第一电极以及所述第二电极之间设有一第三电极,所述第三电极上下对称且上下两部分未连接在一起,所述第三电极与所述第一电极以及第二电极绝缘。
  29.   根据权利要求16所述的触控显示装置,其中,
    所述第一电极分支具有至少一电极凸起,所述电极凸起垂直于所述第一电极分支;所述第二电极分支具有至少一凹槽,所述电极凸起卡设于所述凹槽中。
  30.   根据权利要求16所述的触控显示装置,其中,
    所述显示层与所述触控电极层之间还设有薄膜封装层。
PCT/CN2019/127323 2019-09-26 2019-12-23 触控电极层及触控显示装置 WO2021056877A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/763,330 US11579735B2 (en) 2019-09-26 2019-12-23 Touch electrode layer and touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910915878.0A CN110764660B (zh) 2019-09-26 2019-09-26 触控电极层及触控显示装置
CN201910915878.0 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021056877A1 true WO2021056877A1 (zh) 2021-04-01

Family

ID=69330268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127323 WO2021056877A1 (zh) 2019-09-26 2019-12-23 触控电极层及触控显示装置

Country Status (3)

Country Link
US (1) US11579735B2 (zh)
CN (1) CN110764660B (zh)
WO (1) WO2021056877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11868156B2 (en) 2020-05-22 2024-01-09 Boe Technology Group Co., Ltd. Touch-control panel and touch-control display apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158516B (zh) * 2019-12-04 2021-06-25 武汉华星光电半导体显示技术有限公司 触控基板以及触控屏
CN111475051B (zh) * 2020-04-08 2021-11-02 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN111651091A (zh) * 2020-06-22 2020-09-11 武汉华星光电半导体显示技术有限公司 触控电极结构及触控显示面板
CN111651090A (zh) 2020-06-22 2020-09-11 武汉华星光电半导体显示技术有限公司 触控电极结构及触控显示面板
CN111651093A (zh) 2020-06-28 2020-09-11 武汉华星光电半导体显示技术有限公司 触控电极层及触控显示装置
CN114138129A (zh) * 2020-09-04 2022-03-04 深圳市柔宇科技股份有限公司 一种触控面板、触控显示装置及电子设备
CN112433648B (zh) * 2020-12-04 2023-11-28 武汉华星光电半导体显示技术有限公司 触控电极层及触控显示装置
CN112578938B (zh) * 2020-12-08 2022-12-06 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
US20240184411A1 (en) * 2021-09-09 2024-06-06 Chengdu Boe Optoelectronics Technology Co., Ltd. Touch Control Panel, Touch Control Display Panel, and Touch Control Display Apparatus
CN116931754A (zh) * 2022-04-07 2023-10-24 华为技术有限公司 一种触控基板、触控显示屏及电子设备
CN114924664A (zh) * 2022-05-09 2022-08-19 武汉华星光电半导体显示技术有限公司 触控基板及显示面板
CN118056178A (zh) * 2022-09-16 2024-05-17 京东方科技集团股份有限公司 一种触控层、触控基板及触控显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140152921A1 (en) * 2011-07-29 2014-06-05 Sharp Kabushiki Kaisha Touch panel substrate and electro-optic device
US20140198268A1 (en) * 2011-07-29 2014-07-17 Sharp Kabushiki Kaisha Touch panel substrate and electro-optical device
CN104077002A (zh) * 2014-07-04 2014-10-01 京东方科技集团股份有限公司 阵列基板及触控显示装置
CN104793833A (zh) * 2015-05-18 2015-07-22 合肥鑫晟光电科技有限公司 触控基板及其制作方法和显示装置
CN107831960A (zh) * 2017-12-12 2018-03-23 武汉华星光电半导体显示技术有限公司 触控面板及触控装置
CN108182008A (zh) * 2017-12-29 2018-06-19 武汉华星光电半导体显示技术有限公司 Oled触控面板及oled触控装置
CN108491114A (zh) * 2018-03-12 2018-09-04 武汉华星光电半导体显示技术有限公司 触控面板、触控面板制备方法及触控装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201409297A (zh) * 2012-08-21 2014-03-01 Wintek Corp 觸控感測電極結構及觸控裝置
TW201445621A (zh) 2013-05-24 2014-12-01 Wintek Corp 觸控感測電極結構及觸控裝置
CN104123054B (zh) * 2014-07-22 2017-10-20 昆山龙腾光电有限公司 触控显示装置
CN104461207A (zh) * 2014-12-31 2015-03-25 深圳市华星光电技术有限公司 单层电容式触摸屏以及触摸显示装置
CN104731405B (zh) * 2015-03-09 2018-01-19 上海天马微电子有限公司 一种触控显示装置及其制造方法
CN204790951U (zh) * 2015-06-16 2015-11-18 敦泰电子有限公司 一种单层互电容触控电极结构及触控装置
GB2559573B (en) * 2017-02-09 2020-03-25 Solomon Systech Ltd Touch Sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140152921A1 (en) * 2011-07-29 2014-06-05 Sharp Kabushiki Kaisha Touch panel substrate and electro-optic device
US20140198268A1 (en) * 2011-07-29 2014-07-17 Sharp Kabushiki Kaisha Touch panel substrate and electro-optical device
CN104077002A (zh) * 2014-07-04 2014-10-01 京东方科技集团股份有限公司 阵列基板及触控显示装置
CN104793833A (zh) * 2015-05-18 2015-07-22 合肥鑫晟光电科技有限公司 触控基板及其制作方法和显示装置
CN107831960A (zh) * 2017-12-12 2018-03-23 武汉华星光电半导体显示技术有限公司 触控面板及触控装置
CN108182008A (zh) * 2017-12-29 2018-06-19 武汉华星光电半导体显示技术有限公司 Oled触控面板及oled触控装置
CN108491114A (zh) * 2018-03-12 2018-09-04 武汉华星光电半导体显示技术有限公司 触控面板、触控面板制备方法及触控装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11868156B2 (en) 2020-05-22 2024-01-09 Boe Technology Group Co., Ltd. Touch-control panel and touch-control display apparatus

Also Published As

Publication number Publication date
CN110764660A (zh) 2020-02-07
CN110764660B (zh) 2022-04-05
US11579735B2 (en) 2023-02-14
US20220214768A1 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2021056877A1 (zh) 触控电极层及触控显示装置
KR102101887B1 (ko) 터치 스크린 패널
WO2020029372A1 (zh) 一种触摸屏及oled显示面板
WO2019218866A1 (zh) 触控结构及触控屏
KR20230171416A (ko) 터치 패널 및 터치 패널 일체형 유기 발광 표시 장치
US11644934B2 (en) Touch electrode layer and touch display device
CN206774549U (zh) 触控显示面板和触控显示装置
CN110391277A (zh) 具有触摸传感器的有机发光显示装置
WO2021147175A1 (zh) 触控显示面板及电子装置
KR20180047580A (ko) 플렉서블 터치 패널 및 이를 이용한 유기 발광 표시 장치
KR102232774B1 (ko) 터치 패널 및 이를 포함하는 표시 장치
WO2022011784A1 (zh) 触控组件及触控显示装置
CN103677406B (zh) 触控面板与触控显示面板
WO2021056878A1 (zh) 触控电极层以及触控显示装置
WO2017124833A1 (zh) 金属网双触控感应器、触控模组及触控电子装置
US11640213B2 (en) Touch sensing device, touch display panel and touch display panel motherboard
WO2016106849A1 (zh) 一种触控式液晶面板及其制作方法
WO2021196083A1 (zh) 触控结构、触控显示面板及电子装置
US11126315B2 (en) Touch electrode layer and touch display device
WO2022052777A1 (zh) 触控结构、显示面板及电子装置
CN112433648B (zh) 触控电极层及触控显示装置
WO2022000263A1 (zh) 触控结构及触控显示面板
WO2021196076A1 (zh) 触控结构、触控显示面板及电子装置
US20230195248A1 (en) Touch electrode structure and touch display panel
WO2021196082A1 (zh) 触控结构、触控显示面板及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946664

Country of ref document: EP

Kind code of ref document: A1