WO2021056849A1 - 用于制造光纤带的涂覆轮、涂覆装置、系统及方法 - Google Patents

用于制造光纤带的涂覆轮、涂覆装置、系统及方法 Download PDF

Info

Publication number
WO2021056849A1
WO2021056849A1 PCT/CN2019/125035 CN2019125035W WO2021056849A1 WO 2021056849 A1 WO2021056849 A1 WO 2021056849A1 CN 2019125035 W CN2019125035 W CN 2019125035W WO 2021056849 A1 WO2021056849 A1 WO 2021056849A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
coating
coating wheel
optical fiber
wheel body
Prior art date
Application number
PCT/CN2019/125035
Other languages
English (en)
French (fr)
Inventor
钱峰
赵梓森
何茂友
刘晓红
王珑
祁庆庆
贺言
张磊
孟伟
郭坤
邢凤雨
Original Assignee
烽火通信科技股份有限公司
新疆烽火光通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司, 新疆烽火光通信有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2021056849A1 publication Critical patent/WO2021056849A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1039Recovery of excess liquid or other fluent material; Controlling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C13/00Means for manipulating or holding work, e.g. for separate articles
    • B05C13/02Means for manipulating or holding work, e.g. for separate articles for particular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/12Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation being performed after the application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables

Definitions

  • the present invention relates to the technical field of optical fiber manufacturing, in particular to a coating wheel, coating device, system and method for manufacturing optical fiber ribbons.
  • the traditional loose fiber optical cable has a large number of cores, is relatively independent, difficult to distinguish, and more time-consuming to connect, and cannot meet efficient construction.
  • a flexible mesh optical fiber ribbon can be assembled into a bundle and crimped at will.
  • the optical fiber of the same diameter has a high fiber density, and it is convenient to arrange and connect in an orderly manner during construction.
  • the ultraviolet curable resin intermittent coating mold includes an upper mold and a lower mold.
  • a cavity is formed between the upper mold and the lower mold through which an optical fiber ribbon arranged by a number of optical fibers passes.
  • the upper mold is provided with an upper recess
  • the lower mold is provided with a lower recess
  • the upper recess and the lower recess constitute a cylindrical cavity for each optical fiber to pass through
  • the upper mold is provided with vertical communication corresponding to the contact position of the upper recess of the adjacent column
  • the cavity is coated with a pipe, and the ultraviolet curing resin is coated on the optical fiber ribbon at intervals through the coating pipe.
  • the problem with this kind of mold is that after each dispensing, the resin will remain.
  • the remaining resin will flow laterally perpendicular to the direction of fiber travel, thereby adhering other fibers; on the other hand, the remaining resin will travel along the fiber.
  • the purpose of the present invention is to provide a coating wheel, coating device, system and method for manufacturing optical fiber ribbons, which use air blowing to blow out the adhesive resin from the resin storage tank , So as to stick the optical fiber, avoid the lateral or longitudinal flow of the bonding resin during dispensing, thereby improving the qualification rate of the optical fiber ribbon.
  • a coating wheel for manufacturing an optical fiber ribbon which is used to form an optical fiber ribbon with a plurality of optical fibers arranged in parallel and traveling along a set path, which includes:
  • Coating wheel body which is used to intermittently coat adhesive resin between adjacent optical fibers along the length direction of the optical fibers
  • the air guide channel opened on the coating wheel body is in communication with the resin storage tank, and when the coating wheel body rotates, the air guide channel has a first position and a second position.
  • the air guide channel In the first position, the air guide channel is in a negative pressure state so that the adhesive resin is sucked into the resin storage tank.
  • the air guide channel When in the second position, the air guide channel is in a positive pressure state to make the The adhesive resin is blown out from the resin storage tank.
  • groove groups are arranged along the circumferential direction on the outer circumferential surface of the coating wheel body, the groove groups include a plurality of the resin storage grooves, the groove groups are configured with the air guide channels, and the guide One end of the air channel connected to the resin storage tank forms a blowing and suction port, and the other end extends to the side wall of the coating wheel body and forms a counter interface;
  • the number of resin storage tanks in two adjacent tank groups differs by one, and the number of resin storage tanks in the two outside tank groups in any three consecutively arranged tank groups is the same;
  • the resin storage grooves of two adjacent groove groups are alternately arranged.
  • the groove group is further equipped with a docking platform, the docking platform is arranged on the side wall of the coating wheel body, and the docking interface of the resin storage tank included in the groove group is located on the docking platform.
  • a buffer transition zone is formed between the two sides of the docking platform and the side wall of the coating wheel body.
  • the present invention also provides a coating device for manufacturing an optical fiber ribbon, which includes:
  • the coating wheel as described above is located below the positioning wheel, and a fiber channel for optical fibers to pass side by side is formed between the outer circumferential surface of the coating wheel body and the positioning wheel, so that when the air guide When the channel is in the second position, the adhesive resin is blown toward the fiber-feeding channel;
  • a negative pressure mechanism which is used for communicating with the air guiding channel when the air guiding channel is in the first position, so that the air guiding channel is in a negative pressure state;
  • a positive pressure mechanism for communicating with the air guiding channel when the air guiding channel is in the second position, so that the air guiding channel is in a positive pressure state
  • the first driver is connected with the coating wheel and the positioning wheel, and is used to drive the coating wheel and the positioning wheel to rotate synchronously and in reverse.
  • groove groups are arranged along the circumferential direction on the outer circumferential surface of the coating wheel body, the groove groups include a plurality of the resin storage grooves, the groove groups are configured with the air guide channels, and the guide One end of the air channel connected to the resin storage tank forms a blowing and suction port facing the fiber-feeding channel, and the other end extends to the side wall of the coating wheel body and forms a pair for communicating with the negative pressure mechanism and the positive pressure mechanism. interface;
  • the number of resin storage tanks in two adjacent tank groups differs by one, and the number of resin storage tanks in the two outside tank groups in any three consecutively arranged tank groups is the same;
  • the resin storage grooves of two adjacent groove groups are alternately arranged.
  • the positioning wheel is in rolling connection with the coating wheel body, and the outer surface of the positioning wheel is concave, forming the fiber channel in the middle and two retaining walls on both sides;
  • a plurality of ring-shaped partitions are provided on the outer circumferential surface of the positioning wheel at equal intervals along the axial direction, the partitions are located between the two blocking walls, and divide the fiber channel into a plurality of fiber positioning grooves;
  • the radius of the partition is smaller than the radius of the blocking wall.
  • the distance d from the outer surface of the partition to the bottom of the fiber positioning groove and the fiber radius R satisfy d ⁇ R.
  • the groove group is further equipped with a docking platform, the docking platform is arranged on the side wall of the coating wheel body, and the docking interface of the resin storage tank included in the groove group is located on the docking platform.
  • the negative pressure mechanism includes:
  • the negative pressure main body has a negative pressure chamber therein, and one end of the negative pressure main body is provided with a first through groove and an inhalation inlet for communicating with the counter port;
  • a first piston assembly located in the negative pressure chamber, one end of which is movably connected with the negative pressure main body, and the other end passes through the first through groove and is connected with a first ball;
  • the second driver which is in communication with the negative pressure chamber, and is used for suction to form a negative pressure in the negative pressure chamber; at the same time,
  • the negative pressure mechanism has a first state and a second state.
  • the first ball When in the first state, the first ball is in rolling connection with the docking platform and is located in the first through groove, and the suction inlet is in communication with the negative pressure chamber
  • the first rolling ball When in the second state, the first rolling ball is in rolling connection with the side wall of the coating wheel body and is at least partially located outside the first through groove, and the suction inlet is not connected with the negative pressure chamber.
  • the positive pressure mechanism includes:
  • the positive pressure main body has a positive pressure chamber therein, and one end of the positive pressure main body is provided with a second through groove and a blowing outlet for communicating with the counter port;
  • a second piston assembly located in the positive pressure chamber, one end of which is movably connected with the positive pressure main body, and the other end passes through the second through groove and is connected with a second ball;
  • the third driver communicates with the positive pressure chamber and is used for blowing air to form a positive pressure in the positive pressure chamber; at the same time,
  • the positive pressure mechanism has a first state and a second state.
  • the second ball When in the first state, the second ball is in rolling connection with the docking platform and is located in the second through groove, and the blowing outlet is in communication with the positive pressure chamber
  • the second rolling ball When in the second state, the second rolling ball is in rolling connection with the side wall of the coating wheel body and is at least partially located outside the second through groove, and the blowing outlet is not in communication with the positive pressure chamber.
  • the coating device further includes a first resin removal component, along the set path of the optical fiber, the first resin removal component is located upstream of the coating wheel, and one end of the first resin removal component is attached to Or crimping on the outer surface of the coated wheel body; and/or,
  • the coating device further includes a second resin removal component, along the set path of the optical fiber, the second resin removal component is located downstream of the coating wheel, and one end of the second resin removal component is attached or crimped On the outer circular surface of the coated wheel body.
  • the present invention also provides a system for manufacturing an optical fiber ribbon, which includes:
  • the pay-off reel set, the front positioning wheel set, the above-mentioned coating device, the primary resin curing device, the rear positioning wheel set, the belt mold, the secondary resin curing device and the take-up line arranged in sequence along the set path of the optical fiber plate;
  • the resin box is used to store the adhesive resin, and the coating wheel part is located below the liquid level of the adhesive resin.
  • system further includes:
  • a speedometer which is located upstream of the coating device along the set path of the optical fiber, and is used to measure the traveling speed of the optical fiber;
  • the control device is connected with the speedometer and the first driver, and is used to control the first driver according to the traveling speed.
  • the present invention also provides a method for manufacturing an optical fiber ribbon, which includes the following steps:
  • the coating device intermittently coating the adhesive resin in the length direction of the adjacent optical fibers
  • the banding process is carried out by the banding die, and is cured and molded by the secondary resin curing device and then wound on the take-up reel.
  • system further includes:
  • a speedometer which is located upstream of the coating device along the set path of the optical fiber, and is used to measure the traveling speed of the optical fiber;
  • a control device which is connected to the speedometer and the first driver
  • the method also includes the following steps:
  • the rotation speed of the coating wheel body and the positioning wheel is controlled.
  • the rotation speed of the coating wheel body and the positioning wheel is approximately equal to the traveling speed of the optical fiber.
  • the coating wheel designed by the present invention uses air blowing to blow the bonding resin out of the resin storage tank, thereby bonding the optical fiber, and avoiding the horizontal or vertical flow of the bonding resin during dispensing, causing other parts of the optical fiber to be stuck.
  • Fig. 1 is a schematic diagram of the structure of a coating wheel provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of one of the meshed optical fiber ribbons provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another mesh optical fiber ribbon provided by an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a coating device provided by an embodiment of the present invention (when the air guide channel is in the first position);
  • Figure 5 is a schematic structural diagram of a coating device provided by an embodiment of the present invention (when the air guide channel is in the second position);
  • FIG. 6 is a schematic diagram when one of two adjacent groove groups is coated with an adhesive resin according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another groove group of two adjacent groove groups provided by an embodiment of the present invention when the adhesive resin is applied;
  • Figure 8 is a schematic diagram of a negative pressure mechanism provided by an embodiment of the present invention (in the first state);
  • Figure 9 is a schematic diagram of a negative pressure mechanism provided by an embodiment of the present invention (in the second state);
  • Figure 10 is a schematic diagram of a positive pressure mechanism provided by an embodiment of the present invention (in the first state);
  • Figure 11 is a schematic diagram of a positive pressure mechanism provided by an embodiment of the present invention (in the second state);
  • Fig. 12 is a schematic diagram of the optical fiber passing between the coating wheel and the positioning wheel according to the embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a system structure provided by an embodiment of the present invention.
  • A blowing and suction port
  • B pairing interface
  • C pay-off reel group
  • D speedometer
  • E front positioning wheel group
  • F first-level resin curing device
  • G rear positioning wheel group
  • H parallel Belt mold
  • I secondary resin curing device
  • J take-up reel
  • K resin box; 1, coating wheel body; 10, groove group; 100, resin storage tank; 11, air duct; 110, first Section; 111. Second section; 12. Docking platform; 13. Buffer transition zone; 2.
  • Positioning wheel; 20 Fiber walking channel; 21. Retaining wall; 22. Separator; 23. Optical fiber positioning groove; 3.
  • Negative pressure Mechanism 30, negative pressure body; 300, negative pressure chamber; 301, suction inlet, 302, mounting groove, 31, first piston assembly, 310, piston rod, 311, piston, 312, spring, 313, through hole 314. Seal ring; 32. First ball; 33. Second driver; 4. Positive pressure mechanism; 40. Positive pressure main body; 400. Positive pressure chamber; 401. Blowing outlet; 41. Second piston assembly; 42. The second ball; 43. The third driver; 5. The first driver; 6. The first resin removal part; 7. The second resin removal part; 8. Optical fiber; 9. Bonding point.
  • the first embodiment of the present invention provides a coating wheel for manufacturing an optical fiber ribbon, which is used to make a plurality of optical fibers 8 arranged in parallel and traveling along a set path to form an optical fiber Belt
  • the coating wheel includes a coating wheel body 1, which is used to intermittently coat an adhesive resin between adjacent optical fibers 8 along the length of the optical fiber 8, and the adhesive resin is cured to form an adhesive Contact 9;
  • a resin storage groove 100 is opened on the outer surface of the coating wheel body 1, and the resin storage groove 100 is used to store the bonding resin;
  • an air guide channel 11 is opened on the coating wheel body 1 and the air guide channel 11 It is connected to the resin storage tank 100, and when the coating wheel body 1 rotates, the air guiding channel 11 has a first position and a second position:
  • the air guide passage 11 When in the first position, the air guide passage 11 is in a negative pressure state, so that the bonding resin is sucked into the resin storage tank 100 for storage;
  • the air guide passage 11 When in the second position, the air guide passage 11 is under a positive pressure state, so that the stored adhesive resin is blown out from the resin storage tank 100.
  • the coating wheel is set on the set path of the optical fiber 8, and the coating wheel body 1 rotates continuously, so that the air guide channel 11 is continuously switched between the first position and the second position.
  • a plurality of optical fibers traveling in parallel are arranged 8
  • the adhesive resin is blown out from the resin storage tank 100 intermittently to bond it to the adjacent optical fiber 8 to form an optical fiber ribbon.
  • the coating wheel designed by the present invention uses air blowing to blow the bonding resin out of the resin storage tank, thereby bonding the optical fiber, and avoiding the horizontal or vertical flow of the bonding resin during dispensing, causing other parts of the optical fiber to be stuck.
  • the set path can be traveled in a horizontal direction.
  • the second embodiment of the present invention provides a coating wheel for manufacturing an optical fiber ribbon.
  • the difference from the first embodiment is that an even number of groove groups 10 are arranged on the outer surface of the coating wheel body 1 along the circumferential direction.
  • the tank group 10 includes a number of resin storage tanks 100. Each tank group 10 is equipped with an air guiding channel 11.
  • One end of the air guiding channel 11 communicates with the resin storage tank 100 to form a blowing and suction port A, and the other end extends to the side wall of the coating wheel body 1 and A pair of interface B is formed; the number of resin storage tanks 100 in two adjacent tank groups 10 differs by one, and the number of resin storage tanks 100 in the two tank groups 10 located on the outer side of any three consecutively arranged tank groups 10 is the same; In the axial direction of the wheel body 1, the resin storage grooves 100 of two adjacent groove groups 10 are staggered and staggered by one optical fiber position, so that the optical fibers 8 passing side by side form a net shape.
  • Fig. 1 there are four groove groups 10, which are arranged at equal intervals along the outer surface of the coating wheel body 1 in the circumferential direction (usually in equal intervals, of course, unequal intervals may also be used), wherein Two tank groups 10 (denoted as the first type of tank group) each include three resin storage tanks 100, and the other two tank groups 10 (denoted as the second type of tank group) each include two resin storage tanks 100; along the coating In the axial direction of the wheel body 1, the resin storage grooves 100 of two adjacent groove groups 10 are offset by one optical fiber position.
  • the three resin storage grooves 100 of the first type groove group are respectively coated with the first one
  • the optical fiber and the second optical fiber, the third optical fiber and the fourth optical fiber, the fifth optical fiber and the sixth optical fiber, and the two resin storage tanks 100 of the second type tank group are respectively coated with the second optical fiber and the third optical fiber.
  • One optical fiber, the fourth optical fiber, and the fifth optical fiber, so that the optical fibers 8 passing side by side form a mesh optical fiber ribbon as shown in FIG. 1.
  • the tank group 10 is also equipped with a docking platform 12, the docking platform 12 is provided on the side wall of the coating wheel body 1, and the docking port B of the resin storage tank 100 included in the tank group 10 is located on the docking platform 12.
  • a buffer transition zone 13 is formed between the two sides of the docking platform 12 and the side wall of the coating wheel body 1.
  • the air guide passage 11 includes a first section 110 and a number of second sections 111.
  • the number of the second sections 111 is equal to the number of resin storage tanks 100 included in the corresponding tank group 10.
  • the first section 110 runs along the coating wheel.
  • the main body 1 extends axially; one end of each second section 111 is a blowing port A, and the other end is communicated with the first section 110.
  • the blowing and suction port A is located at the bottom of the resin storage tank 100 to facilitate blowing out the bonding resin in the radial direction.
  • the resin storage tank 100 is strip-shaped, in order to effectively form the bonding point 9, there are multiple air channels 11 configured in the groove group 10, for example, there are three in Figure 1, and along the coating wheel
  • the main body 1 is arranged at intervals in a circumferential direction, so that the resin storage tank 100 has blowing and sucking ports A at the front, middle and rear of the resin storage tank 100.
  • the number of groove groups 10 is an even number m.
  • the distance between two adjacent bonding points 9 on the optical fiber that is, the coating pitch, ignoring the length of the resin storage groove
  • d is the diameter of the coating wheel
  • the number of groove groups 10 can also be only one (not shown).
  • the coating pitch is ⁇ d, that is, the groove is coated once per revolution.
  • a third embodiment of the present invention provides a coating device for manufacturing optical fiber ribbon, which includes a positioning wheel 2, the coating of the first embodiment Wheel, negative pressure mechanism 3, positive pressure mechanism 4 and first driver 5; the coating wheel is located below the positioning wheel 2, a fiber routing channel 20 is formed between the outer surface of the coating wheel body 1 and the positioning wheel 2 20 is used for the optical fibers 8 to pass side by side and provide space for the coating of the adhesive resin, so that the adhesive resin blows toward the fiber channel 20 when the air guiding channel 11 is in the second position;
  • the negative pressure mechanism 3 is used for communicating with the air guiding channel 11 when the air guiding channel 11 is in the first position, so that the air guiding channel 11 is in a negative pressure state, thereby sucking the adhesive resin into the resin storage tank 100 for storage;
  • the positive pressure mechanism 4 is used for communicating with the air guiding channel 11 when the air guiding channel 11 is in the second position, so that the air guiding channel 11 is in a positive pressure state, so as to move the stored adhesive resin from the resin storage tank 100 toward Blow out in the direction of the fiber channel 20, and bond to a plurality of optical fibers 8 passing side by side through the fiber channel 20;
  • the first driver 5 is connected with the coating wheel and the positioning wheel 2 and is used to drive the coating wheel and the positioning wheel 2 to rotate in a synchronous and reverse direction.
  • the negative pressure mechanism 3 and the positive pressure mechanism 4 provide continuous negative pressure and positive pressure respectively to ensure that the coating wheel body 1 continuously sucks and coats the adhesive resin during the rotation process, thereby ensuring the production speed , Improve production efficiency.
  • the fourth embodiment of the present invention provides a coating device for manufacturing an optical fiber ribbon.
  • the difference between this embodiment and the third embodiment is that the upper edge of the outer surface of the coating wheel body 1
  • An even number of groove groups 10 are arranged in the circumferential direction.
  • the groove group 10 includes a plurality of resin storage grooves 100.
  • the groove group 10 is equipped with an air guiding channel 11, and one end of the air guiding channel 11 is connected to the resin storage groove 100 to form a blowing and sucking port facing the fiber channel 20 A, the other end extends to the side wall of the coating wheel body 1 and forms a docking port B for docking and communicating with the negative pressure mechanism 3 and the positive pressure mechanism 4; the number of resin storage tanks 100 in two adjacent tank groups 10 differs by one, And the number of resin storage tanks 100 in the two tank groups 10 located on the outer side of any three consecutively arranged tank groups 10 is the same; along the axial direction of the coating wheel body 1, the resin storage tanks 100 of two adjacent tank groups 10 are staggered and arranged. The positions of the optical fibers are shifted from each other, so that the optical fibers 8 passing side by side form a network.
  • the fifth embodiment of the present invention provides a coating device for manufacturing optical fiber ribbons.
  • the difference between this embodiment and the fourth embodiment is: the positioning wheel 2 and the coating wheel
  • the main body 1 is connected in a rolling manner, and the outer surface of the positioning wheel 2 is concave, forming a fiber-feeding channel 20 in the middle and two blocking walls 21 on both sides.
  • the blocking walls 21 and the coating wheel body 1 can roll each other; the positioning wheel 2
  • the outer circular surface is provided with a number of partitions 22 at equal intervals along its axial direction.
  • the partitions 22 extend in the circumferential direction of the positioning wheel 2 to form a ring structure.
  • the partitions 22 are located between the two retaining walls 21 and pass the fiber channel 20 is divided into a plurality of optical fiber positioning grooves 23.
  • the optical fiber positioning grooves 23 on the positioning wheel 2 correct and position the traveling optical fibers 8 into a parallel arrangement to facilitate the coating of the adhesive resin; the radius of the partition 22 is smaller than the stop
  • the radius of the wall 21 is such that there is a resin receiving space between the outer surface of the partition 22 and the outer surface of the coated wheel body 1, and the adhesive resin is blown out from the blowing port A to the resin receiving space, thereby adhering to the On the two optical fibers 8 on the left and right sides of the partition 22, bonding points 9 are formed.
  • the distance d from the outer surface of the partition 22 to the bottom of the fiber positioning groove 23 and the radius R of the optical fiber 8 satisfy d ⁇ R, so that two adjacent optical fibers 8 can be effectively bonded.
  • the sixth embodiment of the present invention provides a coating device for manufacturing optical fiber ribbons.
  • the difference between this embodiment and the fourth embodiment is that the groove group 10 also Equipped with a docking platform 12, the docking platform 12 is provided on the side wall of the coating wheel body 1, and the docking port B of the resin storage tank 100 included in the tank group 10 is located on the docking platform 12;
  • the negative pressure mechanism 3 includes a negative pressure main body 30, a first piston assembly 31, and a second driver 33.
  • the second driver 33 can be a vacuum pump;
  • the negative pressure main body 30 has a negative pressure chamber 300, and one end of the negative pressure main body 30 is provided.
  • the first piston assembly 31 is located in the negative pressure chamber 300, one end of which is movably connected with the negative pressure main body 30, and the other end passes through the first through groove and is connected with the first ball 32;
  • the second driver 33 communicates with the negative pressure chamber 300 and is used for suction to form a negative pressure in the negative pressure chamber 300; at the same time,
  • the negative pressure mechanism 3 has a first state and a second state.
  • the first ball 32 When in the first state, the first ball 32 is in rolling connection with the docking platform 12 and is located in the first through groove, and the suction inlet 301 is in communication with the negative pressure chamber 300;
  • the first rolling ball 32 When in the second state, the first rolling ball 32 is in rolling connection with the side wall of the coating wheel body 1 and is at least partially located outside the first through groove, and the suction inlet 301 is not connected to the negative pressure chamber 300.
  • the second driver 33 is activated and sucked to form a negative pressure in the negative pressure chamber 300.
  • the first ball 32 is rotated to When the sidewalls of the coating wheel body 1 are connected by rolling, the first ball 32 is at least partially located outside the first through groove under the thrust of the first piston assembly 31, and at this time, the first piston assembly 31 fits or abuts against the suction inlet On the inner wall of the negative pressure chamber 300 where 301 is located, the suction inlet 301 is closed, so that the suction inlet 301 is not connected with the negative pressure chamber 300; as shown in Figure 8, when the first ball 32 is rotated to the docking platform 12 During the rolling connection, since the docking platform 12 protrudes on the side wall of the coating wheel body 1, the first rolling ball 32 is received in the first through groove under the resistance of the docking platform 12.
  • the first piston The assembly 31 moves away from the coating wheel body 1. At this time, there is a gap between the first piston assembly 31 and the inner wall of the negative pressure chamber 300 where the suction inlet 301 is located, and the gap connects the suction inlet 301 with the negative pressure chamber 300 , And because the suction inlet 301 is located on the rotation path of the counter port B, when it rotates in place, the suction inlet 301 communicates with the counter port B, so that the adhesive resin is sucked into the resin storage tank 100 under the action of negative pressure.
  • the negative pressure chamber 300 is continuously in a negative pressure state. During the rotation of the coating wheel body 1, once the suction inlet 301 is connected to the mating port B, the adhesive resin can be sucked into the resin storage tank 100.
  • the negative pressure body 30 is provided with a mounting groove 302 on the inner wall of the coating wheel body 1,
  • the first piston assembly 31 includes a piston rod 310, a piston 311, and a spring 312.
  • One end of the piston rod 310 is movably arranged in the mounting In the groove, the other end passes through the first through groove and is connected to the first ball 32, the piston 311 is arranged on the piston rod 310, the spring 312 is sleeved on the piston rod 310, and one end resists the piston 311 and the other end resists the installation groove 302.
  • the first piston assembly 31 includes a piston rod 310, a piston 311, and a spring 312.
  • One end of the piston rod 310 is movably arranged in the mounting In the groove, the other end passes through the first through groove and is connected to the first ball 32, the piston 311 is arranged on the piston rod 310, the spring 312 is sleeved on the piston rod 310, and one end resists the piston 311 and the other
  • the piston rod 310 drives the piston 311 to move away from the coating wheel body 1, the spring 312 is compressed, and the piston 311 and the suction inlet 301 are located There is no contact between the inner walls of the negative pressure chamber 300; when the negative pressure mechanism 3 is in the second state, the spring 312 is restored. Under the action of the spring 312, the piston 311 drives the piston rod 310 to move toward the coating wheel body 1 until the piston 311 moves The suction inlet 301 is closed.
  • the area of the aforementioned piston 311 is smaller than the cross-sectional area of the negative pressure chamber 300.
  • the piston 311 needs to be opened at this time.
  • the through hole 313, and the projection of the suction inlet 301 on the piston 311 does not overlap with the through hole 313, as shown in FIG. 9.
  • a sealing ring 314 is provided on the wall surface of the piston 311 close to the suction inlet 301.
  • a buffer transition zone 13 is formed between the two sides of the docking platform 12 and the side wall of the coating wheel body 1, so that the first ball 32 can move smoothly from The side wall of the coating wheel body 1 moves to the docking platform 12 and smoothly moves from the docking platform 12 to the side wall of the coating wheel body 1.
  • the seventh embodiment of the present invention provides a coating device for manufacturing optical fiber ribbons.
  • the groove group 10 also Equipped with a docking platform 12, the docking platform 12 is provided on the side wall of the coating wheel body 1, the docking port B of the resin storage tank 100 included in the tank group 10 is located on the docking platform 12; and the positive pressure mechanism 4 includes a positive pressure main body 40.
  • the second piston assembly 41, the third driver 43; the third driver 43 can be an air pump, the positive pressure main body 40 has a positive pressure chamber 400, and one end of the positive pressure main body 40 is provided with a second through groove and used for pairing with The blowing outlet 401 connected to the interface B, and the blowing outlet 401 is located on the rotation path to the interface B;
  • the second piston assembly 41 is located in the positive pressure chamber 400, one end of which is movably connected with the positive pressure main body 40, and the other end passes through the second through groove and is connected with the second ball 42;
  • the third driver 43 communicates with the positive pressure chamber 400 and is used for blowing air to form a positive pressure in the positive pressure chamber 400; at the same time,
  • the positive pressure mechanism 4 has a first state and a second state.
  • the second ball 42 When in the first state, the second ball 42 is in rolling connection with the docking platform 12 and is located in the second through groove, and the blowing outlet 401 is in communication with the positive pressure chamber 400;
  • the second rolling ball 42 When in the second state, the second rolling ball 42 is in rolling connection with the side wall of the coating wheel body 1 and is at least partially located outside the second through groove, and the blowing outlet 401 is not connected to the positive pressure chamber 400.
  • the principle of this embodiment is similar to that of the sixth embodiment.
  • the main difference lies in the fact that the third driver 43 in this embodiment is used to generate positive pressure instead of negative pressure.
  • the principle of this embodiment can be understood according to the principle of the sixth embodiment. The principle, so I won't repeat it here.
  • the positive pressure main body 40 and the second piston assembly 41 of this embodiment are the same as the negative pressure main body 30 and the first piston assembly 31 of the sixth embodiment, so they will not be repeated here.
  • the eighth embodiment of the present invention provides a coating device for manufacturing optical fiber ribbons.
  • the difference between this embodiment and the third embodiment is:
  • the coating device also includes a first resin removing component 6, along the set path of the optical fiber 8, the first resin removing component 6 is located upstream of the coating wheel, and one end of the first resin removing component 6 is attached or crimped to the coating wheel
  • the first resin removing part 6 scrapes off the adhesive resin on the outer surface of the coating wheel body 1 Recycling, but the adhesive resin located in the resin storage tank 100 is still retained, so that the adhesive resin located on the outer surface of the coating wheel body 1 can be prevented from sticking to the optical fiber 8;
  • the coating device also includes a second resin removing component 7, along the set path of the optical fiber 8, the second resin removing component 7 is located downstream of the coating wheel, and one end of the second resin removing component 7 is attached or crimped to the coating wheel On the outer surface of the main body 1, the second resin removing member 7 can scrape and recover the adhesive resin remaining on the outer surface of the coating wheel main body 1 after the air blowing process.
  • Both the first resin removing member 6 and the second resin removing member 7 can use a doctor blade.
  • a ninth embodiment of the present invention provides a system for manufacturing an optical fiber ribbon, which includes a resin box K, a pay-off reel group C arranged in sequence along a set path of an optical fiber 8, and a front positioning wheel group E ,
  • the pay-off reel group C is composed of multiple pay-off reels, and the optical fibers 8 of each pay-off reel are released at the same traveling speed.
  • the front positioning wheel group E adjusts the optical fiber 8 discharged from the pay-off reel group C so as to be able to travel side by side in parallel.
  • the first-level resin curing device F pre-cures the bonding resin on the optical fiber 8;
  • the rear positioning wheel group G adjusts the coated optical fibers 8 so that the optical fibers 8 are arranged in parallel and advance on the set path;
  • the secondary resin curing device I undergoes curing and molding and is wound on the take-up reel J.
  • the system also includes a speedometer D and a control device.
  • the speedometer D is located upstream of the coating device and used to measure the traveling speed of the optical fiber 8.
  • the control device is connected with the speedometer D and the first driver 5, and used Therefore, the first driver 5 is controlled according to the traveling speed.
  • a tenth embodiment of the present invention provides a method for manufacturing an optical fiber ribbon, which includes the following steps:
  • S1 Provide systems for manufacturing optical fiber ribbons
  • Adjacent optical fibers 8 are intermittently coated with adhesive resin in the length direction through the coating device;
  • the system also includes a speedometer D and a control device.
  • the speedometer D is located upstream of the coating device and used to measure the traveling speed of the optical fiber 8;
  • the control device is connected with the speedometer D and the first driver 5; method It also includes the following steps: controlling the rotation speed of the coating wheel body 1 and the positioning wheel 2 according to the traveling speed.
  • the rotation speed of the coating wheel body 1 and the positioning wheel 2 is approximately equal to the traveling speed of the optical fiber 8, so that there is no relative friction between the coating wheel body 1 and the positioning wheel 2 and the optical fiber 8, reducing the amount of light received by the optical fiber 8. Extra tension.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种用于制造光纤带的涂覆轮、涂覆装置、系统及方法,该涂覆轮用于使并行排列并沿设定路径上行进的多个光纤(8)形成光纤带,其包括涂覆轮本体(1),涂覆轮本体(1)用于在相邻的光纤(8)之间,沿光纤(8)长度方向,间歇性地涂覆粘接树脂;在涂覆轮本体(1)外圆表面上开设有树脂存放槽(100),树脂存放槽(100)用于存放粘接树脂;在涂覆轮本体(1)上开设有导气通道(11),导气通道(11)与树脂存放槽(100)连通,并在涂覆轮本体(1)转动下,导气通道(11)具有第一位置和第二位置,位于第一位置时,导气通道(11)内处于负压状态,以使粘接树脂吸入树脂存放槽(100),位于第二位置时,导气通道(11)内处于正压状态,以使粘接树脂从树脂存放槽(100)吹出以粘连光纤(8),可避免点胶时粘接树脂横纵向流动。

Description

用于制造光纤带的涂覆轮、涂覆装置、系统及方法 技术领域
本发明涉及光纤制造技术领域,具体涉及一种用于制造光纤带的涂覆轮、涂覆装置、系统及方法。
背景技术
随着5G时代的到来,高速的互联网通信网络成为一种发展趋势,这要求作为传输线路的光缆的芯数不断增加。在现有管道资源有限的情况下,需要将光纤细径化,高密度化,从而将光缆直径做的更小,敷设施工更方便。
传统的散纤光缆,光缆芯数多,相对独立,分辨困难且接续更费时,不能满足高效施工。
扁平的带状光纤光缆,芯数增加导致光缆内光纤的占空比降低,大量空间浪费,成品光缆尺寸无法做小。
而将散纤光缆和带状光缆的优势相结合,做成柔性的网状光纤带,可聚拢成束任意卷曲。同样直径的光缆光纤密度高,施工时有序排开接续方便。
中国专利申请CN103587018A公开了一种光纤成型模具,紫外光固化树脂间歇性涂覆模具包括上模具和下模具,上模具和下模具之间形成由若干光纤排列而成的光纤带通过的腔体,上模具设有上凹部,所述下模具设有下凹部,上凹部和下凹部组成供每根光纤通过的柱形腔体,上模具对应相邻柱上凹部的接触位置设有竖直的连通腔体涂覆管道,通过涂覆管道将紫外光固化树脂间隔涂覆在光纤带上。这种模 具存在的问题是,每次点胶后,树脂会有残留,一方面,残留的树脂会以垂直光纤行进方向横向流动,从而将其他光纤粘连;另一方面,残留的树脂沿光纤行进方向流动,从而将光纤其他部位粘连,导致网状光纤带粘接的节距无法保证;最终影响网状光纤带的合格率。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种用于制造光纤带的涂覆轮、涂覆装置、系统及方法,采用气吹的方式,将粘接树脂从树脂存放槽吹出,从而将光纤粘连,避免点胶时粘接树脂横向或纵向流动,从而提高光纤带的合格率。
为达到以上目的,本发明采取的技术方案是:
一种用于制造光纤带的涂覆轮,其用于使并行排列并沿设定路径上行进的多个光纤形成光纤带,其包括:
涂覆轮本体,其用于在相邻的所述光纤之间,沿光纤长度方向,间歇性地涂覆粘接树脂;
开设于所述涂覆轮本体外圆表面上的树脂存放槽,其用于存放所述粘接树脂;以及,
开设于所述涂覆轮本体上的导气通道,其与所述树脂存放槽连通,并在所述涂覆轮本体转动下,所述导气通道具有第一位置和第二位置,当位于第一位置时,所述导气通道内处于负压状态,以使所述粘接树脂吸入树脂存放槽,当位于第二位置时,所述导气通道内处于正压状态,以使所述粘接树脂从树脂存放槽吹出。
进一步地,所述涂覆轮本体外圆表面上沿周向布置有偶数个槽组,所述槽组包括若干所述树脂存放槽,所述槽组配置有所述导气通道,所述导气通道连通所述树脂存放槽的一端形成吹吸口,另一端延伸至所述涂覆轮本体侧壁并形成对接口;
相邻两槽组的树脂存放槽数量相差一个,且任意三个连续布置的槽组中位于外侧的两个槽组的树脂存放槽数量相同;
沿所述涂覆轮本体轴向,相邻两槽组的树脂存放槽交错布置。
进一步地,所述槽组还配置有对接平台,所述对接平台设于涂覆轮本体侧壁上,所述槽组所包含的树脂存放槽的对接口位于所述对接平台上。
进一步地,沿所述涂覆轮本体周向,所述对接平台两侧与所述涂覆轮本体侧壁之间形成有缓冲过渡区。
本发明还提供了一种用于制造光纤带的涂覆装置,其包括:
定位轮;
如上所述的涂覆轮,其位于所述定位轮下方,所述涂覆轮本体外圆表面与所述定位轮之间形成有用于光纤并排通过的走纤通道,以使当所述导气通道处于第二位置时粘接树脂吹向走纤通道;
负压机构,其用于当所述导气通道位于第一位置时,与该导气通道连通,以使所述导气通道内处于负压状态;
正压机构,其用于当所述导气通道位于第二位置时,与该导气通道连通,以使所述导气通道内处于正压状态;
第一驱动器,其与所述涂覆轮和定位轮相连,并用于驱动涂覆轮和定位轮同步反向转动。
进一步地,所述涂覆轮本体外圆表面上沿周向布置有偶数个槽组,所述槽组包括若干所述树脂存放槽,所述槽组配置有所述导气通道,所述导气通道连通所述树脂存放槽的一端形成朝向走纤通道的吹吸口,另一端延伸至所述涂覆轮本体侧壁并形成用于与所述负压机构和正压机构进行对接连通的对接口;
相邻两槽组的树脂存放槽数量相差一个,且任意三个连续布置的 槽组中位于外侧的两个槽组的树脂存放槽数量相同;
沿所述涂覆轮本体轴向,相邻两槽组的树脂存放槽交错布置。
进一步地,所述定位轮与所述涂覆轮本体滚动连接,且所述定位轮外圆表面内凹,并形成位于中间的所述走纤通道以及位于两侧的两个挡壁;
所述定位轮外圆表面沿其轴向等间距设有若干环状的隔板,所述隔板位于两个挡壁之间,并将所述走纤通道分隔成多个光纤定位槽;
所述隔板的半径小于所述挡壁的半径。
进一步地,所述隔板外圆表面到光纤定位槽的槽底距离d与光纤半径R满足d≤R。
进一步地,所述槽组还配置有对接平台,所述对接平台设于涂覆轮本体侧壁上,所述槽组所包含的树脂存放槽的对接口位于所述对接平台上。
进一步地,所述负压机构包括:
负压主体,其内具有一负压腔室,所述负压主体一端设有第一通槽和用于与对接口连通的吸气入口;
第一活塞组件,其位于所述负压腔室,其一端与所述负压主体活动连接,另一端穿过所述第一通槽并连接有第一滚珠;
第二驱动器,其与所述负压腔室连通,并用于抽吸以使所述负压腔室内形成负压;同时,
所述负压机构具有第一状态和第二状态,当处于第一状态时,所述第一滚珠与对接平台滚动连接且位于第一通槽内,所述吸气入口与负压腔室连通;当处于第二状态时,所述第一滚珠与涂覆轮本体侧壁滚动连接且至少部分位于第一通槽外,所述吸气入口与负压腔室不连通。
进一步地,所述正压机构包括:
正压主体,其内具有一正压腔室,所述正压主体一端设有第二通槽和用于与对接口连通的吹气出口;
第二活塞组件,其位于所述正压腔室,其一端与所述正压主体活动连接,另一端穿过所述第二通槽并连接有第二滚珠;
第三驱动器,其与所述正压腔室连通,并用于吹气以使所述正压腔室内形成正压;同时,
所述正压机构具有第一状态和第二状态,当处于第一状态时,所述第二滚珠与对接平台滚动连接且位于第二通槽内,所述吹气出口与正压腔室连通;当处于第二状态时,所述第二滚珠与涂覆轮本体侧壁滚动连接且至少部分位于第二通槽外,所述吹气出口与正压腔室不连通。
进一步地,所述涂覆装置还包括第一树脂去除部件,沿光纤的设定路径,所述第一树脂去除部件位于所述涂覆轮上游,且所述第一树脂去除部件一端贴设于或压接于所述涂覆轮本体外圆表面上;和/或,
所述涂覆装置还包括第二树脂去除部件,沿光纤的设定路径,所述第二树脂去除部件位于所述涂覆轮下游,且所述第二树脂去除部件一端贴设于或压接于所述涂覆轮本体外圆表面上。
本发明还提供了一种制造光纤带的系统,其包括:
沿光纤的设定路径依次布置的放线盘组、前定位轮组、如上所述的涂覆装置、一级树脂固化装置、后定位轮组、并带模、二级树脂固化装置和收线盘;
树脂盒,其用于存储粘接树脂,并使所述涂覆轮部分位于粘接树脂液面以下。
进一步地,所述系统还包括:
测速仪,沿光纤的设定路径,所述测速仪位于所述涂覆装置上游,并用于测量光纤的行进速度;
控制装置,其与所述测速仪和第一驱动器相连,并用于根据所述行进速度,对所述第一驱动器进行控制。
本发明还提供了一种制造光纤带的方法,包括如下步骤:
提供如上所述的系统;
向所述树脂盒内添加粘接树脂,以使所述涂覆轮部分位于粘接树脂液面以下;
将2n根光纤从所述放线盘组上放出,n≥2,且为整数;
通过所述前定位轮组进行整定,以使各所述光纤并行排列地在设定路径上前进;
通过所述涂覆装置,对相邻的所述光纤在长度方向上进行间歇地涂敷粘接树脂;
通过所述一级树脂固化装置对所述光纤上的粘接树脂进行预固化;
通过所述后定位轮组进行整定,以使各所述光纤并行排列地在设定路径上前进;
通过所述并带模进行并带处理,并经所述二级树脂固化装置固化成型后卷收于所述收线盘。
进一步地,所述系统还包括:
测速仪,沿光纤的设定路径,所述测速仪位于所述涂覆装置上游,并用于测量光纤的行进速度;
控制装置,其与所述测速仪和第一驱动器相连;
所述方法还包括如下步骤:
根据所述行进速度,对所述涂覆轮本体和定位轮的旋转速度进行 控制。
进一步地,所述涂覆轮本体和定位轮的旋转速度与光纤的行进速度大致相等。
与现有技术相比,本发明的优点在于:
本发明设计的涂覆轮,采用气吹的方式,将粘接树脂从树脂存放槽中吹出,从而将光纤粘连,避免在点胶时因粘接树脂横向或纵向流动,造成光纤其他部位被粘接或其他光纤被粘接的不良后果,从而提高光纤带的合格率。
附图说明
图1为本发明实施例提供的涂覆轮结构示意图;
图2为本发明实施例提供的其中一种网状光纤带示意图;
图3为本发明实施例提供的另一种网状光纤带示意图;
图4为本发明实施例提供的涂覆装置结构示意图(导气通道处于第一位置时);
图5为本发明实施例提供的涂覆装置结构示意图(导气通道处于第二位置时);
图6为本发明实施例提供的相邻两个槽组中其中一个槽组涂覆粘接树脂时的示意图;
图7为本发明实施例提供的相邻两个槽组中的另一个槽组涂覆粘接树脂时的示意图;
图8为本发明实施例提供的负压机构示意图(处于第一状态);
图9为本发明实施例提供的负压机构示意图(处于第二状态);
图10为本发明实施例提供的正压机构示意图(处于第一状态);
图11为本发明实施例提供的正压机构示意图(处于第二状态);
图12为本发明实施例提供的光纤通过涂覆轮与定位轮之间时的 示意图;
图13为本发明实施例提供的系统结构示意图。
图中:A、吹吸口;B、对接口;C、放线盘组;D、测速仪;E、前定位轮组;F、一级树脂固化装置;G、后定位轮组;H、并带模;I、二级树脂固化装置;J、收线盘;K、树脂盒;1、涂覆轮本体;10、槽组;100、树脂存放槽;11、导气通道;110、第一段;111、第二段;12、对接平台;13、缓冲过渡区;2、定位轮;20、走纤通道;21、挡壁;22、隔板;23、光纤定位槽;3、负压机构;30、负压主体;300、负压腔室;301、吸气入口;302、安装槽;31、第一活塞组件;310、活塞杆;311、活塞;312、弹簧;313、贯穿孔;314、密封圈;32、第一滚珠;33、第二驱动器;4、正压机构;40、正压主体;400、正压腔室;401、吹气出口;41、第二活塞组件;42、第二滚珠;43、第三驱动器;5、第一驱动器;6、第一树脂去除部件;7、第二树脂去除部件;8、光纤;9、粘接点。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
参见图1和图2所示,本发明第一个实施例提供了一种用于制造光纤带的涂覆轮,其用于使并行排列并沿设定路径上行进的多个光纤8形成光纤带,涂覆轮包括涂覆轮本体1,涂覆轮本体1用于在相邻的光纤8之间,沿光纤8长度方向,间歇性地涂覆粘接树脂,粘接树脂固化后形成粘接点9;在涂覆轮本体1外圆表面上开设了树脂存放槽100,树脂存放槽100用于存放粘接树脂;在涂覆轮本体1上开设了导气通道11,导气通道11与树脂存放槽100连通,并在涂覆轮本体1转动下,使得导气通道11具有第一位置和第二位置:
当位于第一位置时,导气通道11内处于负压状态,以使粘接树 脂被吸入树脂存放槽100进行存放;
当位于第二位置时,导气通道11内处于正压状态,以使存放的粘接树脂从树脂存放槽100内被吹出。
将涂覆轮设置在光纤8的设定路径上,涂覆轮本体1不停地转动,使得导气通道11在第一位置和第二位置不断地进行切换,当并行排列行进的多个光纤8从涂覆轮本体1外圆表面上经过时,间歇性地将粘接树脂从树脂存放槽100内吹出,使之粘接于相邻的光纤8上,形成光纤带。
本发明设计的涂覆轮,采用气吹的方式,将粘接树脂从树脂存放槽中吹出,从而将光纤粘连,避免在点胶时因粘接树脂横向或纵向流动,造成光纤其他部位被粘接或其他光纤被粘接的不良后果,从而提高光纤带的合格率。
本发明中,设定路径可以采用沿水平方向行进。
本发明第二个实施例提供了一种用于制造光纤带的涂覆轮,其与实施例一的区别在于:涂覆轮本体1外圆表面上沿周向布置有偶数个槽组10,槽组10包括若干树脂存放槽100,每个槽组10配置有导气通道11,导气通道11连通树脂存放槽100的一端形成吹吸口A,另一端延伸至涂覆轮本体1侧壁并形成对接口B;相邻两槽组10的树脂存放槽100数量相差一个,且任意三个连续布置的槽组10中位于外侧的两个槽组10的树脂存放槽100数量相同;沿涂覆轮本体1轴向,相邻两槽组10的树脂存放槽100交错布置且互相错开一个光纤位置,以使并排通过的光纤8形成网状。
具体地,参见图1所示,槽组10设有四个,且沿涂覆轮本体1外圆表面周向等间距(通常采用等间距方式,当然也可以采用不等间距方式)布置,其中两个槽组10(记为第一类槽组)均包括三个树 脂存放槽100,另外两个槽组10(记为第二类槽组)均包括两个树脂存放槽100;沿涂覆轮本体1轴向,相邻两个槽组10的树脂存放槽100互相错开一个光纤位置,当六根光纤8并排通过时,第一类槽组的三个树脂存放槽100分别涂覆第一根光纤与第二根光纤、第三根光纤与第四根光纤、第五根光纤与第六个光纤,而第二类槽组的两个树脂存放槽100分别涂覆第二根光纤与第三根光纤、第四根光纤与第五根光纤,从而使得并排通过的光纤8形成如图1所示的网状光纤带。
参见图1所示,槽组10还配置有对接平台12,对接平台12设于涂覆轮本体1侧壁上,槽组10所包含的树脂存放槽100的对接口B位于对接平台12上。沿涂覆轮本体1周向,对接平台12两侧与涂覆轮本体1侧壁之间形成有缓冲过渡区13。
参见图1所示,导气通道11包括第一段110和若干第二段111,第二段111的数量与对应槽组10包含的树脂存放槽100数量相等,第一段110沿涂覆轮本体1轴向延伸;各第二段111一端为吹吸口A,另一端均与第一段110连通。吹吸口A位于树脂存放槽100槽底,以便于将粘接树脂沿径向吹出。
参见图1所示,由于树脂存放槽100呈条状,为了有效地形成粘接点9,槽组10配置的导气通道11有多个,比如图1中设有三个,且沿涂覆轮本体1周向间隔布置,以使树脂存放槽100前、中、后三处均有吹吸口A。
在上述第二个实施例中,槽组10的数量是偶数m,等间距布置时,光纤上相邻两个粘接点9的间距(即涂覆节距,忽略树脂存放槽的长度)为
Figure PCTCN2019125035-appb-000001
d为涂覆轮直径,最终可以得到图2所示的网状光纤带。而事实上,本发明提供的用于制造光纤带的涂覆轮,槽组10的数量也可以只有一个(未示出),此时涂覆节距为πd,即旋转一周 涂覆一次,槽组10所包含的各个树脂存放槽100每涂覆一次时,各个粘接点9互相连接一起,得到如图3所示的网状光纤带。
参见图4、图5、图6和图7所示,本发明第三个实施例提供了一种用于制造光纤带的涂覆装置,其包括定位轮2、第一个实施例的涂覆轮、负压机构3、正压机构4和第一驱动器5;涂覆轮位于定位轮2下方,涂覆轮本体1外圆表面与定位轮2之间形成有走纤通道20,走纤通道20用于光纤8并排通过以及为粘接树脂的涂覆提供空间,以使当导气通道11处于第二位置时粘接树脂吹向走纤通道20;
负压机构3用于当导气通道11位于第一位置时,与该导气通道11连通,使得导气通道11内处于负压状态,从而将粘接树脂吸入树脂存放槽100进行存放;
正压机构4用于当导气通道11位于第二位置时,与该导气通道11连通,使得导气通道11内处于正压状态,从而将存放的粘接树脂从树脂存放槽100内朝走纤通道20方向吹出,并粘接在从走纤通道20中并排通过的多根光纤8;
第一驱动器5与涂覆轮和定位轮2相连,并用于驱动涂覆轮和定位轮2同步反向转动。
通过负压机构3和正压机构4分别提供持续性的负压和正压,确保涂覆轮本体1在旋转的过程中,不停地进行吸入和涂覆粘接树脂,从而保证了生产速度,提高了生产效率。
参见图1所示,本发明第四个实施例提供了一种用于制造光纤带的涂覆装置,本实施例与第三个实施例的区别在于:涂覆轮本体1外圆表面上沿周向布置有偶数个槽组10,槽组10包括若干树脂存放槽100,槽组10配置有导气通道11,导气通道11连通树脂存放槽100的一端形成朝向走纤通道20的吹吸口A,另一端延伸至涂覆轮本体 1侧壁并形成用于与负压机构3和正压机构4进行对接连通的对接口B;相邻两槽组10的树脂存放槽100数量相差一个,且任意三个连续布置的槽组10中位于外侧的两个槽组10的树脂存放槽100数量相同;沿涂覆轮本体1轴向,相邻两槽组10的树脂存放槽100交错布置且互相错开一个光纤位置,以使并排通过的光纤8形成网状。
参见图6和图7所示,本发明第五个实施例提供了一种用于制造光纤带的涂覆装置,本实施例与第四个实施例的区别在于:定位轮2与涂覆轮本体1滚动连接,且定位轮2外圆表面内凹,并形成位于中间的走纤通道20以及位于两侧的两个挡壁21,挡壁21与涂覆轮本体1可以互相滚动;定位轮2外圆表面沿其轴向等间距设有若干隔板22,隔板22沿定位轮2周向延伸从而形成环状结构,隔板22位于两个挡壁21之间,并将走纤通道20分隔成多个光纤定位槽23,定位轮2上的光纤定位槽23将行进的多个光纤8矫正、定位成平行的排列,以便于粘接树脂的涂覆;隔板22的半径小于挡壁21的半径,使得隔板22的外圆表面与涂覆轮本体1的外圆表面之间存在有树脂接收空间,粘接树脂从吹吸口A被吹出至树脂接收空间,从而粘接到该隔板22左右两侧的两个光纤8上,形成粘接点9。
参见图6所示,隔板22外圆表面到光纤定位槽23的槽底距离d与光纤8半径R满足d≤R,以使得相邻两个光纤8能够有效地粘接。
参见图1、图8和图9所示,本发明第六个实施例提供了一种用于制造光纤带的涂覆装置,本实施例与第四个实施例的区别在于:槽组10还配置有对接平台12,对接平台12设于涂覆轮本体1侧壁上,槽组10所包含的树脂存放槽100的对接口B位于对接平台12上;
以及,负压机构3包括负压主体30、第一活塞组件31、第二驱动器33,第二驱动器33可以采用真空泵;负压主体30内具有一负 压腔室300,负压主体30一端设有第一通槽和用于与对接口B连通的吸气入口301,吸气入口301位于对接口B的旋转路径上;
第一活塞组件31位于负压腔室300,其一端与负压主体30活动连接,另一端穿过第一通槽并连接有第一滚珠32;
第二驱动器33与负压腔室300连通,并用于抽吸以使负压腔室300内形成负压;同时,
负压机构3具有第一状态和第二状态,当处于第一状态时,第一滚珠32与对接平台12滚动连接且位于第一通槽内,吸气入口301与负压腔室300连通;当处于第二状态时,第一滚珠32与涂覆轮本体1侧壁滚动连接且至少部分位于第一通槽外,吸气入口301与负压腔室300不连通。
本实施例的原理:第二驱动器33启动,抽吸以使负压腔室300内形成负压,涂覆轮本体1在旋转过程中,参见图9所示,当旋转至第一滚珠32与涂覆轮本体1侧壁滚动连接时,第一滚珠32在第一活塞组件31的推力作用下至少部分位于第一通槽外,此时第一活塞组件31贴合于或抵紧吸气入口301所在的负压腔室300内壁上,将吸气入口301闭合,从而使吸气入口301与负压腔室300不连通;参见图8所示,当旋转至第一滚珠32与对接平台12滚动连接时,由于对接平台12凸出在涂覆轮本体1侧壁上,在对接平台12的抵持作用下,第一滚珠32收容在第一通槽内,这一过程中,第一活塞组件31朝远离涂覆轮本体1移动,此时第一活塞组件31与吸气入口301所在的负压腔室300内壁之间存在间隙,该间隙将吸气入口301与负压腔室300连通,而又因为吸气入口301位于对接口B的旋转路径上,当旋转到位时,吸气入口301与对接口B连通,从而在负压的作用下,将粘接树脂吸入树脂存放槽100。
负压腔室300持续性地处于负压状态,涂覆轮本体1在旋转过程中,一旦旋转至吸气入口301与对接口B连通,则可以将粘接树脂吸入树脂存放槽100。
参见图9所示,负压主体30远离涂覆轮本体1的内壁上设有安装槽302,第一活塞组件31包括活塞杆310、活塞311和弹簧312,活塞杆310一端活动地设在安装槽内,另一端穿过第一通槽并连接第一滚珠32,活塞311设在活塞杆310上,弹簧312套设在活塞杆310上且一端抵持活塞311另一端抵持安装槽302所在内壁上。当负压机构3处于第一状态时,在对接平台12的抵持作用下,活塞杆310带动活塞311朝远离涂覆轮本体1移动,弹簧312被压缩,活塞311与吸气入口301所在的负压腔室300内壁之间不接触;当负压机构3处于第二状态时,弹簧312恢复,在弹簧312作用下,活塞311带动活塞杆310朝涂覆轮本体1移动,直至活塞311将吸气入口301闭合。
需要说明的是,上述活塞311的面积小于负压腔室300横截面积,当使用的活塞311形状、面积与负压腔室300横截面形状和面积相同时,此时需要在活塞311上开设贯穿孔313,且吸气入口301在活塞311上的投影与贯穿孔313不重叠,如图9中所示。此外,活塞311靠近吸气入口301的壁面上设有密封圈314。
参见图1所示,本实施例中,沿涂覆轮本体1周向,对接平台12两侧与涂覆轮本体1侧壁之间形成有缓冲过渡区13,便于第一滚珠32平稳地从涂覆轮本体1侧壁移动至对接平台12,以及平稳地从对接平台12移动至涂覆轮本体1侧壁。
参见图1、图10和图11所示,本发明第七个实施例提供了一种用于制造光纤带的涂覆装置,本实施例与第四个实施例的区别在于:槽组10还配置有对接平台12,对接平台12设于涂覆轮本体1侧壁 上,槽组10所包含的树脂存放槽100的对接口B位于对接平台12上;以及,正压机构4包括正压主体40、第二活塞组件41、第三驱动器43;第三驱动器43可以采用气泵,正压主体40内具有一正压腔室400,正压主体40一端设有第二通槽和用于与对接口B连通的吹气出口401,吹气出口401位于对接口B的旋转路径上;
第二活塞组件41位于正压腔室400,其一端与正压主体40活动连接,另一端穿过第二通槽并连接有第二滚珠42;
第三驱动器43与正压腔室400连通,并用于吹气以使正压腔室400内形成正压;同时,
正压机构4具有第一状态和第二状态,当处于第一状态时,第二滚珠42与对接平台12滚动连接且位于第二通槽内,吹气出口401与正压腔室400连通;当处于第二状态时,第二滚珠42与涂覆轮本体1侧壁滚动连接且至少部分位于第二通槽外,吹气出口401与正压腔室400不连通。
本实施例的原理与第六个实施例类似,区别主要在于本实施例中第三驱动器43用于产生正压,而不是负压,根据第六个实施例的原理即可理解本实施例的原理,故在此不赘述。
本实施例的正压主体40、第二活塞组件41与第六个实施例的负压主体30、第一活塞组件31相同,故在此不赘述。
参见图12所示,本发明第八个实施例提供了一种用于制造光纤带的涂覆装置,本实施例与第三个实施例的区别在于:
涂覆装置还包括第一树脂去除部件6,沿光纤8的设定路径,第一树脂去除部件6位于涂覆轮上游,且第一树脂去除部件6一端贴设于或压接于涂覆轮本体1外圆表面上,树脂存放槽100吸入粘接树脂后,旋转至第一树脂去除部件6处时,第一树脂去除部件6将涂覆轮 本体1外圆表面上的粘接树脂刮除回收,而位于树脂存放槽100内的粘接树脂仍得以保留,从而可以避免位于涂覆轮本体1外圆表面上的粘接树脂粘接到光纤8上;
涂覆装置还包括第二树脂去除部件7,沿光纤8的设定路径,第二树脂去除部件7位于涂覆轮下游,且第二树脂去除部件7一端贴设于或压接于涂覆轮本体1外圆表面上,第二树脂去除部件7可以将经过气吹工序后残留在涂覆轮本体1外圆表面上的粘接树脂刮除回收。
第一树脂去除部件6和第二树脂去除部件7都可以使用刮刀。
参见图13所示,本发明第九个实施例提供了一种制造光纤带的系统,其包括树脂盒K、沿光纤8的设定路径依次布置的放线盘组C、前定位轮组E、第三个实施例的涂覆装置、一级树脂固化装置F、后定位轮组G、并带模H、二级树脂固化装置I和收线盘J;树脂盒K用于存储粘接树脂,并使涂覆轮部分位于粘接树脂液面以下。
放线盘组C由多个放线盘组成,各放线盘的光纤8以相同行进速度进行放纤。
前定位轮组E将放线盘组C放出的光纤8进行整定,以使得能够平行地并排行进。
一级树脂固化装置F对光纤8上的粘接树脂进行预固化;
后定位轮组G对涂覆完成的光纤8进行整定,以使各光纤8并行排列地在设定路径上前进;
并带模H去除多余的粘接树脂,并进行并带处理;
二级树脂固化装置I进行固化成型后卷收于收线盘J。
系统还包括测速仪D和控制装置,沿光纤8的设定路径,测速仪D位于涂覆装置上游,并用于测量光纤8的行进速度;控制装置与测速仪D和第一驱动器5相连,并用于根据行进速度,对第一驱 动器5进行控制。通过控制第一驱动器5,以此控制定位轮2和涂覆轮本体1的转速,从而可方便地控制光纤8长度方向上相邻粘接点9的间隔。
参见图13所示,本发明第十个实施例提供了一种制造光纤带的方法,包括如下步骤:
S1:提供制造光纤带的系统;
S2:向树脂盒K内添加粘接树脂,以使涂覆轮部分位于粘接树脂液面以下;
S3:将2n根光纤8从放线盘组C上放出,n≥2,且为整数;
S4:通过前定位轮组E进行整定,以使各光纤8并行排列地在设定路径上前进;
S5:通过涂覆装置,对相邻的光纤8在长度方向上进行间歇地涂敷粘接树脂;
S6:通过一级树脂固化装置F对光纤8上的粘接树脂进行预固化;
S7:通过后定位轮组G进行整定,以使各光纤8并行排列地在设定路径上前进;
S8:通过并带模H进行并带处理,并经二级树脂固化装置I固化成型后卷收于收线盘J。
系统还包括测速仪D和控制装置,沿光纤8的设定路径,测速仪D位于涂覆装置上游,并用于测量光纤8的行进速度;控制装置与测速仪D和第一驱动器5相连;方法还包括如下步骤:根据行进速度,对涂覆轮本体1和定位轮2的旋转速度进行控制。
优选地,涂覆轮本体1和定位轮2的旋转速度与光纤8的行进速度大致相等,使得涂覆轮本体1和定位轮2与光纤8之间没有相对摩擦,减小光纤8收到的额外张力。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (17)

  1. 一种用于制造光纤带的涂覆轮,其用于使并行排列并沿设定路径上行进的多个光纤(8)形成光纤带,其特征在于,其包括:
    涂覆轮本体(1),其用于在相邻的所述光纤(8)之间,沿光纤(8)长度方向,间歇性地涂覆粘接树脂;
    开设于所述涂覆轮本体(1)外圆表面上的树脂存放槽(100),其用于存放所述粘接树脂;以及,
    开设于所述涂覆轮本体(1)上的导气通道(11),其与所述树脂存放槽(100)连通,并在所述涂覆轮本体(1)转动下,所述导气通道(11)具有第一位置和第二位置,当位于第一位置时,所述导气通道(11)内处于负压状态,以使所述粘接树脂吸入树脂存放槽(100),当位于第二位置时,所述导气通道(11)内处于正压状态,以使所述粘接树脂从树脂存放槽(100)吹出。
  2. 如权利要求1所述的涂覆轮,其特征在于:
    所述涂覆轮本体(1)外圆表面上沿周向布置有偶数个槽组(10),所述槽组(10)包括若干所述树脂存放槽(100),所述槽组(10)配置有所述导气通道(11),所述导气通道(11)连通所述树脂存放槽(100)的一端形成吹吸口(A),另一端延伸至所述涂覆轮本体(1)侧壁并形成对接口(B);
    相邻两槽组(10)的树脂存放槽(100)数量相差一个,且任意三个连续布置的槽组(10)中位于外侧的两个槽组(10)的树脂存放槽(100)数量相同;
    沿所述涂覆轮本体(1)轴向,相邻两槽组(10)的树脂存放槽(100)交错布置。
  3. 如权利要求2所述的涂覆轮,其特征在于:所述槽组(10) 还配置有对接平台(12),所述对接平台(12)设于涂覆轮本体(1)侧壁上,所述槽组(10)所包含的树脂存放槽(100)的对接口(B)位于所述对接平台(12)上。
  4. 如权利要求3所述的涂覆轮,其特征在于:沿所述涂覆轮本体(1)周向,所述对接平台(12)两侧与所述涂覆轮本体(1)侧壁之间形成有缓冲过渡区(13)。
  5. 一种用于制造光纤带的涂覆装置,其特征在于,其包括:
    定位轮(2);
    如权利要求1所述的涂覆轮,其位于所述定位轮(2)下方,所述涂覆轮本体(1)外圆表面与所述定位轮(2)之间形成有用于光纤(8)并排通过的走纤通道(20),以使当所述导气通道(11)处于第二位置时粘接树脂吹向走纤通道(20);
    负压机构(3),其用于当所述导气通道(11)位于第一位置时,与该导气通道(11)连通,以使所述导气通道(11)内处于负压状态;
    正压机构(4),其用于当所述导气通道(11)位于第二位置时,与该导气通道(11)连通,以使所述导气通道(11)内处于正压状态;
    第一驱动器(5),其与所述涂覆轮和定位轮(2)相连,并用于驱动涂覆轮和定位轮(2)同步反向转动。
  6. 如权利要求5所述的涂覆装置,其特征在于:
    所述涂覆轮本体(1)外圆表面上沿周向布置有偶数个槽组(10),所述槽组(10)包括若干所述树脂存放槽(100),所述槽组(10)配置有所述导气通道(11),所述导气通道(11)连通所述树脂存放槽(100)的一端形成朝向走纤通道(20)的吹吸口(A),另一端延伸至所述涂覆轮本体(1)侧壁并形成用于与所述负压机构(3)和正压机构(4)进行对接连通的对接口(B);
    相邻两槽组(10)的树脂存放槽(100)数量相差一个,且任意三个连续布置的槽组(10)中位于外侧的两个槽组(10)的树脂存放槽(100)数量相同;
    沿所述涂覆轮本体(1)轴向,相邻两槽组(10)的树脂存放槽(100)交错布置。
  7. 如权利要求6所述的涂覆装置,其特征在于:
    所述定位轮(2)与所述涂覆轮本体(1)滚动连接,且所述定位轮(2)外圆表面内凹,并形成位于中间的所述走纤通道(20)以及位于两侧的两个挡壁(21);
    所述定位轮(2)外圆表面沿其轴向等间距设有若干环状的隔板(22),所述隔板(22)位于两个挡壁(21)之间,并将所述走纤通道(20)分隔成多个光纤定位槽(23);
    所述隔板(22)的半径小于所述挡壁(21)的半径。
  8. 如权利要求7所述的涂覆装置,其特征在于:所述隔板(22)外圆表面到光纤定位槽(23)的槽底距离d与光纤(8)半径R满足d≤R。
  9. 如权利要求6所述的涂覆装置,其特征在于:所述槽组(10)还配置有对接平台(12),所述对接平台(12)设于涂覆轮本体(1)侧壁上,所述槽组(10)所包含的树脂存放槽(100)的对接口(B)位于所述对接平台(12)上。
  10. 如权利要求9所述的涂覆装置,其特征在于,所述负压机构(3)包括:
    负压主体(30),其内具有一负压腔室(300),所述负压主体(30)一端设有第一通槽和用于与对接口(B)连通的吸气入口(301);
    第一活塞组件(31),其位于所述负压腔室(300),其一端与 所述负压主体(30)活动连接,另一端穿过所述第一通槽并连接有第一滚珠(32);
    第二驱动器(33),其与所述负压腔室(300)连通,并用于抽吸以使所述负压腔室(300)内形成负压;同时,
    所述负压机构(3)具有第一状态和第二状态,当处于第一状态时,所述第一滚珠(32)与对接平台(12)滚动连接且位于第一通槽内,所述吸气入口(301)与负压腔室(300)连通;当处于第二状态时,所述第一滚珠(32)与涂覆轮本体(1)侧壁滚动连接且至少部分位于第一通槽外,所述吸气入口(301)与负压腔室(300)不连通。
  11. 如权利要求9所述的涂覆装置,其特征在于,所述正压机构(4)包括:
    正压主体(40),其内具有一正压腔室(400),所述正压主体(40)一端设有第二通槽和用于与对接口(B)连通的吹气出口(401);
    第二活塞组件(41),其位于所述正压腔室(400),其一端与所述正压主体(40)活动连接,另一端穿过所述第二通槽并连接有第二滚珠(42);
    第三驱动器(43),其与所述正压腔室(400)连通,并用于吹气以使所述正压腔室(400)内形成正压;同时,
    所述正压机构(4)具有第一状态和第二状态,当处于第一状态时,所述第二滚珠(42)与对接平台(12)滚动连接且位于第二通槽内,所述吹气出口(401)与正压腔室(400)连通;当处于第二状态时,所述第二滚珠(42)与涂覆轮本体(1)侧壁滚动连接且至少部分位于第二通槽外,所述吹气出口(401)与正压腔室(400)不连通。
  12. 如权利要求5所述的涂覆装置,其特征在于,
    所述涂覆装置还包括第一树脂去除部件(6),沿光纤(8)的设 定路径,所述第一树脂去除部件(6)位于所述涂覆轮上游,且所述第一树脂去除部件(6)一端贴设于或压接于所述涂覆轮本体(1)外圆表面上;和/或,
    所述涂覆装置还包括第二树脂去除部件(7),沿光纤(8)的设定路径,所述第二树脂去除部件(7)位于所述涂覆轮下游,且所述第二树脂去除部件(7)一端贴设于或压接于所述涂覆轮本体(1)外圆表面上。
  13. 一种制造光纤带的系统,其特征在于,其包括:
    沿光纤(8)的设定路径依次布置的放线盘组(C)、前定位轮组(E)、如权利要求5所述的涂覆装置、一级树脂固化装置(F)、后定位轮组(G)、并带模(H)、二级树脂固化装置(I)和收线盘(J);
    树脂盒(K),其用于存储粘接树脂,并使所述涂覆轮部分位于粘接树脂液面以下。
  14. 如权利要求13所述的系统,其特征在于,所述系统还包括:
    测速仪(D),沿光纤(8)的设定路径,所述测速仪(D)位于所述涂覆装置上游,并用于测量光纤(8)的行进速度;
    控制装置,其与所述测速仪(D)和第一驱动器(5)相连,并用于根据所述行进速度,对所述第一驱动器(5)进行控制。
  15. 一种制造光纤带的方法,其特征在于,包括如下步骤:
    提供如权利要求13所述的系统;
    向所述树脂盒(K)内添加粘接树脂,以使所述涂覆轮部分位于粘接树脂液面以下;
    将2n根光纤(8)从所述放线盘组(C)上放出,n≥2,且为整数;
    通过所述前定位轮组(E)进行整定,以使各所述光纤(8)并行排列地在设定路径上前进;
    通过所述涂覆装置,对相邻的所述光纤(8)在长度方向上进行间歇地涂敷粘接树脂;
    通过所述一级树脂固化装置(F)对所述光纤(8)上的粘接树脂进行预固化;
    通过所述后定位轮组(G)进行整定,以使各所述光纤(8)并行排列地在设定路径上前进;
    通过所述并带模(H)进行并带处理,并经所述二级树脂固化装置(I)固化成型后卷收于所述收线盘(J)。
  16. 如权利要求15所述的方法,其特征在于,
    所述系统还包括:
    测速仪(D),沿光纤(8)的设定路径,所述测速仪(D)位于所述涂覆装置上游,并用于测量光纤(8)的行进速度;
    控制装置,其与所述测速仪(D)和第一驱动器(5)相连;
    所述方法还包括如下步骤:
    根据所述行进速度,对所述涂覆轮本体(1)和定位轮(2)的旋转速度进行控制。
  17. 如权利要求15或16所述的方法,其特征在于,所述涂覆轮本体(1)和定位轮(2)的旋转速度与光纤(8)的行进速度大致相等。
PCT/CN2019/125035 2019-09-26 2019-12-13 用于制造光纤带的涂覆轮、涂覆装置、系统及方法 WO2021056849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910919902.8A CN110665740B (zh) 2019-09-26 2019-09-26 用于制造光纤带的涂覆轮、涂覆装置、系统及方法
CN201910919902.8 2019-09-26

Publications (1)

Publication Number Publication Date
WO2021056849A1 true WO2021056849A1 (zh) 2021-04-01

Family

ID=69079363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125035 WO2021056849A1 (zh) 2019-09-26 2019-12-13 用于制造光纤带的涂覆轮、涂覆装置、系统及方法

Country Status (2)

Country Link
CN (1) CN110665740B (zh)
WO (1) WO2021056849A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111558505B (zh) * 2020-07-15 2021-01-08 武汉心浩智能科技有限公司 一种光纤点胶装置及柔性网状光纤带自动生产设备
JP7394732B2 (ja) 2020-10-19 2023-12-08 Towa株式会社 樹脂供給方法、樹脂成形品の製造方法及び樹脂成形装置
CN112657755B (zh) * 2021-01-13 2022-09-13 山东晟昌新材料有限公司 一种定量涂刷且及时养护的板材防水处理装置
CN114603815B (zh) * 2021-11-04 2024-04-12 浙江翔宇密封件有限公司 一种环形密封圈的生产工艺及其生产装置
CN115308862B (zh) * 2022-08-08 2023-08-25 富通特种光缆(天津)有限公司 一种可卷绕光纤带及其点胶装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505223A (en) * 1983-10-28 1985-03-19 Chevron Research Company Optical fiber coating apparatus
US4619842A (en) * 1985-03-28 1986-10-28 At&T Technologies, Inc. Methods of and apparatus for marking elongated strand material
CN1196280A (zh) * 1997-02-14 1998-10-21 住友电气工业株式会社 用于光纤的树脂涂覆机
JP2003232973A (ja) * 2002-02-07 2003-08-22 Sumitomo Electric Ind Ltd 光ファイバテープ心線
CN103587018A (zh) * 2013-10-21 2014-02-19 广东亨通光电科技有限公司 一种束状光纤成型所用模具系统及成型方法
JP5654945B2 (ja) * 2011-05-09 2015-01-14 株式会社フジクラ 光ユニット
CN108057568A (zh) * 2017-12-26 2018-05-22 北京航天时代光电科技有限公司 一种光纤环缠绕在线施胶装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109392U (zh) * 1975-02-28 1976-09-03
JPS5277756A (en) * 1975-12-24 1977-06-30 Takagi Kogyo Kk Air limit switch
EP0235425A1 (en) * 1986-02-28 1987-09-09 Acumeter Laboratories Inc. Porous roll fluid coating applicator and method
FR2746264B1 (fr) * 1996-03-25 1998-05-22 Picardie Lainiere Procede de fabrication d'un entoilage thermocollant et entoilage thermocollant ainsi obtenu
US8535474B2 (en) * 2007-08-06 2013-09-17 Kao Corporation Liquid applicator
CN104459887B (zh) * 2013-09-13 2019-06-04 深圳日海通讯技术股份有限公司 一种光纤清洁工具及清洁方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4505223A (en) * 1983-10-28 1985-03-19 Chevron Research Company Optical fiber coating apparatus
US4619842A (en) * 1985-03-28 1986-10-28 At&T Technologies, Inc. Methods of and apparatus for marking elongated strand material
CN1196280A (zh) * 1997-02-14 1998-10-21 住友电气工业株式会社 用于光纤的树脂涂覆机
JP2003232973A (ja) * 2002-02-07 2003-08-22 Sumitomo Electric Ind Ltd 光ファイバテープ心線
JP5654945B2 (ja) * 2011-05-09 2015-01-14 株式会社フジクラ 光ユニット
CN103587018A (zh) * 2013-10-21 2014-02-19 广东亨通光电科技有限公司 一种束状光纤成型所用模具系统及成型方法
CN108057568A (zh) * 2017-12-26 2018-05-22 北京航天时代光电科技有限公司 一种光纤环缠绕在线施胶装置

Also Published As

Publication number Publication date
CN110665740A (zh) 2020-01-10
CN110665740B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2021056849A1 (zh) 用于制造光纤带的涂覆轮、涂覆装置、系统及方法
CN103112142B (zh) 橡胶辊制造装置及橡胶辊制造方法
CN103069205B (zh) 既有管内面的涂装装置
JP2006334483A (ja) 塗布装置
AU2020320590B2 (en) Curved glass toughening apparatus with stress pattern weakening effect
CN110888211B (zh) 光纤成束模具、设备和工艺
CN205202452U (zh) 一种三版印刷机的送料除尘机构
WO2016161828A1 (zh) 胶涂布头、涂胶设备及触控显示面板的制备方法
CN111558505B (zh) 一种光纤点胶装置及柔性网状光纤带自动生产设备
CN109179084A (zh) 纺织机械工位中带吸嘴和进纱部件的接线装置
KR101756155B1 (ko) 섬유 원단 코팅장치
CN209022415U (zh) 一种管材成型的真空定型管
CN108426104A (zh) 连续纤维增强塑料压力管及其制造方法与装置
CN210775961U (zh) 光纤成束模具、设备
JP4694958B2 (ja) コードのゴム被覆ヘッド及びゴム被覆装置
KR102195742B1 (ko) 전극 제조장치
CN108350908A (zh) 流体引导单元以及延长真空泵的寿命的运用方法
CN208237253U (zh) 连续纤维增强塑料压力管及其制造装置
CN102505214A (zh) 纺纱聚集吸管
JP2019016468A (ja) 電極の製造方法
CN207175116U (zh) 一种玻璃钢管道用玻璃纤维缠绕机
CN208428677U (zh) 一种多喷头打印机
CN109910282A (zh) 一种骨架式光缆阻水纵包成型装置
TWI852101B (zh) 薄膜製造設備及薄膜的製造方法
CN213102966U (zh) 点胶阀及点胶机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947029

Country of ref document: EP

Kind code of ref document: A1