WO2021054308A1 - ナフテン系溶剤 - Google Patents

ナフテン系溶剤 Download PDF

Info

Publication number
WO2021054308A1
WO2021054308A1 PCT/JP2020/034833 JP2020034833W WO2021054308A1 WO 2021054308 A1 WO2021054308 A1 WO 2021054308A1 JP 2020034833 W JP2020034833 W JP 2020034833W WO 2021054308 A1 WO2021054308 A1 WO 2021054308A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
hydrocarbon component
volume
solvent
naphthenic solvent
Prior art date
Application number
PCT/JP2020/034833
Other languages
English (en)
French (fr)
Inventor
敦保 大塩
睦美 加藤
尚久 立谷
渡辺 克哉
Original Assignee
コスモ石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コスモ石油株式会社 filed Critical コスモ石油株式会社
Priority to KR1020227011100A priority Critical patent/KR20220062325A/ko
Priority to JP2021546903A priority patent/JPWO2021054308A1/ja
Priority to CN202080065288.4A priority patent/CN114423830B/zh
Publication of WO2021054308A1 publication Critical patent/WO2021054308A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/18Solvents

Definitions

  • the present invention relates to a low aromatic naphthenic solvent having a limited content of aromatic hydrocarbons.
  • Aromatic hydrocarbon solvents produced in the petroleum refining process are highly soluble in solvents conventionally used for cleaning, solvents such as paints and printing inks, dispersion media, and solvents for adhesives. Therefore, it was widely used.
  • the use of aromatic compounds has been restricted due to their strong odor and environmental load.
  • toluene and xylene which are aromatic solvents
  • MIBK methyl isobutyl ketone
  • MIBK methyl isobutyl ketone
  • aromatic compounds fall under the Organic Solvent Poisoning Prevention Regulations, it is necessary to measure the working environment when using them, and users are required to undergo regular health examinations and keep a history of the use of these solvents. , The load is also high in terms of management.
  • low-aromatic solvents having a low content of aromatic hydrocarbons have come to be used in fields such as solvents for paints such as automobiles and buildings.
  • this low-aromatic solvent include naphthenic solvents, alcohol solvents, paraffin solvents, aqueous solvents and the like.
  • naphthenic solvents are not as soluble as aromatic solvents in the field of petroleum solvents, but are more soluble than paraffin solvents, so they are printing ink solvents for food packaging.
  • Stationery solvents, reaction solvents for medical / agricultural chemical production, metal cleaning agents, adhesives, baking paint solvents, etc., naphthenic solvents are often used.
  • Patent Document 1 states that the boiling point is 175 to 280 ° C., the aromatic component having 9 to 14 carbon atoms is 80% by volume or more, and the cyclic hydrocarbon having two or more rings is 10% by volume or more.
  • a naphthenic solvent having an aromatic component content of 1% by volume or less obtained by hydrogenating a petroleum fraction contained therein is disclosed.
  • the naphthenic solvent of the nuclear hydrogenation test 1 or 2 of the example of Patent Document 1 has a flash point of 40 ° C. or 51 ° C., which is too low.
  • the flash point is too low, that is, the flammability becomes high, so it is necessary to take measures such as equipment in terms of the usage environment, and the handling is sufficient.
  • There are problems such as having to be careful, and from the viewpoint of the Fire Service Act, restrictions on handling become strict in terms of usage amount and storage amount.
  • the naphthenic solvent of the nuclear hydrogenation test 3 of the example of Patent Document 1 has a flash point as high as 68 ° C., but an aniline score as low as 39 ° C. If the aniline point is too low, the solubility becomes too high. Therefore, when used as a solvent for paints or the like, if the material to be applied is plastic or polymer resin, the solvent dissolves the coated surface depending on the material. There is a problem that it cannot be applied cleanly.
  • an object of the present invention is to provide a naphthenic solvent having a low content of aromatic hydrocarbons, which has a high flash point and not too low an aniline point.
  • the present invention (1) is a hydride of a petroleum distillate raw material, or a distilled cut product of a light or heavy component of the hydride.
  • the content of hydrocarbon components having a boiling point of 190 to 310 ° C. is 90.0% by volume or more, the content of aromatic hydrocarbons is 1.0% by volume or less, and the content of naphthenes having two or more rings.
  • the petroleum fraction raw material has a content of a hydrocarbon component having a boiling point of 230 to 330 ° C.
  • the content of the aromatic hydrocarbon component having two or more rings is 70.0% by mass or more
  • the content of the hydrocarbon component having 14 to 18 carbon atoms is 68.0% by mass or more.
  • it is a petroleum fraction having a hydrocarbon component having a boiling point of 250 ° C. or higher and a content of 50.0% by volume or more.
  • a naphthenic solvent characterized by the above.
  • the present invention (2) has the following formula (1): 145 ⁇ X + 2Y ⁇ 160 (1) (In the formula, X indicates the aniline point (° C.) and Y indicates the kauributanol value.) It provides the naphthenic solvent of (1), which is characterized by satisfying the above conditions.
  • the present invention (3) provides the naphthenic solvent of (1) or (2), which is characterized in that the Hansen sphere radius R of the Hansen solubility parameter is 7.5 or more.
  • the naphthenic solvent of the present invention is a hydride of a petroleum distillate raw material, or a distilled cut product of a light or heavy component of the hydride.
  • the content of hydrocarbon components having a boiling point of 190 to 310 ° C. is 90.0% by volume or more, the content of aromatic hydrocarbons is 1.0% by volume or less, and the content of naphthenes having two or more rings. Is 70.0% by volume or more, the ignition point is 70.0 ° C. or higher, and the aniline point is 48.0 to 75.0 ° C.
  • the petroleum fraction raw material has a content of a hydrocarbon component having a boiling point of 230 to 330 ° C.
  • the content of the aromatic hydrocarbon component having two or more rings is 70.0% by mass or more
  • the content of the hydrocarbon component having 14 to 18 carbon atoms is 68.0% by mass or more.
  • it is a petroleum fraction having a hydrocarbon component having a boiling point of 250 ° C. or higher and a content of 50.0% by volume or more. It is a naphthenic solvent characterized by.
  • the naphthenic solvent of the present invention is a hydride of a petroleum fraction raw material obtained in a petroleum refining process, or a distilled cut product of a light or heavy component of the hydride of the petroleum distillate raw material, and is obtained in the petroleum refining process.
  • the content of the hydrocarbon component having a boiling point of 230 to 330 ° C. is 90.0% by volume or more, preferably the content of the hydrocarbon component having a boiling point of 230 to 320 ° C. 90.0% by volume or more, more preferably the content of the hydrocarbon component at 230 to 320 ° C. is 95.0% by volume or more, and particularly preferably the content of the hydrocarbon component at 230 to 320 ° C. is 98.0% by volume or more.
  • a naphthenic solvent having a high flash point and not too low an aniline point can be obtained.
  • the distillation properties are obtained in accordance with JIS K 2254, JIS K 2435-1, and JIS K 0066.
  • the content of the aromatic hydrocarbon component having 11 to 18 carbon atoms in the petroleum fraction raw material according to the present invention is 90.0% by mass or more, preferably 94.0% by mass or more, and particularly preferably 98.0% by mass. % Or more.
  • a naphthenic solvent having a high flash point can be obtained.
  • the aniline point of the naphthenic solvent becomes too high.
  • aromatic hydrocarbons having 11 to 18 carbon atoms include pentamethylbenzene, diethylmethylbenzene, methylbutylbenzene, methylnaphthalene, dimethylnaphthalene, ethylnaphthalene, hexamethylbenzene, triethylbenzene, ethylmethylnaphthalene, and tetramethylnaphthalene.
  • aromatic hydrocarbons having 11 to 18 carbon atoms include pentamethylbenzene, diethylmethylbenzene, methylbutylbenzene, methylnaphthalene, dimethylnaphthalene, ethylnaphthalene, hexamethylbenzene, triethylbenzene, ethylmethylnaphthalene, and tetramethylnaphthalene.
  • the content of the aromatic hydrocarbon component having two or more rings in the petroleum fraction raw material according to the present invention is 70.0% by mass or more, preferably 75.0% by mass or more, and particularly preferably 78.0% by mass or more. is there. If the content of the cyclic hydrocarbon component having two or more rings in the petroleum fraction raw material is less than the above range, the flash point will be lower than 70 ° C., and the handling will be restricted.
  • the content of the aromatic hydrocarbon component having 14 to 18 carbon atoms in the petroleum fraction raw material according to the present invention is 68.0% by mass or more, preferably 70.0% by mass or more, and particularly preferably 73.0% by mass. % Or more.
  • a naphthenic solvent having a high flash point and not too low an aniline point can be obtained.
  • the aniline point of the naphthenic solvent becomes too high.
  • the content of the hydrocarbon component having a boiling point of 250 ° C. or higher in the petroleum fraction raw material according to the present invention is 50.0% by volume or more, preferably 55.0% by volume or more, particularly preferably 60.0% by volume or more. is there.
  • a naphthenic solvent having a high flash point and not too low an aniline point can be obtained.
  • the flash point of the naphthenic solvent becomes too low.
  • the content of the aromatic hydrocarbon component having 11 to 18 carbon atoms in the petroleum distillate raw material the content of the aromatic hydrocarbon component having two or more rings, and the hydrocarbon having 14 to 18 carbon atoms.
  • the content of the component IP548 (DETERMINATION oF AROMATICHYDROCARBON TYPES iN MIDDLE dISTILLATES-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY METHOD WITH REFRACTIVE INDEX DETECTION) and ASTM D 2887 (Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography (C5-C44) ) Is required.
  • the catalyst for nuclear hydrogenation of the petroleum distillate raw material according to the present invention is not particularly limited, and in the petroleum refining process, the aromatic hydrocarbons in the fraction containing aromatic hydrocarbons are nuclear hydrogenated. Examples include the catalyst used to do this. Examples of the catalyst include nickel, nickel oxide, nickel / silica soil, lane nickel, nickel / copper, platinum, platinum oxide, platinum / activated carbon, platinum / rhodium, platinum / alumina, palladium / alumina, ruthenium / alumina and the like. Can be mentioned.
  • the conditions for nuclear hydrogenation of the petroleum distillate raw material are not particularly limited, and the conditions used in the petroleum refining process are appropriately selected. As the nuclear hydrogenation conditions, for example, the reaction temperature may be 80 to 280 ° C., and the hydrogen pressure may be 1 to 8 MPa.
  • the hydride of the petroleum distillate raw material obtained by nuclear hydrogenating the above petroleum distillate raw material may be used as the naphthenic solvent of the present invention.
  • a part of the light component is cut and / or a part of the heavy component is cut by distillation.
  • the obtained distilled cut product may be used as the naphthenic solvent of the present invention.
  • the extent to which the light or heavy component is cut is appropriately selected according to the requirements of the naphthenic solvent.
  • the content of the hydrocarbon component having a boiling point of 190 to 310 ° C. is 90.0% by volume or more.
  • the content of the hydrocarbon component at 190 to 305 ° C is preferably 90.0% by volume or more, and particularly preferably the content of the hydrocarbon component at 190 to 305 ° C is 95.0% by volume or more.
  • the content of aromatic hydrocarbons in the naphthenic solvent of the present invention is 1.0% by volume or less, preferably 0.5% by volume or less.
  • the content of aromatic hydrocarbons is determined in accordance with the naphthalene content test method (ultraviolet absorption spectrophotometry) of JIS K 2276 petroleum product-aviation fuel oil test method.
  • the content of naphthenes having two or more rings in the naphthenic solvent of the present invention is 70.0% by volume or more, preferably 75.0% by volume or more, and particularly preferably 78.0% by volume or more.
  • the flash point of the naphthenic solvent is not high and the aniline point is not too low.
  • the flash point of the naphthenic solvent becomes low and the aniline point becomes too low.
  • each of the 1-ring naphthenes, 2-ring naphthenes, 3-ring naphthenes, 4-ring naphthenes, 5-ring naphthenes, and 6-ring naphthenes contained in the naphthenic solvent.
  • ASTM D 2786 Standard Test Method for Hydrocarbon Types Analysis of Gas-Oil Saturates Fractions by High Ionizing Voltage Mass Spectrometry
  • ASTM D 3239 Standard Test Method for Aromatic Types Analysis of Gas-Oil Aromatic Fractions by High Ionizing Voltage It is required in accordance with Mass Spectrometry).
  • the flash point of the naphthenic solvent of the present invention is 70.0 ° C. or higher, preferably 72.0 ° C. or higher, and particularly preferably 75.0 ° C. or higher. Since the flash point of naphthenic solvents is within the above range, the classification of dangerous goods under the Fire Service Act is classified into Class 4 and Class 3 petroleum, the restrictions on handling are relaxed, and more solvents can be handled. In addition, since the flammability is low even during use, accidents such as fire are unlikely to occur, and the solvent is easy to use. On the other hand, if the flash point of the naphthenic solvent is less than the above range, the classification of dangerous goods under the Fire Service Act is classified into Class 4 Class 2 Petroleum Class 1 or Class 1 Petroleum Class, and there are many restrictions on handling. In addition, the flammability is high, so the risk during use is high. In the present invention, the flash point is determined in accordance with JIS K2265.
  • the aniline point of the naphthenic solvent of the present invention is 48.0 to 75.0 ° C., preferably 50.0 to 70.0 ° C., particularly preferably 50.0 to 60.0 ° C.
  • the aniline point of the naphthenic solvent is within the above range, the solvent has moderate solubility and has little influence on the material on the coating side.
  • the naphthenic solvent aniline is less than the above range, the solubility becomes too high. Therefore, when used as a solvent for paints, etc., if the material to be applied is such as plastic or polymer resin, Depending on the material, the solvent may dissolve on the coated surface, causing the problem that it cannot be applied cleanly. If it exceeds the above range, the solubility becomes low and the oils and fats such as paints do not dissolve uniformly and the paint solvent. There are restrictions on its use.
  • the aniline point is obtained in accordance with JIS K2256.
  • the naphthenic solvent of the present invention has the following formula (1): 145 ⁇ X + 2Y ⁇ 160 (1) (In the formula, X indicates the aniline point (° C.) and Y indicates the kauributanol value.) It is preferable to satisfy the following equation (2): 150 ⁇ X + 2Y ⁇ 155 (2) (In the formula, X indicates the aniline point (° C.) and Y indicates the kauributanol value.) It is particularly preferable to satisfy.
  • the value of "X + 2Y" of the naphthenic solvent is in the above range, it has an appropriate aniline point and the kauributanol value can be increased. It is a solvent with strong fat saturation.
  • the kauributanol value is determined in accordance with ASTM D 1133 (Standard Test Method for Karii-Butanol Value of Hydrocarbon Solvents).
  • the energy ( ⁇ d) derived from the intermolecular dispersion force of the Hansen solubility parameter is preferably 16.6 to 17.5, particularly preferably 16.8 to 17.3.
  • the energy ( ⁇ p) derived from the dipole interaction between molecules is preferably 5.5 to 6.5, particularly preferably 5.7 to 6.3.
  • the energy ( ⁇ h) derived from the hydrogen bond between the molecules is preferably 2.2 to 3.2, particularly preferably 2.4 to 3.0.
  • the Hansen sphere radius R of the Hansen solubility parameter is preferably 7.5 or more, particularly preferably 7.5 to 9.0.
  • the Hansen sphere radius R of the Hansen solubility parameter of the naphthenic solvent of the present invention is within the above range, excessive dissolution in the material or the like on the coating side is suppressed while maintaining the target range of the substance that can be dissolved. It becomes a solvent.
  • the Hansen solubility parameter and the Hansen sphere radius R are measured by the following methods.
  • the Hansen solubility parameter (hereinafter, also simply referred to as "HSP") is based on the idea that two substances having similar intermolecular interactions are easily dissolved in each other.
  • HSP is composed of energy derived from intermolecular dispersion force ( ⁇ d), energy derived from intermolecular bipolar interaction ( ⁇ p), and energy derived from intermolecular hydrogen bond ( ⁇ h). These three parameters can be regarded as coordinates in the three-dimensional space (Hansen space). Then, the Hansen solubility parameter ( ⁇ t) is calculated by the following formula.
  • the HSP value in the evaluation sample whose HSP value is unknown can be calculated by the following method.
  • HSP values ⁇ dm, ⁇ pm, ⁇ hm
  • multiple pure substances substituted with known HPS values
  • the HSP value of the evaluation sample can be calculated by specifying the Hansen sphere based on the solubility of the evaluation sample in the pure substance and obtaining the center value of the Hansen sphere (Hansen sphere method).
  • the HSP value of the evaluation sample can also be calculated by using the atomic group contribution method from the information of the average molecular structure.
  • the HSP value of the evaluation sample can be calculated by using, for example, the computer software Hansen Solubility Parameters in Practice (HSPiP).
  • HSPiP Hansen Solubility Parameters in Practice
  • the evaluation sample may be a pure substance or a mixture.
  • the method of obtaining the center value of the Hansen sphere, that is, the HSP value ( ⁇ dm, ⁇ pm, ⁇ hm) will be described with reference to FIG. First, the HSP values of about 15 to 30 pure substances having known HSP values in a three-dimensional space having the dispersion force term ⁇ d, the dipole force term ⁇ p, and the hydrogen bond force term ⁇ h as the coordinate axes, which are illustrated in FIG. To plot.
  • a pure substance showing solubility in the evaluation sample is marked with a circle, and a pure substance not showing solubility in the evaluation sample is marked with a cross.
  • the pure substances showing solubility were included and the pure substances showing no solubility (marked with a cross in FIG. 1) were included.
  • the radius forming the Hansen sphere S (the minimum radius) is the interaction radius R indicating compatibility by dissolving the pure substance indicated by a circle in the figure, that is, the Hansen sphere radius R, and the obtained Hansen sphere S is also obtained.
  • the center value ( ⁇ dm, ⁇ pm, ⁇ hm) of is the HSP value of the evaluation sample.
  • the HSP value of the pure substance used to obtain Hansen spheres is, for example, a dispersion force term ⁇ d of about 10 to 25 MPa 1/2 and a dipole interpole force term ⁇ p of about 0 to 20 MPa 1/2.
  • the hydrogen bond force term ⁇ h is about 0 to 20 MPa 1/2. Further, since the solubility depends on the temperature, it is preferable to carry out the solubility test at the temperature at which the Hansen sphere is actually melted when obtaining the Hansen sphere.
  • the density of the naphthenic solvent of the present invention is preferably 0.85 to 0.90 g / cm 3 , and particularly preferably 0.87 to 0.89 g / cm 3 .
  • the density is determined in accordance with JIS K 2249.
  • the sulfur content of the naphthenic solvent of the present invention is preferably 5 mass ppm or less, particularly preferably 1 mass ppm or less.
  • the sulfur content is determined in accordance with JIS K 2541-6.
  • the nitrogen content of the naphthenic solvent of the present invention is preferably 5 mass ppm or less, particularly preferably 1 mass ppm or less.
  • the nitrogen content is determined in accordance with JIS K 2609.
  • the naphthenic organic solvent of the present invention is used as a solvent for printing inks for food packaging, a solvent for stationery, a reaction solvent for manufacturing pharmaceuticals or pesticides, a cleaning agent such as a metal cleaning agent, a solvent for adhesives, and a baking paint. It is preferably used as a solvent.
  • the present inventors have a boiling point of 230 to 330 ° C., preferably 230 to 320 ° C., and the content of an aromatic hydrocarbon component having 11 to 18 carbon atoms is 90.0% by mass or more. It is preferably 94.0% by mass or more, particularly preferably 98.0% by mass or more, and has two or more rings of an aromatic hydrocarbon component, a hydrocarbon component having 14 to 18 carbon atoms, and a boiling point of 250 ° C. or more.
  • the content of the hydrocarbon component having a boiling point of 190 to 310 ° C. is 90.0% by volume or more.
  • the content of the hydrocarbon component having a boiling point of 190 to 305 ° C is 90.0% by volume, and particularly preferably the content of the hydrocarbon component having a boiling point of 190 to 305 ° C is 95.0% by volume and two rings.
  • a naphthenic solvent having a content of the above naphthenes of 70.0% by volume or more, preferably 75.0% by volume or more, particularly preferably 78.0% by volume or more can be obtained, and the naphthenic solvent has a flammability point. Is as high as 70.0 ° C. or higher, preferably 72.0 ° C. or higher, particularly preferably 75.0 ° C. or higher, and the aniline point is 48.0 to 75.0 ° C., preferably 50.0 to 70.0 ° C. , Particularly preferably 50.0 to 60.0 ° C., while maintaining good solubility, found not to be too low.
  • Example 1 The continuous flow type reactor was filled with 50 ml of a catalyst (Ni 5256 E, manufactured by N.E. Chemcat). Next, 10% by volume of the petroleum fraction having the properties shown in Table 1 was mixed with methylcyclohexane in the catalyst layer of the continuous flow type reactor, and the reaction temperature was 180 ° C., the hydrogen pressure was 2.8 MPa, and the space velocity (LHSV). ) The liquid was passed under the condition of 3.5h -1 and hydrogenated, and the obtained product oil was distilled and fractionated with methylcyclohexane to obtain a naphthenic solvent. Table 2 shows the analysis results of the obtained naphthenic solvent. In addition, the Hansen solubility parameter and the Hansen sphere radius R of the obtained naphthenic solvent were determined. The results are shown in Table 3.
  • Example 1 Hydrogenation was carried out in the same manner as in Example 1 except that the petroleum fraction shown in Table 1 was used to obtain a naphthenic solvent.
  • Table 2 shows the analysis results of the obtained naphthenic solvent.
  • the Hansen solubility parameter and the Hansen sphere radius R of the obtained naphthenic solvent were determined. The results are shown in Table 3.
  • Example 2 The continuous flow type reactor was filled with 50 ml of a catalyst (Ni 5256 E, manufactured by N.E. Chemcat). Next, 10% by volume of the petroleum fraction having the properties shown in Table 1 was mixed with methylcyclohexane in the catalyst layer of the continuous flow type reactor, and the reaction temperature was 190 ° C., the hydrogen pressure was 2.8 MPa, and the space velocity (LHSV). ) The liquid was passed under the condition of 3.5h -1 and hydrogenated, and the obtained product oil was distilled and fractionated with methylcyclohexane to obtain a naphthenic solvent. Table 2 shows the analysis results of the obtained naphthenic solvent.
  • a catalyst Ni 5256 E, manufactured by N.E. Chemcat
  • Example 3 The continuous flow type reactor was filled with 50 ml of a catalyst (Ni 5256 E, manufactured by N.E. Chemcat). Next, 10% by volume of the petroleum fraction having the properties shown in Table 1 was mixed with methylcyclohexane in the catalyst layer of the continuous flow type reactor, and the reaction temperature was 190 ° C., the hydrogen pressure was 2.8 MPa, and the space velocity (LHSV). ) The liquid was passed under the condition of 3.5h -1 and hydrogenated. After the initial consumption of the mixed raw material oil, the obtained hydride oil was used as a diluted oil, mixed with the petroleum fraction having the properties shown in Table 1, and passed through a recycling method for hydrogenation. The obtained product oil was distilled and fractionated with methylcyclohexane to obtain a naphthenic solvent. Table 2 shows the analysis results of the obtained naphthenic solvent.
  • Example 4 The continuous flow type reactor was filled with 50 ml of a catalyst (Ni 5256 E, manufactured by N.E. Chemcat). Next, 10% by volume of the petroleum fraction having the properties shown in Table 1 was mixed with the naphthenic solvent obtained in Example 3 in the catalyst layer of the continuous flow type reactor, and the reaction temperature was 190 ° C. and the hydrogen pressure was 2. The solution was passed under the conditions of 0.8 MPa and a space velocity (LHSV) 3.5 h -1 and hydrogenated to obtain a naphthenic solvent. Table 2 shows the analysis results of the obtained naphthenic solvent.
  • a catalyst Ni 5256 E, manufactured by N.E. Chemcat
  • ⁇ Measurement method of Hansen solubility parameter and Hansen sphere radius R> To 1 ml of a naphthenic solvent, 1 ml of a solvent having a known HSP value was added, and the mixture was allowed to stand for 5 minutes. After that, the affinity was visually evaluated. Regarding the result of the affinity evaluation, the Hansen sphere was determined using the Hansen sphere method, and the Hansen solubility parameter and the Hansen sphere diameter R were calculated. The solubility of Hansen spheres was determined based on 25 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Paints Or Removers (AREA)
  • Detergent Compositions (AREA)

Abstract

沸点が190~310℃の炭化水素成分の含有量が90.0体積%以上であり、芳香族炭化水素類の含有量が1.0体積%以下であり、2環以上のナフテン類の含有量が70.0体積%以上であり、引火点が70.0℃以上であり、且つ、アニリン点が48.0~75.0℃であり、該石油留分原料が、沸点が230~330℃の炭化水素成分の含有量が90.0体積%以上であり、炭素数が11~18の芳香族炭化水素成分の含有量が90.0質量%以上であり、2環以上の芳香族炭化水素成分の含有量が70.0質量%以上であり、炭素数が14~18の炭化水素成分の含有量が68.0質量%以上であり、且つ、沸点が250℃以上の炭化水素成分の含有量が50.0体積%以上である石油留分であること、を特徴とするナフテン系溶剤。 本発明によれば、芳香族炭化水素類の含有量が低いナフテン系溶剤であって、引火点が高く且つアニリン点が低過ぎないナフテン系溶剤を提供することができる。

Description

ナフテン系溶剤
 本発明は、芳香族炭化水素の含有量が制限されている低芳香族のナフテン系溶剤に関する。
 従来、洗浄用や、塗料、印刷インキ等の溶媒又は分散媒、接着剤用の溶剤などに使用される溶剤には、石油精製プロセスで製造される芳香族系炭化水素溶剤が、溶解性が高いことから、広く用いられていた。しかし、芳香族化合物は、臭気が強いことに加え、環境負荷があるため、使用が制限されるようになってきた。例えば、芳香族系溶剤であるトルエンやキシレン、含酸素系溶剤であるメチルイソブチルケトン(MIBK)は、環境負荷の点から使用が制限される傾向にある。また、芳香族化合物は有機溶剤中毒予防規則に該当するため、使用時には作業環境測定が必要であり、使用者は定期的な健康診断の受診や、これら溶剤の使用履歴の保管が要求されるなど、管理の面でも負荷が高い。
 そのため、近年は、自動車用や建築用といった塗料用途の溶剤などの分野において、芳香族炭化水素の含有量が低い低芳香族の溶剤が使用されるようになってきた。この低芳香族の溶剤としては、ナフテン系溶剤、アルコール系溶剤、パラフィン系溶剤、水系溶剤等が挙げられる。
 これらのうち、ナフテン系溶剤は、石油系溶剤の分野において、芳香族系溶剤と比較すると溶解性は高くないが、パラフィン系溶剤と比較して溶解性が高いことから、食品包装用印刷インキ溶剤、文房具溶剤、医・農薬製造用反応溶媒、金属洗浄剤、接着剤、焼付塗料溶剤などには、ナフテン系溶剤が多く用いられている。
 ナフテン系溶剤としては、例えば、特許文献1には、沸点が175~280℃で、炭素数9~14の芳香族成分を80容量%以上、かつ2環以上の環状炭化水素を10容量%以上含有する石油留分を水素化して得られる芳香族成分の含有量が1容量%以下からなるナフテン系溶剤が開示されている。
特開2006-96786号公報
 ところが、特許文献1の実施例の核水添試験1又は2のナフテン系溶剤は、引火点が40℃又は51℃と低過ぎる。これらを洗浄溶剤や反応溶媒、焼付塗料溶剤等に用いる場合は、引火点が低過ぎる、すなわち、引火性が高くなることから、使用環境の面で設備対応等が必要になり、取り扱いも十分に注意しなければならないなどの問題があり、また消防法の観点から使用量や保管量といった点で取り扱いへの制約が厳しくなる。
 一方で、特許文献1の実施例の核水添試験3のナフテン系溶剤は、引火点が68℃とある程度高いものの、アニリン点が39℃と低い。そして、アニリン点が低過ぎると、溶解性が高くなり過ぎるため、塗料等の溶剤に使用した際は、塗布する側の材質がプラスチックやポリマー樹脂の場合には、材質によって塗布面を溶剤が溶かしてしまうこともあり、きれいに塗れないという問題がある。
 従って、本発明の目的は、芳香族炭化水素類の含有量が低いナフテン系溶剤であって、引火点が高く且つアニリン点が低過ぎないナフテン系溶剤を提供することにある。
 上記課題は、以下の本発明により解決される。
 すなわち、本発明(1)は、石油留分原料の水素化物、又は該水素化物の軽質分若しくは重質分の蒸留カット物であり、
 沸点が190~310℃の炭化水素成分の含有量が90.0体積%以上であり、芳香族炭化水素類の含有量が1.0体積%以下であり、2環以上のナフテン類の含有量が70.0体積%以上であり、引火点が70.0℃以上であり、且つ、アニリン点が48.0~75.0℃であり、
 該石油留分原料が、沸点が230~330℃の炭化水素成分の含有量が90.0体積%以上であり、炭素数が11~18の芳香族炭化水素成分の含有量が90.0質量%以上であり、2環以上の芳香族炭化水素成分の含有量が70.0質量%以上であり、炭素数が14~18の炭化水素成分の含有量が68.0質量%以上であり、且つ、沸点が250℃以上の炭化水素成分の含有量が50.0体積%以上である石油留分であること、
を特徴とするナフテン系溶剤を提供するものである。
 また、本発明(2)は、下記式(1):
   145≦X+2Y≦160   (1)
(式中、Xはアニリン点(℃)を示し、Yはカウリブタノール価を示す。)
を満たすことを特徴とする(1)のナフテン系溶剤を提供するものである。
 また、本発明(3)は、ハンセン溶解度パラメーターのハンセン球半径Rが7.5以上であることを特徴とする(1)又は(2)のナフテン系溶剤を提供するものである。
 本発明によれば、芳香族炭化水素類の含有量が低いナフテン系溶剤であって、引火点が高く且つアニリン点が低過ぎないナフテン系溶剤を提供することができる。
ハンセン球法を説明するための模式図である。
 本発明のナフテン系溶剤は、石油留分原料の水素化物、又は該水素化物の軽質分若しくは重質分の蒸留カット物であり、
 沸点が190~310℃の炭化水素成分の含有量が90.0体積%以上であり、芳香族炭化水素類の含有量が1.0体積%以下であり、2環以上のナフテン類の含有量が70.0体積%以上であり、引火点が70.0℃以上であり、且つ、アニリン点が48.0~75.0℃であり、
 該石油留分原料が、沸点が230~330℃の炭化水素成分の含有量が90.0体積%以上であり、炭素数が11~18の芳香族炭化水素成分の含有量が90.0質量%以上であり、2環以上の芳香族炭化水素成分の含有量が70.0質量%以上であり、炭素数が14~18の炭化水素成分の含有量が68.0質量%以上であり、且つ、沸点が250℃以上の炭化水素成分の含有量が50.0体積%以上である石油留分であること、
を特徴とするナフテン系溶剤である。
 本発明のナフテン系溶剤は、石油精製プロセスで得られる石油留分原料の水素化物、あるいは、該石油留分原料の水素化物の軽質分又は重質分の蒸留カット物であり、石油精製プロセスで生成する炭素数11~18の芳香族炭化水素成分を含有する留分を核水素化して得られた水素化物、あるいは、石油留分原料を核水素化して得られる水素化物の軽質分又は重質部を、蒸留によりカットして得られる蒸留カット物である。
 本発明において、水素化の原料となる石油留分原料中、沸点が230~330℃の炭化水素成分が90.0体積%以上であり、好ましくは230~320℃の炭化水素成分の含有量が90.0体積%以上、より好ましくは230~320℃の炭化水素成分の含有量が95.0体積%以上、特に好ましくは230~320℃の炭化水素成分の含有量が98.0体積%以上である。石油留分原料の上記沸点範囲の炭化水素成分の含有量が上記範囲であることにより、引火点が高く且つアニリン点が低過ぎないナフテン系溶剤が得られる。なお、本発明において、蒸留性状は、JIS K 2254、JIS K 2435-1、JIS K 0066に準拠して求められる。
 本発明に係る石油留分原料中、炭素数が11~18の芳香族炭化水素成分の含有量は、90.0質量%以上、好ましくは94.0質量%以上、特に好ましくは98.0質量%以上である。石油留分原料中の炭素数が11~18の芳香族炭化水素成分の含有量が、上記範囲にあることにより、引火点が高いナフテン系溶剤が得られる。一方、石油留分原料の中の炭素数が11~18の芳香族炭化水素成分の含有量が、上記範囲未満だと、ナフテン系溶剤のアニリン点が高くなり過ぎる。
 炭素数が11~18の芳香族炭化水素としては、ペンタメチルベンゼン、ジエチルメチルベンゼン、メチルブチルベンゼン、メチルナフタレン、ジメチルナフタレン、エチルナフタレン、ヘキサメチルベンゼン、トリエチルベンゼン、エチルメチルナフタレン、テトラメチルナフタレン、ジエチルナフタレン、トリエチルナフタレン、フェナントレン、アントラセン、ピレン、クリセン、テトラセン等が挙げられる。
 本発明に係る石油留分原料中、2環以上の芳香族炭化水素成分の含有量は、70.0質量%以上、好ましくは75.0質量%以上、特に好ましくは78.0質量%以上である。石油留分原料中の2環以上の環状炭化水素成分の含有量が、上記範囲未満だと引火点が70℃を下回るため、取り扱いの制約が多くなる。
 本発明に係る石油留分原料中、炭素数が14~18の芳香族炭化水素成分の含有量は、68.0質量%以上、好ましくは70.0質量%以上、特に好ましくは73.0質量%以上である。石油留分原料中の炭素数が14~18の芳香族炭化水素成分の含有量が、上記範囲にあることにより、引火点が高く且つアニリン点が低過ぎないナフテン系溶剤が得られる。一方、石油留分原料の中の炭素数が14~18の芳香族炭化水素成分の含有量が、上記範囲未満だと、ナフテン系溶剤のアニリン点が高くなり過ぎる。
 本発明に係る石油留分原料中、沸点が250℃以上の炭化水素成分の含有量は、50.0体積%以上、好ましくは55.0体積%以上、特に好ましくは60.0体積%以上である。石油留分原料中の沸点が250℃以上の炭化水素成分の含有量が、上記範囲にあることにより、引火点が高く且つアニリン点が低過ぎないナフテン系溶剤が得られる。一方、石油留分原料中の沸点が250℃以上の炭化水素成分の含有量が、上記範囲未満だと、ナフテン系溶剤の引火点が低くなり過ぎる。
 なお、本発明において、石油留分原料中の炭素数が11~18の芳香族炭化水素成分の含有量、2環以上の芳香族炭化水素成分の含有量、炭素数が14~18の炭化水素成分の含有量については、IP548(DETERMINATION OF AROMATICHYDROCARBON TYPES IN MIDDLE DISTILLATES-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY METHOD WITH REFRACTIVE INDEX DETECTION)およびASTM D 2887(Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography(C5-C44))で求められる。
 本発明に係る石油留分原料を核水素化するための触媒としては、特に制限されず、石油精製プロセスにおいて、芳香族炭化水素類を含有する留分中の芳香族炭化水素類を核水素化するために用いられる触媒が挙げられる。該触媒としては、例えば、ニッケル、酸化ニッケル、ニッケル/けいそう土、ラネーニッケル、ニッケル/銅、白金、酸化白金、白金/活性炭、白金/ロジウム、白金/アルミナ、パラジウム/アルミナ、ルテニウム/アルミナ等が挙げられる。石油留分原料を核水素化するための条件は、特に制限されず、石油精製プロセスにおいて用いられている条件が適宜選択される。核水素化条件としては、例えば、反応温度80~280℃、水素圧1~8MPaから適宜選定された条件で行うとよい。
 本発明では、上記の石油留分原料を核水素化して得られる石油留分原料の水素化物を、本発明のナフテン系溶剤としてもよい。また、本発明では、上記の石油留分原料を核水素化して得られる石油留分原料の水素化物から、蒸留により、軽質分の一部をカットし及び/又は重質分の一部をカットして、得られる蒸留カット物を、本発明のナフテン系溶剤としてもよい。なお、どの程度、軽質分又は重質分をカットするかは、ナフテン系溶剤の要求に応じて、適宜選択される。
 本発明のナフテン系溶剤、すなわち、本発明に係る石油留分原料を水素化して得られるナフテン系溶剤中、沸点が190~310℃の炭化水素成分の含有量が、90.0体積%以上、好ましくは190~305℃の炭化水素成分の含有量が90.0体積%以上、特に好ましくは190~305℃の炭化水素成分成分の含有量が95.0体積%以上である。ナフテン系溶剤の沸点が上記範囲にある炭化水素成分の含有量が上記範囲であることにより、ナフテン系溶剤の引火点が高くなり且つアニリン点が低くなり過ぎない。
 本発明のナフテン系溶剤中、芳香族炭化水素類の含有量は、1.0体積%以下、好ましくは0.5体積%以下である。なお、本発明において、芳香族炭化水素類の含有量は、JIS K 2276 石油製品-航空燃料油試験方法のナフタレン分試験方法(紫外吸分光光度法)に準拠して求められる。
 本発明のナフテン系溶剤中、2環以上のナフテン類の含有量は、70.0体積%以上、好ましくは75.0体積%以上、特に好ましくは78.0体積%以上である。ナフテン系溶剤中の2環以上のナフテン類の含有量が上記範囲にあることにより、ナフテン系溶剤の引火点が高くなり且つアニリン点が低くなり過ぎない。一方、ナフテン系溶剤中の2環以上のナフテン類の含有量が、上記範囲未満だと、ナフテン系溶剤の引火点が低くなり、アニリン点が低くなり過ぎる。
 なお、本発明において、ナフテン系溶剤中の1環のナフテン類、2環のナフテン類、3環のナフテン類、4環のナフテン類、5環のナフテン類及び6環のナフテン類のそれぞれの含有量については、ASTM D 2786(Standard Test Method for Hydrocarbon Types Analysis of Gas-Oil Saturates Fractions by High Ionizing Voltage Mass Spectrometry)およびASTM D 3239(Standard Test Method for Aromatic Types Analysis of Gas-Oil Aromatic Fractions by High Ionizing Voltage Mass Spectrometry)に準拠して求められる。
 本発明のナフテン系溶剤の引火点は、70.0℃以上、好ましくは72.0℃以上、特に好ましくは75.0℃以上である。ナフテン系溶剤の引火点が上記範囲にあることにより、消防法の危険物の分類が第4類第3石油類に分類され、取り扱い面で制約が緩和され、より多くの溶剤を取り扱うことができ、また使用時においても引火性が低くなるため、火災などの事故も起こり難く、使い易い溶剤となる。一方、ナフテン系溶剤の引火点が、上記範囲未満だと、消防法の危険物の分類が第4類第2石油類、または第1石油類に分類されるため、取り扱い面で制約が多くなり、かつ引火性が高くなるため使用時の危険性が高くなる。なお、本発明において、引火点は、JIS K 2265に準拠して求められる。
 本発明のナフテン系溶剤のアニリン点は、48.0~75.0℃、好ましくは50.0~70.0℃、特に好ましくは50.0~60.0℃である。ナフテン系溶剤のアニリン点が、上記範囲にあることにより、程よい溶解性を有し、塗布する側の材質への影響が少ない溶剤となる。一方、ナフテン系溶剤のアニリンが、上記範囲未満だと、溶解性が高くなり過ぎるため、塗料等の溶剤に使用した際は、塗布する側の材質がプラスチックやポリマー樹脂のようなものの場合には、材質によって塗布面を溶剤が溶かしてしまうこともあり、きれいに塗れないという問題が発生し、また、上記範囲を超えると、溶解性が低くなり、塗料等の油脂が均一に溶解せず塗料溶剤として使用に制約が発生する。なお、本発明において、アニリン点は、JIS K 2256に準拠して求められる。 
 本発明のナフテン系溶剤は、下記式(1):
   145≦X+2Y≦160   (1)
(式中、Xはアニリン点(℃)を示し、Yはカウリブタノール価を示す。)
を満たすことが好ましく、下記式(2):
   150≦X+2Y≦155   (2)
(式中、Xはアニリン点(℃)を示し、Yはカウリブタノール価を示す。)
を満たすことが特に好ましい。ナフテン系溶剤の「X+2Y」の値が上記範囲にあることにより、適度なアニリン点を持ち、カウリブタノール価を高くすることができるため、油脂の溶解性を適度に保ちつつ、塗料等の試料の油脂飽和力が強い性能を有する溶剤となる。なお、本発明において、カウリブタノール価は、ASTM D 1133(Standard Test Method for Kauri-Butanol Value of Hydrocarbon Solvents)に準拠して求められる。
 本発明のナフテン系溶剤では、ハンセン溶解度パラメーターの分子間の分散力に由来するエネルギー(δd)は、好ましくは16.6~17.5、特に好ましくは16.8~17.3である。また、本発明のナフテン系溶剤では、分子間の双極子相互作用に由来するエネルギー(δp)は、好ましくは5.5~6.5、特に好ましくは5.7~6.3である。また、本発明のナフテン系溶剤では、分子間の水素結合に由来するエネルギー(δh)は、好ましくは2.2~3.2、特に好ましくは2.4~3.0である。本発明のナフテン系溶剤のハンセン溶解度パラメーターが上記範囲にあることにより、一般的な塗料で使用される樹脂等の材料との相溶性が良い溶剤となる。
 本発明のナフテン系溶剤では、ハンセン溶解度パラメーターのハンセン球半径Rは、好ましくは7.5以上、特に好ましくは7.5~9.0である。本発明のナフテン系溶剤のハンセン溶解度パラメーターのハンセン球半径Rが上記範囲にあることにより、溶解できる物質の対象範囲を維持しつつも、塗布する側の材質等への過剰な溶解が抑制される溶剤となる。
 なお、本発明において、ハンセン溶解度パラメーター及びハンセン球半径Rは、以下の方法により測定される。
 ハンセン溶解度パラメーター(Hansen solubility parameter(以下、単に「HSP」ともいう。))は、分子間の相互作用が似ている2つの物質は、互いに溶解しやすいとの考えに基づいている。HSPは、分子間の分散力に由来するエネルギー(δd)、分子間の双極子相互作用に由来するエネルギー(δp)、及び分子間の水素結合に由来するエネルギー(δh)から構成される。これらの3つのパラメーターは3次元空間(ハンセン空間)における座標とみなすことができる。
 そして、ハンセン溶解度パラメーター(δt)は、以下の式にて算出される。
   δt=(δd+δp+δh0.5
 HSP値が未知の評価試料におけるHSP値は以下の方法で算出することができる。
 HSP値(δdm、δpm、δhm)を三次元空間にプロットすることにより特定されるハンセン溶解度パラメーター空間において、既知のHPS値を有する複数の純物質(1種の化合物からなる物質)をプロットするとともに、上記純物質に対する評価試料の溶解性の有無によってハンセン球を特定し、当該ハンセン球の中心値を求めることで評価試料のHSP値を算出することが出来る(ハンセン球法)。
 また、評価試料のHSP値は、平均分子構造の情報から原子団寄与法を用いて算出することも出来る。
 ハンセン球法の場合も、原子団寄与法の場合も、評価試料のHSP値を算出する場合、例えばコンピューターソフトウェアHansen Solubility Parameters in Practice(HSPiP)を使用して算出することができる。
 ハンセン球法の場合、評価試料は純物質であってもよく、混合物であってもよい。
 上記ハンセン球の中心値、すなわちHSP値(δdm、δpm、δhm)の求め方について、図1を用いて説明する。
 先ず、図1に例示する、分散力項δd、双極子間力項δp及び水素結合力項δhを座標軸とする三次元空間に既知のHSP値を有する15~30個程度の純物質のHSP値をプロットする。
 このとき、図1に示すように、例えば、評価試料に溶解性を示す純物質を○印、評価試料に溶解性を示さない純物質を×印で表記する。次いで、プロットされた評価試料の溶解性に基づき、溶解性を示した純物質(図1で○印で示す)を包含し、かつ溶解性を示さなかった純物質(図1に×印で示す)を包含しない仮想球のうち、最小半径を有するものを(図1に球状に示す)ハンセン球Sとして求める。
 上記ハンセン球Sを成す半径(上記最少半径)が図中に○印で示す純物質を溶解し相溶性を示す相互作用半径R、すなわち、ハンセン球半径Rとなり、また、得られたハンセン球Sの中心値(δdm、δpm、δhm)が評価試料のHSP値となる。
 ハンセン球を求めるために使用する上記純物質のHSP値としては、例えば、分散力項δdが10~25MPa1/2程度であり、双極子間力項δpが0~20MPa1/2程度であり、水素結合力項δhが0~20MPa1/2程度である。
 また、溶解性は温度に依存するため、上記ハンセン球を求める際は、実際に溶解を行う温度にて溶解性試験を行うことが好ましい。
 本発明のナフテン系溶剤の密度は、好ましくは0.85~0.90g/cm、特に好ましくは0.87~0.89g/cmである。なお、本発明において、密度は、JIS K 2249に準拠して求められる。
 本発明のナフテン系溶剤の硫黄含有量は、好ましくは5質量ppm以下、特に好ましくは1質量ppm以下である。なお、本発明において、硫黄含有量は、JIS K 2541-6に準拠して求められる。
 本発明のナフテン系溶剤の窒素含有量は、好ましくは5質量ppm以下、特に好ましくは1質量ppm以下である。なお、本発明において、窒素含有量は、JIS K 2609に準拠して求められる。
 本発明のナフテン系有機溶剤は、食品包装の印刷用インキの溶剤、文房具用の溶剤、医薬又は農薬製造用の反応溶媒、金属洗浄剤等の洗浄剤、接着剤用の溶剤、焼付塗料用の溶剤など、好適に用いられる。
 本発明者らは、水素化の原料として、沸点が230~330℃、好ましくは230~320℃にあり、炭素数11~18の芳香族炭化水素成分の含有量が、90.0質量%以上、好ましくは94.0質量%以上、特に好ましくは98.0質量%以上であり、且つ、2環以上の芳香族炭化水素成分、炭素数が14~18の炭化水素成分及び沸点が250℃以上の炭化水素成分の含有量が上記範囲である石油留分を選択し、該石油留分を水素化することにより、沸点が190~310℃の炭化水素成分の含有量が90.0体積%以上、好ましくは沸点が190~305℃の炭化水素成分の含有量が90.0体積%、特に好ましくは沸点が190~305℃の炭化水素成分の含有量が95.0体積%であり且つ2環以上のナフテン類の含有量が70.0体積%以上、好ましくは75.0体積%以上、特に好ましくは78.0体積%以上であるナフテン系溶剤が得られ、該ナフテン系溶剤は、引火点が70.0℃以上、好ましくは72.0℃以上、特に好ましくは75.0℃以上と高く、且つ、アニリン点が48.0~75.0℃、好ましくは50.0~70.0℃、特に好ましくは50.0~60.0℃と良好な溶解性を維持しつつも、低くなり過ぎないことを見出した。
 以下に実施例を示して本発明を更に具体的に説明するが、本発明はこれに制限されるものではない。
(実施例1)
 連続流通式の反応装置に、触媒(Ni 5256 E、エヌ・イーケムキャット社製)を50ml充填した。次いで、連続流通式の反応装置の触媒層に、表1に示す性状の石油留分を、メチルシクロヘキサンに10体積%混合したものを、反応温度180℃、水素圧2.8MPa、空間速度(LHSV)3.5h-1の条件で通液し、水素化を行い、得られた生成油を蒸留しメチルシクロヘキサンと分画しナフテン系溶剤を得た。得られたナフテン系溶剤の分析結果を表2に示す。また、得られたナフテン系溶剤のハンセン溶解度パラメーター及びハンセン球半径Rを求めた。その結果を表3に示す。
(比較例1)
 表1に示す石油留分を用いること以外は、実施例1と同様にして、水素化を行い、ナフテン系溶剤を得た。得られたナフテン系溶剤の分析結果を表2に示す。また、得られたナフテン系溶剤のハンセン溶解度パラメーター及びハンセン球半径Rを求めた。その結果を表3に示す。
(比較例2)
 AFソルベント7号(JXTGエネルギー社製)の分析を行った。その結果を表2に示す。また、AFソルベント7号のハンセン溶解度パラメーター及びハンセン球半径Rを求めた。その結果を表3に示す。
(比較例3)
テクリーンN22(JXTGエネルギー社製)の分析を行った。その結果を表2に示す。また、テクリーンN22のハンセン溶解度パラメーター及びハンセン球半径Rを求めた。その結果を表3に示す。
(実施例2)
 連続流通式の反応装置に、触媒(Ni 5256 E、エヌ・イーケムキャット社製)を50ml充填した。次いで、連続流通式の反応装置の触媒層に、表1に示す性状の石油留分を、メチルシクロヘキサンに10体積%混合したものを、反応温度190℃、水素圧2.8MPa、空間速度(LHSV)3.5h-1の条件で通液し、水素化を行い、得られた生成油を蒸留しメチルシクロヘキサンと分画しナフテン系溶剤を得た。得られたナフテン系溶剤の分析結果を表2に示す。
(実施例3)
 連続流通式の反応装置に、触媒(Ni 5256 E、エヌ・イーケムキャット社製)を50ml充填した。次いで、連続流通式の反応装置の触媒層に、表1に示す性状の石油留分を、メチルシクロヘキサンに10体積%混合したものを、反応温度190℃、水素圧2.8MPa、空間速度(LHSV)3.5h-1の条件で通液し、水素化を行った。初期の混合原料油消費後は、得られた水素化油を希釈油とし、表1に示す性状の石油留分と混合し、リサイクル方式で通液して水素化を行った。得られた生成油を蒸留しメチルシクロヘキサンと分画しナフテン系溶剤を得た。得られたナフテン系溶剤の分析結果を表2に示す。
(実施例4)
 連続流通式の反応装置に、触媒(Ni 5256 E、エヌ・イーケムキャット社製)を50ml充填した。次いで、連続流通式の反応装置の触媒層に、表1に示す性状の石油留分を、実施例3で得たナフテン系溶剤に10体積%混合したものを、反応温度190℃、水素圧2.8MPa、空間速度(LHSV)3.5h-1の条件で通液し、水素化を行い、ナフテン系溶剤を得た。得られたナフテン系溶剤の分析結果を表2に示す。
<ハンセン溶解度パラメーター及びハンセン球半径Rの測定方法>
 ナフテン系溶剤1mlに対して、既知のHSP値を有する溶媒を1ml添加し、5分間静置させた。その後目視により親和性を評価した。親和性評価の結果について、ハンセン球法を用いてハンセン球を決定し、ハンセン溶解度パラメーター及びハンセン球径Rを算出した。なお、ハンセン球を求める際の溶解性の判断は25℃を基準に行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (3)

  1.  石油留分原料の水素化物、又は該水素化物の軽質分若しくは重質分の蒸留カット物であり、
     沸点が190~310℃の炭化水素成分の含有量が90.0体積%以上であり、芳香族炭化水素類の含有量が1.0体積%以下であり、2環以上のナフテン類の含有量が70.0体積%以上であり、引火点が70.0℃以上であり、且つ、アニリン点が48.0~75.0℃であり、
     該石油留分原料が、沸点が230~330℃の炭化水素成分の含有量が90.0体積%以上であり、炭素数が11~18の芳香族炭化水素成分の含有量が90.0質量%以上であり、2環以上の芳香族炭化水素成分の含有量が70.0質量%以上であり、炭素数が14~18の炭化水素成分の含有量が68.0質量%以上であり、且つ、沸点が250℃以上の炭化水素成分の含有量が50.0体積%以上である石油留分であること、
    を特徴とするナフテン系溶剤。
  2.  下記式(1):
       145≦X+2Y≦160   (1)
    (式中、Xはアニリン点(℃)を示し、Yはカウリブタノール価を示す。)
    を満たすことを特徴とする請求項1記載のナフテン系溶剤。
  3.  ハンセン溶解度パラメーターのハンセン球半径Rが7.5以上であることを特徴とする請求項1又は2記載のナフテン系溶剤。
PCT/JP2020/034833 2019-09-17 2020-09-15 ナフテン系溶剤 WO2021054308A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227011100A KR20220062325A (ko) 2019-09-17 2020-09-15 나프텐계 용제
JP2021546903A JPWO2021054308A1 (ja) 2019-09-17 2020-09-15
CN202080065288.4A CN114423830B (zh) 2019-09-17 2020-09-15 环烷烃系溶剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-168355 2019-09-17
JP2019168355 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021054308A1 true WO2021054308A1 (ja) 2021-03-25

Family

ID=74883209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034833 WO2021054308A1 (ja) 2019-09-17 2020-09-15 ナフテン系溶剤

Country Status (4)

Country Link
JP (1) JPWO2021054308A1 (ja)
KR (1) KR20220062325A (ja)
CN (1) CN114423830B (ja)
WO (1) WO2021054308A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228897A (ja) * 1994-02-19 1995-08-29 Cosmo Sogo Kenkyusho:Kk 非芳香族溶剤
JPH09263791A (ja) * 1996-03-28 1997-10-07 Olympus Optical Co Ltd 洗浄方法
JP2005154660A (ja) * 2003-11-28 2005-06-16 Sankyo Yuka Kogyo Kk 高沸点石油系溶剤
JP2015113367A (ja) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 樹脂塗膜剥離剤の選定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1030330C (zh) * 1991-07-11 1995-11-22 中国石油化工总公司石油化工科学研究院 低芳烃熔剂油的制造方法
JP2001049294A (ja) * 1999-08-11 2001-02-20 Lion Corp ドライクリーニング用洗浄剤組成物
JP4613266B2 (ja) * 2004-09-28 2011-01-12 Jx日鉱日石エネルギー株式会社 ナフテン系溶剤及びその製造方法
JP5215570B2 (ja) * 2007-02-28 2013-06-19 Jx日鉱日石エネルギー株式会社 溶剤組成物
CN101429458B (zh) * 2007-11-08 2012-05-30 中国石油化工股份有限公司 一种航空润滑油基础油生产方法
FR2953850B1 (fr) * 2009-12-15 2012-02-10 Total Raffinage Marketing Melange de solvants non-aromatiques, son procede de preparation et son utilisation pour des vernis et des encres d'impression
CN102585901B (zh) * 2012-02-21 2014-06-11 中国海洋石油总公司 一种低芳烃含量橡胶油及其制备方法
CN104388119B (zh) * 2014-04-14 2016-08-24 西北大学 一种尾油全循环的煤焦油生产彩色油墨溶剂油的方法
CN106752253A (zh) * 2016-11-24 2017-05-31 天津市汇合科技开发有限公司 一种环保型高溶解力溶剂组合物
GB201703455D0 (en) * 2017-03-03 2017-04-19 Jotun As Composition
CN107815164A (zh) * 2017-09-30 2018-03-20 江苏华伦化工有限公司 馏程为175~205℃的碳十重芳烃低萘芳烃溶剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228897A (ja) * 1994-02-19 1995-08-29 Cosmo Sogo Kenkyusho:Kk 非芳香族溶剤
JPH09263791A (ja) * 1996-03-28 1997-10-07 Olympus Optical Co Ltd 洗浄方法
JP2005154660A (ja) * 2003-11-28 2005-06-16 Sankyo Yuka Kogyo Kk 高沸点石油系溶剤
JP2015113367A (ja) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 樹脂塗膜剥離剤の選定方法

Also Published As

Publication number Publication date
CN114423830A (zh) 2022-04-29
KR20220062325A (ko) 2022-05-16
JPWO2021054308A1 (ja) 2021-03-25
CN114423830B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
EP3090026B1 (en) Composition comprising paraffin fractions obtained form biological raw materials and method of producing same
CN100467573C (zh) 烃流体的生产方法
CA2478195C (en) Improved hydrocarbon fluids
CN111094524B (zh) 烃流体及其用途
JP5215570B2 (ja) 溶剤組成物
Kondrasheva et al. Application of a ternary phase diagram to describe the stability of residual marine fuel
KR20170056620A (ko) 나프텐계 베이스 오일의 제조 방법
WO2021054308A1 (ja) ナフテン系溶剤
JPH07228897A (ja) 非芳香族溶剤
JP2006299173A (ja) 高沸点芳香族炭化水素溶剤
JP4613266B2 (ja) ナフテン系溶剤及びその製造方法
Odjo et al. Refinery nonconventional feedstocks: Influence of the coprocessing of vacuum gas oil and low density polyethylene in fluid catalytic cracking unit on full range gasoline composition
Harbottle et al. Particle-stabilized emulsions in heavy oil processing
JP4671230B2 (ja) トナー粉塵抑制ゲル化処理剤
JP4959652B2 (ja) 炭化水素系溶剤組成物
RU2599944C1 (ru) Способ получения стандартной жидкости сжр-1 для испытания резин и резинотехнических изделий
RU2600040C1 (ru) Способ получения стандартной жидкости сжр-3 для испытания резин и резинотехнических изделий
RU2600035C1 (ru) Способ получения стандартной жидкости сжр-2 для испытания резин и резинотехнических изделий

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227011100

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20865815

Country of ref document: EP

Kind code of ref document: A1