WO2021054252A1 - 複合高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 - Google Patents
複合高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 Download PDFInfo
- Publication number
- WO2021054252A1 WO2021054252A1 PCT/JP2020/034419 JP2020034419W WO2021054252A1 WO 2021054252 A1 WO2021054252 A1 WO 2021054252A1 JP 2020034419 W JP2020034419 W JP 2020034419W WO 2021054252 A1 WO2021054252 A1 WO 2021054252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer electrolyte
- electrolyte membrane
- group
- composite polymer
- porous substrate
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 247
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 233
- 239000002131 composite material Substances 0.000 title claims abstract description 87
- 239000003054 catalyst Substances 0.000 title claims description 70
- 229920000642 polymer Polymers 0.000 title claims description 52
- 239000000446 fuel Substances 0.000 title claims description 40
- 239000003792 electrolyte Substances 0.000 title abstract description 181
- 239000007787 solid Substances 0.000 title description 8
- 239000000758 substrate Substances 0.000 claims abstract description 89
- 239000004094 surface-active agent Substances 0.000 claims description 96
- 239000000463 material Substances 0.000 claims description 90
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 85
- 229910052731 fluorine Inorganic materials 0.000 claims description 71
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 57
- 239000011737 fluorine Substances 0.000 claims description 57
- 125000003010 ionic group Chemical group 0.000 claims description 52
- 150000001875 compounds Chemical class 0.000 claims description 33
- 239000004693 Polybenzimidazole Substances 0.000 claims description 26
- 229920002480 polybenzimidazole Polymers 0.000 claims description 26
- 150000002430 hydrocarbons Chemical class 0.000 claims description 21
- 239000004215 Carbon black (E152) Substances 0.000 claims description 20
- 229930195733 hydrocarbon Natural products 0.000 claims description 20
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 14
- 238000009792 diffusion process Methods 0.000 claims description 14
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical group F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 12
- 125000003342 alkenyl group Chemical group 0.000 claims description 10
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 8
- 238000002834 transmittance Methods 0.000 claims description 8
- 125000002729 alkyl fluoride group Chemical group 0.000 claims description 4
- 125000003832 aryl fluoride group Chemical group 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 93
- 239000002585 base Substances 0.000 description 78
- 238000000034 method Methods 0.000 description 63
- 239000002904 solvent Substances 0.000 description 58
- 239000000243 solution Substances 0.000 description 45
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 42
- 239000000126 substance Substances 0.000 description 39
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 36
- 229920001400 block copolymer Polymers 0.000 description 36
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 31
- -1 polytetrafluoroethylene Polymers 0.000 description 31
- 230000015572 biosynthetic process Effects 0.000 description 30
- 125000001153 fluoro group Chemical group F* 0.000 description 28
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 27
- 239000000203 mixture Substances 0.000 description 27
- 238000003786 synthesis reaction Methods 0.000 description 26
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 description 25
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 22
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 20
- 230000008859 change Effects 0.000 description 20
- 238000006243 chemical reaction Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 20
- 238000000576 coating method Methods 0.000 description 18
- 238000001035 drying Methods 0.000 description 18
- 229910052757 nitrogen Inorganic materials 0.000 description 17
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 15
- 229910052739 hydrogen Inorganic materials 0.000 description 15
- 229920000412 polyarylene Polymers 0.000 description 15
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 14
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 14
- 239000004810 polytetrafluoroethylene Substances 0.000 description 14
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 13
- 239000007864 aqueous solution Substances 0.000 description 13
- 239000003153 chemical reaction reagent Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- 238000005342 ion exchange Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- 239000004745 nonwoven fabric Substances 0.000 description 11
- 238000010248 power generation Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 229920001643 poly(ether ketone) Polymers 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 8
- 238000011049 filling Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 8
- 238000006467 substitution reaction Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229920000557 Nafion® Polymers 0.000 description 7
- 239000004721 Polyphenylene oxide Substances 0.000 description 7
- 239000004734 Polyphenylene sulfide Substances 0.000 description 7
- 125000000732 arylene group Chemical group 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- 229920000069 polyphenylene sulfide Polymers 0.000 description 7
- 229910000027 potassium carbonate Inorganic materials 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000037303 wrinkles Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 6
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000004695 Polyether sulfone Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 229920002577 polybenzoxazole Polymers 0.000 description 6
- 229920006393 polyether sulfone Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000009987 spinning Methods 0.000 description 6
- 238000004566 IR spectroscopy Methods 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000004255 ion exchange chromatography Methods 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 239000002121 nanofiber Substances 0.000 description 5
- 229920001721 polyimide Polymers 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000001226 reprecipitation Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- BLPKXLBFSPBPHU-UHFFFAOYSA-N 4-[2-(4-hydroxyphenyl)-1,3-dioxolan-2-yl]phenol Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)OCCO1 BLPKXLBFSPBPHU-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000010511 deprotection reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- 229920009441 perflouroethylene propylene Polymers 0.000 description 4
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 4
- 229920002492 poly(sulfone) Polymers 0.000 description 4
- 229920000570 polyether Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 150000003457 sulfones Chemical class 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 230000008961 swelling Effects 0.000 description 4
- 238000004448 titration Methods 0.000 description 4
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 4
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 description 3
- FCBJLBCGHCTPAQ-UHFFFAOYSA-N 1-fluorobutane Chemical group CCCCF FCBJLBCGHCTPAQ-UHFFFAOYSA-N 0.000 description 3
- OFERIJCSHDJMSA-UHFFFAOYSA-N 1-fluorohexane Chemical group CCCCCCF OFERIJCSHDJMSA-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 229920000265 Polyparaphenylene Polymers 0.000 description 3
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000000113 differential scanning calorimetry Methods 0.000 description 3
- 125000006001 difluoroethyl group Chemical group 0.000 description 3
- TXOMILLKBNFCOJ-UHFFFAOYSA-L disodium;2-fluoro-5-(4-fluoro-3-sulfonatobenzoyl)benzenesulfonate Chemical compound [Na+].[Na+].C1=C(F)C(S(=O)(=O)[O-])=CC(C(=O)C=2C=C(C(F)=CC=2)S([O-])(=O)=O)=C1 TXOMILLKBNFCOJ-UHFFFAOYSA-L 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229940116333 ethyl lactate Drugs 0.000 description 3
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical group CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 description 3
- 229920002313 fluoropolymer Polymers 0.000 description 3
- 239000004811 fluoropolymer Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000001906 matrix-assisted laser desorption--ionisation mass spectrometry Methods 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- KPSSIOMAKSHJJG-UHFFFAOYSA-N neopentyl alcohol Chemical compound CC(C)(C)CO KPSSIOMAKSHJJG-UHFFFAOYSA-N 0.000 description 3
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920000056 polyoxyethylene ether Polymers 0.000 description 3
- 229940051841 polyoxyethylene ether Drugs 0.000 description 3
- 229920006380 polyphenylene oxide Polymers 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000045 pyrolysis gas chromatography Methods 0.000 description 3
- 229920005604 random copolymer Polymers 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 3
- 125000000542 sulfonic acid group Chemical group 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 2
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 2
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 2
- LHLRHWJTTUCDQA-UHFFFAOYSA-N 1-fluorodecane Chemical group CCCCCCCCCCF LHLRHWJTTUCDQA-UHFFFAOYSA-N 0.000 description 2
- PCITZLWUBCVFRB-UHFFFAOYSA-N 1-fluorohept-1-ene Chemical group CCCCCC=CF PCITZLWUBCVFRB-UHFFFAOYSA-N 0.000 description 2
- BITLXSQYFZTQGC-UHFFFAOYSA-N 1-fluoroheptane Chemical group CCCCCCCF BITLXSQYFZTQGC-UHFFFAOYSA-N 0.000 description 2
- RZBKDLVWLNAKAJ-UHFFFAOYSA-N 1-fluorohex-1-ene Chemical group CCCCC=CF RZBKDLVWLNAKAJ-UHFFFAOYSA-N 0.000 description 2
- ITPAUTYYXIENLO-UHFFFAOYSA-N 1-fluorononane Chemical compound CCCCCCCCCF ITPAUTYYXIENLO-UHFFFAOYSA-N 0.000 description 2
- DHIVLKMGKIZOHF-UHFFFAOYSA-N 1-fluorooctane Chemical group CCCCCCCCF DHIVLKMGKIZOHF-UHFFFAOYSA-N 0.000 description 2
- OEPRBXUJOQLYID-UHFFFAOYSA-N 1-fluoropentane Chemical group CCCCCF OEPRBXUJOQLYID-UHFFFAOYSA-N 0.000 description 2
- JRHNUZCXXOTJCA-UHFFFAOYSA-N 1-fluoropropane Chemical group CCCF JRHNUZCXXOTJCA-UHFFFAOYSA-N 0.000 description 2
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 2
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- YOYAIZYFCNQIRF-UHFFFAOYSA-N 2,6-dichlorobenzonitrile Chemical compound ClC1=CC=CC(Cl)=C1C#N YOYAIZYFCNQIRF-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- HSTOKWSFWGCZMH-UHFFFAOYSA-N 3,3'-diaminobenzidine Chemical compound C1=C(N)C(N)=CC=C1C1=CC=C(N)C(N)=C1 HSTOKWSFWGCZMH-UHFFFAOYSA-N 0.000 description 2
- RXNYJUSEXLAVNQ-UHFFFAOYSA-N 4,4'-Dihydroxybenzophenone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1 RXNYJUSEXLAVNQ-UHFFFAOYSA-N 0.000 description 2
- LSQARZALBDFYQZ-UHFFFAOYSA-N 4,4'-difluorobenzophenone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 LSQARZALBDFYQZ-UHFFFAOYSA-N 0.000 description 2
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229920001780 ECTFE Polymers 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 150000005215 alkyl ethers Chemical group 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- JHRWWRDRBPCWTF-OLQVQODUSA-N captafol Chemical group C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)C(Cl)Cl)C(=O)[C@H]21 JHRWWRDRBPCWTF-OLQVQODUSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 229940117389 dichlorobenzene Drugs 0.000 description 2
- 238000001523 electrospinning Methods 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 150000008282 halocarbons Chemical class 0.000 description 2
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 125000004957 naphthylene group Chemical group 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 2
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 2
- 125000005187 nonenyl group Chemical group C(=CCCCCCCC)* 0.000 description 2
- 125000004365 octenyl group Chemical group C(=CCCCCCC)* 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 2
- YFSUTJLHUFNCNZ-UHFFFAOYSA-N perfluorooctane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-N 0.000 description 2
- 229920005548 perfluoropolymer Polymers 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000002522 swelling effect Effects 0.000 description 2
- 125000006337 tetrafluoro ethyl group Chemical group 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 2
- NMWIEPTXGTYJHD-UHFFFAOYSA-N (2,5-dichlorophenyl)-(4-imidazol-1-ylphenyl)methanone Chemical compound ClC1=CC=C(Cl)C(C(=O)C=2C=CC(=CC=2)N2C=NC=C2)=C1 NMWIEPTXGTYJHD-UHFFFAOYSA-N 0.000 description 1
- FAVKIHMGRWRACA-UHFFFAOYSA-N (2,5-dichlorophenyl)-phenylmethanone Chemical compound ClC1=CC=C(Cl)C(C(=O)C=2C=CC=CC=2)=C1 FAVKIHMGRWRACA-UHFFFAOYSA-N 0.000 description 1
- 125000006002 1,1-difluoroethyl group Chemical group 0.000 description 1
- ONUFSRWQCKNVSL-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-(2,3,4,5,6-pentafluorophenyl)benzene Chemical group FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F ONUFSRWQCKNVSL-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 125000002030 1,2-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([*:2])C([H])=C1[H] 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- 125000001989 1,3-phenylene group Chemical group [H]C1=C([H])C([*:1])=C([H])C([*:2])=C1[H] 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- UALKQROXOHJHFG-UHFFFAOYSA-N 1-ethoxy-3-methylbenzene Chemical compound CCOC1=CC=CC(C)=C1 UALKQROXOHJHFG-UHFFFAOYSA-N 0.000 description 1
- RXIBYUVWJMXQDK-UHFFFAOYSA-N 1-fluoropent-1-ene Chemical group CCCC=CF RXIBYUVWJMXQDK-UHFFFAOYSA-N 0.000 description 1
- VJGCZWVJDRIHNC-UHFFFAOYSA-N 1-fluoroprop-1-ene Chemical group CC=CF VJGCZWVJDRIHNC-UHFFFAOYSA-N 0.000 description 1
- 125000004778 2,2-difluoroethyl group Chemical group [H]C([H])(*)C([H])(F)F 0.000 description 1
- LFXZSGVZSSMCMB-UHFFFAOYSA-N 2,5-dichlorobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC(Cl)=CC=C1Cl LFXZSGVZSSMCMB-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- SWBHLKUOBVEPPT-UHFFFAOYSA-N 3-(2,5-dichlorobenzoyl)benzenesulfonyl chloride Chemical compound ClC1=CC=C(Cl)C(C(=O)C=2C=C(C=CC=2)S(Cl)(=O)=O)=C1 SWBHLKUOBVEPPT-UHFFFAOYSA-N 0.000 description 1
- LKJWDWUXGCKFPN-UHFFFAOYSA-N 4-(1,1,1,3,3,3-hexafluoropropan-2-yl)phenol Chemical compound OC1=CC=C(C(C(F)(F)F)C(F)(F)F)C=C1 LKJWDWUXGCKFPN-UHFFFAOYSA-N 0.000 description 1
- VGVHNLRUAMRIEW-UHFFFAOYSA-N 4-methylcyclohexan-1-one Chemical compound CC1CCC(=O)CC1 VGVHNLRUAMRIEW-UHFFFAOYSA-N 0.000 description 1
- LPEKGGXMPWTOCB-UHFFFAOYSA-N 8beta-(2,3-epoxy-2-methylbutyryloxy)-14-acetoxytithifolin Natural products COC(=O)C(C)O LPEKGGXMPWTOCB-UHFFFAOYSA-N 0.000 description 1
- 229920003934 Aciplex® Polymers 0.000 description 1
- 241000239290 Araneae Species 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical group N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 1
- MRABAEUHTLLEML-UHFFFAOYSA-N Butyl lactate Chemical class CCCCOC(=O)C(C)O MRABAEUHTLLEML-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920003935 Flemion® Polymers 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000018242 Obba <basidiomycete fungus> Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 229940043232 butyl acetate Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000003262 carboxylic acid ester group Chemical group [H]C([H])([*:2])OC(=O)C([H])([H])[*:1] 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000003493 decenyl group Chemical group [H]C([*])=C([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 description 1
- 238000000578 dry spinning Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical group FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- CATSNJVOTSVZJV-UHFFFAOYSA-N heptan-2-one Chemical compound CCCCCC(C)=O CATSNJVOTSVZJV-UHFFFAOYSA-N 0.000 description 1
- 125000005549 heteroarylene group Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- IPLONMMJNGTUAI-UHFFFAOYSA-M lithium;bromide;hydrate Chemical compound [Li+].O.[Br-] IPLONMMJNGTUAI-UHFFFAOYSA-M 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 229940057867 methyl lactate Drugs 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000007040 multi-step synthesis reaction Methods 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- URXNVXOMQQCBHS-UHFFFAOYSA-N naphthalene;sodium Chemical compound [Na].C1=CC=CC2=CC=CC=C21 URXNVXOMQQCBHS-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- ZBRJXVVKPBZPAN-UHFFFAOYSA-L nickel(2+);triphenylphosphane;dichloride Chemical compound [Cl-].[Cl-].[Ni+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 ZBRJXVVKPBZPAN-UHFFFAOYSA-L 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003004 phosphinoxides Chemical class 0.000 description 1
- 150000008301 phosphite esters Chemical group 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N phosphonic acid group Chemical group P(O)(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000000371 solid-state nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003573 thiols Chemical group 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/128—Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1067—Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/881—Electrolytic membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1051—Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/106—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1058—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
- H01M8/1062—Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a composite polymer electrolyte membrane, a composite polymer electrolyte membrane having a catalyst layer sandwiching both sides of the composite polymer electrolyte membrane, a membrane electrode composite containing the composite polymer electrolyte membrane, and the composite height.
- the present invention relates to a polymer electrolyte fuel cell containing a molecular electrolyte membrane.
- a fuel cell is a kind of power generation device that extracts electric energy by electrochemically oxidizing fuels such as hydrogen and methanol, and has been attracting attention as a clean energy supply source in recent years.
- polymer electrolyte fuel cells have a low standard operating temperature of around 100 ° C and a high energy density, so they are relatively small-scale distributed power generation facilities and power generation devices for mobile objects such as automobiles and ships. It is expected to have a wide range of applications. It is also attracting attention as a power source for small mobile devices and mobile devices, and is expected to be installed in mobile phones and personal computers in place of secondary batteries such as nickel-metal hydride batteries and lithium-ion batteries.
- a fuel cell is usually composed of a cell in which a membrane electrode composite (Membrane Electrode Assembly; hereinafter, MEA) is sandwiched by a separator.
- MEA membrane electrode composite
- catalyst layers are arranged on both sides of an electrolyte membrane, and gas diffusion layers are further arranged on both sides thereof.
- a pair of electrode layers are formed by a catalyst layer and a gas diffusion layer arranged on both sides of an electrolyte membrane, one of which is an anode electrode and the other is a cathode electrode. Electric power is generated by an electrochemical reaction when a fuel gas containing hydrogen comes into contact with the anode electrode and air comes into contact with the cathode electrode.
- the electrolyte membrane is mainly composed of a polymer electrolyte material. The polymer electrolyte material is also used as a binder for the catalyst layer.
- Nafion registered trademark
- “Nafion”® exhibits high proton conductivity with low humidification through proton conduction channels due to the cluster structure.
- “Nafion” (registered trademark) is very expensive because it is manufactured through multi-step synthesis, and in addition, there is a problem that the fuel crossover is large due to the above-mentioned cluster structure. Further, under the fuel cell operating conditions, the dry-wet cycle is repeated, and in particular, the electrolyte membrane repeats swelling and contraction.
- a composite electrolyte membrane in which a polymer electrolyte is composited with a porous substrate such as a nanofiber or a microporous membrane has been proposed.
- Patent Document 1 describes a membrane that suppresses swelling by combining a hydrocarbon-based polymer electrolyte with a polybenzimidazole (hereinafter, PBI) nanofiber (hereinafter, NF) non-woven fabric.
- Patent Document 2 describes a membrane in which a fluorinated electrolyte is compounded with a soluble PBI NF non-woven fabric to suppress swelling.
- Patent Document 3 describes a membrane in which sulfonated polyimide is composited with a PBI NF non-woven fabric impregnated with an acid to improve proton conductivity and mechanical properties.
- Patent Document 4 describes a membrane in which sulfonated polyarylene and stretched porous polytetrafluoroethylene (ePTFE) are compounded to improve mechanical properties.
- ePTFE stretched porous polytetrafluoroethylene
- Patent Document 1 it cannot always be said that the ratio of the thickness of the NF non-woven fabric of PBI to the film thickness of the composite polymer electrolyte is small, the mechanical properties in the water-containing state are not sufficient, and the dry-wet cycle durability is excellent.
- Patent Document 2 a solvent-soluble PBI NF non-woven fabric is composited without drying after spinning, and the PBI NF non-woven fabric swells, deforms, and softens due to the solvent in the film forming process, so that the mechanical properties in a water-containing state are poor. There was a problem that it became sufficient and the durability of the dry / wet cycle was insufficient.
- Patent Document 3 there is a problem that water absorption is increased by infiltrating an acid into a nanofiber non-woven fabric, mechanical properties in a water-containing state are insufficient, and dry-wet cycle durability is insufficient.
- Patent Document 4 a film is formed by permeating ePTFE, which is a hydrophobic lipophobi compound, with an N-methylpyrrolidone (NMP) solution of polyarylene, which does not contain a fluorine atom and has an extremely low affinity for ePTFE. Therefore, since the film actually has a large amount of voids, there is a problem that the mechanical properties are insufficient and the dry-wet cycle durability is insufficient, especially in a water-containing state.
- NMP N-methylpyrrolidone
- the present invention is an electrolyte in which a polymer electrolyte and a porous substrate are composited, have good mechanical properties in both a dry state and a water-containing state, and can improve the dry-wet cycle durability of a fuel cell. It is intended to provide a membrane.
- the composite polymer electrolyte membrane of the present invention has the following constitution. That is, A composite polymer electrolyte membrane containing a polymer electrolyte and a porous base material, having a dry tensile modulus of elasticity per width of 100 N / cm or more and a hydraulic modulus of water content per width of 35 N / cm or more.
- the electrolyte membrane with a catalyst layer of the present invention has the following constitution. That is, It is a composite polymer electrolyte membrane with a catalyst layer in which a catalyst layer sandwiches both sides of the composite polymer electrolyte membrane.
- the membrane electrode composite of the present invention has the following constitution. That is, A membrane electrode composite containing the above-mentioned composite polymer electrolyte membrane.
- the polymer electrolyte fuel cell of the present invention has the following configuration. That is, A polymer electrolyte fuel cell containing the composite polymer electrolyte membrane.
- the composite polymer electrolyte membrane of the present invention preferably has a water-containing tensile elastic modulus of 400 MPa or more per cross-sectional area.
- the composite polymer electrolyte membrane of the present invention preferably has a water-containing tensile modulus / dry tensile modulus of 0.3 or more.
- the composite polymer electrolyte membrane of the present invention preferably has a water-containing tensile elongation at break of 60% or more.
- the composite polymer electrolyte membrane of the present invention preferably has a water-containing tensile breaking strength of 5 N / cm or more.
- the porous base material is a fluorine-based porous group.
- the composite polymer electrolyte membrane of the present invention preferably has an oxygen atom content of 10% by mass or less of the porous substrate.
- the composite polymer electrolyte membrane of the present invention is preferably a hydrocarbon-based polymer in which the polymer electrolyte has an ionic group.
- the composite polymer electrolyte membrane of the present invention preferably further contains a nonionic fluorine-based surfactant.
- the nonionic fluorine-based surfactant contains a fluorine-containing group composed of an alkyl fluoride group, an alkenyl fluoride group, or an aryl fluoride group. It is preferably a compound having a nonionic parent group.
- the porous base material is an aromatic hydrocarbon-based porous base material.
- the porous base material is a polyazole-based porous base material.
- the porous base material is made of polybenzimidazole.
- the composite polymer electrolyte membrane of the present invention preferably has a haze value of 20% or more and 45% or less when light is transmitted in the thickness direction.
- the composite polymer electrolyte membrane of the present invention preferably has a diffusion transmittance of 20% or more and 40% or less when light is transmitted in the thickness direction.
- the electrolyte membrane of the present invention has good mechanical properties in both the dry state and the water-containing state, and can improve the dry-wet cycle durability of the fuel cell.
- the electrolyte membrane of the present invention is an electrolyte membrane having a composite layer formed by combining a polymer electrolyte and a porous base material, and has a dry tensile elastic modulus per width of 100 N / cm or more and a hydrous tension per width. It is an electrolyte membrane having a mechanical property with an elastic modulus of 35 N / cm or more.
- a fuel cell or the like usually two separators are compressed by using a screw or the like to bring each component into close contact with each other to reduce resistance and improve power generation performance.
- the dry tensile elastic modulus per width is 100 N / If it is less than cm, the electrolyte film is easily deformed and perforated by an external force received from the catalyst layer, the gas diffusion layer, or the like, resulting in insufficient dry-wet cycle durability. Further, when the water-containing tensile elastic modulus per width is less than 35 N / cm, the softening of the electrolyte membrane in the water-containing state cannot be suppressed, and the durability of the dry-wet cycle as a fuel cell becomes insufficient.
- the porous base material preferably contains a hydrophobic compound as a main component, and more preferably a fluorine-based polymer compound having excellent water resistance and chemical resistance.
- a porous base material made of an aromatic hydrocarbon-based polymer compound having hydrophobicity, excellent elastic modulus and breaking strength can also be preferably used.
- a porous base material containing a hydrophobic compound as a main component, it becomes easy to suppress softening of the electrolyte membrane in a water-containing state and improve the water-containing tensile elastic modulus.
- a polymer electrolyte membrane having such excellent mechanical properties By using a polymer electrolyte membrane having such excellent mechanical properties, the durability of the dry-wet cycle as a fuel cell can be improved.
- the dry tensile elastic modulus per width and the water-containing tensile elastic modulus per width are calculated by using the methods described in (15) and (16) in the section of Examples, respectively.
- the water-containing tensile elastic modulus per width of the electrolyte membrane is preferably 40 N / cm or more, more preferably 45 N / cm or more, and further preferably 48 N / cm or more.
- the softening of the electrolyte membrane in the water-containing state can be suppressed, and the dry-wet cycle durability as a fuel cell can be further improved.
- the water-containing tensile elastic modulus per cross-sectional area of the electrolyte membrane is preferably 400 MPa or more, more preferably 450 MPa or more, and further preferably 500 MPa or more.
- the softening of the electrolyte membrane in the water-containing state can be suppressed, the dry-wet cycle durability as a fuel cell can be further improved, and high mechanical properties can be achieved.
- the water content tensile elastic modulus per cross-sectional area shall be calculated by using the method described in (16) in the section of Examples.
- the hydrated tensile modulus / dry tensile modulus that is, the value obtained by dividing the hydrated tensile modulus per width by the dry tensile modulus per width is preferably 0.3 or more, preferably 0.35 or more. Is more preferable. If the water-containing tensile elastic modulus / dry tensile elastic modulus is 0.3 or more, the difference in mechanical properties between the dry state and the water-containing state becomes small, so that the formation of wrinkles and slack during the dry-wet cycle is suppressed and the dryness and wetness of the fuel cell. Cycle durability can be improved.
- the water-containing tensile elongation at break is preferably 60% or more, more preferably 100% or more, and further preferably 140% or more of the electrolyte membrane. If the water-containing tensile elongation at break is 60% or more, the membrane is less likely to break even in a water-containing state where the electrolyte membrane softens, even if it is subjected to stress concentration due to wrinkles or slack due to the dry-wet cycle, and as a fuel cell. Wet and dry cycle durability can be improved.
- the water-containing tensile elongation at break shall be calculated by using the method described in (16) in the section of Examples.
- the water-containing tensile breaking strength of the electrolyte membrane is preferably 5 N / cm or more, more preferably 5.5 N / cm or more, and further preferably 6 N / cm or more. If the water-containing tensile breaking strength is 5 N / cm or more, the membrane is less likely to break even in a water-containing state where the electrolyte membrane softens, even if it is subjected to stress concentration due to wrinkles or slack due to the dry-wet cycle, and as a fuel cell. Wet and dry cycle durability can be improved.
- the water-containing tensile elongation at break shall be calculated by using the method described in (16) in the section of Examples.
- the filling rate of the polymer electrolyte in the composite layer is preferably 50% or more, and more preferably 60% or more.
- the filling rate of the composite layer is 50% or more, the power generation performance can be improved by forming a continuous proton conduction path in the entire composite polymer electrolyte membrane.
- the filling rate of the composite layer in the present invention is a value indicating the ratio of the polymer electrolyte to the total volume of the composite layer and can be calculated from the ion exchange capacity (IEC). Specifically, it shall be carried out by the method described in (4) in the section of Examples.
- the electrolyte membrane may have a polymer electrolyte layer that is not composited with a reinforcing material such as a porous base material on both sides or one side of the composite layer.
- a polymer electrolyte layer that is not composited with a reinforcing material is formed in contact with both sides or one side of the composite layer, the polymer electrolyte constituting the layer is the same polymer as the polymer electrolyte packed in the composite layer. It is preferable to have.
- the electrolyte membrane of the present invention can reduce the dimensional change rate in the plane direction. Due to the decrease in the dimensional change rate in the plane direction, when used as an electrolyte membrane of a fuel cell, stress due to swelling and shrinkage generated at the edge of the electrolyte membrane during the dry-wet cycle can be reduced, making it easier to improve durability. it can.
- the dimensional change rate ⁇ xy in the plane direction of the electrolyte membrane is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less.
- the anisotropy of MD and TD is small in the dimensional change rate in the plane direction of the electrolyte membrane.
- the ratio lambda MD / lambda TD dimension change rate lambda MD in the MD for dimensional change rate lambda TD in the TD preferably satisfies the 0.5 ⁇ ⁇ MD / ⁇ TD ⁇ 2.0.
- MD is an abbreviation for Machine Direction, and means a direction in which a porous base material, a coater, or a coating base material is moved in the electrolyte membrane manufacturing process described later. Whether to move the porous base material, the coater, or the coating base material is appropriately determined according to the coating process, and is not particularly limited.
- the dimensional change rate is an index showing the change in the size of the electrolyte membrane in the dry state and the size of the electrolyte membrane in the wet state, and specific measurement is performed by the method described in (6) in the section of Examples. Do.
- the thickness of the composite layer in the electrolyte membrane is not particularly limited, but is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more. Further, 50 ⁇ m or less is preferable, and 40 ⁇ m or less is more preferable. When the composite layer is 0.5 ⁇ m or more and 50 ⁇ m or less, a composite polymer electrolyte membrane having high proton conductivity, suppressing electric short circuit and fuel permeation, and having excellent dry-wet cycle durability can be obtained.
- the electrolyte membrane has a haze of 20% or more and 45% or less, more preferably 30% or more and 45% or less, and 35% or more and 45% or less when light is transmitted in the thickness direction. Is more preferable.
- haze may occur due to light scattering at the interface between the polymer electrolyte and the substance having a different refractive index. is there.
- the polymer electrolyte responsible for conducting protons and the porous substrate responsible for improving mechanical properties such as elastic modulus, breaking elongation, and breaking strength are composited in a good balance. By doing so, it is possible to obtain an electrolyte membrane having excellent proton conductivity and mechanical properties, and it is possible to achieve both excellent output as a fuel cell and durability of a wet / dry cycle.
- the haze shall be calculated using the method described in (17) in the section of Examples.
- the electrolyte membrane preferably has a diffusion transmittance of 20% or more and 40% or less, and more preferably 30% or more and 40% or less when light is transmitted in the thickness direction.
- a diffusion transmittance 20% or more and 40% or less, an electrolyte membrane having excellent proton conductivity and mechanical properties can be obtained, and both excellent output as a fuel cell and dry / wet cycle durability can be achieved.
- the diffusion transmittance shall be calculated by using the method described in (17) in the section of Examples.
- the polymer electrolyte used in the present invention is a polymer having proton conductivity due to having an ionic group, and may be either a fluorine-based polymer electrolyte or a hydrocarbon-based polymer.
- the fluorine-based polymer electrolyte means that most or all of hydrogen in the alkyl group and / or the alkylene group in the polymer is substituted with a fluorine atom.
- Typical examples of fluoropolymer electrolytes having ionic groups are "Nafion” (registered trademark) (manufactured by Chemers Co., Ltd.), “Aquibion” (registered trademark) (manufactured by Solvay), and “Flemion” (registered trademark). ) (AGC Co., Ltd.) and "Aciplex” (registered trademark) (Asahi Kasei Co., Ltd.).
- the polymer electrolyte used in the present invention is preferably a hydrocarbon-based polymer from the viewpoints of mechanical strength, dry-wet cycle durability, chemical stability, and the like. That is, in the present invention, it is preferable that the polymer electrolyte is a hydrocarbon-based polymer having an ionic group.
- the embodiment in which the polymer electrolyte is a hydrocarbon-based polymer is particularly preferable in that it has excellent mechanical properties in both the dry state and the water-containing state.
- the hydrocarbon polymer an aromatic hydrocarbon polymer having an aromatic ring in the main chain is preferable.
- the aromatic ring may include not only a hydrocarbon-based aromatic ring composed of only carbon atoms and hydrogen atoms such as a benzene ring and a naphthalene skeleton, but also a heterocycle such as a pyridine ring, an imidazole ring, and a thiol ring. Further, a part of the aliphatic unit may form a polymer together with the aromatic ring unit.
- aromatic hydrocarbon-based polymers include polysulfone, polyether sulfone, polyphenylene oxide, polyarylene ether-based polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene-based polymer, polyarylene ketone, and polyether ketone.
- the polysulfone, polyether sulfone, polyether ketone, etc. referred to here are a general term for structures having a sulfone bond, an ether bond, and a ketone bond in the molecular chain, and the polyether ketone ketone, the polyether ether ketone, etc. Includes polyether ether ketone ketone, polyether ether ketone ketone, polyether ketone sulfone and the like.
- the hydrocarbon skeleton may have a plurality of these structures. Among these, as the aromatic hydrocarbon-based polymer, a polymer having a polyetherketone skeleton, that is, a polyetherketone-based polymer is most preferable.
- phase-separated structure can be a molded product composed of a blend of two or more incompatible polymers such as a hydrophilic polymer having an ionic group and a hydrophobic polymer having no ionic group, or an ionic group. It can be expressed in a block copolymer composed of two or more incompatible segments such as a segment containing ( SE1 ) and a segment not containing an ionic group ( SE2).
- both the hydrophilic domain and the hydrophobic domain form a continuous phase, so that a continuous proton conduction channel is formed to obtain an electrolyte membrane having excellent proton conductivity. Easy to get rid of.
- the domain means a mass formed by agglomeration of similar substances or segments in one membrane.
- a segment (S E1) containing an ionic group the block copolymer preferably has segments (S E2) one or more, respectively containing no ionic group.
- the segment is a partial structure in a copolymer polymer chain composed of repeating units exhibiting specific properties, and represents a segment having a molecular weight of 2,000 or more.
- a segment containing an ionic group ( SE1 ) or a polymer may be referred to as an “ionic block”, and a segment containing no ionic group ( SE2 ) or a polymer may be referred to as a “nonionic block”.
- ionic block a segment containing an ionic group
- SE2 segment containing no ionic group
- nonionic block a segment containing no ionic group
- the description of "not containing an ionic group” in the present specification does not exclude an embodiment in which the segment or polymer contains a small amount of an ionic group within a range that does not inhibit the formation of a phase-separated structure.
- the molar composition ratio ( SE1 / SE2 ) of the ionic block to the nonionic block is preferably 0.20 or more, more preferably 0.33 or more. It is more preferably 0.50 or more.
- the molar composition ratio ( SE1 / SE2 ) is preferably 5.00 or less, more preferably 3.00 or less, and even more preferably 2.50 or less.
- the composite polymer has high proton conductivity under low humidification conditions, and also has excellent heat resistance and wet / dry cycle durability. An electrolyte membrane can be obtained.
- the molar composition ratio ( SE1 / SE2 ) represents the ratio of the number of moles of repeating units existing in the ionic block to the number of moles of repeating units existing in the nonionic block.
- the “number of moles of repeating unit” is a value obtained by dividing the number average molecular weights of the ionic block and the nonionic block by the molecular weights of the corresponding constituent units.
- the ionic group of the polymer electrolyte may be an ionic group having a proton exchange ability.
- a sulfonic acid group, a sulfonimide group, a sulfate group, a phosphonic acid group, a phosphoric acid group and a carboxylic acid group are preferably used.
- Two or more kinds of ionic groups can be contained in the polymer.
- the polymer preferably has at least one selected from a sulfonic acid group, a sulfonimide group, and a sulfate group from the viewpoint of high proton conductivity, and most preferably has a sulfonic acid group from the viewpoint of raw material cost.
- the ion exchange capacity (IEC) of the polymer electrolyte is preferably 0.1 meq / g or more and 5.0 meq / g or less from the viewpoint of the balance between proton conductivity and water resistance.
- the IEC is more preferably 1.4 meq / g or more, further preferably 1.7 meq / g or more. Further, the IEC is more preferably 3.5 meq / g or less, and further preferably 3.0 meq / g or less.
- IEC is the molar amount of ionic groups introduced per unit dry weight of the polymer electrolyte, and the larger this value is, the larger the amount of ionic groups introduced.
- IEC is defined as a value obtained by the neutralization titration method. The calculation of IEC by neutralization titration is performed by the method described in (2) in the section of Examples.
- an aromatic hydrocarbon-based block copolymer as the polymer electrolyte
- a polyetherketone-based block copolymer is more preferable.
- a polyetherketone system containing a segment containing a structural unit containing an ionic group represented by the following general formula (S1) and a segment containing a structural unit not containing an ionic group represented by the following general formula (S2).
- Block copolymers can be particularly preferably used.
- Ar 1 to Ar 4 represent an arbitrary divalent arylene group, Ar 1 and / or Ar 2 contains an ionic group, and Ar 3 and Ar 4 contain an ionic group. It may or may not be contained. Ar 1 to Ar 4 may be optionally substituted, and two or more types of arylene groups may be used independently of each other. * Represents the binding site with the general formula (S1) or other structural units.
- Ar 5 to Ar 8 represent an arbitrary divalent arylene group, which may be optionally substituted, but does not contain an ionic group. Two or more types of arylene groups may be used for Ar 5 to Ar 8 independently of each other. * Represents the binding site with the general formula (S2) or other structural units.
- the preferred divalent arylene group as Ar 1 to Ar 8 is a hydrocarbon-based arylene group such as a phenylene group, a naphthylene group, a biphenylene group or a fluoreneyl group, or a heteroarylene such as pyridinediyl, quinoxalindiyl or thiophendiyl. Groups and the like can be mentioned, but are not limited to these.
- phenylene group there may be three types, an o-phenylene group, an m-phenylene group, and a p-phenylene group, depending on the location where the benzene ring has a bonding site with another constituent unit. Unless otherwise specified, they are used as a general term.
- Ar 1 to Ar 8 are preferably a phenylene group containing a phenylene group and an ionic group, and most preferably a p-phenylene group containing a p-phenylene group and an ionic group. Further, Ar 5 to Ar 8 may be substituted with a group other than the ionic group, but the non-substituted Ar 5 is more preferable in terms of proton conductivity, chemical stability and dry-wet cycle durability.
- the polymer electrolyte is an aromatic hydrocarbon-based polymer having crystallinity.
- “having crystallinity” means having a crystallizable property that can be crystallized when the temperature is raised, or already crystallizing.
- the presence or absence of crystallinity is confirmed by differential scanning calorimetry (DSC) or wide-angle X-ray diffraction.
- the amount of heat of crystallization measured by differential scanning calorimetry after film formation is 0.1 J / g or more, or the degree of crystallinity measured by wide-angle X-ray diffraction is 0.5% or more. Is preferable. That is, if a crystallinity peak is not observed in the differential scanning calorimetry method, it is possible that the polymer electrolyte has already crystallized or the polymer electrolyte is amorphous, but if it has already crystallized, the wide angle X The crystallinity becomes 0.5% or more by linear diffraction.
- the crystalline aromatic hydrocarbon polymer may have poor processability of the electrolyte membrane.
- a protecting group may be introduced into the aromatic hydrocarbon-based polymer to temporarily suppress the crystallinity.
- a crystalline aromatic hydrocarbon-based polymer can be used as the polymer electrolyte in the present invention by forming a film with a protecting group introduced and then deprotecting the film.
- the porous substrate used in the present invention is classified into a hydrocarbon-based porous substrate containing a hydrocarbon-based polymer compound as a main component and a fluorine-based porous substrate containing a fluorine-based polymer compound as a main component.
- the hydrocarbon-based polymer compound include polyethylene (PE), polypropylene (PP), polystyrene (PS), polyacrylate, polymethacrylate, polyvinyl chloride (PVC), polyvinylene chloride (PVdC), polyester, and polycarbonate (PC).
- PSU Polysulfone
- PES Polyethers
- Ethylene-tetrafluoroethylene copolymer Ethylene-tetrafluoroethylene copolymer
- PVdF polyfluorene sulfide
- PCTFE polychlorotrifluoroethylene
- PFA perfluoroalkoxyfluororesin
- ECTFE ethylene-chlorotrifluoroethylene copolymer
- the fluorine-based porous substrate generally contains a fluorine-based polymer compound having extremely high hydrophobicity as a main component, it is combined with a polymer electrolyte to impart water resistance to the electrolyte membrane and is in a water-containing state. It has a high effect of improving mechanical properties and suppressing dimensional changes, and in general, fluorine atom-containing polymer compounds have low solubility in chemicals and are stable against chemical reactions, so that the electrolyte membrane has chemical resistance and chemical durability. It is preferable because it can also impart sex. From the viewpoint of chemical resistance and chemical durability, PTFE, polyhexafluoropropylene, FEP, and PFA are more preferable, and PTFE is particularly preferable because it has high mechanical strength due to molecular orientation.
- the porous base material is preferably a fluorine-based porous base material containing 50% by mass or more of fluorine atoms, and is a fluorine-based porous base material containing 60% by mass or more of fluorine atoms. It is more preferable, and a fluorine-based porous substrate containing 70% by mass or more of fluorine atoms is particularly preferable.
- the fluorine atom content in the porous base material shall be a value measured by ion chromatography of a solution in which the gas generated by burning the porous base material is absorbed, and specifically, the section of Examples described later. It can be measured by the method described in (10).
- the porous substrate preferably has an oxygen atom content of 10% by mass or less as measured by X-ray photoelectron spectroscopy (XPS), more preferably an oxygen atom content of 8% or less, and 5% or less. Is more preferable.
- XPS X-ray photoelectron spectroscopy
- the oxygen atom content of the porous substrate can be specifically measured by the method described in (14) in the section of Examples described later.
- An aromatic hydrocarbon-based porous substrate containing a hydrocarbon-based polymer compound having an aromatic ring in the main chain as a main component is also preferably a hydrophobic compound and has excellent elastic modulus and breaking strength.
- PPS, PBO, PBT, PBI and PEK are more preferable from the viewpoint of elastic modulus, breaking strength and chemical durability
- polyazole compounds PBO, PBT and PBI are particularly preferable from the viewpoint of chemical resistance and processability.
- PBI is most preferable from the viewpoint of cost and distribution volume.
- a stretched microporous membrane in which a raw material film is stretched in the film surface direction to form fine pores, or a raw material solution is prepared and formed, and then the raw material solution is prepared and formed, and then the solvent is still contained.
- examples thereof include a wet solidified microporous membrane immersed in a poor solvent of the raw material and coagulated, a non-woven fabric made of a solution-spun fiber obtained by spinning a raw material solution, and a non-woven fabric made of a molten-spun fiber obtained by melting and spinning a raw material of a porous substrate. ..
- a solution spinning method a dry spinning method in which a high pressure is applied from a mouthpiece and the raw material solution discharged in a fibrous form is dried by hot air, or a wet spinning method in which a raw material solution discharged in a fibrous form is immersed in a poor solvent for the raw material and coagulated.
- Examples include electrospinning, in which a raw material solution is discharged into a space to which a high voltage is applied and the raw material solution is pulled into a fibrous form by static electricity.
- melt spinning method examples include melt blow spinning in which a molten porous base material is discharged into a fibrous form from a mouthpiece.
- the porous substrate preferably has a structure in which thick fibrous nodes are arranged substantially in parallel in the in-plane direction.
- the porous substrate preferably contains nodes having an aspect ratio of 10 or more calculated from the length / diameter, more preferably contains nodes having an aspect ratio of 20 or more, and includes nodes having an aspect ratio of 50 or more. Is even more preferable.
- a porous substrate containing nodes having an aspect ratio of 10 or more has a continuous structure of a strong hydrophobic skeleton, so that it is not only in a dry state but also in a water-containing state in which the polymer electrolyte is usually softened by water absorption. By suppressing the softening of the entire membrane, an electrolyte membrane having excellent mechanical properties can be obtained, and the durability of the wet / dry cycle as a fuel cell can be improved.
- the average diameter of the nodes is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m, and even more preferably 0.2 ⁇ m. Further, it is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and further preferably 2 ⁇ m or less.
- the average diameter of the nodes is 0.01 ⁇ m or more and 10 ⁇ m or less, softening of the electrolyte membrane in a water-containing state can be suppressed, and an electrolyte membrane having high proton conductivity can be obtained. Therefore, a fuel cell having a high output can be obtained. Can be manufactured.
- the porous substrate preferably has fine fibril-like fibrils that connect the nodes in the in-plane direction to form a ladder-like structure. It is more preferable that the fibrils include those that are aligned substantially orthogonal to the nodes.
- the diameter ratio calculated from the average diameter of the node / the average diameter of the fibril is preferably 2 or more, more preferably 3 or more, still more preferably 5 or more.
- the diameter ratio is preferably 20 or less, more preferably 10 or less.
- the structure of the porous substrate such as the orientation of the nodes, the average diameter, the orientation of the fibrils, and the average diameter is analyzed by the method described in (18) in the section of Examples using a scanning electron microscope (SEM). be able to.
- SEM scanning electron microscope
- the thickness of the porous substrate used in the present invention is not particularly limited and should be determined depending on the use of the electrolyte membrane. However, those having a film thickness of 0.5 ⁇ m or more and 50 ⁇ m or less are practically used and 1 ⁇ m or more. Those having a film thickness of 40 ⁇ m or less are preferably used.
- the porosity of the porous substrate before compounding with the polymer electrolyte is not particularly limited, but is preferably 50 to 98%, preferably 70 to 98, from the viewpoint of achieving both proton conductivity and mechanical strength of the obtained electrolyte membrane. % Is more preferable.
- the porosity Y1 (volume%) of the porous substrate is defined as a value obtained by the following mathematical formula.
- the electrolyte membrane of the present invention preferably contains a nonionic fluorine-based surfactant (hereinafter, may be simply referred to as "surfactant").
- the affinity between the polymer electrolyte and the porous substrate is improved, which not only facilitates the production of an electrolyte membrane, but also facilitates the production of the electrolyte membrane, and also makes the polymer electrolyte and the porous in the electrolyte membrane.
- the interface bonding with the base material becomes strong, and the interface peeling between the two due to the volume change of the electrolyte membrane in the dry / wet cycle can be suppressed, so that the dry / wet cycle durability of the fuel cell can be improved.
- a hydrocarbon-based polymer electrolyte and a fluorine-based porous substrate are used, the affinity between the two can be remarkably improved, which is more preferable.
- Surfactants are a nonionic parent with a fluorine-containing group consisting of an alkyl fluoride group, an alkenyl fluoride group or an aryl fluoride group in which a hydrogen atom in an alkyl group, an alkenyl group or an aryl group is replaced with a fluorine atom. It is preferably a compound having a medium group (hydrophilic group or aliphatic group).
- the fluorine-containing group is preferably a perfluoroalkyl group, a perfluoroalkenyl group or a perfluoroaryl group in which all hydrogen atoms in the alkyl group, alkenyl group or aryl group are replaced with fluorine atoms.
- an alkenyl fluoride group or an aryl fluoride group is more preferable because it has an excellent surface active effect, and an alkenyl fluoride group is further preferable because it has a flexible structure and exhibits a high surface active action.
- the fluorine-containing group preferably has 2 or more carbon atoms, more preferably 4 or more carbon atoms, and particularly preferably 6 or more carbon atoms. Further, the number of carbon atoms is preferably 20 or less, more preferably 15 or less, and particularly preferably 10 or less. When the number of carbon atoms is in the above preferable range, the volatile and water-soluble properties are appropriate and remain in the electrolyte membrane to have excellent dry-wet cycle durability, while it is difficult to phase-separate from the polymer electrolyte and the dry-wet cycle durability is excellent.
- the alkyl fluoride group includes an ethyl fluoride group, a propyl fluoride group, a butyl fluoride group, a pentyl fluoride group, a hexyl fluoride group, a heptyl fluoride group, an octyl fluoride group, and a nonyl fluoride.
- Groups and decyl fluoride groups can be mentioned, but are not limited thereto.
- alkenyl fluoride group examples include ethenyl fluoride group, propenyl fluoride group, butenyl fluoride group, pentenyl fluoride group, hexenyl fluoride group, heptenyl fluoride group, octenyl fluoride group, nonenyl fluoride group, and fluorine group. Examples include, but are not limited to, the decenylation group.
- hexyl fluoride group, heptyl fluoride group, octyl fluoride group, nonyl fluoride group, decyl fluoride group, hexenyl fluoride group because they are low in volatile and water-soluble and easily remain in the electrolyte membrane.
- a heptenyl fluoride group, an octenyl fluoride group, a nonenyl fluoride group, and a decenyl fluoride group are more preferable.
- ethyl fluoride group there are five types, a monofluoroethyl group, a difluoroethyl group, a trifluoroethyl group, a tetrafluoroethyl group, and a pentafluoroethyl group, depending on the number of fluorine atoms contained in the monofunctional group.
- ethyl fluoride group is used as a general term for these in the present specification. The same applies to other functional groups such as “propyl fluoride group” and "butyl fluoride group”.
- difluoroethyl group it is a functional group having two carbon atoms and two fluorine atoms, and is referred to as a 1,1-difluoroethyl group, a 1,2-difluoroethyl group and a 2,2-difluoroethyl group.
- difluoroethyl group is used as a general term for these.
- trimeroethyl group and tetrafluoroethyl group.
- butyl group is a general term indicating a functional group composed of a skeleton having 4 carbon atoms, and is a butyl group, a 1-methylpropyl group, a 2-methylpropyl group, and the like.
- the structure of the fluorine-containing group can be linear, branched-chain, cyclic, etc., but in particular, when it has a branched-chain structure, the interaction between the fluorine compounds is weakened, and the surface tension tends to decrease. Therefore, it is preferable.
- a surfactant having a fluorine-containing group having a structure represented by the following formula (F1) is particularly preferable.
- the nonionic fluorine-based surfactant a compound having 10% by mass or more of fluorine atoms in one molecule is preferably used.
- a compound having 20% by mass or more of fluorine atoms is more preferable, and a compound having 40% by mass or more of fluorine atoms is further preferable.
- the fluorine atom content in one molecule is in the above-mentioned preferable range, the affinity with the porous substrate is excellent, and a sufficient power generation performance improving effect can be obtained.
- the polymer electrolyte and the catalyst layer do not elute from the electrolyte membrane. It is possible to prevent the affinity with and from being lowered.
- the parent medium group can be a hydrophilic group or a lipophilic group, but it is preferably a hydrophilic group.
- the hydrophilic group is not particularly limited as long as it is a nonionic group having a hydrophilic element selected from the group consisting of oxygen, nitrogen, phosphorus, sulfur and boron, but is not particularly limited, but is a polyether group, a carboxylic acid ester group, and a sulfonic acid ester. It is preferably a group containing a group, a phosphite ester group or a phosphate ester group, and by forming a hydrogen bond with an ionic group, it has excellent affinity with a polymer electrolyte and excellent chemical stability. Therefore, it is more preferable that the group contains a polyether group.
- the hydrophilic group is preferably a group having a polyalkyl ether structure represented by the following general formula (C1) or a polyacrylate structure represented by the following general formula (C2), and is particularly excellent in affinity with a polymer electrolyte. Therefore, the polyalkyl ether represented by the following general formula (C1) is more preferable.
- R is at least one group selected from an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms, and t is an acrylate structure. It is an integer of 1 or more and 1,000 or less, which means the number of repetitions.
- the plurality of alkyl ether structures or acrylate structures may be the same or different from each other.
- Examples of the lipophilic group include an alkyl group, an alkenyl group, an alkynyl group, and a phenyl group that do not contain a fluorine atom.
- the nonionic fluorine-based surfactant is preferably a compound having a vapor pressure of less than 2 kPa at 150 ° C., more preferably a compound having a vapor pressure of 1 kPa or less at 150 ° C., that is, it does not have a boiling point. Most preferred are compounds that initiate thermal decomposition without boiling.
- the surfactant is a compound having a 5% weight loss temperature of 150 ° C. or higher in the thermogravimetric differential thermal analysis. Since such a surfactant does not volatilize or decompose during film formation, it can remain in the electrolyte membrane.
- the nonionic fluorine-based surfactant is preferably a compound having a weight average molecular weight of 1,000 or more, more preferably 1,500 or more, and more preferably 2,000 or more. Is more preferable. Further, the nonionic fluorine-based surfactant is preferably a compound having a weight average molecular weight of 10,000 or less, more preferably a compound of 8,000 or less, and further preferably a compound of 5,000 or less. preferable. When the weight average molecular weight of the surfactant is in the above-mentioned preferable range, the volatileness is moderate and it becomes difficult to dissolve in a solvent such as water.
- the affinity between the polymer electrolyte and the porous substrate or the catalyst layer described later is maintained. While it is difficult to peel and break at the interface between the two and has excellent durability, it is difficult for only the surfactant to aggregate in the electrolyte membrane to form a sea-island-like phase-separated structure. It is hard to break at the interface with the material and has excellent durability.
- the molecular weight of the fluorine-containing group is preferably 200 or more, more preferably 400 or more, and further preferably 1,000 or more. Further, the molecular weight of the fluorine-containing group is preferably 5,000 or less, more preferably 3,000 or less, and further preferably 2,000 or less. When the molecular weight of the fluorine-containing group is in the above-mentioned preferable range, the flexibility and flexibility of the molecular chain in the fluorine-containing group is excellent, so that the affinity with the porous substrate and the catalyst layer is maintained, and the interface with the polymer electrolyte is maintained.
- the molecular weight of the hydrophilic group is preferably 100 or more, more preferably 200 or more, and further preferably 500 or more. Further, the molecular weight of the hydrophilic group is preferably 4,000 or less, more preferably 2,500 or less, and further preferably 1,500 or less.
- the molecular weight of the hydrophilic group is in the above-mentioned preferable range, the flexibility and freedom of the molecular chain in the hydrophilic group are excellent, so that the affinity with the polymer electrolyte is maintained and it is difficult to break at the interface with the porous substrate.
- the surfactant is preferably a compound that is insoluble in any of water, 10% sulfuric acid, and 10% aqueous sodium hydroxide solution, more preferably a compound that is insoluble in water, and is insoluble in any of these. Most preferably it is a compound.
- insoluble means that the saturated solubility at 25 ° C. is less than 0.1% by mass. If the surfactant is insoluble in the solvent and / or solution, it will be difficult to dissolve in water or acid generated when operating an electrochemical cell such as a fuel cell, and elution from the electrolyte membrane can be suppressed.
- nonionic fluorine-based surfactant used in the present invention examples include "Megafuck” (registered trademark) F-251, F-253, F-281, and F-430 manufactured by DIC Co., Ltd. F-477, F-551, F-552, F-553, F-554, F-555, F-556, F-557, F-558, F-559, F-560, F-561, F-562, F-563, F-565, F-568, F-570, F-572, F-574, F-575, F-576, R-40, R-40-LM, R-41, R-94, RS-56, RS-72-K, RS-75, RS-76-E , RS-76-NS, DS-21, F444, TF-2066, AGC Co., Ltd.
- “Surflon” (registered trademark) S-141, S-145, S-241, S -242, S-243, S-386, S-420, S-611, S-651, Neos Co., Ltd.
- "Futagent” (registered trademark) 251, 208M, 212M, 215M, 250, 209F, 222F, 245F, 208G, 218GL, 240G, 212P, 220P, 228P, FTX-218, DFX-18, 710FL, 710FM, 710FM.
- EF-PP31N22, FC-4430, FC-4432 made by 3M, PF-151N, PF-636, PF-6320, PF-656, PF-6520, PF-652-NF, PF-3320 made by OMNOVA SOLUTIONS , TG-9131 manufactured by Daikin Industries, Ltd., "Zefle” (registered trademark) GH-701, “Fluorolink” (registered trademark) A10-P manufactured by Solvay Japan Co., Ltd., and the like.
- the content of the nonionic fluorine-based surfactant in the electrolyte membrane is preferably 0.005 or more, more preferably 0.01 or more, as a mass ratio to the total amount of the polymer electrolyte contained in the electrolyte membrane. Further, 0.20 or less is preferable, and 0.10 or less is more preferable. When the ratio is in the above preferable range, the affinity between the polymer electrolyte and the porous base material or the catalyst layer is maintained, and it is difficult to peel or break at the interface between the polymer electrolyte and the porous base material or the catalyst layer when the dimensions change. While excellent in durability, the amount of the surfactant is appropriate and the proton conductivity of the electrolyte membrane is excellent.
- the content of the surfactant here is the amount of the surfactant remaining in the completed electrolyte membrane, and means the amount excluding the surfactant that has fallen off during the manufacturing process.
- Examples of the method for analyzing the nonionic fluorine-based surfactant contained in the electrolyte membrane include a method in which the surfactant is dissolved in a predetermined solvent together with the polymer electrolyte membrane.
- IR infrared spectroscopy
- NMR nuclear magnetic resonance
- MALDI-MS MALDI-MS analysis
- the pyrolysis GC / By performing MS analysis, the chemical structures of various solvents can be analyzed and the content of the solvents can be calculated. Further, it is also preferable to perform an analysis after performing a general purification treatment such as solvent extraction or reprecipitation on the solution and the dry matter to extract only the nonionic fluorine-based surfactant.
- the solvent used for the analysis of the nonionic surfactant can be appropriately selected depending on the type of the polymer electrolyte and the nonionic surfactant constituting the electrolyte membrane.
- aprotons such as N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphotriamide and the like.
- Polar solvents such as ethylene carbonate and propylene carbonate
- alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether, methanol, ethanol, propanol and butanol.
- Alcohol solvents such as, acetone, methyl ethyl ketone, methyl isobutyl ketone and other ketone solvents, ⁇ -butyrolactone, ethyl acetate, butyl acetate, ethyl lactate and other ester solvents, hexane, cyclohexane and other hydrocarbon solvents, benzene, toluene , Aromatic hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as chloroform, dichloromethane, 1,2-dichloroethane, perchloroethylene, chlorobenzene, dichlorobenzene, diethyl ether, tetrahydrofuran, 1,4-dioxane and the like.
- Aromatic hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as chloroform, dichloromethane, 1,2-dichloroethane, perchloroethylene, chloro
- An ether solvent, a nitrile solvent such as acetonitrile, a nitrated hydrocarbon solvent such as nitromethane and nitroethane, and water are preferably used.
- a mixed solvent in which two or more kinds of these solvents are mixed may be used.
- the "propanol” has a structure in which one of the hydrogen atoms contained in the propane molecule is substituted with a hydroxyl group, and there are two types of structural isomers, 1-propanol and 2-propanol.
- “propanol” is used as a general term for these. The same applies to other solvents such as “butanol” and "xylene".
- electrolyte membrane is insoluble, different analytical methods can be used.
- the chemical structure and content of the surfactant are analyzed by performing IR analysis, solid-state NMR analysis, MALDI-MS analysis, and pyrolysis GC / MS analysis on the electrolyte membrane itself containing the nonionic fluorine-based surfactant. be able to. It is also preferable to immerse the electrolyte membrane in a solvent to dissolve and extract only the nonionic fluorine-based surfactant before analysis.
- the nonionic fluorine-based surfactant used in the present invention is preferably one that does not contain metals as impurities.
- the metals include, but are not limited to, simple substances of metal elements, metal ions, nonionic metal compounds, metal oxides, and the like.
- the hydrophilic group or lipophilic group of the nonionic fluorine-based surfactant is less likely to interact with the metal, so that it has a high degree of freedom even in the polymer electrolyte membrane and can be used as a surfactant. Therefore, it is possible to suppress a decrease in durability due to peeling / breaking at the interface between the polymer electrolyte and the porous base material or the catalyst layer when the dimensions are changed.
- the catalyst layer is a layer containing catalyst particles formed in contact with both surfaces of the electrolyte membrane, and is generally a layer containing a polymer electrolyte composed of catalyst particles and a fluoropolymer electrolyte.
- a polymer electrolyte composed of catalyst particles and a fluoropolymer electrolyte.
- the fluorine-based polymer electrolyte the above-mentioned ones can be used.
- the catalyst layer contains a perfluoropolymer having an ionic group in terms of power generation performance and chemical durability.
- a perfluoropolymer having an ionic group By using a perfluoropolymer having an ionic group, the acidity of the ionic group contained in the catalyst layer becomes high, the proton conductivity is further improved, and a large number of chemically stable CF bonds are provided. Therefore, the chemical durability of the catalyst layer can be further improved.
- catalyst-supported carbon particles in which the catalyst substance is supported on the carbon particles are generally used.
- Catalytic substances include not only platinum but also platinum group elements palladium, ruthenium, iridium, rhodium, osmium, and metals such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum.
- platinum group elements palladium, ruthenium, iridium, rhodium, osmium, and metals such as iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum.
- these alloys, oxides, compound oxides and the like can be mentioned.
- the types of carbon particles are not particularly limited as long as they are fine particles, have conductivity, and do not corrode or deteriorate due to reaction with a catalyst, but are not particularly limited, but are carbon black, graphite, graphite, activated carbon, carbon fiber, and carbon. Nanotubes and fullerene particles can be used.
- the mass ratio of the content of the polymer electrolyte to the content of the catalyst particles in the catalyst layer is preferably in the range of 0.2 or more and 2.5 or less, and particularly preferably 0.5 or more and 2.0 or less.
- the catalyst layer is not easily cracked, but the gas diffusibility is not impaired, and the power generation performance is excellent.
- the thickness of the catalyst layer is preferably 0.03 ⁇ m to 2,000 ⁇ m. In order to easily obtain good power generation performance and durability, the thickness of the catalyst layer is more preferably 0.5 ⁇ m or more, and particularly preferably 1 to 30 ⁇ m.
- the electrolyte membrane can be produced by impregnating the porous base material with the polymer electrolyte solution as the first aspect and then drying to remove the solvent contained in the polymer electrolyte solution.
- a method in which the nonionic fluorine-based surfactant is mixed in advance with the polymer electrolyte solution and then impregnated into the porous substrate is also suitable.
- the details of the polymer electrolyte, the porous base material, and the nonionic fluorine-based surfactant used in the production method of the first aspect and the second aspect described later are as described above, and thus are omitted here.
- the content of the surfactant in the polymer electrolyte solution is preferably 0.005 or more, more preferably 0.01 or more, as a mass ratio to the total amount of the polymer electrolyte. Further, 0.20 or less is preferable, and 0.10 or less is more preferable. When the ratio is in the above preferable range, the affinity between the polymer electrolyte and the catalyst layer is maintained, and the effect of improving the power generation performance can be sufficiently obtained, while the amount of the surfactant is appropriate and the proton conductivity of the electrolyte membrane is excellent.
- the electrolyte membrane is obtained by impregnating a porous base material to which a nonionic fluorine-based surfactant has been previously applied with a polymer electrolyte solution, and then drying the polymer electrolyte solution. It can also be produced by removing the solvent contained in.
- a method of applying the surfactant to the porous substrate the following method can be mentioned.
- the solvent When the solvent is impregnated by the method (3), it can be dried as it is. Further, when impregnation is performed by the method (1) or (2), a method of drying the solvent of the fluorine-containing nonionic surfactant solution with the porous base material attached to the separately prepared support base material. However, it is preferable from the viewpoint that wrinkles and uneven thickness of the porous base material can be reduced and the quality is improved.
- the surfactant when the surfactant is liquid or oily, the surfactant itself may be impregnated instead of the surfactant solution, but the surfactant can easily penetrate into the porous substrate. It is preferable to use a surfactant solution dissolved in a predetermined solvent in order to adjust the viscosity or dilute the surfactant so that an excessive amount is not applied.
- knife coat As a method of casting and applying the surfactant solution, knife coat, direct roll coat, Meyer bar coat, gravure coat, reverse coat, air knife coat, spray coat, brush coat, dip coat, die coat, vacuum die coat, curtain coat, etc. Techniques such as flow coating, spin coating, screen printing, and inkjet coating can be applied.
- the surfactant is preferably added in an amount of 1% by mass or more, more preferably 5% by mass or more, with the mass of the porous base material being 100% by mass. Similarly, it is preferably added in an amount of 30% by mass or less, and more preferably 20% by mass or less.
- the amount of the surfactant applied is in the above-mentioned preferable range, the affinity between the polymer electrolyte and the porous base material is maintained and the composite is easy, while the amount of the surfactant is appropriate and the pores of the porous base material are formed. It is hard to block and has excellent proton conductivity of the composite electrolyte membrane.
- the contact angle of the solvent used for the polymer electrolyte solution on the surface of the porous substrate is preferably 120 ° or less, and more preferably 80 ° or less by adding the surfactant. It is preferably 50 ° or less, and more preferably 50 ° or less. When the contact angle is in the above-mentioned preferable range, the polymer electrolyte solution is likely to impregnate the surfactant-containing porous substrate.
- a compound insoluble in the solvent of the polymer electrolyte solution it is preferable to use a compound insoluble in the solvent of the polymer electrolyte solution to be impregnated as the surfactant.
- a surfactant it is possible to prevent the surfactant from diffusing into the polymer electrolyte from the surface of the porous base material or the surface of the composite electrolyte membrane in contact with the catalyst layer when impregnated with the polymer electrolyte solution. While fully exhibiting the function as a surfactant, it is possible to prevent a decrease in proton conductivity due to the presence of the surfactant in the polymer electrolyte.
- the concentration of the polymer electrolyte solution is preferably 3 to 40% by mass, more preferably 5 to 25% by mass. With a concentration in this range, the number of coatings for sufficiently filling the voids of the porous substrate with the polymer electrolyte can be reduced to about 1 to 2 times, and the composite layer has excellent surface smoothness. Is easy to obtain.
- the viscosity of the polymer electrolyte solution is preferably 100 to 50,000 mPa ⁇ s, more preferably 300 to 10,000 mPa ⁇ s.
- the viscosity is in the above preferable range, it is easy to fill the voids of the porous substrate with the polymer electrolyte, it is easy to make the film thickness of the electrolyte membrane uniform, and the surface smoothness of the electrolyte membrane is excellent.
- the solvent used for the polymer electrolyte solution can be appropriately selected depending on the polymer type.
- the solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphotriamide and the like.
- Aprotonic polar solvents carbonate solvents such as ethylene carbonate and propylene carbonate, alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether, methanol and ethanol.
- Alcohol-based solvents such as propanol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ⁇ -butyrolactone, ethyl acetate, butyl acetate and ethyl lactate, hydrocarbon solvents such as hexane and cyclohexane.
- Aromatic hydrocarbon solvents such as benzene, toluene, xylene, halogenated hydrocarbon solvents such as chloroform, dichloromethane, 1,2-dichloroethane, perchloroethylene, chlorobenzene, dichlorobenzene, diethyl ether, tetrahydrofuran, 1,4 -Aether-based solvent such as dioxane, a nitrile-based solvent such as acetonitrile, a nitrated hydrocarbon-based solvent such as nitromethane and nitroethane, and water are preferably used. Further, a mixed solvent in which two or more kinds of these solvents are mixed may be used.
- Examples of the method of impregnating the porous base material with the polymer electrolyte solution include the following methods. (1) A method of controlling the film thickness by removing excess solution while pulling up a porous base material immersed in a polymer electrolyte solution. (2) A method of casting and coating a polymer electrolyte solution on a porous substrate, (3) A method in which a porous base material is laminated and impregnated on a support base material to which a polymer electrolyte solution is cast-coated.
- the solvent can be dried as it is when impregnated by the method (3).
- the method of drying the solvent of the polymer electrolyte solution with the porous base material attached to the separately prepared support base material is a method of drying the electrolyte membrane. It is preferable from the viewpoint that wrinkles and uneven thickness can be reduced and the film quality is improved.
- knife coat As a method of casting the polymer electrolyte solution, knife coat, direct roll coat, Meyer bar coat, gravure coat, reverse coat, air knife coat, spray coat, brush coat, dip coat, die coat, vacuum die coat, curtain coat, etc. Techniques such as flow coating, spin coating, screen printing, and inkjet coating can be applied.
- a coater the device used for casting and coating the polymer electrolyte solution is called a coater.
- an electrolyte membrane can be formed by going through a drying process.
- the coating film of the polymer electrolyte solution impregnated on the porous substrate is heated to evaporate the solvent.
- the heating means is not particularly limited as long as the solvent can be evaporated, but for example, a heating device such as an oven or a heater, a device for controlling the temperature in the vicinity of the electrolyte membrane using infrared rays, warm air, or the like may be used. it can. Further, heat may be conducted to the coating film through the base material.
- the heating temperature range is preferably close to the boiling point of the solvent and equal to or lower than the glass transition temperature of the electrolyte membrane. It is also possible to remove the solvent only by reducing the pressure or introducing an air flow without heating.
- the drying time and drying temperature in the drying step can be appropriately determined experimentally, but it is preferable to dry at least to the extent that the film becomes a self-supporting film even if it is peeled off from the substrate.
- known methods such as heating of the base material, hot air, and an infrared heater can be selected.
- the drying temperature is preferably 200 ° C. or lower, more preferably 150 ° C. or lower in consideration of decomposition of the polymer electrolyte and the surfactant.
- the polymer electrolyte in the solution may be in a state where the ionic group forms a salt with a cation of an alkali metal or an alkaline earth metal.
- This step is more preferably a step of bringing the formed film into contact with an acidic aqueous solution.
- the contact is more preferably a step of immersing the formed film in an acidic aqueous solution.
- the protons in the acidic aqueous solution are replaced with cations that are ionically bonded to the ionic group, and residual water-soluble impurities, residual monomers, solvents, residual salts, etc. are simultaneously removed.
- the acidic aqueous solution is not particularly limited, but it is preferable to use sulfuric acid, hydrochloric acid, nitric acid, acetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, phosphoric acid, citric acid and the like.
- the temperature and concentration of the acidic aqueous solution should be appropriately determined, but from the viewpoint of productivity, it is preferable to use a sulfuric acid aqueous solution of 3% by mass or more and 30% by mass or less at a temperature of 0 ° C. or higher and 80 ° C. or lower.
- the electrolyte membrane with a catalyst layer (CCM) of the present invention has catalyst layers formed on both sides of the electrolyte membrane of the present invention.
- the method for forming the catalyst layer is not particularly limited, but since the process is simple and the process cost can be suppressed, a method of applying the catalyst layer ink and drying it, or a method of applying the catalyst layer on the decal base material in advance and the catalyst layer can be suppressed. A method in which the catalyst layer is transferred using the catalyst layer decal formed by the above and then dried is preferable.
- the coating method is not particularly limited as long as it can be applied to the desired shape, and the method described in the above-mentioned coating step of the polymer electrolyte solution can be used. it can.
- the solvent contained in the catalyst layer ink is not particularly limited as long as it is a solvent that disperses the polymer electrolyte and the catalyst-supporting carbon particles, but a solvent that can be easily removed by evaporating by heating is preferable.
- a solvent having a boiling point of 140 ° C. or lower is preferable.
- Specific examples of the solvent for the catalyst layer ink include alcohols such as water, methanol, ethanol, propanol, butanol, and pentanol, acetone, methyl ethyl ketone, pentanone, hexanone, heptanone, cyclohexanone, methylcyclohexanone, and acetonylacetone.
- Ketones such as diisobutylketone, ethers such as tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, dibutyl ether, methyl acetate, ethyl acetate, normal propyl acetate, isopropyl acetate, butyl acetate, methyl lactate, ethyl lactate, butyl lactate Esters such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, diethylene glycol, diacetone alcohol, 1-methoxy-2-propanol and the like can be used as one or a mixture of two or more kinds.
- ethers such as tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene, dibutyl ether, methyl acetate, ethyl acetate, normal propy
- the catalyst layer ink is applied on the base material, and if necessary, the catalyst layer decal is produced by undergoing a drying step. Then, the electrolyte film is sandwiched between the catalyst layer decal on the cathode electrode side and the catalyst layer decal on the anode electrode side, and the catalyst is hot-pressed so that the surface on which the catalyst layers of both decals are provided is in contact with the electrolyte film.
- a layered electrolyte membrane can be obtained.
- the temperature and pressure of the hot press may be appropriately selected depending on the thickness and moisture content of the electrolyte membrane, the catalyst layer and the decal base material, but from the viewpoint of industrial productivity and suppression of thermal decomposition of the electrolyte membrane material, the temperature is 0 ° C. or higher.
- the temperature is preferably in the range of 250 ° C., more preferably higher than the glass transition temperature of the polymer electrolyte contained in the catalyst layer, and more preferably 200 ° C. or lower.
- the pressurization in the hot press is preferably as weak as possible from the viewpoint of protecting the electrolyte membrane and electrodes, and in the case of a flat plate press, the pressure is preferably 10 MPa or less.
- the same resin film or substrate as the base material used when forming the electrolyte film can be used, as well as PTFE, polyhexafluoropropylene, ETFE, and ethylene-hexafluoropropylene copolymer weight.
- Fluororesin such as coalescing, FEP, PFA, PVdF can be used. It is preferable to use a fluororesin film from the viewpoint of chemical stability and releasability in addition to heat resistance and solvent resistance.
- the same method as described in the above-mentioned drying of the polymer electrolyte solution can be used.
- the membrane electrode composite of the present invention and the polymer electrolyte fuel cell of the present invention are made by using the electrolyte membrane of the present invention.
- IEC Ion exchange capacity
- vacuum drying was performed at 100 ° C. for 12 hours or more to determine the dry weight.
- the resulting sulfuric acid was titrated using a 0.01 mol / L sodium hydroxide aqueous solution.
- a commercially available phenolphthalein solution for titration of 0.1 w / v% was added as an indicator, and the point at which it became pale reddish purple was defined as the end point.
- the ion exchange capacity (IEC) was calculated by the following formula.
- BIB method Cross-section sample preparation device using an argon ion beam.
- a shielding plate is placed directly above the sample, and an observation surface / analysis surface (cross section) is prepared by irradiating a broad ion beam of argon from above and performing etching.
- Y2 [(T1 + T2 + T3) x D x I- (T2 x D2 x I2 + T3 x D3 x I3)] / (T1 x D1 x I1) x 100 (5) Observation of phase-separated structure by transmission electron microscope (TEM) tomography A sample piece of electrolyte membrane is immersed in a 2 mass% lead acetate aqueous solution as a stain agent, and allowed to stand at 25 ° C. for 48 hours for staining. went. The dyed sample was taken out, embedded in an epoxy resin, and irradiated with visible light for 30 seconds to fix it. A thin section of 100 nm was cut at room temperature using an ultramicrotome, and observation was carried out according to the following conditions.
- TEM transmission electron microscope
- the MD length and TD length were measured again with a caliper, and the dimensional change rate of MD and TD in the plane direction ( ⁇ MD and ⁇ TD ) and the dimensional change rate ( ⁇ xy ) (%) in the plane direction were calculated by the following formulas.
- a platinum plate (thickness 100 ⁇ m, 2 plates) was used as the electrode.
- the electrodes were arranged at a distance of 10 mm between the electrodes on the front side and the back side of the sample film so as to be parallel to each other and orthogonal to the longitudinal direction of the sample film.
- MEA was prepared with one surface as a cathode electrode and the other surface as an anode electrode.
- the hydrogen permeation amount was measured by supplying hydrogen as a fuel gas to one electrode and nitrogen to the other electrode, and conducting a test under humidification conditions: hydrogen gas 90% RH and nitrogen gas: 90% RH.
- the open circuit voltage was held until 0.2 V or less, the voltage was swept from 0.2 to 0.7 V at 1 mV / sec, and the current value at 0.7 V was taken as the hydrogen transmission current.
- ⁇ Combustion / absorption conditions System: AQF-2100H, GA-210 (manufactured by Mitsubishi Chemical Corporation) Electric furnace temperature: Inlet 900 ° C, Outlet 1000 ° C Gas: Ar / O 2 200 mL / min, O 2 400 mL / min Absorbent: H 2 O 2 0.1%, internal standard Br 8 ⁇ g / mL Absorption amount: 20 mL ⁇ Ion chromatography / anion analysis conditions> System: ICS1600 (manufactured by DIONEX) Mobile phase: 2.7 mmol / L Na 2 CO 3 / 0.3 mmol / L NaHCO 3 Flow velocity: 1.50 mL / min Detector: Electrical conductivity detector Injection amount: 20 ⁇ L (11) Chemical structure analysis Infrared spectroscopy of surfactant (IR) analysis, 1 H nuclear magnetic resonance (NMR) analysis, 19 F-NMR analysis, MALDI-MS analysis was performed pyrolysis GC / MS analysis, various sur
- Measuring device Quantera SXM Excited X-rays: monochromatic Al K ⁇ 1 , K ⁇ 2 rays (1,486.6 eV) X-ray diameter: 200 ⁇ m Photoelectron escape angle: 45 ° (15) Measurement of Mechanical Properties of Electrolyte Membrane in Dry State A sample electrolyte membrane was set in the device, and a tensile test was conducted under the following conditions. The values of tensile strength and tensile elongation shall be the values at the moment when the maximum point stress is shown during the test. The elastic modulus is a value that maximizes the calculated value using any two points with a strain of 0.35%.
- the value obtained by dividing the force (N) output in the tensile test by the film width (cm) is defined as the strength (N / cm), and any of the above two points.
- the value obtained by further dividing the difference in strength (N / cm) in the above by the strain 0.0035 (dimensionless quantity) was taken as the tensile elastic modulus (N / cm) around the width.
- the force (N) output in the tensile test is the product of the cross-sectional area (mm 2 ) of the film, that is, the film width (mm) and the film thickness (mm).
- the value divided by is the stress (MPa), and the value obtained by further dividing the difference in stress (MPa) at any two points by the strain 0.0035 (dimensionless quantity) is the tensile elastic modulus (MPa) per cross-sectional area. did. The maximum point stress and elastic modulus were calculated by averaging 5 tests.
- Measuring device Haze meter HGM-20P (manufactured by Suga Test Instruments Co., Ltd.) (18) SEM Observation of Porous Substrate A porous substrate to be a sample was cut out to a size of 2 mm ⁇ 2 mm, and after platinum ion sputtering, SEM observation was carried out to observe the morphology of the porous substrate in the plane direction. The orientation of the nodes and fibrils contained in the porous substrate was determined based on the structure when SEM observation was performed in an arbitrary range of 15 ⁇ m ⁇ 15 ⁇ m. The average diameter of the node and fibril is calculated by measuring 100 points of the diameter of the node and fibril in an arbitrary range of 15 ⁇ m ⁇ 15 ⁇ m and calculating the average value. It was carried out.
- the mixture was kept warm and stirred at 78 to 82 ° C. for 2 hours. Further, the internal temperature was gradually raised to 120 ° C., and the mixture was heated until the distillation of methyl formate, methanol and trimethyl orthoformate was completely stopped. After cooling the reaction solution to room temperature, the reaction solution was diluted with ethyl acetate, the organic layer was washed with 100 mL of a 5% potassium carbonate aqueous solution, separated, and then the solvent was distilled off.
- the obtained precipitate was separated by filtration and recrystallized from an aqueous ethanol solution to obtain disodium-3,3'-disulfonate-4,4'-difluorobenzophenone represented by the following chemical formula (G2).
- the purity was 99.3%.
- NMP N-methylpyrrolidone
- toluene 300 mL of N-methylpyrrolidone (NMP) and 100 mL of toluene were added, dehydrated at 160 ° C., the temperature was raised to remove toluene, and polymerization was carried out at 180 ° C. for 1 hour. Reprecipitation and purification were carried out on a large amount of methanol to obtain an oligomer (terminal: hydroxyl group) containing no ionic group. The number average molecular weight was 10,000.
- Decafluorobiphenyl (Sigma-Aldrich Japan (same as above) reagent) 4 0.0 g (12 mmol) was added, and the reaction was carried out at 105 ° C. for 1 hour. Purification was carried out by reprecipitation with a large amount of isopropyl alcohol to obtain an oligomer a1 (terminal: fluoro group) containing no ionic group represented by the following general formula (G3). The number average molecular weight was 11,000.
- reaction solution was slowly poured into 1,000 g of icebreaker and extracted with ethyl acetate.
- the organic layer was washed with brine and dried over magnesium sulfate, and ethyl acetate was distilled off to obtain pale yellow crude crystals 3- (2,5-dichlorobenzoyl) benzenesulfonic acid chloride.
- the crude crystals were not purified and were used as they were in the next step.
- the obtained reaction solution was allowed to cool, and then 100 mL of toluene was added to dilute it.
- the precipitate of the by-produced inorganic compound was removed by filtration, and the filtrate was put into 2 liters of methanol.
- the precipitated product was separated by filtration, collected, dried, and then dissolved in 250 mL of tetrahydrofuran. This was reprecipitated in 2 L of methanol to obtain 107 g of the target oligomer represented by the following general formula (G6).
- the number average molecular weight was 11,000.
- the reaction mixture was added to 60 mL of methanol, then 60 mL of 6 mol / L hydrochloric acid was added, and the mixture was stirred for 1 hour.
- the precipitated solid is separated by filtration and dried to obtain 1.62 g of a block copolymer precursor b4'containing a segment represented by the following chemical formula (G8) and the following general formula (G9), which is grayish white, in a yield of 99%. It was.
- the weight average molecular weight was 230,000.
- the oligomer represented by the general formula (G4) is copolymerized as a segment containing an ionic group, and the oligomer represented by the general formula (G3) is copolymerized as a segment containing no ionic group.
- Block copolymer b1 was obtained by reprecipitation purification to a large amount of isopropyl alcohol. The weight average molecular weight was 340,000. The ion exchange capacity (IEC) of this block copolymer b1 was 2.1.
- NMP N-methylpyrrolidone
- polymer electrolyte solution A polymer electrolyte concentration 13% by mass.
- the viscosity of the polymer electrolyte solution A was 1,300 mPa ⁇ s.
- Polymer electrolyte solution B The oligomer represented by the general formula (G4) is copolymerized as a segment containing an ionic group, and the oligomer represented by the general formula (G3) is copolymerized as a segment not containing an ionic group.
- the weight average molecular weight of this block copolymer b2 was 370,000, and the ion exchange capacity (IEC) was 2.4.
- the viscosity of the polymer electrolyte solution B obtained in the same manner as the polymer electrolyte solution A was 1,600 mPa ⁇ s except that the block copolymer b2 was used instead of the block copolymer b1.
- Polymer electrolyte solution C The oligomer represented by the general formula (G4) is copolymerized as a segment containing an ionic group, and the oligomer represented by the general formula (G3) is copolymerized as a segment containing no ionic group.
- the weight average molecular weight of this block copolymer b3 was 390,000, and the ion exchange capacity (IEC) was 2.7.
- the viscosity of the polymer electrolyte solution C obtained in the same manner as the polymer electrolyte solution A was 1,800 mPa ⁇ s except that the block copolymer b3 was used instead of the block copolymer b1.
- Polymer electrolyte solution D Polymer electrolyte solution D composed of random copolymer 129 g of 2,2-bis (4-hydroxyphenyl) -1,3-dioxolane synthesized in Synthesis Example 1 in a 5 L reaction vessel equipped with a stirrer, a nitrogen introduction tube, and a Dean-Stark trap, 4,4'-.
- the obtained random copolymer had a weight average molecular weight of 320,000 and an ion exchange capacity (IEC) of 2.1.
- G6 general formula (G6) synthesized in Synthesis Example 6 containing no ionic group, 2, 5-Dichloro-4'-(1-imidazolyl) benzophenone 6.71 g (16.8 mmol), bis (triphenylphos
- the reaction system was heated under stirring (finally heated to 79 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
- the polymerization reaction solution was diluted with DMAc 730 mL, stirred for 30 minutes, and filtered using Celite as a filtration aid.
- the filtrate was concentrated with an evaporator, 43.8 g (0.505 mol) of lithium bromide was added to the filtrate, and the mixture was reacted at an internal temperature of 110 ° C. for 7 hours in a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4 L of acetone, and solidified. The coagulated product was collected by filtration, air-dried, pulverized with a mixer, and washed with 1,500 mL of 1N hydrochloric acid while stirring. After filtration, the product was washed with ion-exchanged water until the pH of the washing liquid reached 5 or higher, and then dried at 80 ° C.
- the weight average molecular weight of the polyarylene block copolymer after deprotection was 190,000, and the ion exchange capacity (IEC) was 2.0.
- the viscosity of the polymer electrolyte solution E was 1,200 mPa ⁇ s.
- Polymer Electrolyte Solution F Polymer Electrolyte Solution F Consisting of Polyether Sulfone Block Copolymer 0.23 g of the block copolymer precursor b4'obtained in Synthesis Example 7 was weighed, added to a mixed solution of 0.16 g of lithium bromide monohydrate and 8 mL of NMP, and reacted at 120 ° C. for 24 hours. The reaction mixture was poured into 80 mL of 6 mol / L hydrochloric acid and stirred for 1 hour. The precipitated solid was separated by filtration. The separated solid was dried to obtain a block copolymer b4 consisting of a grayish white segment represented by the general formula (G9) and a segment represented by the following chemical formula (G11).
- the weight average molecular weight of the obtained polyether sulfone-based block copolymer was 190,000, and the ion exchange capacity (IEC) was 2.0.
- the viscosity of the polymer electrolyte solution F was 1,300 mPa ⁇ s.
- ePTFE porous substrate P1 [Polytetrafluoroethylene (ePTFE) porous substrate P1] "Poreflon” (registered trademark) WP-010-80 (manufactured by Sumitomo Electric Fine Polymer Co., Ltd.) was stretched 10 times in the lateral direction and then heat-treated at 365 ° C. Then, by stretching twice in the longitudinal direction, an ePTFE porous base material P1 having a film thickness of 9 ⁇ m and a porosity of 80% was prepared. As a result of SEM observation, it was a structure having a node having an average diameter of 0.9 ⁇ m substantially parallel in the vertical direction and a fibril having an average diameter of 0.2 ⁇ m substantially parallel in the horizontal direction.
- ePTFE porous substrate P2' In a glove box with a dew point of -80 ° C, the ePTFE porous substrate B is immersed in a solution consisting of 30 g of a 1% solution of metallic sodium-naphthalene complex / tetrahydrofuran (THF) and 70 g of THF, pulled up after 3 seconds, and immediately with THF. After thorough washing, a hydrophilic ePTFE porous substrate P2'with a film thickness of 8 ⁇ m and a porosity of 88% was prepared.
- THF metallic sodium-naphthalene complex / tetrahydrofuran
- the PBI obtained in Synthesis Example 8 was dissolved in dimethyl sulfoxide (DMSO) so as to be 8% by weight, and an electrospinning unit manufactured by Kato Tech Co., Ltd. was used, the voltage was 20 kV, and the syringe pump discharge rate was 0.12 mL /.
- nanofiber non-woven fabric was produced at the same time as spinning under the condition that the distance between the syringe and the target was 100 mm.
- the obtained nanofiber non-woven fabric was dried under reduced pressure at 80 ° C. for 1 hour, laminated on a 125 ⁇ m-thick “Kapton” (registered trademark) substrate, and heated at 400 ° C.
- ePTFE Polytetrafluoroethylene
- TX1356 manufactured by Donaldson
- this electrolyte-surfactant mixed solution was cast-coated on a glass substrate, and the ePTFE porous substrate P1 was bonded.
- the mixture was kept at room temperature for 1 hour, the ePTFE porous substrate P1 was sufficiently impregnated with the electrolyte-surfactant mixed solution A, and then dried at 100 ° C. for 4 hours.
- the electrolyte-surfactant mixed solution A was cast-coated on the upper surface of the dried film again, held at room temperature for 1 hour, and then dried at 100 ° C. for 4 hours to obtain a film-like polymer. After immersing in a 10 mass% sulfuric acid aqueous solution at 80 ° C.
- Example 2 An electrolyte membrane (thickness: 9 ⁇ m) was obtained in the same manner as in Example 1 except that an electrolyte-surfactant mixed solution having a surfactant / electrolyte of 0.10 was used.
- Example 3 An electrolyte membrane (thickness: 9 ⁇ m) was obtained in the same manner as in Example 1 except that an electrolyte-surfactant mixed solution having a surface activator / electrolyte of 0.01 was used.
- Example 4 An electrolyte membrane (thickness: 9 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution B was used instead of the polymer electrolyte solution A.
- Example 5 An electrolyte membrane (thickness: 9 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution C was used instead of the polymer electrolyte solution A.
- Example 6 An electrolyte membrane (thickness: 10 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution D was used instead of the polymer electrolyte solution A.
- Example 7 An electrolyte membrane (thickness: 10 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution E was used instead of the polymer electrolyte solution A.
- Example 8 An electrolyte membrane (thickness: 10 ⁇ m) was obtained in the same manner as in Example 1 except that the polymer electrolyte solution F was used instead of the polymer electrolyte solution A.
- Example 9 Polyoxyethylene ether-based surfactant "Futergent” (registered trademark) FTX-218 (manufactured by Neos Co., Ltd.) (fluorine atom content 46% by mass, hydrophilic element) instead of “Futergent” (registered trademark) 208G
- An electrolyte membrane (thickness: 10 ⁇ m) was obtained in the same manner as in Example 1 except that the content was 14% by mass and the weight average molecular weight was 1,900).
- Example 10 Low metal-containing grade polyoxyethylene ether-based surfactant "Futergent” (registered trademark) DFX-18 (manufactured by Neos Co., Ltd.) (fluorine atom content 46% by mass) instead of “Futergent” (registered trademark) 208G
- An electrolyte membrane (thickness: 10 ⁇ m) was obtained in the same manner as in Example 1 except that the hydrophilic element content was 14% by mass and the weight average molecular weight was 1,900).
- Example 11 Fluorine-containing group hydrophilic group / lipophilic group-containing oligomeric surfactant "Futagent" (registered trademark) 710FS (manufactured by Neos Co., Ltd.) (fluorine atom content 16) instead of "Futagent” (registered trademark) 208G
- An electrolyte membrane (thickness: 10 ⁇ m) was obtained in the same manner as in Example 1 except that mass%, hydrophilic element content of 30% by mass, and weight average molecular weight of 3,500) were used.
- Example 12 An electrolyte membrane (thickness 8 ⁇ m) was obtained in the same manner as in Example 1 except that the ePTFE porous base material P2 was used instead of the ePTFE porous base material P1.
- Example 13 Except for the use of fluorine-containing hydrophilic group / lipophilic group-containing oligomeric surfactant "Megafuck" (registered trademark) F-555 (manufactured by DIC Co., Ltd.) instead of "Futagent” (registered trademark) 208G. Obtained an electrolyte membrane (thickness: 9 ⁇ m) in the same manner as in Example 1.
- Example 14 Using a knife coater, the polymer electrolyte solution A was cast-coated on a glass substrate, and the PBI porous substrate P3 was bonded. The mixture was kept at room temperature for 1 hour, the PBI porous substrate P3 was sufficiently impregnated with the polymer electrolyte solution A, and then dried at 100 ° C. for 4 hours. The polymer electrolyte solution A was cast again on the upper surface of the dried film, held at room temperature for 1 hour, and then dried at 100 ° C. for 4 hours to obtain a film-like polymer. After immersing in a 10 mass% sulfuric acid aqueous solution at 80 ° C.
- Example 15 An electrolyte membrane (thickness: 9 ⁇ m) was obtained in the same manner as in Example 1 except that the ePTFE porous base material P4 was used instead of the ePTFE porous base material P1.
- Porous base material P1 Polytetrafluoroethylene (ePTFE) having a film thickness of 9 ⁇ m and a porosity of 80%
- Porous base material P2 Polytetrafluoroethylene (ePTFE) having a film thickness of 8 ⁇ m and a porosity of 89%
- porous Quality substrate P2' Hydrophilic ePTFE with a film thickness of 8 ⁇ m and porosity of 88%
- Porous substrate P3 Polybenzimidazole (PBI) with a film thickness of 7 ⁇ m and porosity of 86%
- the electrolyte membrane of the present invention can be applied to various uses.
- medical applications such as artificial skin, filtration applications, ion exchange resin applications such as chlorine-resistant reverse osmosis membranes, various structural material applications, electrochemical applications, humidifying membranes, antifogging membranes, antistatic membranes, deoxidizing membranes, and the sun.
- electrochemical applications can be applied to battery membranes and gas barrier membranes.
- the electrochemical application include a polymer electrolyte fuel cell, a redox flow battery, a water electrolyzer, a chloro-alkali electrolyzer, an electrochemical hydrogen pump, and a water electrolyzer hydrogen generator.
- the electrolyte membrane is used in a state where a catalyst layer, an electrode base material, and a separator are sequentially laminated on both sides.
- the catalyst layer and the gas diffusion base material are sequentially laminated on both sides of the electrolyte membrane (that is, the layer structure of the gas diffusion base material / catalyst layer / electrolyte membrane / catalyst layer / gas diffusion base material) are membranes. It is called an electrode complex (MEA).
- MEA electrode complex
- the electrolyte membrane of the present invention is suitably used as an electrolyte membrane constituting the CCM and MEA.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Conductive Materials (AREA)
Abstract
Description
高分子電解質と多孔質基材とを含み、幅当たりの乾燥引張弾性率が100N/cm以上であり、幅当たりの含水引張弾性率が35N/cm以上である複合高分子電解質膜、である。
上記複合高分子電解質膜両面を触媒層が挟持してなる触媒層付複合高分子電解質膜、である。
上記複合高分子電解質膜を含む膜電極複合体、である。
上記複合高分子電解質膜を含む固体高分子形燃料電池、である。
本発明の電解質膜は、高分子電解質と、多孔質基材とが複合化してなる複合層を有する電解質膜であり、幅当たりの乾燥引張弾性率が100N/cm以上且つ、幅当たりの含水引張弾性率が35N/cm以上の機械特性を有する電解質膜である。燃料電池等においては通常2枚のセパレータを、ネジなどを用いて圧縮することにより各構成部材を密着させ抵抗を低減し発電性能を向上させているが、幅当たりの乾燥引張弾性率が100N/cmに満たない場合には、電解質膜が触媒層やガス拡散層などから受ける外力により変形、穿孔しやすくなることにより乾湿サイクル耐久性が不十分となる。また、幅当たりの含水引張弾性率が35N/cmに満たない場合には、含水状態における電解質膜の軟化を抑制することができず、燃料電池としての乾湿サイクル耐久性が不十分となる。多孔質基材は後述の通り疎水性化合物を主成分とすることが好ましく、耐水性、耐薬品性に優れるフッ素系高分子化合物からなることがより好ましい。また、疎水性且つ優れた弾性率、破断強度を有する芳香族炭化水素系高分子化合物からなる多孔質基材も好適に用いることができる。疎水性化合物を主成分とする多孔質基材を用いることにより、含水状態における電解質膜の軟化を抑制し含水引張弾性率を向上させやすくなる。このような優れた機械特性を有する高分子電解質膜を用いることにより、燃料電池としての乾湿サイクル耐久性を向上させることができる。本発明において幅当たりの乾燥引張弾性率及び幅当たりの含水引張弾性率は、各々実施例の項中(15)及び(16)に記載の方法を用いて算出することとする。
本発明で使用する高分子電解質とは、イオン性基を有することによりプロトン伝導性を有するポリマーであり、フッ素系高分子電解質と炭化水素系ポリマーのいずれであっても良い。
本発明で使用する多孔質基材は、炭化水素系高分子化合物を主成分とする炭化水素系多孔質基材と、フッ素系高分子化合物を主成分とするフッ素系多孔質基材に分類される。炭化水素系高分子化合物としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリアクリレート、ポリメタクリレート、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVdC)、ポリエステル、ポリカーボネート(PC)、ポリスルホン(PSU)、ポリエーテルスルホン(PES)、ポリフェニレンオキシド(PPO)、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド(PPS)、ポリフェニレンスルフィドスルホン、ポリパラフェニレン(PPP)、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン(PEK)、ポリアリーレンホスフィンオキシド、ポリエーテルホスフィンオキシド、ポリベンズオキサゾール(PBO)、ポリベンズチアゾール(PBT)、ポリベンズイミダゾール(PBI)、ポリアミド(PA)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリイミドスルホン(PIS)などが挙げられ、フッ素系高分子化合物としては、ポリテトラフルオロエチレン(PTFE)、ポリヘキサフルオロプロピレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVdF)、ポリクロロトリフルオロエチレン(PCTFE)、パーフルオロアルコキシフッ素樹脂(PFA)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)などが挙げられるがこれらに限定されない。耐水性や耐薬品性、機械特性の観点から、PE、PP、PPS、PEK、PBO、PBT、PBI、PTFE、ポリヘキサフルオロプロピレン、FEP、PFAが好ましい。
(ここで、Daは多孔質基材を構成する原料物質の比重、Dbは多孔質基材全体の比重である。)
〔ノニオン性フッ素系界面活性剤〕
本発明の電解質膜においては、ノニオン性フッ素系界面活性剤(以下、単に「界面活性剤」という場合がある)を含むことが好ましい。ノニオン性フッ素系界面活性剤を用いることにより、高分子電解質と多孔質基材との親和性が向上することにより、電解質膜を製造しやすくなるだけでなく、電解質膜における高分子電解質と多孔質基材との界面接合が強固となり乾湿サイクルにおける電解質膜の体積変化に伴う両者の界面剥離を抑制することにより燃料電池の乾湿サイクル耐久性を向上させることができる。特に炭化水素系高分子電解質とフッ素系多孔質基材を用いる場合において、両者の親和性を顕著に向上させることができるためより好ましい。
触媒層は、電解質膜の両面に接して形成された触媒粒子を含む層であり、一般的には触媒粒子およびフッ素系高分子電解質からなる高分子電解質を含む層である。フッ素系高分子電解質としては、前述のものを用いることができる。
本発明において、電解質膜は、第一の態様として高分子電解質溶液を多孔質基材に含浸した後に、乾燥させて高分子電解質溶液に含まれる溶媒を除去することにより製造することができる。このとき、高分子電解質溶液に、前記ノニオン性フッ素系界面活性剤を予め混合した上で多孔質基材に含侵する方法も好適である。第一の態様、および後述の第二の態様の製造方法で使用する高分子電解質、多孔質基材およびノニオン性フッ素系界面活性剤の詳細は前述の通りであるため、ここでは省略する。
(1)界面活性剤溶液に浸漬した多孔質基材を引き上げながら余剰の溶液を除去して付与量を制御する方法、
(2)多孔質基材上に界面活性剤溶液を流延塗布する方法、
(3)界面活性剤溶液を流延塗布した支持基材上に多孔質基材を貼り合わせて含浸させる方法。
(1)高分子電解質溶液に浸漬した多孔質基材を引き上げながら余剰の溶液を除去して膜厚を制御する方法、
(2)多孔質基材上に高分子電解質溶液を流延塗布する方法、
(3)高分子電解質溶液を流延塗布した支持基材上に多孔質基材を貼り合わせて含浸させる方法。
本発明の触媒層付電解質膜(Catalyst Coated Membrane;以下、CCM)は、本発明の電解質膜の両面に触媒層が形成されてなる。触媒層を形成する方法は特に限定されるものではないが、工程が簡便であることやプロセスコストを抑制できることから、触媒層インクを塗布して乾燥する方法や、予めデカール基材上に触媒層が形成されてなる触媒層デカールを用いて触媒層を転写した後に乾燥する方法が好ましい。
ポリマー溶液の数平均分子量及び重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー(株)製HLC-8022GPCを用いた。また、GPCカラムとして東ソー(株)製TSK gel SuperHM-H(内径6.0mm、長さ15cm)2本を用いた。N-メチル-2-ピロリドン溶媒(臭化リチウムを10mmol/L含有するN-メチル-2-ピロリドン溶媒)にて、流量0.2mL/minで測定し、標準ポリスチレン換算により数平均分子量及び重量平均分子量を求めた。
中和滴定法により測定した。測定は3回実施し、その平均値を取った。
(3)電解質膜の断面SEM測定
下記条件に従い、断面SEM測定を行った。得られた画像から中央の白色領域を複合層、両隣の黒色領域を外部の別層としその厚みを測定した。
加速電圧:2.0kV
前処理:BIB法にて作製した断面試料にPtコートして測定した。
前記(3)項に従いSEMを用いて電解質膜の断面を観察し、高分子電解質と多孔質基材からなる複合層の厚みT1、複合層の外側に別の層がある場合はそれらの厚みT2、T3を各々算出した。複合層を形成する高分子電解質の比重をD1、複合層の外側の別の層を形成する高分子電解質の比重をそれぞれのD2、D3、電解質膜の比重をDとした。それぞれの層を形成するポリマーのIECをI1、I2、I3、電解質膜のIECをIとして、複合層中の高分子電解質の充填率Y2(体積%)は下式によって求めた。
(5)透過型電子顕微鏡(TEM)トモグラフィーによる相分離構造の観察
染色剤として2質量%酢酸鉛水溶液中に電解質膜の試料片を浸漬させ、25℃下で48時間静置して染色処理を行った。染色処理された試料を取りだし、エポキシ樹脂で包埋し、可視光を30秒照射し固定した。ウルトラミクロトームを用いて室温下で薄片100nmを切削し、以下の条件に従って観察を実施した。
画像取得:Digital Micrograph
システム:マーカー法
加速電圧 :200kV
撮影倍率 :30,000倍
傾斜角度 :+61°~-62°
再構成解像度:0.71nm/pixel
3次元再構成処理は、マーカー法を適用した。3次元再構成を実施する際の位置合わせマーカーとして、コロジオン膜上に付与したAuコロイド粒子を用いた。マーカーを基準として、+61°から-62°の範囲で、試料を1°毎に傾斜しTEM像を撮影する連続傾斜像シリーズより取得した計124枚のTEM像を基にCT再構成処理を実施し、3次元相分離構造を観察した。
電解質膜を約5cm×約5cmの正方形に切り取り、温度23℃±5℃、湿度50±5%RHの調温調湿雰囲気下に24時間静置後、ノギスでMDの長さとTDの長さ(MD1とTD1)を測定した。該電解質膜を80℃の熱水中に8時間浸漬後、再度ノギスでMDの長さとTDの長さ(MD2とTD2)を測定し、面方向におけるMDとTDの寸法変化率(λMDとλTD)および面方向の寸法変化率(λxy)(%)を下式により算出した。
λTD=(TD2-TD1)/TD1×100
λxy=(λMD+λTD)/2。
電解質膜を25℃の純水に24時間浸漬した後、80℃、相対湿度25%RHの恒温恒湿槽中に30分保持し、定電位交流インピーダンス法でプロトン伝導度を測定した。測定装置としては、Solartron社製電気化学測定システム(Solartron 1287 Electrochemical InterfaceおよびSolartron 1255B Frequency Response Analyzer)を使用し、2端子法で定電位インピーダンス測定を行い、プロトン伝導度を求めた。交流振幅は、50mVとした。サンプルは幅10mm、長さ50mmの膜を用いた。測定治具はフェノール樹脂で作製し、測定部分は開放させた。電極として、白金板(厚さ100μm、2枚)を使用した。電極は電極間距離10mm、サンプル膜の表側と裏側に、互いに平行にかつサンプル膜の長手方向に対して直交するように配置した。
田中貴金属工業(株)製白金触媒担持炭素粒子TEC10E50E(白金担持率50質量%)と、ケマーズ(株)製“ナフィオン”(登録商標)(“Nafion”(登録商標))を2:1の質量比となるように調整した触媒インクを、市販のポリテトラフルオロエチレン製フィルムに白金量が0.3mg/cm2となるように塗布し、触媒デカールを作製した。
前記(8)で作製したMEAを英和(株)製JARI標準セルEx-1(電極面積25cm2)にセットし、セル温度80℃の状態で、両極に160%RHの窒素を2分間供給し、その後両電極に0%RHの窒素(露点-20℃以下)を2分間供給するサイクルを繰り返した。1,000サイクルごとに水素透過量の測定を実施し、水素透過電流が初期電流の10倍を越えた時点を乾湿サイクル耐久性とした。
以下の条件に従い、多孔質基材試料を秤量し分析装置の燃焼管内で燃焼させ、発生したガスを溶液に吸収後、吸収液の一部をイオンクロマトグラフィーにより分析した。
システム:AQF-2100H、GA-210(三菱ケミカル(株)製)
電気炉温度:Inlet 900℃、Outlet 1000℃
ガス:Ar/O2 200mL/min、O2 400mL/min
吸収液:H2O2 0.1%、内標Br 8μg/mL
吸収液量:20mL
<イオンクロマトグラフィー・アニオン分析条件>
システム:ICS1600(DIONEX社製)
移動相:2.7mmol/L Na2CO3/0.3mmol/L NaHCO3
流速:1.50mL/min
検出器:電気伝導度検出器
注入量:20μL
(11)界面活性剤の化学構造分析
赤外線分光(IR)分析、1H核磁気共鳴(NMR)分析、19F-NMR分析、MALDI-MS分析、熱分解GC/MS分析を行い、各種界面活性剤の化学構造を分析し、フッ素原子及び親水性元素の含有量(酸素、窒素、リン、硫黄およびホウ素の合計)を算出した。
下記条件に従い、ゲル浸透クロマトグラフィー(GPC)分析により界面活性剤の重量平均分子量を測定した。
検出器:紫外可視吸収分光検出器UV((株)島津製作所製SPD-20AV)
カラム:TSKgel Super HZM-N 2本
SuperHZ4000、2500、1000各1本
溶媒:テトラヒドロフラン(THF)
流速:0.45mL/min
カラム温度:40℃
注入量:0.02mL
標準試料:東ソー(株)製およびAgilent単分散ポリエチレングリコール(PEG)
データ処理:(株)東レリサーチセンター製GPCデータ処理システム
(13)電解質膜に含まれる界面活性剤量
以下の条件に従い、電解質膜を秤量し分析装置の燃焼管内で燃焼させ、発生したガスを溶液に吸収後、吸収液の一部をイオンクロマトグラフィーにより分析した。本分析値から予め測定しておいた界面活性剤を含まない高分子電解質の寄与および(10)により予め測定しておいた多孔質基材の寄与を除外することにより、界面活性剤の寄与を算出し、界面活性剤に含まれるフッ素原子量から複合電解質膜に含まれる界面活性剤量を算出して、複合膜中に含まれる高分子電解質に対する界面活性剤の比(界面活性剤/高分子電解質)を求めた。
システム:AQF-2100H、GA-210(三菱ケミカル(株)製)
電気炉温度:Inlet 900℃、Outlet 1000℃
ガス:Ar/O2 200mL/min、O2 400mL/min
吸収液:H2O2 0.1%、内標Br 8μg/mL
吸収液量:20mL
<イオンクロマトグラフィー・アニオン分析条件>
システム:ICS1600(DIONEX社製)
移動相:2.7mmol/L Na2CO3/0.3mmol/L NaHCO3
流速:1.50mL/min
検出器:電気伝導度検出器
注入量:20μL
(14)XPSによる多孔質基材の酸素含有量測定
予め5mm角の大きさに切断した多孔質基材を超純水でリンスし、室温、67Paにて10時間乾燥させた後、液体窒素で30分冷却し、凍結粉砕機にて5分間の処理を2回実施することにより、サンプルを準備した。準備したサンプルの組成を測定し、酸素原子含有量を算出した。測定装置、条件としては、以下の通りである。
励起X線:monochromatic Al Kα1,Kα2線(1,486.6eV)
X線径:200μm
光電子脱出角度:45°
(15)乾燥状態における電解質膜の機械特性測定
検体となる電解質膜を装置にセットし、以下の条件にて引張試験を行った。引張強度および引張伸度の値は試験中に最大点応力を示した瞬間の値とする。弾性率はひずみ0.35%となる任意の二点を用いて、算出される値が最大となるようにした値とする。幅当たりの引張弾性率(N/cm)を算出する場合、引張試験において出力される力(N)を膜幅(cm)で除した値を強度(N/cm)とし、前記任意の二点における強度の差(N/cm)をひずみ0.0035(無次元量)で更に除した値を幅辺りの引張弾性率(N/cm)とした。断面積当たりの引張弾性率(MPa)を算出する場合、引張試験において出力される力(N)を膜の断面積(mm2)、即ち膜幅(mm)と膜厚(mm)との積で除した値を応力(MPa)とし、前記任意の二点における応力の差(MPa)をひずみ0.0035(無次元量)で更に除した値を断面積当たりの引張弾性率(MPa)とした。最大点応力、弾性率は試験回数5回の平均値で算出した。
荷重レンジ:100N
引張り速度:100mm/min
試験片:幅10mm×長さ50mm
サンプル間距離:30mm
試験温湿度:23±1℃、60±10%RH
試験数:n=5
(16)含水状態における電解質膜の機械特性測定
検体となる電解質膜を予め試験片サイズに切り出した状態で、23℃の超純水に24時間浸漬した後、(15)と同じ条件・方法にて引張試験を行い、引張強度、引張伸度、弾性率を算出した。
検体となる電解質膜を5cm×5cmのサイズに切り出し、以下の条件にてヘイズ測定を行った。ヘイズ測定においては、予めサンプルの無い状態で全照射光量T1、装置散乱率T3を求めたのち、サンプルをセットした状態で全光線透過率T2及びサンプル散乱率T4を測定し、拡散透過率Td及びヘイズを算出した。
(18)多孔質基材のSEM観察
検体となる多孔質基材を2mm×2mmのサイズに切り出し、白金イオンスパッタ後、SEM観察を実施し、多孔質基材の面方向における形態を観察した。多孔質基材に含まれるノード及びフィブリルの配向は、任意の15μm×15μmの範囲において、SEM観察を行った際の構造に基づき決定した。ノード及びフィブリルの平均直径は、任意の15μm×15μmの範囲において、ノード及びフィブリルの直径を100点測定し、平均値を計算することにより算出した、イオンスパッタ及びSEM観察は以下の装置・条件にて実施した。
スパッタ装置:イオンスパッタ E-1045((株)日立ハイテクノロジーズ製)
金属種:Pt
イオン放出電流:15mA
スパッタ時間:60秒
<SEM観察>
測定装置:走査電子顕微鏡 S-5500((株)日立ハイテクノロジーズ製)
加速電圧:5kV
観察倍率:2,000~20,000倍
[合成例1]
(下記化学式(G1)で表される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(K-DHBP)の合成)
攪拌器、温度計及び留出管を備えた500mLフラスコに、4,4’-ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp-トルエンスルホン酸一水和物0.50gを仕込み溶解した。その後78~82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで加熱した。この反応液を室温まで冷却後、反応液を酢酸エチルで希釈し、有機層を5%炭酸カリウム水溶液100mLで洗浄し分液後、溶媒を留去した。残留物にジクロロメタン80mLを加え結晶を析出させ、濾過し、乾燥して下記化学式(G1)で示される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン52.0gを得た。この結晶をGC分析したところ99.9%の2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソランと0.1%の4,4’-ジヒドロキシベンゾフェノンであった。
(下記化学式(G2)で表されるジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの合成)
4,4’-ジフルオロベンゾフェノン(シグマアルドリッチジャパン(同)試薬)109.1gを発煙硫酸(50%SO3)(富士フイルム和光純薬(株)試薬)150mL中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩(NaCl)200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、下記化学式(G2)で示されるジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを得た。純度は99.3%であった。
(下記一般式(G3)で表されるイオン性基を含有しないオリゴマーa1の合成)
かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた1,000mL三口フラスコに、炭酸カリウム(シグマアルドリッチジャパン(同)試薬)16.59g(120mmol)、前記合成例1で得たK-DHBP25.8g(100mmol)および4,4’-ジフルオロベンゾフェノン(シグマアルドリッチジャパン(同)試薬)20.3g(93mmol)を入れた。窒素置換後、N-メチルピロリドン(NMP)300mLとトルエン100mLを加え、160℃で脱水後、昇温してトルエンを除去し、180℃で1時間重合を行った。多量のメタノールに再沈殿精製を行い、イオン性基を含有しないオリゴマー(末端:ヒドロキシル基)を得た。数平均分子量は10,000であった。
(下記一般式(G4)で表されるイオン性基を含有するオリゴマーa2の合成)
かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた1,000mL三口フラスコに、炭酸カリウム(シグマアルドリッチジャパン(同)試薬)27.6g(200mmol)、前記合成例1で得たK-DHBP12.9g(50mmol)および4,4’-ビフェノール(シグマアルドリッチジャパン(同)試薬)9.3g(50mmol)、前記合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン39.3g(93mmol)、および18-クラウン-6(富士フイルム和光純薬(株)試薬)17.9g(82mmol)を入れ、窒素置換後、NMP300mL及びトルエン100mLを加え、170℃で脱水後、昇温してトルエンを除去し、180℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記一般式(G4)で示されるイオン性基を含有するオリゴマーa2(末端:ヒドロキシル基)を得た。数平均分子量は16,000であった。
[合成例5]
(下記化学式(G5)で表される3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの合成)
攪拌機、冷却管を備えた3Lの三口フラスコに、クロロスルホン酸245g(2.1mol)を入れ、続いて2,5-ジクロロベンゾフェノン105g(420mmol)を加え、100℃のオイルバスで8時間反応させた。所定時間後、反応液を砕氷1,000gにゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄、硫酸マグネシウムで乾燥後、酢酸エチルを留去し、淡黄色の粗結晶3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸クロリドを得た。粗結晶は精製せず、そのまま次工程に用いた。
(下記一般式(G6)で表されるイオン性基を含有しないオリゴマーの合成)
撹拌機、温度計、冷却管、Dean-Stark管、窒素導入の三方コックを取り付けた1Lの三つ口のフラスコに、2,6-ジクロロベンゾニトリル49.4g(0.29mol)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン88.4g(0.26mol)、炭酸カリウム47.3g(0.34mol)を秤取した。窒素置換後、スルホラン346mL及びトルエン173mLを加えて攪拌した。フラスコをオイルバスにつけ、150℃に加熱還流させた。反応により生成する水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、200℃で3時間反応を続けた。次に、2,6-ジクロロベンゾニトリル12.3g(0.072mol)を加え、さらに5時間反応した。
(下記化学式(G8)で表されるセグメントと下記一般式(G9)で表されるセグメントからなるポリエーテルスルホン(PES)系ブロックコポリマー前駆体b4’の合成)
無水塩化ニッケル1.62gとジメチルスルホキシド15mLとを混合し、70℃に調整した。これに、2,2’-ビピリジル2.15gを加え、同温度で10分撹拌し、ニッケル含有溶液を調製した。
(ポリベンズイミダゾール(PBI)の合成)
窒素雰囲気下、重合溶媒にポリリン酸(PAA)を用い、3,3’-ジアミノベンジジン(DAB)22.7g(106mol)、4,4’-オキシビス安息香酸(OBBA)27.3g(106mol)を秤取し、3質量%となるようにPAAを加えて、撹拌しながら徐々に温度を上げ、140℃で12時間撹拌し、重縮合を行った。反応後、室温まで冷却し、イオン交換水に注ぎ凝固させたのち、水酸化ナトリウム水溶液で中和した。濾過、イオン交換水で洗浄後、80℃で一晩減圧乾燥し、目的のポリベンズイミダゾールを得た。重量平均分子量は43万であった。
[高分子電解質溶液A]イオン性基を含有するセグメントとして前記一般式(G4)で表されるオリゴマー、イオン性基を含有しないセグメントとして前記一般式(G3)で表されるオリゴマーを共重合して得られるブロックコポリマーb1からなる高分子電解質溶液
かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム(シグマアルドリッチジャパン(同)試薬)0.56g(4mmol)、合成例4で得られたイオン性基を含有するオリゴマーa2(末端:ヒドロキシル基)を16g(1mmol)入れ、窒素置換後、N-メチルピロリドン(NMP)100mL及びシクロヘキサン30mLを加え、100℃で脱水後、昇温してシクロヘキサン除去し、合成例3で得られたイオン性基を含有しないオリゴマーa1(末端:フルオロ基)11g(1mmol)を入れ、105℃で24時間反応を行った。多量のイソプロピルアルコールへの再沈殿精製により、ブロックコポリマーb1を得た。重量平均分子量は340,000であった。このブロックコポリマーb1のイオン交換容量(IEC)は2.1であった。
[高分子電解質溶液B]イオン性基を含有するセグメントとして前記一般式(G4)で表されるオリゴマー、イオン性基を含有しないセグメントとして前記一般式(G3)で表されるオリゴマーを共重合して得られるブロックコポリマーb2からなる高分子電解質溶液
合成例4で得られたイオン性基を有するオリゴマーa2を20g(1.25mmol)とした以外は、ブロックコポリマーb1と同様にしてブロックコポリマーb2を合成した。このブロックコポリマーb2の重量平均分子量は370,000、イオン交換容量(IEC)は2.4であった。また、ブロックコポリマーb1に代えてブロックコポリマーb2を用いた以外は高分子電解質溶液Aと同様にして得た高分子電解質溶液Bの粘度は1,600mPa・sであった。
[高分子電解質溶液C]イオン性基を含有するセグメントとして前記一般式(G4)で表されるオリゴマー、イオン性基を含有しないセグメントとして前記一般式(G3)で表されるオリゴマーを共重合して得られるブロックコポリマーb3からなる高分子電解質溶液
合成例4で得られたイオン性基を有するオリゴマーa2を25.6g(1.6mmol)とした以外は、高分子電解質溶液Aと同様にしてブロックコポリマーb3を合成した。このブロックコポリマーb3の重量平均分子量は390,000、イオン交換容量(IEC)は2.7であった。また、ブロックコポリマーb1に代えてブロックコポリマーb3を用いた以外は高分子電解質溶液Aと同様にして得た高分子電解質溶液Cの粘度は1,800mPa・sであった。
[高分子電解質溶液D]ランダムコポリマーからなる高分子電解質溶液D
撹拌機、窒素導入管、Dean-Starkトラップを備えた5Lの反応容器に、合成例1で合成した2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン129g、4,4’-ビフェノール(シグマアルドリッチジャパン(同)試薬)93g、および合成例2で合成したジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン422g(1.0mol)を入れ、窒素置換後、N-メチル-2-ピロリドン(NMP)3,000g、トルエン450g、18-クラウン-6(富士フイルム和光純薬(株)試薬)を232g加え、モノマーが全て溶解したことを確認後、炭酸カリウム(シグマアルドリッチジャパン(同)試薬)304gを加え、環流しながら160℃で脱水後、昇温してトルエンを除去し、200℃で1時間脱塩重縮合を行った。得られたランダムコポリマーの重量平均分子量は320,000、イオン交換容量(IEC)は2.1であった。
[高分子電解質溶液E]下記一般式(G10)で表されるポリアリーレン系ブロックコポリマーからなる高分子電解質溶液
乾燥したN,N-ジメチルアセトアミド(DMAc)540mLを、3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル135.0g(0.336mol)と、合成例6で合成した一般式(G6)で表されるイオン性基を含有しないオリゴマーを40.7g(5.6mmol)、2,5-ジクロロ-4’-(1-イミダゾリル)ベンゾフェノン6.71g(16.8mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド6.71g(10.3mmol)、トリフェニルホスフィン35.9g(0.137mol)、ヨウ化ナトリウム1.54g(10.3mmol)、亜鉛53.7g(0.821mol)の混合物中に窒素下で加えた。
合成例7で得られたブロックコポリマー前駆体b4’を0.23g計量し、臭化リチウム一水和物0.16gとNMP8mLとの混合溶液に加え、120℃で24時間反応させた。反応混合物を、6mol/L塩酸80mL中に注ぎ込み、1時間撹拌した。析出した固体を濾過により分離した。分離した固体を乾燥し、灰白色の前記一般式(G9)で示されるセグメントと下記化学式(G11)で表されるセグメントからなるブロックコポリマーb4を得た。得られたポリエーテルスルホン系ブロックコポリマーの重量平均分子量は190,000、イオン交換容量(IEC)は2.0であった。得られたポリエーテルスルホン系ブロックコポリマーを、0.1g/gとなるように、N-メチル-2-ピロリドン/メタノール=30/70(質量%)有機溶媒に溶解して高分子電解質溶液Fを得た。高分子電解質溶液Fの粘度は1,300mPa・sであった。
“ポアフロン”(登録商標)WP-010-80(住友電工ファインポリマー(株)製)を横方向に10倍延伸後、365℃において熱処理を実施した。次いで縦方向に2倍延伸することにより、膜厚9μm、空隙率80%のePTFE多孔質基材P1を作製した。SEM観察の結果、縦方向に略平行な平均直径0.9μmのノードと横方向に略平行な平均直径0.2μmのフィブリルを有する構造であった。
[ポリテトラフルオロエチレン(ePTFE)多孔質基材P2]
“ポアフロン”(登録商標)HP-045-30(住友電工ファインポリマー(株)製)を縦横方向に3倍同時2軸延伸することにより、膜厚8μm、空隙率89%のePTFE多孔質基材P2を作製した。SEM観察の結果、平均直径0.3μmのフィブリルが無規則な蜘蛛の巣状を形成する構造であった。
[親水化ePTFE多孔質基材P2’]
露点-80℃のグローブボックス内において、ePTFE多孔質基材Bを金属ナトリウム-ナフタレン錯体/テトラヒドロフラン(THF)1%溶液30g、THF70gからなる溶液に浸漬し、3秒経過後に引き上げ、すぐにTHFで十分洗浄し、膜厚8μm、空隙率88%の親水化ePTFE多孔質基材P2’を作製した。
[PBI繊維から成る多孔質基材P3]
合成例8で得られたPBIを、8重量%になるようにジメチルスルホキシド(DMSO)に溶解させ、カトーテック(株)製エレクトロスピニングユニットを使用し、電圧20kV、シリンジポンプ吐出速度0.12mL/時、シリンジとターゲット間の距離100mmの条件で紡糸すると同時にナノファイバー不織布を作製した。得られたナノファイバー不織布を80℃で1時間減圧乾燥した後、厚み125μmの“カプトン”(商標登録)基材上に積層し、窒素雰囲気中400度で10分加熱することで、平均繊維径160nm、厚み7μmのPBI繊維から成る多孔質基材P3を得た。空隙率は86%であった。
[ポリテトラフルオロエチレン(ePTFE)多孔質基材P4]
“Tetratex”(登録商標)TX1356(Donaldson社製)を多孔質基材P4として用いた。膜厚8μm、空隙率85%であった。
[実施例1]
100gの高分子電解質溶液Aに、ポリオキシエチレンエーテル系界面活性剤“フタージェント”(登録商標)208G(ネオス(株)製)(フッ素原子含有量54質量%、親水性元素含有量11質量%、重量平均分子量1,800)0.26gを溶解し、高分子電解質と界面活性剤の質量比(以下、「界面活性剤/電解質」)が0.02の電解質-界面活性剤混合溶液を調製した。ナイフコーターを用い、この電解質-界面活性剤混合溶液をガラス基板上に流延塗布し、ePTFE多孔質基材P1を貼り合わせた。室温にて1時間保持し、ePTFE多孔質基材P1に電解質-界面活性剤混合溶液Aを十分含浸させた後、100℃にて4時間乾燥した。乾燥後の膜の上面に、再度電解質-界面活性剤混合溶液Aを流延塗布し、室温にて1時間保持した後、100℃にて4時間乾燥し、フィルム状の重合体を得た。10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、電解質膜(膜厚9μm)を得た。
[実施例2]
界面活性剤/電解質を0.10とした電解質-界面活性剤混合溶液を使用した以外は、実施例1と同様にして電解質膜(膜厚9μm)を得た。
[実施例3]
面活性剤/電解質を0.01とした電解質-界面活性剤混合溶液を使用した以外は、実施例1と同様にして電解質膜(膜厚9μm)を得た。
[実施例4]
高分子電解質溶液Aの代わりに高分子電解質溶液Bを使用した以外は、実施例1と同様にして電解質膜(膜厚9μm)を得た。
[実施例5]
高分子電解質溶液Aの代わりに高分子電解質溶液Cを使用した以外は、実施例1と同様にして電解質膜(膜厚9μm)を得た。
[実施例6]
高分子電解質溶液Aの代わりに高分子電解質溶液Dを使用した以外は、実施例1と同様にして電解質膜(膜厚10μm)を得た。
[実施例7]
高分子電解質溶液Aの代わりに高分子電解質溶液Eを使用した以外は、実施例1と同様にして電解質膜(膜厚10μm)を得た。
[実施例8]
高分子電解質溶液Aの代わりに高分子電解質溶液Fを使用した以外は、実施例1と同様にして電解質膜(膜厚10μm)を得た。
[実施例9]
“フタージェント”(登録商標)208Gの代わりにポリオキシエチレンエーテル系界面活性剤“フタージェント”(登録商標)FTX-218(ネオス(株)製)(フッ素原子含有量46質量%、親水性元素含有量14質量%、重量平均分子量1,900)を使用した以外は、実施例1と同様にして電解質膜(膜厚10μm)を得た。
[実施例10]
“フタージェント”(登録商標)208Gの代わりに低金属含有グレードポリオキシエチレンエーテル系界面活性剤“フタージェント”(登録商標)DFX-18(ネオス(株)製)(フッ素原子含有量46質量%、親水性元素含有量14質量%、重量平均分子量1,900)を使用した以外は、実施例1と同様にして電解質膜(膜厚10μm)を得た。
[実施例11]
“フタージェント”(登録商標)208Gの代わりに含フッ素基親水性基/親油性基含有オリゴマー系界面活性剤“フタージェント”(登録商標)710FS(ネオス(株)製)(フッ素原子含有量16質量%、親水性元素含有量30質量%、重量平均分子量3,500)を使用した以外は、実施例1と同様にして電解質膜(膜厚10μm)を得た。
[実施例12]
ePTFE多孔質基材P1の代わりにePTFE多孔質基材P2を使用した以外は、実施例1と同様にして電解質膜(膜厚8μm)を得た。
[実施例13]
“フタージェント”(登録商標)208Gの代わりに含フッ素基親水性基/親油性基含有オリゴマー系界面活性剤“メガファック”(登録商標)F-555(DIC(株)製)を使用した以外は、実施例1と同様にして電解質膜(膜厚9μm)を得た。
[実施例14]
ナイフコーターを用い、高分子電解質溶液Aをガラス基板上に流延塗布し、PBI多孔質基材P3を貼り合わせた。室温にて1時間保持し、PBI多孔質基材P3に高分子電解質溶液Aを十分含浸させた後、100℃にて4時間乾燥した。乾燥後の膜の上面に、再度高分子電解質溶液Aを流延塗布し、室温にて1時間保持した後、100℃にて4時間乾燥し、フィルム状の重合体を得た。10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、電解質膜(膜厚8μm)を得た。
[実施例15]
ePTFE多孔質基材P1の代わりにePTFE多孔質基材P4を使用した以外は、実施例1と同様にして電解質膜(膜厚9μm)を得た。
[比較例1]
ナイフコーターを用い、100gの高分子電解質溶液Aをガラス基板上に流延塗布した後、100℃にて4時間乾燥し、フィルム状の重合体を得た。10質量%硫酸水溶液に80℃で24時間浸漬してプロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、電解質膜(膜厚10μm)を得た。
[比較例2]
“フタージェント”(登録商標)208Gを用いなかった以外は実施例1と同様にして電解質膜の作製を試みたが、高分子電解質溶液Aが多孔質基材に浸透せず電解質膜を得ることができなかった。
[比較例3]
高分子電解質溶液Aの代わりに高分子電解質溶液Bを使用した以外は、比較例1と同様にして電解質膜(膜厚10μm)を得た。
[比較例4]
高分子電解質溶液Aの代わりに高分子電解質溶液Cを使用した以外は、比較例1と同様にして電解質膜(膜厚10μm)を得た。
[比較例5]
ePTFE多孔質基材P1の代わりにePTFE多孔質基材P2を使用した以外は、実施例5と同様にして電解質膜(膜厚8μm)を得た。
[比較例6]
高分子電解質溶液Aの代わりに高分子電解質溶液Dを使用した以外は、比較例1と同様にして電解質膜(膜厚10μm)を得た。
[比較例7]
高分子電解質溶液Aの代わりに高分子電解質溶液Eを使用した以外は、比較例1と同様にして電解質膜(膜厚10μm)を得た。
[比較例8]
高分子電解質溶液Aの代わりに高分子電解質溶液Fを使用した以外は、比較例1と同様にして複合電解質膜(膜厚10μm)を得た。
[比較例9]
ePTFE多孔質基材P1の代わりに親水化ePTFE多孔質基材P2’を使用した以外は、比較例2と同様にして電解質膜(膜厚10μm)を得た。
[比較例10]
“フタージェント”(登録商標)208Gの代わりに界面活性剤“トリトン”(登録商標)X-100(非フッ素系界面活性剤)(フッ素原子含有量0、親水性元素含有量27質量%、重量平均分子量700)を使用した以外は、実施例1と同様にして電解質膜の作製を試みたが、高分子電解質溶液Aが多孔質基材に浸透せず電解質膜を得ることができなかった。
[比較例11]
“フタージェント”(登録商標)208Gの代わりに界面活性剤パーフルオロオクタンスルホン酸(PFOS)(アニオン性フッ素系界面活性剤)(フッ素原子含有量65質量%、親水性元素含有量16質量%、重量平均分子量500)を使用した以外は、実施例1と同様にして電解質膜(膜厚10μm)を得た。
注2)多孔質基材P1:膜厚9μm、空隙率80%のポリテトラフルオロエチレン(ePTFE)、多孔質基材P2:膜厚8μm、空隙率89%のポリテトラフルオロエチレン(ePTFE)、多孔質基材P2’:膜厚8μm、空隙率88%の親水化ePTFE、多孔質基材P3:膜厚7μm、空隙率86%のポリベンズイミダゾール(PBI)、多孔質基材P4:膜厚8μm、空隙率85%のポリテトラフルオロエチレン(ePTFE)。
Claims (18)
- 高分子電解質と多孔質基材とを含み、幅当たりの乾燥引張弾性率が100N/cm以上であり、幅当たりの含水引張弾性率が35N/cm以上である複合高分子電解質膜。
- 断面積当たりの含水引張弾性率が400MPa以上である請求項1に記載の複合高分子電解質膜。
- 含水引張弾性率/乾燥引張弾性率が0.3以上である請求項1または2に記載の複合高分子電解質膜。
- 含水引張破断伸度が60%以上である請求項1~3のいずれかに記載の複合高分子電解質膜。
- 含水引張破断強度が5N/cm以上である請求項1~4のいずれかに記載の複合高分子電解質膜。
- 前記多孔質基材がフッ素系多孔質基材である請求項1~5のいずれかに記載の複合高分子電解質膜。
- 前記多孔質基材の酸素原子含有量が10質量%以下である請求項1~6のいずれかに記載の複合高分子電解質膜。
- 前記高分子電解質がイオン性基を有する炭化水素系ポリマーである請求項1~7のいずれかに記載の複合高分子電解質膜。
- さらにノニオン性フッ素系界面活性剤を含む請求項1~8のいずれかに記載の複合高分子電解質膜。
- ノニオン性フッ素系界面活性剤が、フッ化アルキル基、フッ化アルケニル基またはフッ化アリール基からなるフッ素含有基と、非イオン性の親媒基とを有する化合物である、請求項9に記載の複合高分子電解質膜。
- 前記多孔質基材が芳香族炭化水素系多孔質基材である請求項1~5のいずれかに記載の複合高分子電解質膜。
- 前記多孔質基材がポリアゾール系多孔質基材である請求項11に記載の複合高分子電解質膜。
- 前記多孔質基材がポリベンズイミダゾールからなる請求項11または12に記載の複合高分子電解質膜。
- 厚み方向に光線を透過させた際のヘイズ値が20%以上45%以下である請求項1~13のいずれかに記載の複合高分子電解質膜。
- 厚み方向に光線を透過させた際の拡散透過率が20%以上40%以下である請求項1~14のいずれかに記載の複合高分子電解質膜。
- 請求項1~15のいずれかに記載の複合高分子電解質膜両面を触媒層が挟持してなる触媒層付複合高分子電解質膜。
- 請求項1~15のいずれかに記載の複合高分子電解質膜を含む膜電極複合体。
- 請求項1~15のいずれかに記載の複合高分子電解質膜を含む固体高分子形燃料電池。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080063046.1A CN114391192A (zh) | 2019-09-20 | 2020-09-11 | 复合高分子电解质膜、带有催化剂层的电解质膜、膜电极复合体及固体高分子型燃料电池 |
US17/642,817 US20220407101A1 (en) | 2019-09-20 | 2020-09-11 | Composite polymer electrolyte membrane, electrolyte membrane with catalyst layer, membrane-electrode assembly, and solid polymer fuel cell |
CA3154665A CA3154665A1 (en) | 2019-09-20 | 2020-09-11 | Composite polymer electrolyte membrane, electrolyte membrane with catalyst layer, membrane-electrode assembly, and solid polymer fuel cell |
JP2020549721A JP7559556B2 (ja) | 2019-09-20 | 2020-09-11 | 複合高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 |
KR1020227007361A KR20220066047A (ko) | 2019-09-20 | 2020-09-11 | 복합 고분자 전해질막, 촉매층을 갖는 전해질막, 막전극 복합체 및 고체 고분자형 연료 전지 |
EP20864384.1A EP4033500A4 (en) | 2019-09-20 | 2020-09-11 | COMPOSITE POLYMER ELECTROLYTIC MEMBRANE, ELECTROLYTIC MEMBRANE WITH CATALYTIC LAYER, MEMBRANE-ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019171866 | 2019-09-20 | ||
JP2019-171866 | 2019-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021054252A1 true WO2021054252A1 (ja) | 2021-03-25 |
Family
ID=74884627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/034419 WO2021054252A1 (ja) | 2019-09-20 | 2020-09-11 | 複合高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20220407101A1 (ja) |
EP (1) | EP4033500A4 (ja) |
JP (1) | JP7559556B2 (ja) |
KR (1) | KR20220066047A (ja) |
CN (1) | CN114391192A (ja) |
CA (1) | CA3154665A1 (ja) |
WO (1) | WO2021054252A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005166557A (ja) | 2003-12-04 | 2005-06-23 | Jsr Corp | 高分子電解質複合膜およびその製造法、ならびにそれを用いた固体高分子型燃料電池 |
JP2008288193A (ja) * | 2007-04-19 | 2008-11-27 | Toyota Motor Corp | 燃料電池用補強型電解質膜、燃料電池用膜−電極接合体、及びそれを備えた固体高分子形燃料電池 |
WO2010101195A1 (ja) * | 2009-03-04 | 2010-09-10 | 旭化成イーマテリアルズ株式会社 | フッ素系高分子電解質膜 |
JP2013062240A (ja) * | 2011-08-22 | 2013-04-04 | Toray Ind Inc | 複合化高分子電解質膜 |
JP2015028850A (ja) | 2013-07-30 | 2015-02-12 | 公立大学法人首都大学東京 | 複合膜及びその製造方法 |
JP2017532716A (ja) | 2014-08-04 | 2017-11-02 | ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited | 膜 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5599614A (en) | 1995-03-15 | 1997-02-04 | W. L. Gore & Associates, Inc. | Integral composite membrane |
EP2656425B1 (en) * | 2010-12-20 | 2014-12-10 | E.I. Du Pont De Nemours And Company | Ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell |
CN107004883B (zh) * | 2014-10-10 | 2019-12-31 | 日本戈尔有限公司 | 燃料电池用电解质膜 |
WO2016148017A1 (ja) * | 2015-03-13 | 2016-09-22 | 東レ株式会社 | 複合高分子電解質膜ならびにそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 |
CN108701847B (zh) * | 2016-02-18 | 2021-10-08 | 东丽株式会社 | 复合高分子电解质膜及使用其的膜电极复合体、固体高分子型燃料电池 |
CA3090633A1 (en) | 2018-03-30 | 2019-10-03 | Toray Industries, Inc. | Electrolyte membrane |
-
2020
- 2020-09-11 CA CA3154665A patent/CA3154665A1/en active Pending
- 2020-09-11 KR KR1020227007361A patent/KR20220066047A/ko unknown
- 2020-09-11 US US17/642,817 patent/US20220407101A1/en active Pending
- 2020-09-11 CN CN202080063046.1A patent/CN114391192A/zh active Pending
- 2020-09-11 JP JP2020549721A patent/JP7559556B2/ja active Active
- 2020-09-11 WO PCT/JP2020/034419 patent/WO2021054252A1/ja unknown
- 2020-09-11 EP EP20864384.1A patent/EP4033500A4/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005166557A (ja) | 2003-12-04 | 2005-06-23 | Jsr Corp | 高分子電解質複合膜およびその製造法、ならびにそれを用いた固体高分子型燃料電池 |
JP2008288193A (ja) * | 2007-04-19 | 2008-11-27 | Toyota Motor Corp | 燃料電池用補強型電解質膜、燃料電池用膜−電極接合体、及びそれを備えた固体高分子形燃料電池 |
WO2010101195A1 (ja) * | 2009-03-04 | 2010-09-10 | 旭化成イーマテリアルズ株式会社 | フッ素系高分子電解質膜 |
JP2013062240A (ja) * | 2011-08-22 | 2013-04-04 | Toray Ind Inc | 複合化高分子電解質膜 |
JP2015028850A (ja) | 2013-07-30 | 2015-02-12 | 公立大学法人首都大学東京 | 複合膜及びその製造方法 |
JP2017532716A (ja) | 2014-08-04 | 2017-11-02 | ジョンソン、マッセイ、フュエル、セルズ、リミテッドJohnson Matthey Fuel Cells Limited | 膜 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4033500A4 |
Also Published As
Publication number | Publication date |
---|---|
US20220407101A1 (en) | 2022-12-22 |
EP4033500A1 (en) | 2022-07-27 |
JP7559556B2 (ja) | 2024-10-02 |
CN114391192A (zh) | 2022-04-22 |
KR20220066047A (ko) | 2022-05-23 |
CA3154665A1 (en) | 2021-03-25 |
EP4033500A4 (en) | 2023-09-27 |
JPWO2021054252A1 (ja) | 2021-03-25 |
TW202130024A (zh) | 2021-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6924742B2 (ja) | 複合高分子電解質膜およびそれを用いた膜電極複合体、固体高分子型燃料電池 | |
CN111886734B (zh) | 电解质膜 | |
TWI671942B (zh) | 複合高分子電解質膜以及使用其之附有觸媒層的電解質膜、膜電極複合物、固體高分子形燃料電池、氫壓縮裝置及複合高分子電解質膜之製造方法 | |
JP6891271B2 (ja) | 高分子電解質膜、膜電極接合体、及び固体高分子型燃料電池 | |
JP7188204B2 (ja) | 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池 | |
JP7563062B2 (ja) | 複合高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 | |
WO2021054253A1 (ja) | 複合電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子形燃料電池および複合電解質膜の製造方法 | |
JP2021052001A (ja) | 複合電解質膜およびそれを用いた膜電極複合体、固体高分子形燃料電池 | |
JP7559556B2 (ja) | 複合高分子電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 | |
TWI856181B (zh) | 複合高分子電解質膜、附有觸媒層之電解質膜、膜電極複合體及固體高分子型燃料電池 | |
JP2022094934A (ja) | 電解質膜、触媒層付電解質膜、膜電極複合体および固体高分子形燃料電池 | |
WO2021192949A1 (ja) | 電解質膜およびそれを用いたレドックスフロー電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020549721 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20864384 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3154665 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020864384 Country of ref document: EP Effective date: 20220420 |