WO2021054169A1 - コイル封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 - Google Patents

コイル封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 Download PDF

Info

Publication number
WO2021054169A1
WO2021054169A1 PCT/JP2020/033765 JP2020033765W WO2021054169A1 WO 2021054169 A1 WO2021054169 A1 WO 2021054169A1 JP 2020033765 W JP2020033765 W JP 2020033765W WO 2021054169 A1 WO2021054169 A1 WO 2021054169A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
resin composition
resin
epoxy resin
sealing
Prior art date
Application number
PCT/JP2020/033765
Other languages
English (en)
French (fr)
Inventor
翔平 山口
東哲 姜
貴一 稲葉
静花 柴
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202080065467.8A priority Critical patent/CN114450344B/zh
Priority to KR1020227011388A priority patent/KR20220066084A/ko
Priority to JP2021546614A priority patent/JPWO2021054169A1/ja
Publication of WO2021054169A1 publication Critical patent/WO2021054169A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Definitions

  • the present invention relates to a resin composition for coil encapsulation, an electronic component device, and a method for manufacturing the electronic component device.
  • the compound containing the metal powder and the resin composition is used as a raw material for various industrial products such as an inductor, an electromagnetic wave shield, and a bond magnet, depending on the physical characteristics of the metal powder (see, for example, Patent Document 1). .. Further, in a mold coil in which the coil is sealed with a magnetic material mold resin in which a magnetic material powder is dispersed in a resin, the magnetic material powder in which the magnetic material mold resin is mainly composed of a metallic magnetic material powder is 65 to 65 to a volume ratio. A molded coil containing 80 Vol% is disclosed (see, for example, Patent Document 2).
  • Patent Documents 1 and 2 disclose a molded coil in which a coil is sealed with a resin composition containing a magnetic powder and a resin.
  • a resin composition used for sealing a coil for example, when the coil is sealed using a mold, unfilling of the resin composition due to an increase in melt viscosity is suppressed, so that the rate of change in melt viscosity over time is low. It is desirable that it has excellent storage stability.
  • One aspect of the present disclosure is to provide a coil sealing resin composition having a low rate of change in melt viscosity over time and excellent storage stability, and an electronic component device and a method for manufacturing the electronic component device using the resin composition. And.
  • a resin composition for encapsulating a coil which comprises a magnetic powder, an epoxy resin, a curing agent, and a curing accelerator containing an intramolecular salt of phosphine having an aryl group.
  • the resin composition for coil encapsulation according to ⁇ 1> which further contains a release agent.
  • ⁇ 4> The resin composition for coil encapsulation according to any one of ⁇ 1> to ⁇ 3>, wherein the intramolecular salt contains an intramolecular salt of triphenylphosphine.
  • An electronic component device comprising a coil and a cured product of the resin composition for sealing a coil according to any one of ⁇ 1> to ⁇ 4> that seals the coil.
  • a method for manufacturing an electronic component device which comprises a step of sealing a coil with the resin composition for sealing a coil according to any one of ⁇ 1> to ⁇ 4>.
  • a resin composition for coil encapsulation having a low rate of change in melt viscosity over time and excellent storage stability, and an electronic component device and a method for manufacturing the electronic component device using the resin composition.
  • each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
  • the particles corresponding to each component may include a plurality of types of particles.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the resin composition for coil encapsulation of the present disclosure includes a magnetic powder, an epoxy resin, a curing agent, and a curing accelerator containing an intramolecular salt of phosphine having an aryl group.
  • the coil sealing resin composition may further contain other components, if necessary.
  • the resin composition for sealing the coil may be a resin composition used for manufacturing an electronic component device by sealing the coil.
  • the resin composition for coil encapsulation of the present disclosure contains an epoxy resin, a curing agent, and a curing accelerator containing an intramolecular salt of phosphine having an aryl group, so that the rate of change in melt viscosity over time is low and stored. Excellent stability.
  • the resin composition for encapsulating a coil of the present disclosure contains an imidazole-based compound that does not contain an intramolecular salt of phosphine having an aryl group by containing a curing accelerator containing an intramolecular salt of phosphine having an aryl group.
  • the rate of change in melt viscosity over time is low, and the storage stability is excellent.
  • the detailed reason for this is not always clear, but by using a curing accelerator containing an intramolecular salt of phosphine having an aryl group, the reactivity of the epoxy resin is not in a wide temperature range including room temperature but in a specific temperature range. It is considered that the rate of change in melt viscosity over time is low and the storage stability is excellent.
  • the resin composition for coil encapsulation of the present disclosure contains a magnetic powder.
  • the magnetic powder preferably contains, for example, at least one selected from the group consisting of elemental metals, alloys and metal compounds.
  • the specific gravity (density) of the magnetic powder may be, for example, 5 g / cm 3 or more.
  • the magnetic powder may be, for example, at least one selected from the group consisting of elemental metals, alloys and metal compounds.
  • the alloy may contain at least one selected from the group consisting of solid solutions, eutectic and intermetallic compounds.
  • the alloy may be, for example, stainless steel (Fe—Cr based alloy, Fe—Ni—Cr based alloy, etc.).
  • the metal compound may be, for example, an oxide such as ferrite.
  • the magnetic powder may contain one kind of metal element or a plurality of kinds of metal elements. Examples of the metal element contained in the magnetic powder include a base metal element, a noble metal element, a transition metal element and a rare earth element.
  • the resin composition for coil encapsulation may contain one kind of magnetic powder, or may contain a plurality of kinds of magnetic powder.
  • Examples of the metal element contained in the magnetic powder include iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), and aluminum (Al). ), Tin (Sn), Chromium (Cr), Niob (Nb), Barium (Ba), Strontium (Sr), Lead (Pb), Silver (Ag), Praseodymium (Pr), Neogym (Nd), Samarium (Sm) ) And at least one selected from the group consisting of dysprosium (Dy).
  • the magnetic powder may contain an element other than a metal element.
  • the magnetic powder contains, for example, at least one selected from the group consisting of carbon (C), oxygen ( ⁇ ), beryllium (Be), phosphorus (P), sulfur (S), boron (B) and silicon (Si). You may be.
  • the magnetic powder may be a soft magnetic alloy or a ferromagnetic alloy.
  • the magnetic powder includes, for example, Fe—Si alloy, Fe—Si—Al alloy (for example, Sendust), Fe—Ni alloy (for example, Permalloy), Fe—Cu—Ni alloy (for example, Permalloy), Fe.
  • ferrite examples include spinel ferrite, hexagonal ferrite, and garnet ferrite.
  • the magnetic powder may be Fe alone.
  • the magnetic powder may be an iron-containing alloy (Fe-based alloy).
  • the Fe-based alloy may be, for example, a Fe—Si—Cr based alloy or an Nd—Fe—B based alloy.
  • the magnetic powder may be at least one of amorphous iron powder and carbonyl iron powder. When the magnetic powder contains at least one of Fe simple substance and Fe-based alloy, it is easy to prepare a cured product having a high space factor and excellent magnetic properties from the resin composition for coil encapsulation.
  • the magnetic powder may be an Fe amorphous alloy.
  • the content of the magnetic powder shall be 60% by mass or more with respect to the total amount of the resin composition for coil encapsulation from the viewpoint of the magnetic characteristics when used as an electronic component device and the fluidity of the resin composition for coil encapsulation. Is more preferable, 80% by mass to 99% by mass is more preferable, 90% by mass to 98% by mass is further preferable, and 94.5% by mass to 97% by mass is particularly preferable.
  • the volume average particle size of the magnetic powder is not particularly limited, and may be, for example, 1 ⁇ m to 300 ⁇ m, 3 ⁇ m to 100 ⁇ m, or 4 ⁇ m to 50 ⁇ m.
  • the volume average particle size is determined as the particle size (50% D) at which the accumulation from the small particle size side is 50% in the volume accumulation particle size distribution curve by the laser diffraction scattering type particle size distribution measurement method.
  • it can be measured using a particle size distribution measuring device using a laser light scattering method (for example, Shimadzu Corporation, "SALD-3000").
  • the shape of the individual particles constituting the magnetic powder is not limited, and may be, for example, spherical, flat, prismatic, or needle-shaped.
  • the coil sealing resin composition may contain a plurality of types of magnetic powders having different volume average particle diameters.
  • the resin composition for coil encapsulation of the present disclosure includes an epoxy resin.
  • the epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule.
  • Epoxy resins include, for example, biphenyl type epoxy resin, stillben type epoxy resin, diphenylmethane type epoxy resin, sulfur atom-containing epoxy resin, novolak type epoxy resin, dicyclopentadiene type epoxy resin, salicylaldehyde type epoxy resin, naphthols and phenol.
  • Copolymerization type epoxy resin aralkyl type phenol resin epoxidized product, bisphenol type epoxy resin, epoxy resin containing bisphenol skeleton, alcoholic glycidyl ether type epoxy resin, paraxylylene and / or metaxylylene modified phenol resin glycidyl ether Type epoxy resin, glycidyl ether type epoxy resin of terpen-modified phenol resin, cyclopentadiene type epoxy resin, glycidyl ether type epoxy resin of polycyclic aromatic ring-modified phenol resin, glycidyl ether type epoxy resin of naphthalene ring-containing phenol resin, glycidyl ester type Epoxy resin, glycidyl type or methyl glycidyl type epoxy resin, alicyclic epoxy resin, halogenated phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, hydroquinone type epoxy resin, trimethylolpropane type epoxy resin, and ole
  • the epoxy resins are biphenyl type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, bisphenol type epoxy resin, epoxy resin having a bisphenol skeleton, salicylaldehyde novolac type epoxy resin, and naphthol novolac. It may be at least one selected from the group consisting of type epoxy resins, and may be at least one selected from the group consisting of biphenyl type epoxy resins and bisphenol type epoxy resins, and may be at least one selected from the group consisting of biphenylene aralkyl type epoxy resins and bisphenol A type epoxys. It may be at least one selected from the group consisting of resins.
  • the epoxy resin may be a crystalline epoxy resin. Although the crystalline epoxy resin has a relatively low molecular weight, the crystalline epoxy resin has a relatively high melting point and excellent fluidity.
  • the crystalline epoxy resin (highly crystalline epoxy resin) may be at least one selected from the group consisting of, for example, a hydroquinone type epoxy resin, a bisphenol type epoxy resin, a thioether type epoxy resin, and a biphenyl type epoxy resin. ..
  • the epoxy equivalent of the epoxy resin is not particularly limited. From the viewpoint of balancing various characteristics such as moldability, heat resistance, and electrical reliability, the epoxy equivalent of the epoxy resin is preferably 60 g / eq to 1000 g / eq, and preferably 80 g / eq to 500 g / eq. More preferably, it is 100 g / eq to 300 g / eq.
  • the epoxy equivalent of the epoxy resin is measured by dissolving the weighed epoxy resin in a solvent such as methyl ethyl ketone, adding acetic acid and a tetraethylammonium bromide acetic acid solution, and then potentiometric titration with an acetic acid perchlorate standard solution. An indicator may be used for this titration.
  • the content of the epoxy resin in the resin composition for sealing the coil is preferably 0.5% by mass to 20% by mass, preferably 1% by mass or more, from the viewpoints of strength, fluidity, heat resistance, moldability and the like. It is more preferably 10% by mass, and even more preferably 1.5% by mass to 5% by mass.
  • the resin composition for coil encapsulation of the present disclosure contains a curing agent.
  • the type of the curing agent is not particularly limited, and can be selected from those generally used as components of the epoxy resin composition. As the curing agent, one type may be used alone or two or more types may be used in combination.
  • the curing agent is classified into a curing agent that cures the epoxy resin in the range of low temperature to room temperature and a heat-curing type curing agent that cures the epoxy resin with heating.
  • Hardeners that cure epoxy resins in the low temperature to room temperature range are, for example, aliphatic polyamines, polyaminoamides, and polymercaptans.
  • the heat-curing type curing agent is, for example, aromatic polyamine, acid anhydride, phenol resin, dicyandiamide (DICY) and the like.
  • the glass transition point of the cured product obtained by curing the coil sealing resin composition is low, and this cured product tends to be soft. Further, the molded product formed from the coil sealing resin composition also tends to be soft.
  • the curing agent is preferably a heat-curing type curing agent, and more preferably a phenol resin.
  • the phenol resin is, for example, an aralkyl type phenol resin, a dicyclopentadiene type phenol resin, a salicylaldehyde type phenol resin, a novolac type phenol resin, a copolymerized phenol resin of a benzaldehyde type phenol and an aralkyl type phenol, a paraxylylene and / or a metaxylylene modification.
  • phenol resin From the group consisting of phenol resin, melamine-modified phenol resin, terpen-modified phenol resin, dicyclopentadiene-type naphthol resin, cyclopentadiene-modified phenol resin, polycyclic aromatic ring-modified phenol resin, biphenyl-type phenol resin, and triphenylmethane-type phenol resin. It may be at least one selected. Further, the phenol resin may contain a biphenyl type phenol resin and a triphenylmethane type phenol resin. The phenol resin may be a copolymer composed of two or more of the above.
  • the curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule.
  • the compound having two phenolic hydroxyl groups in one molecule may be at least one selected from the group consisting of, for example, resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
  • the hydroxyl group equivalent of the phenol resin is not particularly limited. From the viewpoint of balancing various characteristics such as moldability, heat resistance, and electrical reliability, it is preferably 10 g / eq to 1000 g / eq, and more preferably 30 g / eq to 500 g / eq.
  • the hydroxyl group equivalent of the phenol resin refers to a value calculated based on the hydroxyl value measured in accordance with JIS K0070: 1992.
  • the equivalent ratio of the epoxy resin to the curing agent (the number of moles of the epoxy group of the epoxy resin / the number of moles of the active hydrogen of the curing agent) is not particularly limited, and from the viewpoint of suppressing the unreacted portion of each, for example, 0. It is preferably 5 to 1.5, more preferably 0.6 to 1.4, and even more preferably 0.8 to 1.2.
  • the above-mentioned equivalent ratio is 0.5 or more, the elastic modulus of the cured product obtained by curing the coil sealing resin composition tends to be excellent.
  • the above-mentioned equivalent ratio is 1.5 or less, the mechanical strength of the above-mentioned cured product tends to decrease.
  • the resin composition for coil encapsulation contains a curing accelerator containing an intramolecular salt of phosphine having an aryl group.
  • the intramolecular salt of phosphine having an aryl group is preferably an intramolecular salt of phosphine containing at least one aryl group bonded to the phosphorus element, and a cation containing a phosphine skeleton containing at least one aryl group bonded to the phosphorus element.
  • An intramolecular salt of anion is more preferred.
  • Examples of the aryl group in phosphine having an aryl group include a phenyl group, a p-tolyl group, an m-tolyl group, an o-tolyl group, a p-methoxyphenyl group, an m-methoxyphenyl group, an o-methoxyphenyl group and a p-hydroxy Phenyl group, m-hydroxyphenyl group, o-hydroxyphenyl group, 2,5-dihydroxyphenyl group, 4- (4-hydroxyphenyl) phenyl group, 1-naphthyl group, 2-naphthyl group, 1- (2-hydroxy) Examples thereof include an unsubstituted aryl group such as a naphthyl) group and a 1- (4-hydroxynaphthyl) group, and a substituted aryl group.
  • the phosphine having an aryl group may have an alkyl group bonded to the phosphorus element.
  • Alkyl groups include linear, branched and cyclic alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, octyl group and cyclohexyl group. Group is mentioned.
  • Examples of the phosphine having an aryl group include methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, diphenylphosphine, phenylphosphine and the like, and triphenylphosphine is preferable.
  • the intramolecular salt of phosphine having an aryl group preferably contains an intramolecular salt of triphenylphosphine.
  • the intramolecular salt of triphenylphosphine is preferably an intramolecular salt of a cation containing a triphenylphosphine skeleton and an anion.
  • Examples of the cation containing a triphenylphosphine skeleton include a triphenylphosphine cation, a reaction product of triphenylphosphine and a compound having an aryl group, and the like.
  • a reaction product of triphenylphosphine and a compound having an aryl group is preferable from the viewpoint of the rate of change in melt viscosity over time.
  • reaction product of triphenylphosphine and the compound having an aryl group a reaction product of triphenylphosphine and a compound having two hydroxyl groups and an aryl group is preferable, and a reaction product of triphenylphosphine and hydroquinone is more preferable.
  • anion examples include an anion such as an aryl compound having two or more carboxy groups and an aryl compound having two or more hydroxyl groups. More specific examples of the above-mentioned anions include anions such as phthalic acid, benzene-1,2,4,5-tetracarboxylic acid, and p-benzoquinone.
  • the content of the intramolecular salt of phosphine having an aryl group in the curing accelerator is not particularly limited as long as the effect of the present invention is exhibited, and is, for example, 50% by mass or more with respect to the total amount of the curing accelerator. It may be 70% by mass or more, 90% by mass or more, or 100% by mass.
  • the content of the curing accelerator in the resin composition for coil encapsulation is not particularly limited as long as the curing promoting effect can be obtained.
  • the content of the curing accelerator is preferably 0.1 part by mass to 10 parts by mass, and 1 part by mass to 5 parts by mass, based on 100 parts by mass of the epoxy resin, from the viewpoint of curing promoting effect and storage stability. Is more preferable.
  • the content of the curing accelerator is 0.05 parts by mass to 5 parts by mass with respect to 100 parts by mass in total of the epoxy resin and the curing agent (for example, phenol resin) from the viewpoint of curing acceleration effect and storage stability. It is preferably 0.5 parts by mass to 2.5 parts by mass.
  • the curing accelerator may contain a curing accelerator (hereinafter, "other curing accelerator") other than the intramolecular salt of phosphine having an aryl group.
  • Other curing accelerators are 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), 1,5-diazabicyclo [4.3.0] -5-nonen, 5,6-dibutylamino.
  • Cycloamidine compounds such as -1,8-diazabicyclo [5.4.0] -7-undecene; maleic anhydride, 1,4-benzoquinone, 2,5-turquinone, 1,4-naphthoquinone, and 2, , 3-Dimethylbenzoquinone, 2,6-dimethylbenzoquinone, 2,3-dimethoxy-5-methyl-1,4-benzoquinone, 2,3-dimethoxy-1,4-benzoquinone, phenyl-1,4-benzoquinone, etc.
  • Compounds with intramolecular polarization formed by adding a compound having a ⁇ bond such as a quinone compound, diazophenylmethane, phenol resin; benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, etc.
  • a compound having a ⁇ bond such as a quinone compound, diazophenylmethane, phenol resin; benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, etc.
  • the resin composition for coil encapsulation of the present disclosure further contains a mold release agent. Since the resin composition for coil encapsulation contains a mold release agent, it is possible to easily separate the cured product from the mold in the process of producing a cured product from the resin composition using a mold or the like.
  • the release agent examples include fatty acids such as polyolefins and higher fatty acids, fatty acid esters, partially saponified fatty acid esters, fatty acid salts, fatty acid amides, alcohols, polyethers, polysiloxanes, fluorine compounds, metal soaps and natural products. Wax is mentioned. From the viewpoint of easily improving the fluidity of the resin composition for coil encapsulation, the release agent preferably contains a fatty acid.
  • the polyolefin may be, for example, at least one of polyethylene and polypropylene.
  • the polyolefin may be, for example, a polar wax that is at least one selected from the group consisting of polyethylene oxide, grafted polyolefins, and copolymers.
  • the polyolefin may be at least one of polyethylene and polyethylene oxide.
  • Examples of the release agent include fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, and laurate, or esters thereof; zinc stearate, calcium stearate, barium stearate, aluminum stearate, magnesium stearate, etc.
  • fatty acids such as montanic acid, stearic acid, 12-oxystearic acid, and laurate, or esters thereof; zinc stearate, calcium stearate, barium stearate, aluminum stearate, magnesium stearate, etc.
  • Fatty acid salts such as calcium laurate, zinc laurate, zinc linoleate, calcium ricinolate, zinc 2-ethylhexoneate; stearic acid amide, oleic acid amide, erucic acid amide, bechenic acid amide, palmitate amide, laurate amide, hydroxy Stearic acid amide, methylene bisstearic acid amide, ethylene bisstearic acid amide, ethylene bislauric acid amide, distearyl adipic acid amide, ethylene bisoleic acid amide, diorail adipic acid amide, N-stearyl stearic acid amide, N-oleyl Stearic acid amide, N-stearyl erucate amide, methylol stearic acid amide, methylol bechenic acid amide and other fatty acid amides; fatty acid esters such as butyl stearate; alcohols such as ethylene glycol and stearyl alcohol
  • It may be at least one selected from the group consisting of waxes such as ester wax, carnauba wax, and microwax.
  • Resin for coil encapsulation Resin for coil encapsulation according to the requirements in composition design such as fluidity, mold releasability, temperature and pressure at the time of molding, melting point and melt viscosity of mold release agent, etc.
  • the release agent contained in the composition may be appropriately selected.
  • the content of the mold release agent is 0 with respect to the total amount of the resin composition for coil encapsulation from the viewpoint of mold releasability and mechanical strength of the cured product. It is preferably 0.01% by mass to 0.5% by mass, more preferably 0.05% by mass to 0.3% by mass, and further preferably 0.1% by mass to 0.2% by mass. preferable.
  • the content of the mold release agent is 0.5% by mass or more with respect to the total amount of the epoxy resin from the viewpoint of the mold release property and the mechanical strength of the cured product. It is preferably 20% by mass, more preferably 1% by mass to 10% by mass, and even more preferably 3% by mass to 7% by mass.
  • the resin composition for coil encapsulation includes a resin other than the epoxy resin and the curing agent exemplified below (hereinafter, also referred to as “other resins”), a coupling agent, an ion exchanger, and a release agent. It may contain various additives such as a mold agent, a flame retardant, a colorant, and a stress relaxation agent.
  • the coil sealing resin composition may contain various additives well known in the art, if necessary, in addition to the additives exemplified below.
  • the coil sealing resin composition may contain an epoxy resin and other resins other than the curing agent.
  • other resins include silicone resin, polyamide resin, polyamide-imide resin, and thermoplastic resin.
  • the thermoplastic resin may be, for example, at least one selected from the group consisting of acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate.
  • the resin composition may contain both a thermosetting resin and a thermoplastic resin.
  • the resin composition may contain a silicone resin.
  • a coupling agent When the coil sealing resin composition contains an inorganic filler, a coupling agent may be contained in order to enhance the adhesiveness between the resin component and the magnetic powder.
  • the coupling agent include known coupling agents such as silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane and vinylsilane, titanium compounds, aluminum chelate compounds and aluminum / zirconium compounds. ..
  • the method for preparing the resin composition for coil encapsulation is not particularly limited.
  • the resin composition for coil encapsulation is solid, as a general method, after sufficiently mixing the components in a predetermined blending amount with a mixer or the like, melt-kneading with a mixing roll, an extruder or the like, cooling and pulverization are performed.
  • the resin composition for coil encapsulation is liquid
  • a predetermined amount of components are weighed and dispersed by a three-roll, a grinder, a planetary mixer, a hard mixer, a homomixer, or the like.
  • a method of kneading can be mentioned.
  • a method using a masterbatch in which each compounding component is pre-dispersed and pre-heated is preferable from the viewpoint of uniform dispersibility and fluidity.
  • the shape is not particularly limited, and examples thereof include powder, granules, and tablets.
  • the resin composition for coil encapsulation is in the form of a tablet, it is preferable that the dimensions and mass are suitable for the molding conditions of the package from the viewpoint of handleability.
  • the electronic component device of the present disclosure includes a coil and a cured product of the above-mentioned resin composition for sealing a coil of the present disclosure that seals the coil.
  • the electronic component device of the present disclosure is obtained, for example, by curing a coil-sealing resin composition that covers at least a part of a coil.
  • the cured product can be obtained, for example, by heating the coil sealing resin composition at 100 ° C. to 250 ° C. for 1 hour to 10 hours, preferably 130 ° C. to 230 ° C. for 1 hour to 8 hours.
  • the coil-sealing resin composition of the present disclosure is filled in a mold in which a coil is arranged, and the coil-sealing resin composition filled in the mold is cured. It can be obtained by.
  • the resin composition for coil encapsulation of the present disclosure has a low rate of change in melt viscosity over time and is excellent in storage stability, so that it is excellent in filling properties into a mold and is excellent in productivity of electronic component devices. There is a tendency.
  • the electronic component device of the present disclosure may be a molded coil in which the coil is sealed with a coil sealing resin composition, for example, a lead frame, a pre-wired tape carrier, a wiring board, glass, a silicon wafer, and an organic substrate.
  • a coil sealing resin composition for example, a lead frame, a pre-wired tape carrier, a wiring board, glass, a silicon wafer, and an organic substrate.
  • a coil, an active element such as a semiconductor chip, a transistor, a diode, and a thyristor, a passive element such as a capacitor, and a resistor are mounted on a support member such as a coil. Some are stopped.
  • the method for manufacturing an electronic component of the present disclosure includes a step of sealing a coil with the resin composition for sealing a coil of the present disclosure.
  • the resin composition for coil encapsulation of the present disclosure is suitable as a coil encapsulant.
  • Examples of the method of sealing the coil using the solid resin composition for sealing the coil include a low-pressure transfer molding method, an injection molding method, and a compression molding method.
  • Epoxy resin Epoxy resin
  • Epoxy resin A Biphenylene aralkyl type epoxy resin (epoxy equivalent 277 g / eq)
  • Epoxy resin B Trifunctional bisphenol A type epoxy resin (epoxy equivalent 205 g / eq to 215 g / eq)
  • Hardener Hardener
  • Hardener A Biphenyl-type phenol resin (hydroxyl equivalent 202 g / eq)
  • Hardener B Triphenylmethane type phenol resin (hydroxyl equivalent 103 g / eq)
  • Curing accelerator A Intramolecular salt of a reaction product of triphenylphosphine and hydroquinone and phthalate anion Curing accelerator
  • B Intramolecular salt of triphenylphosphine and p-benzoquinone Curing accelerator C ...
  • 2-Heptadecylimidazole Hardening accelerator D ⁇ ⁇ ⁇ 2-Phenyl-4-methylimidazole Hardening accelerator E ⁇ ⁇ ⁇ 2-Phenyl-4-methyl-5-hydroxymethylimidazole (silane compound) Silane compound A ... 3-glycidyloxypropyltrimethoxysilane Silane compound B ... 3-mercaptopropyltrimethoxysilane (release agent) Release agent A ⁇ ⁇ ⁇ Zinc laurate Release agent B ⁇ ⁇ ⁇ Partially saponified montanic acid ester (magnetic powder) Magnetic powder 1 ... Amorphous iron powder (volume average particle size 24 ⁇ m) Magnetic powder 2 ... Amorphous iron powder (volume average particle size 5.3 ⁇ m)
  • Example 1 (Preparation of resin mixture) 50 parts of epoxy resin A, 50 parts of epoxy resin B, 41.6 parts of curing agent A, 21.8 parts of curing agent B, 2 parts of curing accelerator A, 4 parts of mold release agent A and 2 parts
  • the mold release agent B of No. 3 was put into a plastic container.
  • a resin mixture was prepared by mixing these raw materials in a plastic container for 10 minutes.
  • the resin mixture corresponds to all the other components of the coil sealing resin composition except the magnetic powder and the coupling agent.
  • the contents of the twin-screw kneader were heated to 70 ° C., and the contents of the twin-screw kneader were mixed for 10 minutes while maintaining the temperature.
  • the above resin mixture was added to the contents of the twin-screw kneader, and the contents were melted and kneaded for 15 minutes while maintaining the temperature of the contents at 90 ° C.
  • the kneaded product was pulverized with a hammer until the kneaded product had a predetermined particle size to prepare a resin composition for coil sealing.
  • melting means melting at least a part of the resin composition in the contents of the biaxial kneader.
  • the magnetic powder in the coil-sealing resin composition does not melt in the process of preparing the coil-sealing resin composition.
  • Example 2 In Example 1, 2.4 parts of the curing accelerator B was used instead of 2 parts of the curing accelerator A so that the mass ratio of the magnetic powder in the resin composition for coil encapsulation was 96.4%. A resin composition for coil encapsulation was prepared in the same manner as in Example 1 except that the total amount of the magnetic powder 1 and the magnetic powder 2 was changed.
  • Example 1 a resin composition for coil encapsulation was prepared in the same manner as in Example 1 except that the curing accelerators C and D were used in the amounts shown in Table 1 instead of the curing accelerator A.
  • Example 2 a resin composition for coil encapsulation was prepared in the same manner as in Example 1 except that the curing accelerator E was used instead of the curing accelerator A.
  • magnetic powder /% means the total content of magnetic powders 1 and 2 with respect to the total amount of the coil encapsulating resin composition.
  • the numerical values of the epoxy resin, the curing agent, the curing accelerator, the silane compound, and the mold release agent in Table 1 mean the parts by mass of each used for preparing the resin composition for coil encapsulation, and further, coil sealing. It also means the mass ratio of each of the resin composition excluding the magnetic powder.
  • the blanks mean that they are "not blended".
  • the minimum melt viscosity at 130 ° C. was measured using the coil-sealing resin compositions of each Example and Comparative Example. The results are shown in Table 2 below.
  • the minimum melt viscosity was measured using a flow tester CFT-100 (manufactured by Shimadzu Corporation), and the measurement conditions were 130 ° C., residual heat of 20 seconds, and a load of 100 kg. Further, the pushing distance (unit: mm) of the plunger until the flow of the resin composition for coil encapsulation stopped was measured as a stroke. Stroke is an indicator of liquidity.
  • the gel time at 140 ° C. was measured using the coil-sealing resin compositions of each Example and Comparative Example.
  • the gel time of the resin composition for coil encapsulation was measured using a curastometer (manufactured by JSR Trading Co., Ltd.) under the conditions of a sample volume of 1.5 ml and 140 ° C.
  • the time at which the torque of the obtained chart started to rise was defined as the gel time (sec).
  • the results are shown in Table 2 below.
  • Test pieces were obtained by transfer molding using the coil-sealing resin compositions of Examples and Comparative Examples at 140 ° C.
  • the test piece was a rectangular parallelepiped (rod) made of a cured product obtained by curing the coil sealing resin composition at 180 ° C. for 2 hours.
  • the pressure applied to the compound was 13.5 MPa.
  • the dimensions of the test piece were 80 mm in length ⁇ 10 mm in width ⁇ 3.0 mm in thickness.
  • a three-point support type bending test was performed on the test piece using an autograph with a constant temperature bath. As the autograph, AGS-500A manufactured by Shimadzu Corporation was used. The temperature of the constant temperature bath was 250 ° C.
  • P is the load (unit: N) when the test piece is broken.
  • Lv is the distance (unit: mm) between the two fulcrums.
  • W is the width (unit: mm) of the test piece.
  • T is the thickness (unit: mm) of the test piece.
  • F / Y is the gradient (unit: N / mm) of the straight line portion of the load-deflection curve.
  • (3 ⁇ P ⁇ Lv) / (2 ⁇ W ⁇ t 2 ) (A)
  • E [Lv 3 / (4 ⁇ W ⁇ t 3 )] ⁇ (F / Y) (B)
  • the cured product of the coil sealing resin composition has a low flexural modulus and high bending strength at a high temperature. Whether or not the balance between the flexural modulus and the bending strength is excellent can be evaluated by the calculated value of the reliability index formula shown below.
  • Reliability index (bending strength (MPa) ⁇ flexural modulus (GPa)) The results are shown in Table 2.
  • the calculated value of the reliability index formula can be evaluated as follows. Calculated value less than 10 ⁇ 10 -3 ⁇ ⁇ ⁇ The balance between elastic modulus and strength is poor. Calculated value 10 ⁇ 10 -3 or more and 11 ⁇ 10 -3 or less ⁇ ⁇ Slightly excellent in balance between elastic modulus and strength. Calculated value 11 ⁇ 10 -3 or more: Excellent balance between elastic modulus and strength.
  • the coil-sealing resin compositions of Examples 1 and 2 had a smaller minimum melt viscosity retention rate value than the coil-sealing resin compositions of Comparative Examples 1 and 2. Therefore, the resin compositions for coil encapsulation of Examples 1 and 2 have a small change in the minimum melt viscosity with time and are excellent in storage stability.
  • the coil-sealing resin compositions of Examples 1 and 2 had a larger gel time retention rate value than the coil-sealing resin compositions of Comparative Example 2. Therefore, the resin compositions for coil encapsulation of Examples 1 and 2 were excellent in storage stability.
  • the molded products molded using the coil-sealing resin compositions of Examples 1 and 2 are more than the molded products molded using the coil-sealing resin compositions of Comparative Examples 1 and 2.
  • the value of the reliability index was also large. Therefore, it was shown that by using the resin compositions for coil encapsulation of Examples 1 and 2, a molded product having an excellent balance of flexural modulus and bending strength at high temperature and high reliability can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Abstract

磁性粉と、エポキシ樹脂と、硬化剤と、アリール基を有するホスフィンの分子内塩を含む硬化促進剤と、を含むコイル封止用樹脂組成物。

Description

コイル封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
 本発明は、コイル封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法に関する。
 金属粉末及び樹脂組成物を含むコンパウンドは、金属粉末の諸物性に応じて、例えば、インダクタ、電磁波シールド、ボンド磁石等の多様な工業製品の原材料として利用される(例えば、特許文献1参照。)。
 また、樹脂に磁性体粉末を分散させた磁性体モールド樹脂でコイルを封止したモールドコイルにおいて、該磁性体モールド樹脂が主に金属系磁性体粉末からなる該磁性体粉末を体積比で65~80Vol%含有するモールドコイルが開示されている(例えば、特許文献2参照)。
特開2014-13803号公報 特開2009-260116号公報
 特許文献1及び2では、磁性体粉末及び樹脂を含む樹脂組成物でコイルを封止したモールドコイルが開示されている。このようなコイルの封止に用いる樹脂組成物では、例えば金型を用いてコイルを封止する際の溶融粘度上昇による樹脂組成物の未充填を抑制するため、経時における溶融粘度変化率が低く保存安定性に優れていることが望ましい。
 本開示の一態様は、経時における溶融粘度変化率が低く保存安定性に優れたコイル封止用樹脂組成物、並びにこれを用いた電子部品装置及び電子部品装置の製造方法を提供することを目的とする。
 前記課題を達成するための具体的手段は以下の通りである。
<1> 磁性粉と、エポキシ樹脂と、硬化剤と、アリール基を有するホスフィンの分子内塩を含む硬化促進剤と、を含むコイル封止用樹脂組成物。
<2> 離型剤をさらに含む<1>に記載のコイル封止用樹脂組成物。
<3> 前記磁性粉の含有率は、コイル封止用樹脂組成物の全量に対して60質量%以上である<1>又は<2>に記載のコイル封止用樹脂組成物。
<4> 前記分子内塩は、トリフェニルホスフィンの分子内塩を含む<1>~<3>のいずれか1つに記載のコイル封止用樹脂組成物。
<5> コイルと、前記コイルを封止する<1>~<4>のいずれか1つに記載のコイル封止用樹脂組成物の硬化物とを備える電子部品装置。
<6> コイルを<1>~<4>のいずれか1つに記載のコイル封止用樹脂組成物で封止する工程を含む電子部品装置の製造方法。
 本開示の一態様によれば、経時における溶融粘度変化率が低く保存安定性に優れたコイル封止用樹脂組成物、並びにこれを用いた電子部品装置及び電子部品装置の製造方法を提供できる。
実施例1、2及び比較例1、2のコイル封止用樹脂組成物の25℃、相対湿度50%条件での放置時間と、最低溶融粘度保持率との関係を示すグラフである。 実施例1のコイル封止用樹脂組成物について、25℃、相対湿度50%条件及び30℃、相対湿度70%条件での放置時間と、ゲルタイム保持率との関係を示すグラフである。 実施例2のコイル封止用樹脂組成物について、25℃、相対湿度50%条件及び30℃、相対湿度70%条件での放置時間と、ゲルタイム保持率との関係を示すグラフである。 比較例2のコイル封止用樹脂組成物について、25℃、相対湿度50%条件及び30℃、相対湿度70%条件での放置時間と、ゲルタイム保持率との関係を示すグラフである。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分には、該当する物質が複数種含まれていてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において、各成分に該当する粒子には、複数種の粒子が含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
<コイル封止用樹脂組成物>
 本開示のコイル封止用樹脂組成物は、磁性粉と、エポキシ樹脂と、硬化剤と、アリール基を有するホスフィンの分子内塩を含む硬化促進剤と、を含む。コイル封止用樹脂組成物は、必要に応じてその他の成分をさらに含んでいてもよい。コイル封止用樹脂組成物は、コイルを封止して電子部品装置を製造するために用いる樹脂組成物であってもよい。
 本開示のコイル封止用樹脂組成物は、エポキシ樹脂と、硬化剤と、アリール基を有するホスフィンの分子内塩を含む硬化促進剤と、を含むことにより、経時における溶融粘度変化率が低く保存安定性に優れている。例えば、本開示のコイル封止用樹脂組成物は、アリール基を有するホスフィンの分子内塩を含む硬化促進剤を含むことにより、アリール基を有するホスフィンの分子内塩を含まずにイミダゾール系化合物を含む硬化促進剤を含むコイル封止用樹脂組成物と比較して、経時における溶融粘度変化率が低く、保存安定性に優れている。この詳細な理由は必ずしも明らかではないが、アリール基を有するホスフィンの分子内塩を含む硬化促進剤を用いることにより、常温を含む広い温度域ではなく、特定の温度域にてエポキシ樹脂の反応性が高まるため、経時における溶融粘度変化率が低く保存安定性に優れている、と考えられる。
(磁性粉)
 本開示のコイル封止用樹脂組成物は、磁性粉を含む。磁性粉としては、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種を含むことが好ましい。磁性粉の比重(密度)は、例えば、5g/cm以上であってもよい。磁性粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種であってもよい。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでいてもよい。合金は、例えば、ステンレス鋼(Fe‐Cr系合金、Fe‐Ni‐Cr系合金等)であってもよい。金属化合物は、例えば、フェライト等の酸化物であってもよい。磁性粉は、一種の金属元素又は複数種の金属元素を含んでいてもよい。磁性粉に含まれる金属元素としては、例えば、卑金属元素、貴金属元素、遷移金属元素及び希土類元素が挙げられる。
 コイル封止用樹脂組成物は、一種の磁性粉を含んでいてもよく、複数種の磁性粉を含んでいてもよい。
 磁性粉に含まれる金属元素としては、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、ニオブ(Nb)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種が挙げられる。磁性粉は、金属元素以外の元素を含んでいてもよい。磁性粉は、例えば、炭素(C)、酸素(О)、ベリリウム(Be)、リン(P)、硫黄(S)、ホウ素(B)及びケイ素(Si)からなる群より選ばれる少なくとも一種を含んでいてもよい。
 磁性粉は、軟磁性合金、又は強磁性合金であってもよい。磁性粉は、例えば、Fe‐Si系合金、Fe‐Si‐Al系合金(例えば、センダスト)、Fe‐Ni系合金(例えば、パーマロイ)、Fe‐Cu‐Ni系合金(例えば、パーマロイ)、Fe‐Co系合金(例えば、パーメンジュール)、Fe‐Cr‐Si系合金(例えば、電磁ステンレス鋼)、Nd‐Fe‐B系合金(例えば、希土類磁石)、Sm‐Fe‐N系合金(例えば、希土類磁石)、Al‐Ni‐Co系合金(例えば、アルニコ磁石)及びフェライトからなる群より選ばれる少なくとも一種を含む磁性粉であってもよい。フェライトとしては、例えば、スピネルフェライト、六方晶フェライト、及びガーネットフェライトが挙げられる。
 磁性粉は、Fe単体であってもよい。磁性粉は、鉄を含む合金(Fe系合金)であってもよい。Fe系合金は、例えば、Fe‐Si‐Cr系合金、又はNd‐Fe‐B系合金であってもよい。磁性粉は、アモルファス系鉄粉及びカルボニル鉄粉のうち少なくともいずれかであってもよい。磁性粉がFe単体及びFe系合金のうち少なくともいずれかを含む場合、高い占積率を有し、かつ磁気特性に優れる硬化物をコイル封止用樹脂組成物から作製しやすい。磁性粉は、Feアモルファス合金であってもよい。
 磁性粉の含有率は、電子部品装置としたときの磁気特性及びコイル封止用樹脂組成物の流動性の観点から、コイル封止用樹脂組成物全量に対して、60質量%以上であることが好ましく、80質量%~99質量%であることがより好ましく、90質量%~98質量%であることがさらに好ましく、94.5質量%~97質量%であることが特に好ましい。
 磁性粉の体積平均粒子径は、特に限定されず、例えば、1μm~300μmであってもよく、3μm~100μmであってもよく、4μm~50μmであってもよい。
 本開示において、体積平均粒子径は、レーザー回折散乱式粒度分布測定法による体積累積の粒度分布曲線において、小粒子径側からの累積が50%となる粒子径(50%D)として求められる。例えば、レーザー光散乱法を利用した粒子径分布測定装置(例えば、(株)島津製作所、「SALD-3000」)を用いて測定することができる。
 磁性粉を構成する個々の粒子の形状は限定されず、例えば、球状、扁平形状、角柱状又は針状であってもよい。コイル封止用樹脂組成物は、体積平均粒子径の異なる複数種の磁性粉を含んでいてもよい。
(エポキシ樹脂)
 本開示のコイル封止用樹脂組成物は、エポキシ樹脂を含む。エポキシ樹脂は、例えば、1分子中に2個以上のエポキシ基を有する樹脂であってもよい。
 エポキシ樹脂は、例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を含有するエポキシ樹脂、アルコール類のグリシジルエーテル型エポキシ樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、テルペン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、多環芳香環変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、ナフタレン環含有フェノール樹脂のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジル型又はメチルグリシジル型のエポキシ樹脂、脂環型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、並びにオレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂からなる群より選ばれる少なくとも一種であってもよい。
 エポキシ樹脂は、流動性の観点から、ビフェニル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、ビスフェノール骨格を有するエポキシ樹脂、サリチルアルデヒドノボラック型エポキシ樹脂、及びナフトールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種であってもよく、ビフェニル型エポキシ樹脂及びビスフェノール型エポキシ樹脂からなる群より選ばれる少なくとも一種であってもよく、ビフェニレンアラルキル型エポキシ樹脂及びビスフェノールA型エポキシ樹脂からなる群より選ばれる少なくとも一種であってもよい。
 エポキシ樹脂は、結晶性のエポキシ樹脂であってもよい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。結晶性のエポキシ樹脂(結晶性の高いエポキシ樹脂)は、例えば、ハイドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、チオエーテル型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも一種であってもよい。
 エポキシ樹脂のエポキシ当量は特に制限されない。成形性、耐熱性、電気的信頼性等の各種特性バランスの観点から、エポキシ樹脂のエポキシ当量は、60g/eq~1000g/eqであることが好ましく、80g/eq~500g/eqであることがより好ましく、100g/eq~300g/eqであることがさらに好ましい。
 エポキシ樹脂のエポキシ当量は、秤量したエポキシ樹脂をメチルエチルケトン等の溶媒に溶解させ、酢酸と臭化テトラエチルアンモニウム酢酸溶液を加えた後、過塩素酸酢酸標準液によって電位差滴定することにより測定される。この滴定には、指示薬を用いてもよい。
 コイル封止用樹脂組成物中のエポキシ樹脂の含有率は、強度、流動性、耐熱性、成形性等の観点から、0.5質量%~20質量%であることが好ましく、1質量%~10質量%であることがより好ましく、1.5質量%~5質量%であることがさらに好ましい。
(硬化剤)
 本開示のコイル封止用樹脂組成物は、硬化剤を含む。
 硬化剤の種類は特に制限されず、エポキシ樹脂組成物の成分として一般に使用されているものから選択できる。硬化剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。硬化剤は、低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤と、加熱に伴ってエポキシ樹脂を硬化させる加熱硬化型の硬化剤と、に分類される。低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤は、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタンである。加熱硬化型の硬化剤は、例えば、芳香族ポリアミン、酸無水物、フェノール樹脂、及びジシアンジアミド(DICY)等である。
 低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤を用いた場合、コイル封止用樹脂組成物を硬化して得られる硬化物のガラス転移点は低く、この硬化物は軟らかい傾向にある。また、コイル封止用樹脂組成物から形成された成形体も軟らかくなり易い。
 一方、成形体の耐熱性及び機械的強度を向上させる観点から、硬化剤は、加熱硬化型の硬化剤が好ましく、フェノール樹脂がより好ましい。
 フェノール樹脂は、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ノボラック型フェノール樹脂、ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂からなる群より選ばれる少なくとも一種であってもよい。また、フェノール樹脂は、ビフェニル型フェノール樹脂及びトリフェニルメタン型フェノール樹脂を含んでいてもよい。フェノール樹脂は、上記のうちの2種以上から構成される共重合体であってもよい。
 硬化剤は、例えば、1分子中に2個のフェノール性水酸基を有する化合物であってもよい。1分子中に2個のフェノール性水酸基を有する化合物は、例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、及び置換又は非置換のビフェノールからなる群より選ばれる少なくとも一種であってもよい。
 フェノール樹脂の水酸基当量は、特に制限されない。成形性、耐熱性、電気的信頼性等の各種特性バランスの観点から、10g/eq~1000g/eqであることが好ましく、30g/eq~500g/eqであることがより好ましい。
 フェノール樹脂の水酸基当量は、JIS K0070:1992に準拠して測定された水酸基価に基づいて算出された値をいう。
 エポキシ樹脂と硬化剤との当量比(エポキシ樹脂のエポキシ基のモル数/硬化剤の活性水素のモル数)は、特に制限はなく、それぞれの未反応分を少なく抑える観点から、例えば、0.5~1.5であることが好ましく、0.6~1.4であることがより好ましく、0.8~1.2であることがさらに好ましい。前述の当量比が0.5以上である場合、コイル封止用樹脂組成物を硬化して得られる硬化物の弾性率に優れる傾向にある。一方、前述の当量比が1.5以下である場合、前述の硬化物の機械的強度が低下する傾向にある。
(硬化促進剤)
 コイル封止用樹脂組成物は、アリール基を有するホスフィンの分子内塩を含む硬化促進剤を含む。アリール基を有するホスフィンの分子内塩としては、リン元素に結合するアリール基を少なくとも一つ含むホスフィンの分子内塩が好ましく、リン元素に結合するアリール基を少なくとも一つ含むホスフィン骨格を含むカチオンと、アニオンの分子内塩であることがより好ましい。
 アリール基を有するホスフィンにおけるアリール基としては、フェニル基、p-トリル基、m-トリル基、o-トリル基、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、p-ヒドロキシフェニル基、m-ヒドロキシフェニル基、o-ヒドロキシフェニル基、2,5-ジヒドロキシフェニル基、4-(4-ヒドロキシフェニル)フェニル基、1-ナフチル基、2-ナフチル基、1-(2-ヒドロキシナフチル)基、1-(4-ヒドロキシナフチル)基等の非置換アリール基及び置換アリール基が挙げられる。
 アリール基を有するホスフィンは、リン元素に結合するアルキル基を有していてもよい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、t-ブチル基、オクチル基、シクロヘキシル基等の直鎖状、分岐鎖状及び環状のアルキル基が挙げられる。
 アリール基を有するホスフィンとしては、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等が挙げられ、中でもトリフェニルホスフィンが好ましい。
 アリール基を有するホスフィンの分子内塩は、トリフェニルホスフィンの分子内塩を含むことが好ましい。トリフェニルホスフィンの分子内塩としては、トリフェニルホスフィン骨格を含むカチオンと、アニオンの分子内塩であることが好ましい。
 トリフェニルホスフィン骨格を含むカチオンとしては、トリフェニルホスフィンカチオン、トリフェニルホスフィンとアリール基を有する化合物との反応物等が挙げられる。トリフェニルホスフィン骨格を含むカチオンとしては、経時における溶融粘度変化率の観点から、トリフェニルホスフィンとアリール基を有する化合物との反応物が好ましい。
 トリフェニルホスフィンとアリール基を有する化合物との反応物としては、トリフェニルホスフィンと2つの水酸基及びアリール基を有する化合物との反応物が好ましく、トリフェニルホスフィンとヒドロキノンとの反応物がより好ましい。
 前述のアニオンとしては、カルボキシ基を2つ以上有するアリール化合物、水酸基を2つ以上有するアリール化合物等のアニオンが挙げられる。前述のアニオンとしては、より具体的には、フタル酸、ベンゼン-1,2,4,5-テトラカルボン酸、p-ベンゾキノン等のアニオンが挙げられる。
 硬化促進剤中におけるアリール基を有するホスフィンの分子内塩の含有率は、本発明の効果を奏する範囲であれば特に限定されず、例えば、硬化促進剤全量に対して50質量%以上であってもよく、70質量%以上であってもよく、90質量%以上であってもよく、100質量%であってもよい。
 コイル封止用樹脂組成物中の硬化促進剤の含有率は、硬化促進効果が得られる量であれば特に限定されない。硬化促進剤の含有量は、エポキシ樹脂100質量部に対して、硬化促進効果及び保存安定性の観点から、0.1質量部~10質量部であることが好ましく、1質量部~5質量部であることがより好ましい。また、硬化促進剤の含有量は、硬化促進効果及び保存安定性の観点から、エポキシ樹脂及び硬化剤(例えばフェノール樹脂)の合計100質量部に対して、0.05質量部~5質量部であることが好ましく、0.5質量部~2.5質量部であることがより好ましい。
 硬化促進剤は、アリール基を有するホスフィンの分子内塩以外の硬化促進剤(以下、「その他の硬化促進剤」)を含んでいてもよい。その他の硬化促進剤は、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン、5,6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等のシクロアミジン化合物;シクロアミジン化合物に無水マレイン酸、1,4-ベンゾキノン、2,5-トルキノン、1,4-ナフトキノン、2,3-ジメチルベンゾキノン、2,6-ジメチルベンゾキノン、2,3-ジメトキシ-5-メチル-1,4-ベンゾキノン、2,3-ジメトキシ-1,4-ベンゾキノン、フェニル-1,4-ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂などのπ結合をもつ化合物を付加してなる分子内分極を有する化合物;ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン化合物;3級アミン化合物の誘導体;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール等のイミダゾール化合物;イミダゾール化合物の誘導体;トリブチルホスフィン等の有機ホスフィン化合物;有機ホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物などが挙げられる。その他の硬化促進剤は、1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
(離型剤)
 本開示のコイル封止用樹脂組成物は、離型剤をさらに含むことが好ましい。コイル封止用樹脂組成物が離型剤を含むことで、金型等を用いてこの樹脂組成物から硬化物を作製する過程で、硬化物を金型から分離しやすくすることができる。
 離型剤としては、例えば、ポリオレフィン、高級脂肪酸等の脂肪酸、脂肪酸エステル、脂肪酸エステルの部分ケン化物、脂肪酸塩、脂肪酸アミド、アルコール類、ポリエーテル類、ポリシロキサン類、フッ素化合物、金属せっけん及び天然ワックスが挙げられる。コイル封止用樹脂組成物の流動性が向上しやすい観点において、離型剤は、脂肪酸を含むことが好ましい。
 ポリオレフィンとしては、例えば、ポリエチレン及びポリプロピレンの少なくとも一種であってもよい。ポリオレフィンは、例えば、酸化ポリエチレン、グラフト型ポリオレフィン、及びコポリマーからなる群より選ばれる少なくとも一種である極性ワックスであってもよい。ポリオレフィンとしては、ポリエチレン及び酸化ポリエチレンの少なくとも一種であってもよい。
 離型剤としては、例えば、モンタン酸、ステアリン酸、12-オキシステアリン酸、ラウリン酸等の脂肪酸類又はこれらのエステル;ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ラウリン酸カルシウム、ラウリン酸亜鉛、リノール酸亜鉛、リシノール酸カルシウム、2-エチルヘキソイン酸亜鉛等の脂肪酸塩;ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N-ステアリルステアリン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミド等の脂肪酸アミド;ステアリン酸ブチル等の脂肪酸エステル;エチレングリコール、ステアリルアルコール等のアルコール類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール及びこれらの変性物からなるポリエーテル類;シリコーンオイル、シリコングリース等のポリシロキサン類;フッ素系オイル、フッ素系グリース、含フッ素樹脂粉末等のフッ素化合物;並びに、パラフィンワックス、アマイドワックス、エステルワックス、カルナバワックス、マイクロワックス等のワックス類;からなる群より選ばれる少なくとも一種であってもよい。
 コイル封止用樹脂組成物の流動性、離型性、成形時の温度及び圧力、離型剤の融点及び溶融粘度等、組成物の設計において要求される事項に応じて、コイル封止用樹脂組成物に含まれる離型剤が適宜選択されてよい。
 コイル封止用樹脂組成物が離型剤を含む場合、離型剤の含有率は、硬化物の離型性及び機械的強度の観点から、コイル封止用樹脂組成物全量に対して、0.01質量%~0.5質量%であることが好ましく、0.05質量%~0.3質量%であることがより好ましく、0.1質量%~0.2質量%であることがさらに好ましい。
 コイル封止用樹脂組成物が離型剤を含む場合、離型剤の含有率は、硬化物の離型性及び機械的強度の観点から、エポキシ樹脂全量に対して、0.5質量%~20質量%であることが好ましく、1質量%~10質量%であることがより好ましく、3質量%~7質量%であることがさらに好ましい。
[各種添加剤]
 コイル封止用樹脂組成物は、上述の成分に加えて、以下に例示するエポキシ樹脂及び硬化剤以外の樹脂(以下、「その他の樹脂」とも称する。)、カップリング剤、イオン交換体、離型剤、難燃剤、着色剤、応力緩和剤等の各種添加剤を含有してもよい。コイル封止用樹脂組成物は、以下に例示する添加剤以外にも必要に応じて当技術分野で周知の各種添加剤を含有してもよい。
(その他の樹脂)
 コイル封止用樹脂組成物は、エポキシ樹脂及び硬化剤以外の樹脂であるその他の樹脂を含んでいてもよい。その他の樹脂としては、シリコーン樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、熱可塑性樹脂等が挙げられる。熱可塑性樹脂としては、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、及びポリエチレンテレフタレートからなる群より選ばれる少なくとも一種であってもよい。樹脂組成物は、熱硬化性樹脂及び熱可塑性樹脂の両方を含んでよい。樹脂組成物は、シリコーン樹脂を含んでいてもよい。
(カップリング剤)
 コイル封止用樹脂組成物が無機充填材を含有する場合は、樹脂成分と磁性粉との接着性を高めるために、カップリング剤を含有してもよい。カップリング剤としては、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン等のシラン系化合物、チタン系化合物、アルミニウムキレート化合物、アルミニウム/ジルコニウム系化合物などの公知のカップリング剤が挙げられる。
(コイル封止用樹脂組成物の調製方法)
 コイル封止用樹脂組成物の調製方法は、特に制限されない。コイル封止用樹脂組成物が固形である場合、一般的な手法としては、所定の配合量の成分をミキサー等によって十分混合した後、ミキシングロール、押出機等によって溶融混練し、冷却し、粉砕する方法を挙げることができる。より具体的には、例えば、上述した成分の所定量を均一に撹拌及び混合し、予め70℃~140℃に加熱してあるニーダー、ロール、エクストルーダー等で混練し、冷却し、粉砕する方法を挙げることができる。
 コイル封止用樹脂組成物が液状である場合、一般的な手法としては、所定の配合量の成分を秤量し、三本ロール、らい潰機、プラネタリーミキサー、ハードミキサー、ホモミキサー等によって分散し混練を行う方法を挙げることができる。また、各配合成分を予備分散及び予備加熱させたマスターバッチを用いる手法が、均一分散性及び流動性の点から好ましい。
 コイル封止用樹脂組成物が固形である場合の形状は特に制限されず、粉状、粒状、タブレット状等が挙げられる。コイル封止用樹脂組成物がタブレット状である場合の寸法及び質量は、パッケージの成形条件に合うような寸法及び質量となるようにすることが取り扱い性の観点から好ましい。
<電子部品装置>
 本開示の電子部品装置は、コイルと、前記コイルを封止する前述の本開示のコイル封止用樹脂組成物の硬化物とを備える。本開示の電子部品装置は、例えば、コイルの少なくとも一部を覆うコイル封止用樹脂組成物を硬化させることで得られる。
 硬化物は、例えば、コイル封止用樹脂組成物を100℃~250℃で1時間~10時間、好ましくは130℃~230℃で1時間~8時間加熱することで得られる。
 本開示の電子部品装置は、例えば、コイルが配置された金型内に本開示のコイル封止用樹脂組成物を充填し、金型内に充填されたコイル封止用樹脂組成物を硬化させることで得られる。このとき、本開示のコイル封止用樹脂組成物は、経時における溶融粘度変化率が低く保存安定性に優れているため、金型内への充填性に優れ、電子部品装置の生産性に優れる傾向にある。
 本開示の電子部品装置は、コイルをコイル封止用樹脂組成物で封止したモールドコイルであってもよく、例えば、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ、有機基板等の支持部材に、コイルとともに、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体等の受動素子などを搭載して得られた素子部をコイル封止用樹脂組成物で封止したものが挙げられる。
<電子部品装置の製造方法>
 本開示の電子部品の製造方法は、コイルを本開示のコイル封止用樹脂組成物で封止する工程を含む。本開示のコイル封止用樹脂組成物は、コイルの封止材として好適である。
 固形のコイル封止用樹脂組成物を用いてコイルを封止する方法としては、低圧トランスファ成形法、インジェクション成形法、圧縮成形法等が挙げられる。
 次に本発明を実施例により具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
 実施例及び比較例にて用いたエポキシ樹脂、硬化剤、硬化促進剤、シラン化合物、離型剤及び磁性粉の詳細は以下の通りである。
(エポキシ樹脂)
 エポキシ樹脂A・・・ビフェニレンアラルキル型エポキシ樹脂(エポキシ当量277g/eq)
 エポキシ樹脂B・・・三官能ビスフェノールA型エポキシ樹脂(エポキシ当量205g/eq~215g/eq)
(硬化剤)
 硬化剤A・・・ビフェニル型フェノール樹脂(水酸基当量202g/eq)
 硬化剤B・・・トリフェニルメタン型フェノール樹脂(水酸基当量103g/eq)
(硬化促進剤)
 硬化促進剤A・・・トリフェニルホスフィンとヒドロキノンとの反応物とフタル酸アニオンとの分子内塩
 硬化促進剤B・・・トリフェニルホスフィンとp-ベンゾキノンとの分子内塩
 硬化促進剤C・・・2-ヘプタデシルイミダゾール
 硬化促進剤D・・・2-フェニル-4-メチルイミダゾール
 硬化促進剤E・・・2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール
(シラン化合物)
 シラン化合物A・・・3-グリシジルオキシプロピルトリメトキシシラン
 シラン化合物B・・・3-メルカプトプロピルトリメトキシシラン
(離型剤)
 離型剤A・・・ラウリン酸亜鉛
 離型剤B・・・部分ケン化モンタン酸エステル
(磁性粉)
 磁性粉1・・・アモルファス系鉄粉(体積平均粒子径24μm)
 磁性粉2・・・アモルファス系鉄粉(体積平均粒子径5.3μm)
[実施例1]
(樹脂混合物の調製)
 50部のエポキシ樹脂A、50部のエポキシ樹脂B、41.6部の硬化剤A、21.8部の硬化剤B、2部の硬化促進剤A、4部の離型剤A及び2部の離型剤Bをポリ容器に投入した。これらの原料をポリ容器内で10分間混合することにより、樹脂混合物を調製した。この実施例では、樹脂混合物とは、コイル封止用樹脂組成物のうち、磁性粉及びカップリング剤を除く他の全成分に相当する。
(コイル封止用樹脂組成物の調製)
 磁性粉1及び磁性粉2の合計量4737部(混合比率は、質量比で82:18)を、加圧式2軸ニーダー(日本スピンドル製造株式会社製、容量5L)で5分間混合して、磁性粉を調製した。4.5部のシラン化合物A及び1部のシラン化合物Bの混合物(混合比率は表1に示す通りである)を2軸ニーダー内の磁性粉へ添加した。続いて、2軸ニーダーの内容物を70℃になるまで加熱し、その温度を保持しながら、2軸ニーダーの内容物を10分間混合した。続いて、上記の樹脂混合物を2軸ニーダーの内容物へ添加して、内容物の温度を90℃に保持しながら、内容物を15分間溶融・混練した。以上の溶融・混練によって得られた混練物を室温まで冷却した後、混練物が所定の粒度を有するようになるまで混練物をハンマーで粉砕し、コイル封止用樹脂組成物を調製した。なお、上記の「溶融」とは、2軸ニーダーの内容物のうち樹脂組成物の少なくとも一部の溶融を意味する。コイル封止用樹脂組成物中の磁性粉は、コイル封止用樹脂組成物の調製過程において溶融しない。
[実施例2]
 実施例1において、2部の硬化促進剤Aの代わりに2.4部の硬化促進剤Bを使用し、コイル封止用樹脂組成物における磁性粉の質量比率が96.4%となるように磁性粉1及び磁性粉2の合計量を変更した以外は実施例1と同様にしてコイル封止用樹脂組成物を調製した。
[比較例1]
 実施例1において、硬化促進剤Aの代わりに硬化促進剤C及びDを表1に示す量だけ使用した以外は実施例1と同様にしてコイル封止用樹脂組成物を調製した。
[比較例2]
 実施例1において、硬化促進剤Aの代わりに硬化促進剤Eを使用した以外は実施例1と同様にしてコイル封止用樹脂組成物を調製した。
 表1において、「磁性粉/%」は、コイル封止用樹脂組成物の全量に対する磁性粉1及び2の合計の含有率を意味する。また、表1中のエポキシ樹脂、硬化剤、硬化促進剤、シラン化合物及び離型剤の数値は、コイル封止用樹脂組成物の調製に用いたそれぞれの質量部を意味し、さらに、コイル封止用樹脂組成物中の磁性粉を除いたそれぞれの質量比率も意味する。
 また、表1中、空欄は「未配合」であることを意味する。
Figure JPOXMLDOC01-appb-T000001

 
(最低溶融粘度の測定)
 各実施例及び比較例のコイル封止用樹脂組成物を用いて、130℃における最低溶融粘度を測定した。この結果を下記の表2に示す。最低溶融粘度はフローテスタCFT-100(株式会社島津製作所製)を用いて測定し、測定条件は、130℃、余熱20秒、荷重100kgであった。また、コイル封止用樹脂組成物の流動が停止するまでのプランジャーの押し込み距離(単位:mm)をストロークとして測定した。ストロークは流動性の指標となる。
(経時における最低溶融粘度保持率の評価)
 各実施例及び比較例のコイル封止用樹脂組成物を用いて、経時における最低溶融粘度保持率の評価を行った。25℃、相対湿度50%で24時間、48時間、72時間、96時間及び120時間それぞれ放置したコイル封止用樹脂組成物を用い、130℃における最低溶融粘度を測定した。以下の式に基づき、最低溶融粘度保持率を求めた。
 最低溶融粘度保持率=(所定時間放置後におけるコイル封止用樹脂組成物の最低溶融粘度/放置前におけるコイル封止用樹脂組成物の最低溶融粘度)×100
 この結果を図1に示す。最低溶融粘度保持率の値が小さいほど、時間経過における最低溶融粘度の変化が小さく、保存安定性に優れることを意味する。
(ゲルタイムの測定)
 各実施例及び比較例のコイル封止用樹脂組成物を用いて、140℃におけるゲルタイムを測定した。コイル封止用樹脂組成物のゲルタイムを、キュラストメータ(JSRトレーディング株式会社製)を用い、試料量1.5ml、140℃の条件で測定した。得られたチャートのトルクの立ち上がり開始の時間をゲルタイム(sec)とした。
 この結果を下記の表2に示す。
(経時におけるゲルタイムの評価)
 実施例1、2及び比較例2のコイル封止用樹脂組成物を用いて、経時におけるゲルタイムの評価を行った。25℃、相対湿度50%で24時間、48時間、72時間、96時間及び120時間それぞれ放置したコイル封止用樹脂組成物、並びに30℃、相対湿度70%で12時間、24時間、48時間及び72時間それぞれ放置したコイル封止用樹脂組成物を用い、140℃におけるゲルタイムを測定した。以下の式に基づき、ゲルタイム保持率を求めた。
 ゲルタイム保持率=(所定時間放置後におけるコイル封止用樹脂組成物のゲルタイム/放置前におけるコイル封止用樹脂組成物のゲルタイム)×100
 結果を図2~図4に示す。
(高温曲げ試験)
 140℃での各実施例及び比較例のコイル封止用樹脂組成物を用いトランスファ成形により、試験片を得た。試験片は、コイル封止用樹脂組成物を180℃で2時間後硬化した硬化物からなる直方体(棒)であった。コンパウンドに加えた圧力は13.5MPaであった。試験片の寸法は、縦幅80mm×横幅10mm×厚さ3.0mmであった。恒温槽付きオートグラフを用いて、試験片に対して3点支持型の曲げ試験を実施した。オートグラフとしては、株式会社島津製作所製のAGS-500Aを用いた。恒温槽の温度は、250℃であった。曲げ試験では、2つの支点により試験片の一方の面を支持した。試験片の他方の面における2つの支点間の中央の位置に荷重を加えた。試験片が破壊されたときの荷重を測定した。曲げ試験の測定条件は、以下のとおりであった。
2つの支点間の距離Lv: 64.0±0.5mm
ヘッドスピード: 2.0±0.2mm/分
チャートスピード: 100mm/分
チャートフルスケール: 490N(50kgf)
下記数式(A)に基づいて、曲げ強度σ(単位:MPa)を算出した。下記数式(B)に基づいて、曲げ弾性率E(単位:GPa)を算出した。下記数式において、「P」は、試験片が破壊されたときの荷重(単位:N)である。「Lv」は、2つの支点間の距離(単位:mm)である。「W」は、試験片の横幅(単位:mm)である。「t」は、試験片の厚さ(単位:mm)である。「F/Y」は、荷重‐たわみ曲線の直線部分の勾配(単位:N/mm)である。
σ=(3×P×Lv)/(2×W×t)   (A)
E=[Lv/(4×W×t)]×(F/Y)   (B)
(弾性率・強度バランスの評価)
 コイル封止の信頼性の点から、コイル封止用樹脂組成物の硬化物は高温にて曲げ弾性率が低く、かつ曲げ強度が高いことが望ましい。曲げ弾性率及び曲げ強度のバランスに優れているかどうかは、以下に示す信頼性指標の式の算出値によって評価できる。
信頼性指標=(曲げ強度(MPa)÷曲げ弾性率(GPa))
 結果を表2に示す。
 なお、信頼性指標の式の算出値について以下のように評価できる。
 算出値10×10-3未満・・・弾性率及び強度のバランスが悪い。
 算出値10×10-3以上11×10-3以下・・弾性率及び強度のバランスにやや優れる。
 算出値11×10-3超・・・弾性率及び強度のバランスに優れる。
Figure JPOXMLDOC01-appb-T000002

 
 図1に示すように、実施例1及び2のコイル封止用樹脂組成物は、比較例1及び2のコイル封止用樹脂組成物と比較して最低溶融粘度保持率の値が小さかった。そのため、実施例1及び2のコイル封止用樹脂組成物は、経時における最低溶融粘度の変化が小さく、保存安定性に優れていた。
 さらに、図2~4に示すように、実施例1及び2のコイル封止用樹脂組成物は、比較例2のコイル封止用樹脂組成物と比較してゲルタイム保持率の値が大きかった。そのため、実施例1及び2のコイル封止用樹脂組成物は、保存安定性に優れていた。
 表2に示すように、実施例1及び2のコイル封止用樹脂組成物を用いて成形した成形物は、比較例1及び2のコイル封止用樹脂組成物を用いて成形した成形物よりも信頼性指標の値が大きかった。そのため、実施例1及び2のコイル封止用樹脂組成物を用いることで高温での曲げ弾性率及び曲げ強度のバランスに優れ、信頼性の高い成形物が得られることが示された。
 2019年9月20日に出願された日本国特許出願2019-171448の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的且つ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (6)

  1.  磁性粉と、
     エポキシ樹脂と、
     硬化剤と、
     アリール基を有するホスフィンの分子内塩を含む硬化促進剤と、を含むコイル封止用樹脂組成物。
  2.  離型剤をさらに含む請求項1に記載のコイル封止用樹脂組成物。
  3.  前記磁性粉の含有率は、コイル封止用樹脂組成物の全量に対して60質量%以上である請求項1又は請求項2に記載のコイル封止用樹脂組成物。
  4.  前記分子内塩は、トリフェニルホスフィンの分子内塩を含む請求項1~請求項3のいずれか1項に記載のコイル封止用樹脂組成物。
  5.  コイルと、前記コイルを封止する請求項1~請求項4のいずれか1項に記載のコイル封止用樹脂組成物の硬化物とを備える電子部品装置。
  6.  コイルを請求項1~請求項4のいずれか1項に記載のコイル封止用樹脂組成物で封止する工程を含む電子部品装置の製造方法。
PCT/JP2020/033765 2019-09-20 2020-09-07 コイル封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法 WO2021054169A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080065467.8A CN114450344B (zh) 2019-09-20 2020-09-07 线圈密封用树脂组合物、电子零件装置及电子零件装置的制造方法
KR1020227011388A KR20220066084A (ko) 2019-09-20 2020-09-07 코일 밀봉용 수지 조성물, 전자 부품 장치 및 전자 부품 장치의 제조 방법
JP2021546614A JPWO2021054169A1 (ja) 2019-09-20 2020-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019171448 2019-09-20
JP2019-171448 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021054169A1 true WO2021054169A1 (ja) 2021-03-25

Family

ID=74883793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033765 WO2021054169A1 (ja) 2019-09-20 2020-09-07 コイル封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法

Country Status (5)

Country Link
JP (1) JPWO2021054169A1 (ja)
KR (1) KR20220066084A (ja)
CN (1) CN114450344B (ja)
TW (1) TW202112880A (ja)
WO (1) WO2021054169A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190373A1 (ja) * 2022-03-29 2023-10-05 住友ベークライト株式会社 軟磁性材料、成形品、当該成形品の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157624A (ja) * 1992-11-09 1994-06-07 Ajinomoto Co Inc ホスホニウム塩およびそれを含有する光硬化型カチオン重合性樹脂
JPH10120765A (ja) * 1996-10-14 1998-05-12 Sumitomo Bakelite Co Ltd 熱硬化性樹脂用硬化促進剤及びこれを含有する熱硬化性樹脂組成物
JP2019080060A (ja) * 2017-10-20 2019-05-23 住友ベークライト株式会社 インダクタ成形用樹脂組成物および一体型インダクタ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004331677A (ja) * 2003-04-30 2004-11-25 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2009260116A (ja) * 2008-04-18 2009-11-05 Toko Inc モールドコイルおよびモールドコイルの製造方法
JP6159512B2 (ja) 2012-07-04 2017-07-05 太陽誘電株式会社 インダクタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157624A (ja) * 1992-11-09 1994-06-07 Ajinomoto Co Inc ホスホニウム塩およびそれを含有する光硬化型カチオン重合性樹脂
JPH10120765A (ja) * 1996-10-14 1998-05-12 Sumitomo Bakelite Co Ltd 熱硬化性樹脂用硬化促進剤及びこれを含有する熱硬化性樹脂組成物
JP2019080060A (ja) * 2017-10-20 2019-05-23 住友ベークライト株式会社 インダクタ成形用樹脂組成物および一体型インダクタ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190373A1 (ja) * 2022-03-29 2023-10-05 住友ベークライト株式会社 軟磁性材料、成形品、当該成形品の製造方法

Also Published As

Publication number Publication date
JPWO2021054169A1 (ja) 2021-03-25
TW202112880A (zh) 2021-04-01
CN114450344A (zh) 2022-05-06
CN114450344B (zh) 2024-11-05
KR20220066084A (ko) 2022-05-23

Similar Documents

Publication Publication Date Title
US11732124B2 (en) Compound and tablet
JP7103413B2 (ja) コンパウンド及び成形体
JP2022109291A (ja) コンパウンド粉
JP7136121B2 (ja) コンパウンド粉
WO2021054169A1 (ja) コイル封止用樹脂組成物、電子部品装置及び電子部品装置の製造方法
KR102422919B1 (ko) 컴파운드 및 성형체
JP7120304B2 (ja) コンパウンド、成形体、及び電子部品
WO2021241521A1 (ja) コンパウンド、成型体及び硬化物
WO2021241515A1 (ja) コンパウンド、成型体及び硬化物
WO2022050170A1 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2022042696A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2021172685A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
WO2021112135A1 (ja) コンパウンド及び成形体
JP7480781B2 (ja) コンパウンド、成型体及び硬化物
JP7231017B2 (ja) コンパウンドの製造方法
WO2021153688A1 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
WO2021241513A1 (ja) コンパウンド、成型体、及び硬化物
JP2022042742A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2021172686A (ja) コンパウンドの製造方法、コンパウンド用マスターバッチ、コンパウンド、成形体、及びコンパウンドの硬化物
JP2021120432A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2023075583A (ja) 樹脂成形材料、成形品および当該成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546614

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227011388

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20866289

Country of ref document: EP

Kind code of ref document: A1