WO2021052513A1 - 激光器 - Google Patents

激光器 Download PDF

Info

Publication number
WO2021052513A1
WO2021052513A1 PCT/CN2020/121630 CN2020121630W WO2021052513A1 WO 2021052513 A1 WO2021052513 A1 WO 2021052513A1 CN 2020121630 W CN2020121630 W CN 2020121630W WO 2021052513 A1 WO2021052513 A1 WO 2021052513A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
prism
sub
chip
mounting area
Prior art date
Application number
PCT/CN2020/121630
Other languages
English (en)
French (fr)
Inventor
周子楠
田有良
杜光超
韩继弘
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2021052513A1 publication Critical patent/WO2021052513A1/zh
Priority to US17/698,132 priority Critical patent/US20220209495A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Definitions

  • This application relates to the field of optoelectronic technology, in particular to a laser.
  • the laser may include a tube case, a carrier substrate, at least one heat sink and at least one laser chip, wherein the carrier substrate is arranged on the tube case, the at least one heat sink is pasted on the carrier substrate, and each laser chip is pasted on a heat sink .
  • the laser may also include a prism, which is used to adjust the direction of the light emitted by the laser chip, and the prism is usually also pasted on the substrate.
  • the present application provides a laser, including: a tube case, and a carrier substrate, a plurality of laser chips, and at least one prism located in the tube case, and the plurality of laser chips and the at least one prism are all located on the carrier.
  • a laser including: a tube case, and a carrier substrate, a plurality of laser chips, and at least one prism located in the tube case, and the plurality of laser chips and the at least one prism are all located on the carrier.
  • the carrier substrate includes: a chip mounting area where the plurality of laser chips are located, and a prism setting area where the at least one prism is located, and the prism setting area is recessed relative to the chip mounting area;
  • Each of the prisms corresponds to one or more of the laser chips, the prisms are located on the light exit side of the corresponding laser chips, and the prisms are used to reflect the light emitted by the corresponding laser chips.
  • FIG. 1 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of still another laser provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a laser provided by another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of another laser provided by another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of still another laser provided by another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another laser provided by another embodiment of the present application.
  • lasers can be used in welding processes, cutting processes, and laser projection.
  • the laser includes many components, such as a carrier substrate, a heat sink, a prism, a laser chip, etc., and each component is fixed by pasting or welding. Since there are errors in the pasting or welding process of each component, the overall error in the preparation of the final laser is relatively large, and it is difficult for the laser emitted by the laser to achieve a predetermined degree of collimation.
  • the following embodiments of the present application provide a carrier substrate, which can make the overall error in the preparation of a laser including the carrier substrate smaller, and thereby increase the collimation of the laser light emitted by the laser.
  • Fig. 1 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • the laser 20 includes a tube case 201, a carrier substrate 200 located in the tube case, a plurality of laser chips 202, and at least one prism 203, and the plurality of laser chips 202 and at least one prism 203 are all located on the carrier substrate. 200 is away from the side of the tube shell 201.
  • FIG. 1 only illustrates the two laser chips 202 in the laser 20, and the number of laser chips 202 in the laser 20 can also be three, four, or even more. This is not done in the embodiment of the application. limited.
  • the laser may also include only one laser chip.
  • the carrier substrate 200 includes a chip mounting area where a plurality of laser chips 202 are located, and a prism setting area where the at least one prism 203 is located, and the prism setting area is recessed relative to the chip mounting area.
  • Each prism 203 may correspond to one or more laser chips 202, the prism 203 is located on the light-emitting side of the corresponding laser chip 202, and the prism 203 is used to reflect the light emitted by the corresponding laser chip 202.
  • the raised part of the chip mounting area of the carrier substrate relative to the prism setting area in the embodiment of the present application is equivalent to the heat sink in the related art.
  • the embodiment of the present application is equivalent to integrally forming the heat sink and the carrier substrate in the related art, and there is no need to paste the heat sink on the carrier substrate, avoiding the paste error caused by pasting the heat sink, and reducing the assembly process of the laser.
  • the carrier substrate in the embodiments of the present application can be regarded as a heat sink with a large thickness, and the heat generated by the laser chip on the carrier substrate when emitting light can be conducted in the carrier substrate for a long time.
  • the heat on the carrier substrate is evenly distributed, so the heat generated by the laser chip can be evenly dispersed, so the carrier substrate has a better effect of assisting the laser chip to dissipate heat.
  • the prism setting area of the carrier substrate is recessed relative to the chip mounting area, and the laser chip is located in the chip mounting area, and there is no need to paste the heat for setting the laser chip on the carrier substrate. Shen. Therefore, the paste error caused by the paste heat sink is avoided, the overall error of the laser preparation is reduced, and the collimation of the light emitted by the laser can be improved.
  • the recess depth h of the prism arrangement area of the carrier substrate relative to the chip mounting area in the embodiment of the present application may be greater than 2.5 microns.
  • the depth h may be less than 5 microns. Since the light emitted by the laser chip has a divergence angle, and the recess depth of the prism setting area relative to the chip mounting area in the embodiment of the present application is relatively large, the laser chip located in the chip mounting area can emit more light to the prism Set the prism in the area. Furthermore, the waste of light caused by excessive light emitted by the laser chip to the bottom surface of the prism setting area is avoided, so that the brightness of the light emitted by the laser is relatively high.
  • the laser chip 202 can be welded in the chip mounting area by eutectic welding, or can also be arranged in the chip mounting area by other methods (such as pasting).
  • the prism 203 can be welded in the prism setting area by eutectic welding, or can also be arranged in the prism setting area by other methods (such as pasting).
  • FIG. 2 is a schematic structural diagram of another laser provided in an embodiment of the present application.
  • the prism 203 in the embodiment of the present application may also be integrally formed with the carrier substrate 200. Therefore, there is no need to paste the prism on the carrier substrate, avoid the paste error caused by pasting the prism, further reduce the overall error of preparing the laser, and improve the collimation of the light emitted by the laser.
  • the chip mounting area in the carrier substrate 200 may include at least one sub-mounting area A, and the prism setting area includes at least one sub-mounting area W.
  • the at least one sub-mounting area A corresponds to at least one sub-mounting area W
  • the prism 203 of the sub-mounting area W corresponds to the laser chip 202 of the sub-mounting area A corresponding to the sub-mounting area W.
  • the sub-mounting area A and the sub-arrangement area W are alternately arranged in any direction (as shown in the x direction in Fig. 1 or 2), and the sub-mounting area A is adjacent to the corresponding sub-arrangement area W. It should be noted that FIG. 1 and FIG.
  • the chip mounting area in the carrier substrate 200 includes two sub-mounting areas A
  • the prism setting area includes two sub-mounting areas W
  • the number of sub mounting areas A and sub setting areas W in the carrier substrate 200 may also be one, three, four or more.
  • the prism 203 and the laser chip 202 may have two corresponding relationships.
  • each prism 203 of the at least one prism 203 in the laser 20 may correspond to a laser chip 202 for reflecting the light emitted by only one laser chip 202.
  • the sub-mounting area A has a laser chip 202
  • the sub-mounting area W corresponding to the sub-mounting area A has a prism 203
  • the sub-mounting area A corresponding to the sub-mounting area W where the prism 203 is located has One laser chip 202 corresponds.
  • FIG. 1 may be a schematic diagram of the section a-a' in FIG.
  • the laser 20 includes 10 laser chips 202
  • the chip mounting area in the carrier substrate 200 includes 10 sub mounting areas A
  • the prism setting area includes 10 sub mounting areas W.
  • the 10 sub mounting areas A and The 10 sub-setting areas W have a one-to-one correspondence.
  • Each sub-mounting area A has a laser chip 202
  • each sub-mounting area W has a prism 203 corresponding to a laser chip 202 in the sub-mounting area A corresponding to the sub-mounting area W in which it is located.
  • the one prism 203 is used to reflect the light emitted by the corresponding one laser chip 202.
  • the sub-mounting area A has multiple laser chips 202
  • the sub-mounting area W corresponding to the sub-mounting area A has multiple prisms 203
  • the number of the multiple laser chips 202 and the multiple prisms 203 are the same.
  • FIG. 2 may be a schematic diagram of the section a-a' in FIG. 4.
  • the laser 20 includes 10 laser chips 202
  • the chip mounting area in the carrier substrate 200 includes two sub-mounting areas A
  • the prism setting area includes two sub-mounting areas W.
  • the two sub-mounting areas A and The two sub-setting areas W have a one-to-one correspondence.
  • Each prism 203 corresponds to a laser chip 202 in the sub-mounting area A corresponding to the sub-arrangement area W in which it is located, and each prism 203 is used to reflect the light emitted by its corresponding laser chip 202.
  • At least one prism 203 in the laser 20 includes a target prism corresponding to the multiple laser chips 202, and the target prism can be used to reflect the light emitted by the multiple laser chips 202.
  • FIG. 5 is a schematic structural diagram of a laser provided by another embodiment of the present application
  • FIG. 1 may be a schematic diagram of the section a-a' in FIG. 5.
  • the at least one sub-arrangement area A included in the prism installation area in the carrier substrate 200 may include: a target sub-arrangement area having a prism 203, and a plurality of sub-mounting areas A corresponding to the target sub-arrangement area
  • the laser chip 202 That is, the one prism 203 in the target sub-setting area is the target prism.
  • the prism 203 in the sub-arrangement area W corresponds to the laser chip 202 in the sub-mounting area A corresponding to the sub-arrangement area W
  • the one prism 203 in the target sub-arrangement area corresponds to the sub-mounting area of the target sub-arrangement area All the laser chips 202 in A correspond to each other, and the one prism 203 is used to reflect the light emitted by all the laser chips 202.
  • the prism setting area in the carrier substrate 200 includes two sub-setting areas W, and the two sub-setting areas W are both target sub-setting areas, and the sub-mounting area A corresponding to the target sub-setting area
  • Five laser chips are provided as an example for illustration.
  • the prism setting area may also include a target sub-setting area and a common sub-setting area at the same time, and each prism in the common sub-setting area corresponds to only one laser chip.
  • the number of laser chips 202 in the sub-mounting area A may also be 4, 6, or other numbers, which is not limited in the embodiment of the present application.
  • the one prism 203 in the target sub-arrangement area may have a strip shape, and the length direction of the one prism is perpendicular to the height direction of the one prism, and perpendicular to the direction of the one prism toward the corresponding laser chip (as shown in FIG. 5 in the x direction).
  • the prism 203 may have a reflective surface m facing the corresponding laser chip 202, and the prism 203 can reflect the light emitted by the corresponding laser chip 202 through the reflective surface.
  • the reflective surface m may be a concave surface or an inclined surface inclined in a direction away from the laser chip 202 corresponding to the prism 203 (that is, the x direction in FIG. 1 or FIG. 2). Take the inclined plane as an example.
  • the included angle between the inclined surface and the surface of the carrier substrate 200 may be 45 degrees.
  • the concave surface may be an aspheric surface, and the curvature of each position in the concave surface is different, and the light emitted by the laser chip may be converged into a more collimated light after being directed to the aspheric surface. .
  • FIG. 6 is a schematic diagram of another laser structure provided by another embodiment of the present application. It should be noted that FIG. 6 only shows one laser chip 202 and one prism 203 in the laser, and does not illustrate the package, and FIG. 6 takes the reflective surface m of the prism 203 in the carrier substrate as a concave surface and an aspheric surface as example. It can be seen from FIG. 6 that when the light emitted by the laser chip 202 is directed to the reflective surface m, it can be emitted in a direction almost perpendicular to the surface of the carrier substrate 200, thereby improving the collimation of the light emitted by the laser.
  • the maximum length of the prism 203 in the direction facing the corresponding laser chip 202 may range from 1.5 mm to 2.5 mm. Since the contact area between the prism and the carrier substrate is relatively large, the prism can be installed firmly and the risk of damage can be small.
  • the height of the prism can range from 1 mm to 2 mm.
  • the thermal conductivity of the carrier substrate may be higher, and the carrier substrate may also be made of insulating material.
  • the material of the carrier substrate may include ceramics. Ceramics may include silicon materials, such as silicon dioxide. The ceramic may also include aluminum oxide or aluminum nitride.
  • the material of the carrier substrate may be a transparent material.
  • the thickness of the carrier substrate may range from 4 mm to 7 mm.
  • the ceramic plate-like structure or the transparent plate-like structure can be patterned by etching (such as dry etching or wet etching) to obtain the carrier substrate 200.
  • etching such as dry etching or wet etching
  • the plate-shaped structure may be patterned by mechanical polishing or ashing to obtain the carrier substrate 200.
  • the first end C of the laser chip 202 may be located in the sub-mounting area A and the sub-mounting area where the laser chip 202 is located.
  • the distance d between the prisms 203 corresponding to the laser chip 202 and the first end C and the second end D of the sub-mounting area A in the x direction in FIG. 1 may be less than 15 microns.
  • the first end C is the end of the laser chip 202 close to the prism 203
  • the second end D is the end of the sub-mounting area A close to the prism 203
  • the x direction is the laser chip 202 and its corresponding end.
  • the distance d may be 10 micrometers or 9 micrometers.
  • the distance d can also be less than 5 microns, for example, the distance can be 4 microns or 3 microns.
  • FIGS. 3 and 5 also take the first end of the laser chip 202 extending out of the sub-mounting area as an example.
  • the first end C of any laser chip 202 in the laser 20 may be flush with the second end D of the sub-mounting area A where the laser chip 202 is located.
  • FIGS. 4 and 6 also take the first end of the laser chip 202 and the second end of the sub-mounting area where the laser chip 202 is located as an example.
  • the light emitted by the laser chip is directed to the corresponding prism, and then reflected on the surface of the prism, and directed away from the tube shell, so as to realize the light emission of the laser. Since the light emitted by the laser chip has a divergence angle, the first end of the laser chip extends out of the sub-mounting area, which can reduce the light emitted by the laser chip to the bottom surface of the sub-arrangement area, that is, reduce the wasted light emitted by the laser chip. Light. Furthermore, more light emitted by the laser chip can be directed toward the prism, and the laser can be emitted after reflection, so the luminous brightness of the laser can be higher.
  • the laser chip is located on the heat sink, and the first end of the laser chip needs to protrude from the heat sink, and the length of the portion protruding from the heat sink is usually greater than 15 microns. Since the part of the laser chip that protrudes from the heat sink cannot be attached to the heat sink, there is no support under the part that protrudes from the heat sink, and there are many parts that protrude from the heat sink, so the stability of the laser chip is poor. In addition, when the laser chip emits light, the heat generated by the part that is not attached to the heat sink cannot be conducted through the heat sink, and the heat dissipation speed is slow, which in turn makes the heat dissipation effect of the laser chip poor.
  • the distance in the x direction between the first end of the laser chip and the second end of the sub-mounting area where the laser chip is located is relatively small, and the first end and the second end may be even.
  • the contact area between the laser chip and the carrier substrate can be increased, thereby increasing the supported area in the laser chip, and improving the stability of the installation of the laser chip.
  • the heat generated in each area of the laser chip when emitting light can be conducted through the carrier substrate, so the heat dissipation effect of the laser chip can be improved.
  • FIG. 7 is a schematic structural diagram of still another laser provided by another embodiment of the present application.
  • the laser 20 may further include: a heat dissipation layer 301, an auxiliary layer 302, and a conductive layer 303 that are sequentially stacked on the chip mounting area of the carrier substrate 200 along a direction away from the package 201.
  • the laser chip 202 may be located
  • the conductive layer 303 is away from the side of the tube shell 201.
  • the orthographic projection of each of the heat dissipation layer 301, the auxiliary layer 302, and the conductive layer 303 on the carrier substrate 10 is located outside the prism setting area, and at least part of the orthographic projection is located in the chip mounting area. It should be noted that FIG.
  • FIG. 7 uses the example that all the orthographic projections of each of the heat dissipation layer 301, the auxiliary layer 302, and the conductive layer 303 on the carrier substrate 10 are located in the chip mounting area, and the laser is shown in FIG. 20 includes the carrier substrate shown in FIG. 5 as an example for illustration.
  • the thermal conductivity of the heat dissipation layer 301 is greater than 20 W/m ⁇ degree
  • the material of the auxiliary layer 302 is different from the material of the heat dissipation layer 301 and the material of the conductive layer 303 is also different.
  • the auxiliary layer 302 is used to assist the adhesion of the heat dissipation layer 301 and the conductive layer 303 to ensure the reliability of the adhesion between the heat dissipation layer 301 and the conductive layer 104.
  • the thermal expansion coefficient of the heat dissipation layer 301 may match the thermal expansion coefficient of the carrier substrate 200.
  • the absolute value of the difference between the thermal expansion coefficient of the heat dissipation layer 301 and the thermal expansion coefficient of the carrier substrate 200 may be less than 30*10-6/degree Celsius.
  • the material of the heat dissipation layer may be copper, and its thermal expansion coefficient is 16.7*10-6/degree Celsius
  • the material of the heat dissipation substrate may be aluminum nitride, and its thermal expansion coefficient is 4.5*10-6/degree Celsius.
  • the thermal expansion coefficient of the heat dissipation layer and the thermal expansion coefficient of the carrier substrate may be the same.
  • the heat dissipation layer and the carrier substrate have the same expansion amount when heated, and the force on the contact surface of the heat dissipation layer and the carrier substrate is uniform, which can be further Avoid damage to the heat dissipation layer or the internal structure of the carrier substrate, and improve the firmness of the heat dissipation layer on the carrier substrate.
  • the thermal conductivity and thermal expansion coefficient of the heat dissipation layer need to be comprehensively considered when determining the manufacturing material of the heat dissipation layer.
  • the restriction on the thermal expansion coefficient of the heat dissipation layer can be relaxed accordingly.
  • the absolute value of the difference between the thermal expansion coefficient of the heat dissipation layer and the thermal expansion coefficient of the carrier substrate can also be greater than or equal to 30*10-6/degree Celsius.
  • the material of the heat dissipation layer 301 may be copper, and the thermal conductivity of copper may be 401 W/m ⁇ degree.
  • the material of the scattering layer 102 may also include one or more of silver and aluminum.
  • the material of the auxiliary layer 302 may be nickel, and the material of the conductive layer 303 may be gold.
  • the thermal conductivity of the heat dissipation layer 301 is relatively large, the heat dissipation effect of the heat dissipation layer 301 is better.
  • the heat generated by the laser chip 202 when emitting light can be rapidly conducted to the carrier substrate 10 through the conductive layer 303, the auxiliary layer 302, and the heat dissipation layer 301 in turn, and then radiated to the outside. Therefore, the temperature on the laser chip 202 can be quickly reduced, avoiding damage to the laser chip 202 due to heat accumulation, and prolonging the life of the laser chip 202.
  • the thickness of the heat dissipation layer 301 may be greater than 1 micrometer, for example, the thickness of the heat dissipation layer 301 may range from 30 micrometers to 75 micrometers. Since the thickness of the heat dissipation layer 301 in the embodiment of the present application is relatively thick, the heat generated by the laser chip 202 can be conducted in the heat dissipation layer 301 for a long time, so that the heat on the heat dissipation layer 301 is evenly distributed, and the heat generated by the laser chip 202 can be Disperse evenly.
  • the light emitted from the laser chip to the tube case can be further reduced, that is, the waste of light can be further avoided, and the brightness of the light emitted by the laser can be improved.
  • FIG. 8 is a schematic structural diagram of another laser provided by another embodiment of the present application.
  • the laser 20 may further include a cover plate 204, a sealing glass 205 and a collimating lens 206 that are sequentially stacked on the side of the laser chip 202 away from the tube case 201 in a direction away from the tube case 201.
  • the carrier substrate 200, the laser chip 202, the cover plate 204, the sealing glass 205, and the collimating lens 206 may all be arranged in the tube shell 201 and surrounded by the side wall of the tube shell 201.
  • one or more of the cover plate 204, the sealing glass 205, and the collimating lens 206 have the same thermal expansion coefficient as the carrier substrate 200. Since each component in the laser usually needs to be heated when assembling each component, the thermal expansion coefficient of each component in the laser is the same, you can directly use the same process and perform the assembly of each component at the same temperature, without the need to assemble each component The assembly environment is set separately, so the assembly process of the laser is relatively convenient.
  • the one or more structures are made of the same material as the carrier substrate. Since the various components of the laser are usually assembled by heating and welding, and materials of the same material are easily integrated during heating and welding, the robustness of the assembled laser can be improved.
  • the material of the supporting substrate, the cover plate, the sealing glass and the collimating lens are all ceramics. Due to the high transmittance of ceramics to infrared light, the laser chip in the laser can be made to emit infrared light, so that the intensity of the light emitted by the laser is relatively high.
  • the tube shell 201 when forming the laser shown in FIG. 8, can be prepared by first using oxygen-free copper or Kovar material, and then the carrier substrate 200 can be pasted into the tube shell 201. After that, a high-precision eutectic welding machine can be used to weld the laser chip 202 on the carrier substrate 200. It should be noted that when the carrier substrate 200 is not integrally formed with the prism 203, it is also necessary to weld the prism in the prism setting area of the carrier substrate 200. After that, a wire bonding machine can be used to form wires in the tube case 201 to connect the electrodes of the laser chip 202 to the corresponding power terminals (the wires and the power terminals are not shown in FIG. 8).
  • the parallel sealing welding technique can be used to weld the glass cover plate pasted with the sealing glass 205 (the glass cover plate is not shown in FIG. 8) to the cover plate 204.
  • the sealing glass 205 can be pasted on the glass cover plate by green glue.
  • the collimation adjustment of the aspherical collimating lens 206 can be completed through the alignment process, and then the collimating lens 206 can be fixed on the tube shell 201 by ultraviolet curing glue, to obtain the laser 20 shown in FIG. 8.
  • the prism setting area of the carrier substrate is recessed relative to the chip mounting area, and the laser chip is located in the chip mounting area, and there is no need to paste the heat for setting the laser chip on the carrier substrate. Shen. Therefore, the paste error caused by the paste heat sink is avoided, the overall error of the laser preparation is reduced, and the collimation of the light emitted by the laser can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器(20),包括:管壳(201),以及位于管壳(201)内的承载基板(200)、多个激光器芯片(202)和至少一个棱镜(203),多个激光器芯片(202)与至少一个棱镜(203)均位于承载基板(200)远离管壳(201)的一侧;承载基板(200)包括:多个激光器芯片(202)所在的芯片贴装区,以及至少一个棱镜(203)所在的棱镜设置区,且棱镜设置区相对于芯片贴装区凹陷;每个棱镜(203)与一个或多个激光器芯片(202)对应,棱镜(203)位于其对应的激光器芯片(202)的出光侧,且棱镜(203)用于反射对应的激光器芯片(202)射出的光线。

Description

激光器
本申请要求在2019年9月20日提交中国专利局、申请号为201910892473.X、发明名称为“激光器”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,特别涉及一种激光器。
背景技术
随着光电技术的发展,激光器被广泛应用。
激光器可以包括管壳、承载基板、至少一个热沉和至少一个激光器芯片,其中,承载基板设置在管壳上,该至少一个热沉粘贴在承载基板上,每个激光器芯片粘贴在一个热沉上。激光器还可以包括棱镜,该棱镜用于调节激光器芯片发出的光线的方向,该棱镜通常也粘贴在基板上。
由于制备激光器的过程中需要依次进行较多的粘贴步骤,而进行每个粘贴步骤时均会存在粘贴误差,因此,激光器的制备总体误差较大,激光器发出的激光的准直度较低。
发明内容
本申请提供了一种激光器,包括:管壳,以及位于所述管壳内的承载基板、多个激光器芯片和至少一个棱镜,所述多个激光器芯片与所述至少一个棱镜均位于所述承载基板远离所述管壳的一侧;
所述承载基板包括:所述多个激光器芯片所在的芯片贴装区,以及所述至少一个棱镜所在的棱镜设置区,且所述棱镜设置区相对于所述芯片贴装区凹陷;
每个所述棱镜与一个或多个所述激光器芯片对应,所述棱镜位于其对应的所述激光器芯片的出光侧,且所述棱镜用于反射对应的所述激光器芯片射出的光线。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种激光器的结构示意图;
图2是本申请实施例提供的另一种激光器的结构示意图;
图3是本申请实施例提供的再一种激光器的结构示意图;
图4是本申请实施例提供的又一种激光器的结构示意图;
图5是本申请另一实施例提供的一种激光器的结构示意图;
图6是本申请另一实施例提供的另一种激光器的结构示意图;
图7是本申请另一实施例提供的再一种激光器的结构示意图;
图8是本申请另一实施例提供的又一种激光器的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
随着光电技术的发展,激光器的应用越来越广,例如激光器可以应用在焊接工艺,切割工艺以及激光投影等方面。激光器包括较多的部件,如承载基板、热沉、棱镜和激光器芯片等,而其中的各个部件均通过粘贴或焊接的方式进行固定。由于每个部件的粘贴或焊接过程中均会存在误差,因此最终制得的激光器的制备总体误差较大,激光器射出的激光较难达到预定的准直度。本申请以下实施例提供了一种承载基板,可以使得包括该承载基板的激光器的制备总体误差较小,进而使得激光器射出的激光的准直度较高。
图1是本申请实施例提供的一种激光器的结构示意图。如图1所示,激光器20包括:管壳201,以及位于管壳内的承载基板200、多个激光器芯片202和至少一个棱镜203,该多个激光器芯片202与至少一个棱镜203均位于承载基板200远离管壳201的一侧。需要说明的是,图1仅对激光器20中的两个激光器芯片202进行示意,激光器20中激光器芯片202的个数也可以为三个、四个甚至更多,本申请实施例对此不做限定。可选地,激光器也可以仅包括一个激光器芯片。
承载基板200包括:多个激光器芯片202所在的芯片贴装区,以及该至少一个棱镜203所在的棱镜设置区,且棱镜设置区相对于芯片贴装区凹陷。
每个棱镜203可以与一个或多个激光器芯片202对应,棱镜203位于其对应的激光器芯片202的出光侧,且棱镜203用于反射对应的激光器芯片202射出的光线。
需要说明的是,本申请实施例中承载基板的芯片贴装区相对于棱镜设置区凸起的部分相当于相关技术中的热沉。本申请实施例相当于使相关技术中的热沉与承载基板一体成型,进而无需在承载基板上粘贴热沉,避免了粘贴热沉带来的粘贴误差,减少了激光器的组装工序。
另外,本申请实施例中的承载基板可以看做是厚度较大的热沉,进而承载基板上的激光器芯片在发光时产生的热量可以在承载基板中进行较长时间的传导。使得承载基板上的热量均匀分布,故激光器芯片产生的热量可以均匀地分散,因此该承载基板辅助激光器芯片进行散热的效果较好。
综上所述,本申请提供的激光器中,承载基板的棱镜设置区相对于芯片贴装区凹陷,且激光器芯片位于该芯片贴装区,进而无需在承载基板上粘贴用于设置激光器芯片的热沉。因此避免了粘贴热沉导致的粘贴误差,降低了激光器的制备总体误差,进而可以提高激光器射出的光线的准直度。
可选地,本申请实施例中承载基板的棱镜设置区相对于芯片贴装区的凹陷深度h可以大于2.5微米。可选地,该深度h可以小于5微米。由于激光器芯片射出的光线具有发散角,而本申请实施例中棱镜设置区相对于芯片贴装区的凹陷深度较大,因此,位于芯片贴 装区的激光器芯片可以将光线较多地射向棱镜设置区中的棱镜。进而,避免了激光器芯片射出的光线过多地射向棱镜设置区底面造成的光线浪费,使得激光器发出的光线亮度较高。
可选地,激光器芯片202可以通过共晶焊接的方式焊接在芯片贴装区,或者也可以通过其他方式(如粘贴的方式)设置在芯片贴装区。棱镜203可以通过共晶焊接的方式焊接在棱镜设置区中,或者也可以通过其他方式(如粘贴的方式)设置在棱镜设置区中。
可选地,图2是本申请实施例提供的另一种激光器的结构示意图。如图2所示,本申请实施例中棱镜203也可以与承载基板200一体成型。因此,可以无需在承载基板上粘贴棱镜,避免了粘贴棱镜带来的粘贴误差,进一步降低了制备激光器的总体误差,提高了激光器射出的光线的准直度。
请继续参考图1或图2,承载基板200中的芯片贴装区可以包括至少一个子贴装区A,棱镜设置区包括至少一个子设置区W。该至少一个子贴装区A与至少一个子设置区W一一对应,子设置区W的棱镜203与子设置区W对应的子贴装区A的激光器芯片202对应。子贴装区A和子设置区W沿任一方向(如图1或2中的x方向)交替排布,子贴装区A与对应的子设置区W相邻。需要说明的是,图1与图2均以该承载基板200中的芯片贴装区包括两个子贴装区A,棱镜设置区包括两个子设置区W为例进行示意。可选地,承载基板200中子贴装区A与子设置区W的个数也可以为一个、三个、四个或者更多。
本申请实施例中,棱镜203与激光器芯片202可以具有两种对应关系。
在第一种对应关系中,激光器20中的至少一个棱镜203中每个棱镜203均可以对应一个激光器芯片202,用于仅反射一个激光器芯片202射出的光。
示例地,子贴装区A具有一个激光器芯片202,子贴装区A对应的子设置区W具有一个棱镜203,该一个棱镜203与其所在的子设置区W对应的子贴装区A具有的一个激光器芯片202对应。请参考图3示出的激光器的结构示意图,图1可以为图3中截面a-a’的示意图。如图3所示,激光器20包括10个激光器芯片202,承载基板200中的芯片贴装区包括10个子贴装区A,棱镜设置区包括10个子设置区W,该10个子贴装区A与该10个子设置区W一一对应。每个子贴装区A中具有一个激光器芯片202,每个子设置区W中具有一个棱镜203,该一个棱镜203与其所在的子设置区W对应的子贴装区A具有的一个激光器芯片202对应,该一个棱镜203用于反射其对应的该一个激光器芯片202射出的光线。
又示例地,子贴装区A具有多个激光器芯片202,子贴装区A对应的子设置区W具有多个棱镜203,且该多个激光器芯片202与该多个棱镜203的个数相同且一一对应。请参考图4示出的激光器的结构示意图,图2可以为图4中截面a-a’的示意图。如图4所示,激光器20包括10个激光器芯片202,承载基板200中的芯片贴装区包括两个子贴装区A,棱镜设置区包括两个子设置区W,该两个子贴装区A与该两个子设置区W一一对应。每个子贴装区A中具有5个激光器芯片202,每个子设置区W中具有5个棱镜203。每个棱镜203与其所在的子设置区W对应的子贴装区A中的一个激光器芯片202对应,每个棱镜203用于反射其对应的一个激光器芯片202射出的光线。
在第二种对应关系中,激光器20中的至少一个棱镜203包括:对应多个激光器芯片 202的目标棱镜,该目标棱镜可以用于反射多个激光器芯片202射出的光线。
示例地,图5是本申请另一实施例提供的一种激光器的结构示意图,图1可以为图5中截面a-a’的示意图。如图5所示,承载基板200中棱镜设置区包括的该至少一个子设置区A可以包括:具有一个棱镜203的目标子设置区,目标子设置区对应的子贴装区A中具有多个激光器芯片202。也即是,目标子设置区中的该一个棱镜203为目标棱镜。由于子设置区W中的棱镜203与子设置区W对应的子贴装区A中的激光器芯片202对应,因此目标子设置区中的该一个棱镜203与目标子设置区对应的子贴装区A中的所有激光器芯片202对应,该一个棱镜203用于反射该所有激光器芯片202射出的光线。
需要说明的是,图5以承载基板200中的棱镜设置区包括两个子设置区W,且该两个子设置区W均为目标子设置区,该目标子设置区对应的子贴装区A中设置有5个激光器芯片为例进行示意。可选地,棱镜设置区也可以同时包括目标子设置区以及普通子设置区,该普通子设置区中的每个棱镜仅对应一个激光器芯片。可选地,子贴装区A中激光器芯片202的数量也可以为4个、6个或者其他个数,本申请实施例对此不做限定。
可选地,目标子设置区中的该一个棱镜203可以呈条状,该一个棱镜的长度方向垂直于该一个棱镜的高度方向,且垂直于该一个棱镜朝向对应的激光器芯片的方向(如图5中的x方向)。
以下对本申请实施例中的棱镜203进行介绍:
请参考图1或图2,本申请实施例中,棱镜203可以具有朝向其对应的激光器芯片202的反光面m,棱镜203可以通过该反光面反射对应的激光器芯片202射出的光线。
可选地,该反光面m可以为凹面或者朝远离棱镜203对应的激光器芯片202的方向(也即是图1或图2中的x方向)倾斜的斜面,图1和图2以该表面为斜面为例进行示意。可选地,该斜面与承载基板200的板面的夹角可以为45度。可选地,当该反光面m为凹面时,该凹面可以为非球面,该凹面中各个位置的曲率不同,进而激光器芯片射出的光线可以在射向非球面之后汇聚成较为准直的光线射出。
示例地,图6是本申请另一实施例提供的另一种激光器结构示意图。需要说明的是,图6仅示出激光器中的一个激光器芯片202和一个棱镜203,且未对管壳进行示意,且图6以承载基板中棱镜203的反光面m为凹面且为非球面为例。由图6可知,当激光器芯片202射出的光线射向反光面m后能够以几乎垂直于承载基板200的板面的方向射出,进而可以提高激光器射出的光线的准直度。
可选地,棱镜203在朝向对应的激光器芯片202的方向(如图1至图6任一中的x方向)上的最大长度范围可以为1.5毫米~2.5毫米。由于棱镜与承载基板的接触面积较大,因此棱镜的设置牢固度可以较高,损坏风险可以较小。可选地,棱镜的高度范围可以为1毫米~2毫米。
本申请实施例中承载基板的可刻蚀性可以较好。可选地,承载基板的导热系数可以较高,承载基板还可以为绝缘材质。示例地,承载基板的材质可以包括陶瓷。陶瓷可以包括硅材料,如二氧化硅。陶瓷还可以包括氧化铝或氮化铝。可选地,承载基板的材质可以为透明材质。可选地,承载基板的厚度范围可以为4毫米~7毫米。
示例地,可以通过刻蚀的方式(如干刻或湿刻),对陶瓷板状结构或透明板状结构进行图案化处理,以得到承载基板200。可选地,还可以通过机械打磨或者灰化的方式对板状结构进行图案化处理,以得到承载基板200。
以下对本申请实施例提供的激光器20中,激光器芯片202、子贴装区A以及棱镜203的位置关系进行介绍:
可选地,请继续参考图1,对于本申请实施例提供的激光器20中的任一激光器芯片202:该激光器芯片202的第一端C可以位于该激光器芯片202所在的子贴装区A与该激光器芯片202对应的棱镜203之间,且该第一端C与该子贴装区A的第二端D在图1中的x方向上的距离d可以小于15微米。其中,该第一端C为该激光器芯片202靠近该棱镜203的一端,该第二端D为该子贴装区A靠近该棱镜203的一端,该x方向即为该激光器芯片202和其对应的该棱镜203的排布方向。例如,该距离d可以为10微米或9微米。可选地,该距离d还可以小于5微米,例如该距离可以为4微米或3微米。需要说明的是,图3和图5也以激光器芯片202的第一端伸出其所在的子贴装区为例进行示意。
可选地,请继续参考图2,激光器20中任一激光器芯片202的第一端C可以与该激光器芯片202所在的子贴装区A的第二端D平齐。需要说明的是,图4和图6也以激光器芯片202的第一端与其所在的子贴装区的第二端为例进行示意。
需要说明的是,激光器芯片发出的光线射向对应的棱镜,进而在棱镜的表面发生反射,并射向远离管壳的方向,以实现激光器的发光。由于激光器芯片发出的光线具有发散角,使激光器芯片的第一端伸出子贴装区,可以减少激光器芯片发出的射向子设置区底面的光线,也即减少了激光器芯片发出的被浪费的光线。进而,可以使激光器芯片发出的光线较多的射向棱镜,并在发生反射后射出激光器,因此激光器的发光亮度可以较高。
另外,相关技术中激光器芯片位于热沉上,且激光器芯片的第一端需要伸出热沉,该伸出热沉的部分的长度通常大于15微米。由于激光器芯片中伸出热沉的部分无法与热沉贴合,故该伸出热沉的部分下方没有支撑,且该伸出热沉的部分较多,因此激光器芯片的设置稳固性较差。另外,激光器芯片在发光时,该未与热沉贴合的部分产生的热量无法通过热沉传导,该热量的散发速度较慢,进而使得激光器芯片的散热效果较差。
而本申请实施例中,激光器芯片的第一端与激光器芯片所在的子贴装区的第二端在x方向上的距离较小,甚至该第一端与第二端可以平齐。如此一来,可以增大激光器芯片与承载基板的接触面积,进而增多了激光器芯片中被支撑的区域,提高了激光器芯片的设置稳固性。并且,激光器芯片在发光时各个区域产生的热量均可以通过承载基板进行传导,因此可以提高激光器芯片的散热效果。
图7是本申请另一实施例提供的再一种激光器的结构示意图。如图7所示,激光器20还可以包括:沿远离管壳201的方向,依次叠加在承载基板200的芯片贴装区上的散热层301、辅助层302和导电层303,激光器芯片202可以位于导电层303远离管壳201的一侧。散热层301、辅助层302和导电层303中每个膜层在承载基板10的正投影均位于棱镜设置区外,且至少部分正投影位于芯片贴装区内。需要说明的是,图7以散热层301、辅助层302和导电层303中每个膜层在承载基板10的全部正投影均位于芯片贴装区 内为例进行示意,且图7中以激光器20包括图5中示出的承载基板为例进行示意。
本申请实施例中,散热层301的导热系数大于20瓦/米·度,辅助层302的材质与散热层301的材质不同,且与导电层303的材质也不同。辅助层302用于辅助散热层301与导电层303的粘接,保证散热层301与导电层104之间的粘接可靠性。
可选地,散热层301的热膨胀系数可以与承载基板200的热膨胀系数相匹配。示例地,散热层301的热膨胀系数与承载基板200的热膨胀系数的差值的绝对值可以小于30*10-6/摄氏度。进而,可以防止散热层301与承载基板200在受热时膨胀量相差过大,进而避免散热层301与承载基板200的接触面上各点受力相差较大,使得散热层301与承载基板200之间出现缝隙,或者散热层301与承载基板200的接触面发生褶皱的情况,保证了散热层301在承载基板200上的设置牢固度。
示例地,散热层的材质可以为铜,其热膨胀系数为16.7*10-6/摄氏度,散热基板的材质可以为氮化铝,其热膨胀系数为4.5*10-6/摄氏度。
可选地,散热层的热膨胀系数与承载基板的热膨胀系数可以相同,此时散热层与承载基板在受热时的膨胀量相同,散热层与承载基板的接触面上各点受力均匀,可以进一步避免散热层或承载基板内部结构的破坏,提高散热层在承载基板上的设置牢固度。
需要说明的是,在确定散热层的制造材质时需要综合考虑散热层的导热系数与热膨胀系数。当散热层的导热系数较高,导热性较为优良时,可以相应地放宽对散热层的热膨胀系数的限制。如散热层的热膨胀系数与承载基板的热膨胀系数的差值的绝对值也可以大于或等于30*10-6/摄氏度。
可选地,散热层301的材质可以为铜,铜的导热系数可以为401瓦/米·度。可选地,该散射层102的材质也可以包括银和铝中的一种或多种。辅助层302的材质可以为镍,导电层303的材质可以为金。
由于散热层301的导热系数较大,故该散热层301的散热效果较好。激光器芯片202在发光时产生的热量可以依次通过导电层303、辅助层302以及散热层301快速地传导至承载基板10,进而散发至外界。因此,激光器芯片202上的温度可以快速降低,避免了激光器芯片202由于热量聚集而发生损坏,延长了激光器芯片202的寿命。
可选地,散热层301的厚度可以大于1微米,如散热层301的厚度范围可以为30微米~75微米。由于本申请实施例中散热层301的厚度较厚,故激光器芯片202产生的热量可以在散热层301中传导较长时间,使得散热层301上的热量均匀分布,进而激光器芯片202产生的热量可以均匀地分散。并且由于散热层的厚度较大,进而可以进一步减少激光器芯片发出的射向管壳造成的光线,也即是可以进一步避免光线浪费,提高激光器发出的光线亮度。
图8是本申请另一实施例提供的又一种激光器的结构示意图。如图8所示,激光器20还可以包括:在激光器芯片202远离管壳201的一侧,沿远离管壳201的方向依次叠加的盖板204、密封玻璃205以及准直透镜206。可选地,承载基板200、激光器芯片202、盖板204、密封玻璃205以及准直透镜206均可以设置在管壳201内,被管壳201的侧壁包围。
可选地,盖板204、密封玻璃205以及准直透镜206中的一个或多个结构与承载基板200的热膨胀系数相同。由于在对激光器中的各个部件进行组装时通常需要进行加热,激光器中的各个部件热膨胀系数相同,则可以直接采用同一工艺并在相同的温度下进行各个部件的组装,无需为每个部件的组装均单独设置组装环境,因此激光器的组装过程较为便捷。可选地,该一个或多个结构与承载基板的材质相同。由于通常通过加热焊接的方式对激光器中各个部件进行组装,而材质相同的材料在加热焊接时容易融为一体,因此可以提高组装后的激光器的牢固性。
可选地,承载基板、盖板、密封玻璃以及准直透镜的材质均为陶瓷。由于陶瓷对红外光线的透过率较高,故可以使得激光器中的激光器芯片为发出红外光线的激光器芯片,以使得激光器射出的光线强度较高。
本申请实施例中,在形成图8所示的激光器时,可以先采用无氧铜或者可伐材料制备得到管壳201,接着可以将承载基板200粘贴至管壳201中。之后可以采用高精度共晶焊接机将激光器芯片202焊接在承载基板200上。需要说明的是,当承载基板200未与棱镜203一体成型时,还需要在承载基板200中的棱镜设置区焊接棱镜。之后,可以采用打线机在管壳201中形成导线,以将激光器芯片202的电极与对应的电源接线柱(图8未示出导线与电源接线柱)连接。接着可以采用平行封焊技术,将粘贴有密封玻璃205的玻璃盖板(图8未示出玻璃盖板)焊接在盖板204上,如密封玻璃205可以通过绿胶粘贴在玻璃盖板上。最后,可以通过对准工艺,完成非球面准直透镜206的准直调试,继而通过紫外光固化胶将准直透镜206固定在管壳201上,得到图8所示的激光器20。
综上所述,本申请提供的激光器中,承载基板的棱镜设置区相对于芯片贴装区凹陷,且激光器芯片位于该芯片贴装区,进而无需在承载基板上粘贴用于设置激光器芯片的热沉。因此避免了粘贴热沉导致的粘贴误差,降低了激光器的制备总体误差,进而可以提高激光器射出的光线的准直度。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种激光器,其特征在于,所述激光器包括:管壳,以及位于所述管壳内的承载基板、多个激光器芯片和至少一个棱镜,所述多个激光器芯片与所述至少一个棱镜均位于所述承载基板远离所述管壳的一侧;
    所述承载基板包括:所述多个激光器芯片所在的芯片贴装区,以及所述至少一个棱镜所在的棱镜设置区,且所述棱镜设置区相对于所述芯片贴装区凹陷;
    每个所述棱镜与一个或多个所述激光器芯片对应,所述棱镜位于其对应的所述激光器芯片的出光侧,且所述棱镜用于反射对应的所述激光器芯片射出的光线。
  2. 根据权利要求1所述的激光器,其特征在于,所述棱镜与所述承载基板一体成型。
  3. 根据权利要求1或2所述的激光器,其特征在于,所述芯片贴装区包括至少一个子贴装区,所述棱镜设置区包括至少一个子设置区;
    所述至少一个子贴装区与所述至少一个子设置区一一对应,所述子设置区的棱镜与所述子设置区对应的子贴装区的激光器芯片对应;
    所述子贴装区和所述子设置区沿任一方向交替排布,所述子贴装区与对应的所述子设置区相邻。
  4. 根据权利要求3所述的激光器,其特征在于,所述至少一个子设置区包括:具有一个棱镜的目标子设置区,所述目标子设置区对应的所述子贴装区中具有多个所述激光器芯片。
  5. 根据权利要求4所述的激光器,其特征在于,所述一个棱镜呈条状,所述一个棱镜的长度方向垂直于所述一个棱镜的高度方向,且垂直于所述一个棱镜朝向对应的所述激光器芯片的方向。
  6. 根据权利要求3所述的激光器,其特征在于,对于所述多个激光器芯片中的任一所述激光器芯片:
    所述激光器芯片的第一端与所述激光器芯片所在的所述子贴装区的第二端平齐,其中,所述第一端为所述激光器芯片靠近其对应的所述棱镜的一端,所述第二端为所述激光器芯片所在的所述子贴装区靠近所述激光器芯片对应的所述棱镜的一端;
    或者,所述第一端位于所述第二端与所述激光器芯片对应的所述棱镜之间,且所述第一端与所述第二端在所述激光器芯片和其对应的所述棱镜的排布方向上的距离小于15微米。
  7. 根据权利要求6所述的激光器,其特征在于,所述第一端位于所述第二端与所述 目标芯片对应的所述棱镜之间,且所述第一端与所述第二端在所述目标芯片和其对应的所述棱镜的排布方向上的距离小于5微米。
  8. 根据权利要求1或2所述的激光器,其特征在于,所述承载基板的材质包括陶瓷。
  9. 根据权利要求1或2所述的激光器,其特征在于,所述激光器还包括:在所述激光器芯片远离所述管壳的一侧,沿远离所述管壳的方向依次叠加的盖板、密封玻璃以及准直透镜;
    所述盖板、所述密封玻璃以及所述准直透镜中的一个或多个结构与所述承载基板的热膨胀系数相同。
  10. 根据权利要求9所述的激光器,其特征在于,所述一个或多个结构与所述承载基板的材质相同。
  11. 根据权利要求1或2所述的激光器,其特征在于,所述激光器还包括:沿远离所述管壳的方向,依次叠加在所述芯片贴装区上的散热层、辅助层和导电层,所述激光器芯片位于在所述导电层远离所述管壳的一侧;
    所述散热层的导热系数大于20瓦/米·度,所述辅助层的材质与所述散热层的材质不同,且与所述导电层的材质不同。
  12. 根据权利要求11所述的激光器,其特征在于,所述承载基板的热膨胀系数与所述散热层的热膨胀系数的差值的绝对值小于30*10-6/摄氏度。
  13. 根据权利要求11所述的激光器,其特征在于,所述散热层的材质包括铜。
  14. 根据权利要求11所述的激光器,其特征在于,所述散热层的厚度大于1微米。
  15. 根据权利要求13所述的激光器,其特征在于,所述散热层的厚度范围为30微米~75微米。
PCT/CN2020/121630 2019-09-20 2020-10-16 激光器 WO2021052513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/698,132 US20220209495A1 (en) 2019-09-20 2022-03-18 Laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910892473.X 2019-09-20
CN201910892473.XA CN112636160B (zh) 2019-09-20 2019-09-20 激光器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/698,132 Continuation-In-Part US20220209495A1 (en) 2019-09-20 2022-03-18 Laser device

Publications (1)

Publication Number Publication Date
WO2021052513A1 true WO2021052513A1 (zh) 2021-03-25

Family

ID=74883944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121630 WO2021052513A1 (zh) 2019-09-20 2020-10-16 激光器

Country Status (3)

Country Link
US (1) US20220209495A1 (zh)
CN (2) CN112636160B (zh)
WO (1) WO2021052513A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117916659A (zh) * 2021-09-02 2024-04-19 青岛海信激光显示股份有限公司 激光投影设备
CN116859532B (zh) * 2023-08-15 2024-04-09 武汉钧恒科技有限公司 一种用于硅光模块的光路结构及硅光模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300954A (ja) * 2004-04-13 2005-10-27 Ricoh Co Ltd 双方向光通信装置
CN104426053A (zh) * 2013-09-06 2015-03-18 福州高意通讯有限公司 一种半导体激光器封装结构
CN104956555A (zh) * 2013-03-13 2015-09-30 优志旺电机株式会社 半导体激光器装置
CN107465109A (zh) * 2017-08-09 2017-12-12 深圳市创鑫激光股份有限公司 激光器
CN109390843A (zh) * 2018-12-10 2019-02-26 业成科技(成都)有限公司 发射模组及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401949A (zh) * 2011-12-02 2012-04-04 北京工业大学 一种平台式折转反射单管半导体激光器光纤耦合模块
CN204905644U (zh) * 2015-08-24 2015-12-23 深圳市创鑫激光股份有限公司 一种激光耦合系统
CN108614332A (zh) * 2018-07-24 2018-10-02 大连优迅科技有限公司 一种多路光高速传输发射装置
CN109725392A (zh) * 2019-02-19 2019-05-07 武汉电信器件有限公司 一种光发射组件和光接收组件
CN213816730U (zh) * 2020-12-31 2021-07-27 杭州中科极光科技有限公司 一种激光器光纤耦合装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300954A (ja) * 2004-04-13 2005-10-27 Ricoh Co Ltd 双方向光通信装置
CN104956555A (zh) * 2013-03-13 2015-09-30 优志旺电机株式会社 半导体激光器装置
CN104426053A (zh) * 2013-09-06 2015-03-18 福州高意通讯有限公司 一种半导体激光器封装结构
CN107465109A (zh) * 2017-08-09 2017-12-12 深圳市创鑫激光股份有限公司 激光器
CN109390843A (zh) * 2018-12-10 2019-02-26 业成科技(成都)有限公司 发射模组及其制作方法

Also Published As

Publication number Publication date
US20220209495A1 (en) 2022-06-30
CN112636160B (zh) 2022-04-26
CN112636160A (zh) 2021-04-09
CN115149391A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
US20220216668A1 (en) Light emitting device
WO2021052513A1 (zh) 激光器
JP2016167492A (ja) 発光装置
CN110094643B (zh) 发光装置
JP7231809B2 (ja) 発光装置
KR20140006971A (ko) 발광 모듈, 램프, 조명기구 및 표시 디바이스
WO2021052514A1 (zh) 激光器
JP2006086176A (ja) Led用サブマウント及びその製造方法
JP2011171504A (ja) 発光装置
CN113764972B (zh) 激光器
WO2021213107A1 (zh) 激光器组件
JP2023161108A (ja) レーザ光源およびその製造方法
US11560994B2 (en) Lighting device with light guide
KR20240021987A (ko) 레이저 패키징 장치
WO2022116630A1 (zh) 光源装置
JP7506341B2 (ja) 発光装置
JP7277844B2 (ja) 発光装置
WO2022062947A1 (zh) 激光器
JP7041372B2 (ja) 発光装置
WO2023284880A1 (zh) 激光器和激光投影设备
TWI833971B (zh) 雷射元件
WO2022116631A1 (zh) 一种光源装置
JP6982268B2 (ja) 発光装置
WO2020218595A1 (ja) 発光素子搭載用基板および発光装置
JP2023083387A (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865074

Country of ref document: EP

Kind code of ref document: A1