WO2022062947A1 - 激光器 - Google Patents

激光器 Download PDF

Info

Publication number
WO2022062947A1
WO2022062947A1 PCT/CN2021/118078 CN2021118078W WO2022062947A1 WO 2022062947 A1 WO2022062947 A1 WO 2022062947A1 CN 2021118078 W CN2021118078 W CN 2021118078W WO 2022062947 A1 WO2022062947 A1 WO 2022062947A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
laser
prism
collimating
Prior art date
Application number
PCT/CN2021/118078
Other languages
English (en)
French (fr)
Inventor
周子楠
田有良
李建军
田新团
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202180064347.0A priority Critical patent/CN116235376A/zh
Publication of WO2022062947A1 publication Critical patent/WO2022062947A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Definitions

  • the present application relates to the field of optoelectronic technology, and in particular, to a laser.
  • the application provides a laser, including:
  • one side of the tube shell has an opening
  • the light-emitting component includes a heat sink, a light-emitting chip, a prism and a collimating part; the heat sink and the prism are fixed on the tube case, the light-emitting chip is fixed on the heat sink, the collimator The straight part is fixed on the prism;
  • the light-emitting chip is used for emitting laser light to the prism, and the prism is used for reflecting the incident laser light to the collimating part, and the collimating part is used for collimating the incident laser light and then exiting the tube opening of the shell.
  • FIG. 1 is a schematic structural diagram of a laser provided by the related art
  • FIG. 2 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of still another laser provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a light-emitting assembly provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • a laser 00 includes a package 001, a plurality of light-emitting components 002, a sealing cover 003, a light-transmitting sealing layer 004, and a collimating lens group 005, and the collimating lens group 005 includes a plurality of
  • the light-emitting components 002 have a one-to-one correspondence with a plurality of collimation parts T.
  • One side of the tube shell 001 has an opening, and the plurality of light emitting components 002 are located in the accommodating space of the tube shell 001 .
  • the sealing cover 003 is located on the side where the opening of the package 001 is located, and the light-transmitting sealing layer 004 and the collimating lens group 005 are located on the side of the sealing cover 003 away from the package 001 .
  • Each light-emitting component 002 includes a light-emitting chip 0021, a heat sink 0022 and a prism 0023.
  • the heat sink 0022 is mounted on the bottom plate of the package 001
  • the light-emitting chip 0021 is mounted on the heat sink 0022
  • the prism 0023 is located on the light-emitting side of the light-emitting chip 0021.
  • the light-emitting chip 0021 emits laser light to the prism 0023, and the laser light is reflected on the prism 0023 and then emitted through the light-transmitting sealing layer 004 and the collimating lens group 005 in sequence, thereby realizing the light-emitting of the laser.
  • the volume of the collimating lens group and the laser in the above structure is still relatively large, which is not conducive to the application of the projection light source.
  • lasers can be used in welding process, cutting process and laser projection.
  • the requirements for miniaturization, thinning and luminous efficiency of lasers are also getting higher and higher. .
  • FIG. 2 is a schematic structural diagram of a laser provided by an embodiment of the present application
  • FIG. 3 is a structural schematic diagram of another laser provided by an embodiment of the present application
  • FIG. 3 may be a top view of the laser shown in FIG. 2
  • FIG. 2 may It is a schematic diagram of the section a-a' in the laser shown in FIG. 3
  • the laser 10 includes a casing 101 and a plurality of light-emitting components 102 , one side of the casing 101 has an opening, and the plurality of light-emitting components 102 are located in the accommodating space of the casing 101 .
  • the light-emitting component 102 includes a heat sink 1022 , a light-emitting chip 1021 , and a prism 1023 .
  • the heat sink 1022 and the prism 1023 are fixed on the package 101
  • the light-emitting chip 1021 is fixed on the heat sink 1022 .
  • the prism 1023 includes a collimating part and a reflecting part.
  • the prism 1023 includes a first transmissive surface M1, a reflective surface M2, and a second transmissive surface M3.
  • the first transmissive surface M1 is a flat surface
  • the reflective surface M2 is a reflective surface with an inclined angle
  • the second transmissive surface M3 is a curved surface with an radian.
  • the collimating part 1024 of the prism 1023 includes the second transmission surface M3, and the light reflecting part of the prism 1023 is the reflecting surface M2.
  • the light-emitting chip 1021 is used for emitting laser light to the prism 1023, and the reflection part of the prism 1023 is used for reflecting the incident laser light to the collimating part 1024, and the collimating part 1024 is used for collimating the incident laser light
  • the opening of the shell 101 is ejected.
  • collimating the light means converging the light, so that the divergence angle of the light becomes smaller and closer to parallel light.
  • the collimating part in each light-emitting component is fixed on the prism, and the laser reflected by the prism can be collimated directly through the collimating part and then exit the tube casing, without the need for the collimating part in the tube.
  • the collimating lens group is arranged outside the casing, so the volume of the laser is reduced, which is beneficial to the miniaturization of the laser.
  • the tube case 101 may include a bottom plate 1011 and a side wall 1012, the side wall 1012 may be annular, and the side wall 1012 is fixed on the bottom plate 1011, and the opening of the side wall 1012 not covered by the bottom plate 1011 is The opening of the casing 101 .
  • a plurality of light emitting components 102 in the laser are located in the cavity enclosed by the bottom plate 1011 and the side wall 1012 .
  • the heat sink 1022 and the prism 1023 in each light-emitting assembly 102 are fixed on the bottom plate 1011 , and the surface of the bottom plate 1011 for arranging the heat sink and the prism is flat.
  • the bottom plate 1011 and the side wall 1012 in the tube shell 101 may be an integral structure, or may be independent structures, and the tube shell 101 is formed by welding together.
  • the side wall 1012 is taken as an example of a square tubular structure.
  • the side wall 1012 may also be a circular tubular structure, a pentagonal tubular structure, or a tubular structure of other shapes. Do limit.
  • the prism 1023 has a first transmissive surface M1 and a reflective surface M2 .
  • the light-emitting chip 1021 is used to emit laser light to the first transmission surface M1 of the prism 1023, and the first transmission surface M1 is used to transmit the incident laser light to the reflective surface M2, and the reflective surface M2 is used to reflect the incident laser light to the reflective surface M2.
  • Collimation section 1024 The first transmission surface M1 is the surface of the prism 1023 close to the light-emitting chip 1021 , and the light-reflecting surface M2 is the surface of the prism 1023 away from the light-emitting chip 1021 .
  • the surface of the prism 1023 pasted with the package 101 is the bottom surface of the prism 1023 , and the bottom surface can be parallel to the bottom plate 1011 , for example, the bottom surface is parallel to the bottom surface of the bottom plate 1011 for arranging the heat sink and the prism.
  • the area of the surface of the prism 1023 away from the bottom plate 1011 may be larger than the area of the bottom surface.
  • the cross-section of the prism 1023 may be an inverted trapezoid, which is perpendicular to the bottom surface and parallel to the arrangement direction of the light-emitting chip 1021 and the prism 1023 (as shown in FIG. 2 ). in the x direction). As shown in FIG.
  • the reflective surface M2 is connected to the bottom surface, the angle formed by the reflective surface M2 and the bottom surface is an obtuse angle, and the angle formed by the other surfaces of the prism 1023 and the bottom surface is a right angle, and the other surfaces are the prism 1023 connected to the bottom surface and
  • the surface different from the reflective surface for example, the other surface includes a first transmissive surface M1, a second transmissive surface M3, and a surface connecting the first transmissive surface M1, the second transmissive surface M3 and the reflective surface M2.
  • the reflective surface M2 plays a major role in the reflection of the laser light in the prism 1023, it can only be ensured that the reflective surface M2 satisfies a fixed setting angle, so that the laser light emitted by the light-emitting chip 1021 is reflected on the reflective surface. After being reflected on the M2, the shell 101 can be emitted in the set direction.
  • the light-emitting chip 1021 emits laser light to the prism 1023 along the direction parallel to the bottom plate 1011 , so the obtuse angle formed by the reflective surface M2 in the prism 1023 and the bottom surface can be 135 degrees, which can ensure that the laser reflected by the reflective surface M2 is emitted in the direction perpendicular to the bottom plate 1011 .
  • the angle formed by the surface other than the reflective surface M2 in the prism 1023 and the bottom surface can be arbitrarily set, such as the angle formed by other surfaces in the prism 1023 and the bottom surface can also be an acute angle or an obtuse angle, which is not limited in the embodiments of the present application .
  • a surface of the prism away from the light-emitting chip may be provided with a reflective film (not shown in this embodiment of the present application), and the reflective film is used to reflect the incident laser light. That is, the reflective surface in the prism can be the surface on which the reflective film is arranged in the prism, and the reflective surface of the prism can reflect the laser light through the reflective film. In some implementations, the reflective film may be disposed on the prism by means of attachment or optical coating.
  • each light emitting assembly may further include an anti-reflection coating disposed on the first transmissive surface of the prism. In this way, it can be ensured that the laser light emitted by the light-emitting chip to the prism can be incident on the prism more, and then directed to the reflective surface in the prism to be reflected by the reflective surface, which improves the utilization rate of the laser light emitted by the light-emitting chip and improves the light emission of the laser. effectiveness.
  • the collimating portion 1024 of each light-emitting assembly 102 is located in the surface of the prism 1023 away from the bottom plate 1011, and is close to one end of the reflective surface M2. In this way, it can be ensured that more laser light reflected by the reflective surface M2 can be directed toward the collimating portion 1024, thereby avoiding waste of laser light.
  • the side of the collimating portion 1024 in each light emitting assembly 102 away from the prism 1023 has a convex arc surface, and the convex arc surface is used to realize the collimating function of the collimating portion 1024 .
  • the collimating portion 1024 may have a flat surface and a convex curved surface, the flat surface is opposite to the convex curved surface, and the flat surface is close to the prism 1023 relative to the convex curved surface.
  • the prism 1023 can reflect the laser light to the plane in the collimating part 1024 first, and then the laser light can pass through the plane to the convex arc surface.
  • the convex arc surface can adjust the angle of the incident laser light and then emit it so that the divergence angle of the laser light emitted from the convex arc surface is small and close to parallel light.
  • the curvature radius of the collimating portion (that is, the curvature radius of the convex arc surface in the collimating portion) may be less than 10 mm, and the orthographic projection area of the collimating portion on the bottom plate of the tube case The range can be from 20 square millimeters to 50 square millimeters. It should be noted that the radius of curvature of the collimating portion and the orthographic projection area of the collimating portion on the base plate can be adjusted accordingly according to the specific optical path design, and are not limited to the scope provided in this application.
  • the curvature radius of the collimating portion is small, and the orthographic projection area of the collimating portion on the base plate may be larger than 50 square millimeters.
  • the radius of curvature of the collimating portion may be greater than the radius of curvature of the collimating portion in the related art, that is, the degree of curvature of the convex arc surface in the collimating portion is smaller than that of the collimating portion in the related art, and further collimation The thickness of the portion is smaller than that of the collimating portion in the related art.
  • the orthographic projection area of the collimating part is smaller than that of the collimating part in the related art, so the size of the collimating part in the embodiment of the present application is smaller than that in the related art, and the collimating part is smaller than the collimating part in the related art.
  • the volume of the section is also smaller than that of the collimating section in the related art.
  • the laser emitted by the light-emitting chip is a cone of light with a certain divergence angle
  • the longer the optical path of the laser that is, the distance that the laser travels
  • the laser light emitted by the light-emitting chip is first reflected on the prism, then passes through the light-transmitting sealing layer, and then is directed to the collimating part;
  • the light spot formed on the upper part is larger, and the divergence angle of the laser light emitted to the collimating part is larger.
  • the size of the collimating part needs to be larger than or equal to the size of the spot formed by the laser on the collimating part, so The size of the collimation portion needs to be larger.
  • the curvature radius of the convex arc surface is the reciprocal of the curvature, the smaller the curvature radius of the convex arc surface, the greater the degree of curvature of the convex arc surface, and the better the laser collimation effect of the convex arc surface.
  • the collimation of the laser into approximately parallel light requires a strong collimating effect of the collimating part, so the curvature of the convex arc surface of the collimating part is large. , and the thickness of the collimation part is larger, and the volume of the collimation part is larger. This results in a large volume of the laser including the collimating portion.
  • the laser light emitted by each light-emitting component forms a large spot on the corresponding collimating portion, the laser light emitted by the adjacent light-emitting components is more likely to mix light when it is emitted to the collimating portion, resulting in the laser
  • the color of the emitted laser may deviate from the set color, and the luminous effect of the laser is poor.
  • each light-emitting component corresponds to a collimating part
  • the size of the collimating part in the related art is relatively large, and the laser light emitted by different light-emitting components is easy to mix light, so the arrangement of light-emitting components in the laser is relatively sparse, and the adjacent light-emitting components The distance between them is large, the number of light-emitting components included in the laser is small, and the light-emitting brightness of the laser and the energy of the emitted laser light are both low.
  • the distance between adjacent light-emitting components is greater than 4 mm.
  • the laser light emitted by the light-emitting chip after the laser light emitted by the light-emitting chip is reflected on the prism, it can be directly directed to the collimating part without passing through the light-transmitting sealing layer.
  • the optical path of the laser light from the light-emitting chip to the collimating part is shorter, and the laser The light spot formed on the collimating part is small, and the divergence angle of the laser light when it is directed to the collimating part is also small.
  • the collimating part with a smaller size can achieve the collimation of all the incident laser light, and the collimating part with weak collimation effect can realize the collimation of the incident laser light into approximately parallel light, so , the size and thickness of the collimating portion in the embodiment of the present application may be smaller, the volume of the collimating portion may be smaller, and the volume of the laser including the collimating portion may be smaller.
  • the laser light emitted by the light-emitting chip forms a small spot on the corresponding collimating portion, the light mixing of the laser light emitted by different light-emitting components can be weakened, and the efficiency of the laser is improved. glow effect.
  • the size of the collimating portion in the embodiment of the present application is small, and the laser light emitted by different light-emitting components is not easy to mix light, the distance between the different light-emitting components in the laser can be correspondingly reduced, and the distance between the light-emitting components in the laser can be reduced accordingly.
  • the arrangement is relatively compact, and the distance between adjacent light-emitting components can be small.
  • the laser in the embodiment of the present application may include more light-emitting components, and thus the brightness and energy of the laser light emitted by the laser are both higher.
  • the volume of the laser of the embodiment of the present application may be smaller.
  • the pitch of the light-emitting chips in adjacent light-emitting components ranges from 3 mm to 4 mm. It should be noted that the positions between the collimating parts in the embodiments of the present application can be adapted according to the arrangement of the light-emitting components and the optical path design. A distance may also exist, which is not limited in this embodiment of the present application.
  • the main body of the prism 1023 and the collimating portion 1024 are independent structures, and the collimating portion 1024 is attached to the surface of the prism 1023 away from the bottom plate 1011 .
  • the flat surface opposite to the convex arc surface in the collimating portion 1024 is used as the surface to which the prism 1023 is attached.
  • the main body portion of the prism 1023 and the collimating portion 1024 are integrally formed.
  • the plane opposite to the convex arc surface in the collimating part 1024 is the interface between the collimating part 1024 and the prism 1023, and the plane is not the surface of the collimating part.
  • the integral molding of two objects means that the two objects can be obtained by processing a whole piece of initial material at one time, and the two objects are fixedly connected, and both are part of the region of the initial material.
  • the integrally formed prism and the collimating portion can be obtained by cutting and grinding a piece of glass into a desired shape; or can also be obtained by molding the glass material through a predetermined mold.
  • the position of the integrated structure of the prism and the collimating part can be moved to determine the effect of the collimating part on the laser light.
  • the position of the integrated structure when the collimation effect is the best, and then the integrated structure is fixed at this position. In this way, there is no need to separately align the prism and the collimating part, and there is no need to perform another sticking process on the collimating part, which can simplify the laser preparation process and shorten the laser assembly time.
  • the light-emitting chip and the prism can be fixed on the bottom plate of the casing first, and the light-emitting chip can emit laser light, and then reflect the light according to the prism.
  • the setting position of the collimating part is determined, so that the collimating part is set at the position with the best collimation effect on the laser reflected by the prism. In this way, by flexibly adjusting the setting position of the collimation part, the influence of the error existing in setting the light-emitting chip on the final collimation effect can be compensated.
  • the prism and the collimating part in each light-emitting assembly are integrally formed, the fixing firmness of the prism and the collimating part can be guaranteed to be high, and the manufacturing process of the laser is reduced. Moreover, the assembly error when the prism and the collimating part are fixed (eg, pasting) in the later stage can be avoided, and the accuracy of the relative position of the collimating part and the prism can be ensured.
  • the prisms in each light-emitting assembly in the laser may be independent, or the prisms in at least two adjacent light-emitting assemblies may also be integrally formed, which is not limited in the embodiment of the present application.
  • the following describes the case of integrally forming prisms in at least two adjacent light-emitting assemblies in a laser with reference to the accompanying drawings.
  • FIG. 4 is a schematic structural diagram of another laser provided by an embodiment of the present application, and FIG. 4 may be a top view of the laser shown in FIG. 2 , and FIG. 2 may be a schematic diagram of the cross section b-b' of the laser shown in FIG. 4 .
  • the prisms 1023 in at least two adjacent light emitting assemblies 102 may be integrally formed.
  • the laser in the embodiment of the present application may be a multi-chip Laser Diode (MCL) type laser, and the plurality of light emitting components 102 may be arranged on the base plate 1011 in multiple rows and columns. In other embodiments, a plurality of light emitting components may also be arranged in a row.
  • MCL Laser Diode
  • the light-emitting chips 1021 are arranged in a row along the row direction, and the prisms 1023 are also arranged in a row along the row direction.
  • One row of light-emitting chips 1021 and one row of prisms 1023 are arranged along the column direction.
  • the row direction of the plurality of light emitting assemblies 102 may be the x direction
  • the column direction of the plurality of light emitting assemblies may be the y direction.
  • the laser includes 20 light-emitting components, and the 20 light-emitting components are arranged in 4 rows and 5 columns.
  • the light-emitting components in the laser may also be arranged in a circle or scattered, which is not limited in this embodiment of the present application.
  • the prisms 1023 in each row of the light-emitting components 102 of the plurality of light-emitting components 102 of the laser are integrally formed.
  • the laser may include a plurality of strip-shaped prisms.
  • prisms in some of the light-emitting assemblies may also be independent of each other.
  • the prisms in two rows of light emitting assemblies in the four rows of light emitting assemblies as shown in FIG. 4 are integrally formed, and the prisms in the other two rows of light emitting assemblies are independent of each other.
  • only the prisms in some of the light emitting assemblies adjacent in the row direction in each row of light emitting assemblies are integrally formed.
  • the prisms in the two light emitting assemblies on the left side are integrally formed, and the two light emitting assemblies on the right side are integrally formed.
  • whether the prism in the light-emitting assembly is integrally formed may have other optional manners, which are not limited in the embodiments of the present application.
  • the collimation parts in at least two adjacent light emitting assemblies of the plurality of light emitting assemblies of the laser are integrally formed, for example, the at least two light emitting assemblies comprise one row of the plurality of light emitting assemblies arranged in multiple rows and columns A light-emitting component or an array of light-emitting components.
  • the collimating parts in the at least two light-emitting assemblies may not be integrally formed with the prism, and only the collimating parts in the at least two light-emitting assemblies may be integrally formed; or the prisms in the at least two light-emitting assemblies are integrally formed, and The collimation part is also integrally formed.
  • the collimating portions in the at least two light-emitting assemblies can be fixed together on the prisms in the at least two light-emitting assemblies.
  • the integrally formed collimating parts may be a strip-shaped structure, one side of the strip-shaped structure has a plurality of convex arc surfaces, and the part of the strip-shaped structure where each convex arc surface is located may serve as a collimating part .
  • the prisms in different light-emitting components in the laser are integrally formed, whether the collimating parts are integrally formed, and whether the prisms and the collimating parts in each light-emitting component are integrally formed
  • the methods can be combined arbitrarily to obtain a variety of different lasers.
  • the prisms in each light-emitting assembly in the laser are independent of each other, and the prisms in each light-emitting assembly are integrally formed with the collimating portion.
  • the prisms in each row of light-emitting components in the laser are integrally formed, and the prisms and collimating portions in each light-emitting component are independent of each other.
  • the prisms in each row of light-emitting assemblies in the laser are integrally formed, and the prisms and collimating portions in each light-emitting assembly are integrally formed.
  • the prisms in each row of light-emitting assemblies in the laser are integrally formed, and the collimating portions in each row of light-emitting assemblies are integrally formed, but the prisms and collimating portions in each light-emitting assembly are not integrally formed.
  • the prism and the collimating part that are not integrally formed in a light-emitting assembly may be fixed by an adhesive.
  • each collimating part in the collimating lens group is integrally formed, the relative position of each collimating part is fixed, and the position of each collimating part in the collimating lens group is based on the theory of the laser reflected by the corresponding prism. Design the irradiation position. If the light-emitting chip, the heat sink and the prism in the laser are all arranged in corresponding theoretical positions, the light reflected by the prism can be directed to the center of the corresponding collimating part.
  • each light-emitting assembly may include an independent collimating portion, or the collimating portions in at least two light-emitting assemblies may be integrally formed.
  • the setting position of the collimating part can be adjusted correspondingly when the collimating part is mounted, so that the light emitted by the light-emitting chip can be more accurately It is directed to the center position of the collimating part; thus, the collimating effect of the collimating part on the light can be guaranteed to be high, and the collimation and brightness of the light emitted by the laser can be ensured. Since the alignment portion can be individually adjusted for each light-emitting assembly, there is no need to design the position of each component based on the entire light-emitting assembly, thereby increasing the degree of freedom in the design of the optical path of the laser.
  • FIG. 5 shows a schematic structural diagram of another light-emitting assembly.
  • the first transmission surface M1 is convex Arc surface, thus forming a collimating lens with other parts of the prism.
  • the laser beam emitted by the light-emitting chip 1021 first enters the first transmission surface M1 and then enters the prism, undergoes a certain degree of collimation, and then enters the reflective surface M2.
  • the reflective surface M2 emits the collimated laser beam through the second transmission surface M3.
  • the second transmission surface M3 may be a flat surface, or for a further collimation effect, the second transmission surface M3 may also be a curved surface, such as a convex arc surface.
  • the exemplary solution of the light-emitting assembly shown in FIG. 5 can also be applied to the multi-chip laser package structure of FIG. 2 , FIG. 3 , and FIG. 4 .
  • the prism in the light-emitting assembly shown in FIG. 5 can also be applied to the integrated molding solution mentioned in the above-mentioned embodiment, and the light-emitting assembly shown in FIG. 5 can also be applied to the arrangement mentioned in the above-mentioned embodiment. It is not repeated here.
  • FIG. 6 shows yet another laser packaging structure.
  • the packaging structure is also used for packaging multi-laser light-emitting chips.
  • the packaging structure includes a bottom plate 1011 , a side wall 1012 , and a light-transmitting sealing layer 104 , wherein the side wall 1012 can be an annular structure made of ceramic material, and the side wall 1012 and the bottom plate 1011 are welded or bonded.
  • the bottom plate 1011 can be made of ceramic material or metal material.
  • the light-transmitting sealing layer 104 can be welded to the sidewall 1012 by gold-tin soldering, so that the bottom plate 1011 , the sidewall 1012 , and the light-transmitting sealing layer 104 form a sealed space in which a plurality of light-emitting components can be arranged.
  • the plurality of light-emitting assemblies may be the light-emitting assemblies shown in FIG. 5 , or may be the light-emitting assemblies shown in FIG. 2 , FIG. 3 , and FIG. 4 .
  • the lasers in the above-mentioned embodiments of the present application may be monochromatic lasers or multi-color lasers, which are not limited in the embodiments of the present application.
  • Each light-emitting component in the monochromatic laser is used to emit laser light of the same color
  • the plurality of light-emitting components in the multi-color laser at least include: a first light-emitting component for emitting laser light of a first color, and a light-emitting component for emitting laser light of a second color
  • the second light-emitting component of the laser may include a light emitting component for emitting red laser light, a light emitting component for emitting green laser light, and a light emitting component for emitting blue laser light.
  • the divergence angles of the lasers of different colors emitted by different light-emitting chips are different; for example, the divergence angle of the red laser emitted by the red light-emitting chip is greater than 35 degrees, and the divergence angle of the blue laser emitted by the blue light-emitting chip is greater than 23° degree, the spot formed by the red laser is larger than the spot formed by the blue laser.
  • each collimating part is integrally formed and has the same shape and size, if the collimating part is designed according to the divergence angle of the red laser, the designed collimating lens group is bulky, which is not conducive to the miniaturization of the laser. If the collimating part is designed according to the divergence angle of the blue laser, the designed collimating part in the collimating lens group to which the red laser is directed cannot collimate all the red laser light, which will cause the loss of the red laser light.
  • a single light-emitting component may include a separate collimation portion, or a row of light-emitting components may include an integrally formed collimation portion, so that the collimation portion can be aligned according to the divergence angle of the laser light emitted by the light-emitting chip in the light-emitting component.
  • Corresponding design is carried out to ensure that the laser has a small volume and high luminous efficiency at the same time.
  • the laser 10 may further include: a sealing cover plate 103 and a light-transmitting sealing layer 104 .
  • the sealing cover plate 103 and the light-transmitting sealing layer 104 can cover the opening of the package 101 .
  • the sealing cover plate 103 is annular, and the outer edge of the sealing cover plate 103 is fixed on the side where the opening of the tube shell 101 is located, for example, on the surface of the side wall 1012 of the tube shell 101 away from the bottom plate 1011 .
  • the inner edge of the sealing cover 103 is recessed toward the bottom plate 1011 relative to the outer edge.
  • the light-transmitting sealing layer 104 is fixed to the inner edge of the sealing cover plate 103 , for example, the edge of the light-transmitting sealing layer 104 is fixed to the inner edge of the sealing cover plate 103 .
  • the thickness of the outer edge of the sealing cover plate 103 may be smaller than the preset thickness threshold, the thickness of the outer edge is relatively thin, and the outer edge may be fixed on the surface of the side wall 1012 away from the bottom plate by parallel sealing technology.
  • the inner edge of the sealing cover 103 may be recessed toward the bottom plate 1011 relative to the outer edge.
  • the sealing cover 103 may be a sheet metal part, and the thickness of each position of the sealing cover 103 is the same or approximately the same.
  • the sealing cover plate 103 can be made by a sheet metal process, for example, a ring-shaped plate-shaped structure can be punched, so that appropriate positions in the plate-shaped structure can be bent, recessed or raised, so as to obtain the sealing provided by the embodiments of the present application cover plate.
  • the sealing cover plate 103 is first placed on a side of the side wall 1012 of the tube shell 101 away from the bottom plate 1011 .
  • the outer edge of the sealing cover plate 103 is overlapped on the surface of the side wall 1012 of the tube casing 101 away from the bottom plate 1011 .
  • the light-transmitting sealing layer 104 and the sealing cover 103 may be fixed first, for example, the edge of the light-transmitting sealing layer 104 and the sealing cover may be fixed by a sealant.
  • the inner edge of 103 is fixed.
  • the light-transmitting sealing layer 104 may be a plate-like structure.
  • the plate-like structure may include two parallel larger surfaces and a plurality of smaller side surfaces connecting the two surfaces, and the side surfaces of the light-transmitting sealing layer 104 may be connected to the sealing cover plate through a sealant (not shown in the figure).
  • the inner edge of 103 is fixed.
  • the light-transmitting sealing layer may be directly fixed to the sealing cover, or the laser may further include an auxiliary support frame, the light-transmitting sealing layer may be first fixed to the auxiliary support frame, and then the auxiliary support frame is fixed to the sealing cover.
  • the auxiliary support frame may be an eyelet frame, so that the middle area of the light-transmitting sealing layer can be supported by the supporting frame, thereby improving the installation firmness of the light-transmitting sealing layer.
  • a brightness enhancement film may be attached to at least one of the surface of the light-transmitting sealing layer close to the base plate and the surface far away from the base plate, so as to improve the light output brightness of the laser.
  • the material of the tube shell may be copper, such as oxygen-free copper
  • the material of the light-transmitting sealing layer may be glass
  • the material of the sealing cover plate may be stainless steel.
  • the thermal conductivity of copper is relatively large, and the material of the tube shell in the embodiment of the present application is copper, which can ensure that the heat generated by the light-emitting components arranged on the bottom plate of the tube shell during operation can be quickly conducted through the tube shell. , and then dissipate quickly, avoiding damage to the light-emitting components caused by heat accumulation.
  • the material of the tube shell can also be one or more of aluminum, aluminum nitride and silicon carbide.
  • the material of the sealing cover plate in the embodiment of the present application may also be other Kovar materials, such as iron-nickel-cobalt alloy or other alloys.
  • the material of the light-transmitting sealing layer may also be other light-transmitting and highly reliable materials, such as resin materials.
  • the tube case 101 , the sealing cover 103 and the light-transmitting sealing layer 104 may constitute a closed space, so that the light-emitting component 102 can be placed in the closed space to prevent the light-emitting component 102 from being eroded by water and oxygen.
  • the opposite sides of the side wall 1012 of the package 101 may have a plurality of openings
  • the laser 10 may further include: a plurality of conductive pins 106 , which can respectively pass through the plurality of conductive pins 106
  • the opening in the side wall 1012 extends into the casing 101 and is then fixed to the casing 101 .
  • the conductive pins 106 can be electrically connected to electrodes of the light-emitting chip in the light-emitting assembly, so as to transmit external power to the light-emitting chip, thereby exciting the light-emitting chip to emit light.
  • the hole diameter may be 1.2 mm
  • the diameter of the conductive pin 106 may be 0.55 mm.
  • a ring-shaped solder structure (such as a ring-shaped glass bead) may be placed in the opening on the side wall of the package, and the conductive pins are passed through the solder structure and the opening in which the solder structure is located. Then, place the side walls on the surrounding edges of the bottom plate, and place annular silver-copper solder between the bottom plate and the tube shell, and then put the structure of the bottom plate, the side walls and the conductive pins into a high-temperature furnace for sealing and sintering.
  • a ring-shaped solder structure such as a ring-shaped glass bead
  • the bottom plate, the side wall, the conductive pins and the solder can be integrated, thereby realizing the airtightness at the opening of the side wall.
  • the light-transmitting sealing layer and the sealing cover plate can also be fixed, for example, the edge of the light-transmitting sealing layer is pasted on the inner edge of the sealing cover plate to obtain the upper cover assembly.
  • each structure in the light-emitting assembly can be welded on the bottom plate in the accommodating space of the tube shell, and then the upper cover assembly can be welded on the surface of the side wall of the tube shell away from the bottom plate by using the parallel sealing technology, and the laser assembly is completed.
  • the above assembly process is only an exemplary process provided by the embodiments of the present application, and the welding process used in each step can also be replaced by other processes, and the sequence of each step can also be adjusted. The application embodiments do not limit this.
  • the above embodiments of the present application are all described by taking the bottom plate and the side wall of the tube shell as two separate structures that need to be assembled as an example.
  • the bottom plate and the side wall can also be integrally formed. In this way, the bottom plate can be prevented from wrinkling due to the different thermal expansion coefficients of the bottom plate and the side wall when the bottom plate and the side wall are welded at high temperature, thereby ensuring the flatness of the bottom plate, ensuring the reliability of the arrangement of the light-emitting components on the bottom plate, and ensuring that the light-emitting chip emits light.
  • the light emitted by the laser is emitted according to a predetermined light-emitting angle, so as to improve the light-emitting effect of the laser.
  • the above-mentioned single-color laser or multi-color laser packaging structure may also be the packaging method shown in FIG. 6 .
  • the side wall is made of ceramic material, and the conductive path of the light-emitting chip can be formed by setting a metal layer inside the ceramic, without the need to drill holes through the side wall and apply the pin method, which can greatly reduce the laser power consumption. volume.
  • the collimating part and the light-reflecting part are both arranged on a prism, which are located inside the laser tube casing, and there is no need to set the collimating part outside the casing. Therefore, the volume of the laser is reduced, which is beneficial to the miniaturization of the laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本申请公开了一种激光器,属于光电技术领域。所述激光器包括:管壳,管壳的一面具有开口;多个发光组件,位于管壳的容置空间中;其中,发光组件包括热沉、发光芯片、棱镜;热沉和棱镜固定于管壳上,发光芯片固定于热沉上,棱镜包括准直部和反射部;发光芯片用于向棱镜发出激光,棱镜用于将射入的激光准直后射向管壳的开口。

Description

激光器
相关申请的交叉引用
本申请要求在2020年9月22日提交中国专利局、申请号为202011004368.7,发明名称为激光器的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,特别涉及一种激光器。
背景技术
随着光电技术的发展,激光器被广泛应用,对激光器的小型化的要求越来越高。
发明内容
本申请提供了一种激光器,包括:
管壳,所述管壳的一面具有开口;
多个发光组件,位于所述管壳的容置空间中;
其中,所述发光组件包括热沉、发光芯片、棱镜和准直部;所述热沉和所述棱镜固定于所述管壳上,所述发光芯片固定于所述热沉上,所述准直部固定于所述棱镜上;
所述发光芯片用于向所述棱镜发出激光,所述棱镜用于将射入的激光反射至所述准直部,所述准直部用于将射入的激光准直后射出所述管壳的开口。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术提供的一种激光器的结构示意图;
图2是本申请实施例提供的一种激光器的结构示意图;
图3是本申请实施例提供的另一种激光器的结构示意图;
图4是本申请实施例提供的再一种激光器的结构示意图;
图5是本申请实施例提供的一种发光组件的结构示意图;
图6是本申请实施例提供的又一种激光器的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
相关技术中,如图1所示,激光器00包括管壳001、多个发光组件002、密封盖板003、透光密封层004和准直镜组005,准直镜组005包括与该多个发光组件002一一对应的多个准直部T。其中,该管壳001的一面具有开口,该多个发光组件002位于管壳001的容置空间中。密封盖板003位于管壳001的开口所在侧,透光密封层004和准直镜组005位于密封盖板003远离管壳001的一侧。每个发光组件002包括发光芯片0021、热沉0022和棱镜0023,热沉0022贴装在管壳001的底板上,发光芯片0021贴装在热沉0022上,棱镜0023位于发光芯片0021的出光侧。发光芯片0021向棱镜0023发出激光,该激光在棱镜0023上反射后依次穿过透光密封层004和准直镜组005射出,进而实现激光器的发光。但上述结构中准直镜组和激光器的体积仍较大,不利于投影光源的应用。
随着光电技术的发展,激光器的应用越来越广,例如激光器可以应用在焊接工艺,切割工艺以及激光投影等方面,目前对于激光器的小型化、薄型化与发光效率的要求也越来越高。
图2是本申请实施例提供的一种激光器的结构示意图,图3是本申请实施例提供的另一种激光器的结构示意图,且图3可以为图2所示的激光器的俯视图,图2可以为图3所示的激光器中截面a-a’的示意图。如图2所示,激光器10包括:管壳101和多个发光组件102,管壳101的一面具有开口,该多个发光组件102位于管壳101的容置空间中。
其中,发光组件102包括热沉1022、发光芯片1021、棱镜1023。热沉1022和棱镜1023固定于管壳101上,发光芯片1021固定于热沉1022上。其中,棱镜1023包括准直部和反射部。棱镜1023包括第一透射面M1,反光面M2,第二透射面M3。在一些实施方式中,第一透射面M1为平面,反光面M2为具有倾斜角度的反射面,第二透射面M3为具有弧度的曲面。棱镜1023的准直部1024包括第二透射面M3,棱镜1023的反光部为反光面M2。
在一些实施例中,发光芯片1021用于向棱镜1023发出激光,棱镜1023的反光部用于将射入的激光反射至准直部1024,准直部1024用于将射入的激光准直后射出管壳101的开口。需要说明的是,对光线进行准直也即是对光线进行汇聚,使得光线的发散角度变小,更加接近平行光。
综上所述,本申请实施例提供的激光器中,每个发光组件中的准直部固定于棱镜上,进而棱镜反射后的激光可以直接经过准直部准直后射出管壳,无需在管壳外设置准直镜组, 因此减小了激光器的体积,有利于激光器的小型化。
在一些实施例中,管壳101可以包括底板1011和侧壁1012,该侧壁1012可以呈环形,且该侧壁1012固定于底板1011上,该侧壁1012未被底板1011覆盖的开口即为管壳101的开口。激光器中的多个发光组件102位于该底板1011和侧壁1012围成的腔体内。每个发光组件102中的热沉1022和棱镜1023均固定于底板1011上,该底板1011中用于设置热沉和棱镜的表面为平面。在一些实施中,管壳101中的底板1011与侧壁1012可以为一体结构,或者也可以为独立的结构,通过焊接在一起形成管壳101。本申请实施例中以侧壁1012为方形管状结构为例,在一些实施中,该侧壁1012也可以为圆形管状结构、五边形管状结构或者其他形状的管状结构,本申请实施例不做限定。
请继续参考图2,发光组件102中,棱镜1023具有第一透射面M1和反光面M2。发光芯片1021用于向棱镜1023的该第一透射面M1发出激光,该第一透射面M1用于将射入的激光透射至反光面M2,该反光面M2用于将射入的激光反射至准直部1024。该第一透射面M1为棱镜1023中靠近发光芯片1021的表面,该反光面M2为棱镜1023中远离发光芯片1021的表面。
本申请实施例中,棱镜1023中与管壳101粘贴的表面为棱镜1023的底面,该底面可以平行于底板1011,如该底面平行于底板1011用于设置热沉和棱镜的表面。棱镜1023中远离底板1011的表面的面积可以大于该底面的面积,如棱镜1023的截面可以呈倒梯形,该截面垂直于底面,且平行于发光芯片1021与棱镜1023的排布方向(如图2中的x方向)。如图2所示,反光面M2与底面连接,该反光面M2与底面所成的角为钝角,棱镜1023中其他表面与底面所成的角为直角,该其他表面为棱镜1023与底面连接且不同于反光面的表面,如该其他表面包括第一透射面M1,第二透射面M3,以及连接第一透射面M1、第二透射面M3与反光面M2的表面。
需要说明的是,由于棱镜1023中对激光的反射起到主要作用的是该反光面M2,故可以仅保证该反光面M2满足固定的设置角度,以使发光芯片1021射出的激光在该反光面M2上反射后可以按照设定的方向射出管壳101即可。如发光芯片1021沿平行底板1011的方向向棱镜1023发出激光,故棱镜1023中反光面M2与底面所成的钝角可以为135度,如此可以保证反光面M2反射的激光沿垂直底板1011的方向出射。棱镜1023中反光面M2之外的表面,其与底面所成的角均可以任意设置,如棱镜1023中的其他表面与底面所成的角也可以为锐角或钝角,本申请实施例不做限定。
在一些实施中,棱镜远离发光芯片的表面可以设置有反射膜(本申请实施例未示出),该反射膜用于反射射入的激光。也即是棱镜中的反光面可以为棱镜中设置有该反射膜的表 面,棱镜的反光面可以通过该反射膜实现其对激光的反射作用。在一些实施中,该反射膜可以通过贴附或者光学镀膜的方式设置于棱镜上。
在一些实施中,每个发光组件还可以包括设置于棱镜中的第一透射面上的增透膜。如此,可以保证发光芯片射向棱镜的激光可以较多地射入棱镜,进而射向棱镜中的反光面以被该反光面反射,提高了发光芯片发出的激光的利用率,提高了激光器的发光效率。
本申请实施例中,每个发光组件102中准直部1024位于棱镜1023远离底板1011的表面中,靠近反光面M2的一端。如此可以保证反光面M2反射的激光可以较多的射向准直部1024,避免激光的浪费。每个发光组件102中的准直部1024中远离棱镜1023的一侧具有凸弧面,该凸弧面用于实现准直部1024的准直功能。如准直部1024可以具有一个平面和一个凸弧面,该平面与该凸弧面相对,该平面相对该凸弧面靠近棱镜1023。棱镜1023可以将激光先反射至准直部1024中的该平面,进而该激光可以穿过该平面射向凸弧面。该凸弧面可以将射入的激光的角度进行调整后射出,以使从凸弧面射出的激光的发散角度较小,接近平行光。
在一些实施中,每个发光组件中,准直部的曲率半径(也即是准直部中凸弧面的曲率半径)可以小于10毫米,准直部在管壳的底板上的正投影面积范围可以为20平方毫米~50平方毫米。需要说明的是,该准直部的曲率半径以及准直部在底板上的正投影面积可以根据具体的光路设计的不同进行相应地调整,并不局限于本申请提供的范围。相关技术中,通常准直部的曲率半径较小,准直部在底板上的正投影面积可以大于50平方毫米。本申请实施例中准直部的曲率半径可以大于相关技术中准直部的曲率半径,也即是准直部中凸弧面的弯曲程度小于相关技术中准直部的弯曲程度,进而准直部的厚度小于相关技术中准直部的厚度。在管壳的底板上,准直部的正投影面积小于相关技术中准直部的正投影面积,故本申请实施例中准直部的尺寸小于相关技术中准直部的尺寸,且准直部的体积也小于相关技术中准直部的体积。
需要说明的是,由于发光芯片发出的激光为锥形光,具有一定的发散角度,激光的光程(也即是激光传播的距离)越长形成的激光光斑就越大,且激光的发散角度也越大。相关技术中,发光芯片发出的激光先在棱镜上反射,接着穿过透光密封层,之后再射向准直部;激光从发光芯片到准直部的光程较远,激光在准直部上形成的光斑较大,且射向准直部的激光的发散角度较大。进而,为了提高激光器的发光效率,实现将射向准直部的激光全部准直为接近平行光射出,则需要准直部的尺寸大于或等于激光在准直部上形成的光斑的尺寸,故准直部的尺寸需要较大。且由于凸弧面的曲率半径为曲率的倒数,凸弧面的曲率半径越小,该凸弧面的弯曲程度越大,进而该凸弧面对激光的准直效果较好。由于相关 技术中射向准直部的激光发散角度较大,将该激光准直为近似平行光,需要准直部的准直效果较强,故准直部的凸弧面的弯曲程度较大,进而准直部的厚度较大,准直部的体积较大。如此导致包括该准直部的激光器的体积较大。
另外,相关技术中由于每个发光组件射出的激光在对应的准直部上形成的光斑较大,故相邻的发光组件射出的激光较容易在射向准直部时发生混光,导致激光器射出的激光的颜色可能与设定的颜色存在偏差,激光器的发光效果较差。由于每个发光组件对应一个准直部,相关技术中准直部的尺寸较大,且不同发光组件发出的激光较容易混光,所以激光器中发光组件的排布较为稀疏,相邻发光组件之间的间距较大,激光器包括的发光组件的个数较少,进而激光器的发光亮度以及发出的激光的能量均较低。如相关技术中相邻发光组件的间距范围为大于4毫米。
而本申请实施例中,发光芯片发出的激光在棱镜上反射后,无需穿过透光密封层就可以直接射向准直部,该激光从发光芯片到准直部的光程较短,激光在准直部上形成的光斑较小,且激光在射向准直部时的发散角度也较小。如此一来,较小尺寸的准直部便可以实现对射入的全部激光进行准直,且准直效果较弱的准直部即可实现将射入的激光准直为近似平行光,因此,本申请实施例中的准直部的尺寸和厚度可以较小,准直部的体积较小,进而包括该准直部的激光器的体积可以较小。
另外,由于本申请实施例中每个发光组件中,发光芯片射出的激光在对应的准直部上形成的光斑较小,不同发光组件发出的激光的混光情况可以被减弱,提高了激光器的发光效果。并且,由于本申请实施例中准直部的尺寸较小,且不同发光组件发出的激光不容易混光,故激光器中不同发光组件之间的间距可以相应地减小,进而激光器中发光组件的排布较为紧凑,相邻发光组件之间的间距可以较小。相对于与相关技术中体积相同的激光器,本申请实施例中的激光器包括的发光组件的个数可以较多,进而激光器发出的激光的亮度和能量均较高。在与相关技术括相同个数的发光组件的情况下,本申请实施例的激光器的体积可以较小。在一些实施中,相邻发光组件中的发光芯片的间距范围为3毫米~4毫米。需要说明的是,本申请实施例中准直部之间的位置可以根据发光组件的排布方式以及光路设计进行适应的设置,如各个准直部可以相接触,或者相邻准直部之间也可以存在间距,本申请实施例不做限定。
在一些实施例中,每个发光组件102中,棱镜1023的主体部分与准直部1024为独立的结构,准直部1024粘贴于棱镜1023远离底板1011的表面上。此时,准直部1024中与凸弧面相对的平面用于与棱镜1023粘贴的表面。或者,棱镜1023的主体部分与准直部1024一体成型。此时,准直部1024中与凸弧面相对的平面为准直部1024中与棱镜1023的交 界面,该平面并非准直部的表面。需要说明的是,两物体一体成型指的是该两物体通过对一整块初始材料进行一次加工即可得到,该两物体固定连接,且均为该初始材料中的部分区域。如本申请实施例中,一体成型的棱镜和准直部,可以通过对一块玻璃进行切割打磨成所需的形状得到;或者也可以通过将玻璃材料通过制定的模具成型后得到。
本申请实施例中,在发光组件中的棱镜与准直部一体成型时,在固定热沉和发光芯片后,可以通过移动棱镜与准直部的一体结构的位置,确定准直部对激光的准直效果最好时该一体结构的位置,进而将该一体结构固定在该位置。如此,无需针对棱镜与准直部单独对准位置,也无需对准直部再进行一次粘贴工艺,可以简化激光器的制备工艺,缩短激光器的组装时间。
需要说明的是,若每个发光组件中棱镜与准直部通过粘贴的方式固定,则可以先将发光芯片与棱镜均固定在管壳的底板上,并使发光芯片发出激光,进而根据棱镜反射的激光的传输方向,确定准直部的设置位置,以将准直部设置在对棱镜反射的激光的准直效果最好的位置。如此可以通过灵活地调整准直部的设置位置,弥补设置发光芯片时存在的误差对最终准直效果的影响。若每个发光组件中的棱镜与准直部一体成型,则可以保证棱镜与准直部的固定牢固度较高,且减少了激光器的制备工序。并且,可以避免将棱镜与准直部进行后期固定(如粘贴)时的组装误差,保证准直部与棱镜的相对位置的精准度。
本申请实施例中激光器中的各个发光组件中的棱镜可以均独立,或者相邻的至少两个发光组件中的棱镜也可以一体成型,本申请实施例不做限定。下面结合附图对激光器中相邻的至少两个发光组件中的棱镜一体成型的情况进行介绍。
图4是本申请实施例提供的再一种激光器的结构示意图,且图4可以为图2所示的激光器的俯视图,图2可以为图4所示的激光器中截面b-b’的示意图。如图4所示,激光器10的多个发光组件102中,相邻的至少两个发光组件102中的棱镜1023可以一体成型。示例地,本申请实施例中的激光器可以为多芯片激光二极管(multi_chip Laser Diode,MCL)型的激光器,该多个发光组件102可以在底板1011上排成多行多列。在其他实施方式中,也可以多个发光组件呈一行排列。
当多个发光组件呈行和列排列时,对于激光器中的每行发光组件102,其中的发光芯片1021沿行方向排成一行,且棱镜1023也沿行方向排成一行,每行发光组件中的一行发光芯片1021与一行棱镜1023沿列方向排布。如图3和图4中该多个发光组件102的行方向可以为x方向,该多个发光组件的列方向可以为y方向。且图3和图4以激光器包括20个发光组件,该20个发光组件排成4行5列为例进行示意。在一些实施中,激光器中的各个发光组件也可以成圈排布,或者散乱排布,本申请实施例不做限定。
如图4所示,激光器的多个发光组件102中每行发光组件102中的棱镜1023均一体成型。此时,激光器可以包括多个条状的棱镜。在一些实施中,该多个发光组件中也可以存在部分发光组件中的棱镜相互独立。如图4的四行发光组件中两行发光组件中的棱镜均一体成型,另外两行发光组件中的棱镜均相互独立。在另一些实施中,每行发光组件中仅在行方向上相邻的部分发光组件中的棱镜一体成型。如图4中每行发光组件中的四个发光组件中,靠左侧的两个发光组件中的棱镜一体成型,靠右侧的两个发光组件一体成型。或者,发光组件中棱镜是否一体成型还可以有其他的可选方式,本申请实施例不做限定。
在一些实施中,激光器的多个发光组件中相邻的至少两个发光组件中的准直部一体成型,如该至少两个发光组件包括排成多行多列的多个发光组件中的一行发光组件或一列发光组件。示例地,该至少两个发光组件中的准直部可以不与棱镜一体成型,仅该至少两个发光组件中的准直部一体成型;或者该至少两个发光组件中的棱镜一体成型,且准直部也一体成型。如此,可以在将该至少两个发光组件中的棱镜设置在管壳的底板上之后,将该至少两个发光组件中的准直部一同固定在该至少两个发光组件中的棱镜上。示例地,一体成型的多个准直部可以为条状结构,该条状结构的一侧具有多个凸弧面,该条状结构中每个凸弧面所在的部分可以作为一个准直部。
本申请实施例中,激光器中不同发光组件中棱镜是否一体成型的多种可选方式,准直部是否一体成型的多种可选方式,以及每个发光组件中棱镜与准直部是否一体成型的方式可以任意组合,进而得到多种不同的激光器。在一些实施方式中,激光器中各个发光组件中的棱镜均相互独立,且每个发光组件中的棱镜与准直部一体成型。在另一些实施方式中,激光器中每行发光组件中的棱镜一体成型,且各个发光组件中的棱镜和准直部均相互独立。在另一些实施方式中,激光器中的每行发光组件中的棱镜一体成型,且各个发光组件中的棱镜和准直部均一体成型。在又一些实施方式中,激光器中的每行发光组件中的棱镜一体成型,且每行发光组件中的准直部一体成型,但每个发光组件中的棱镜和准直部并不一体成型。本申请实施例中,一个发光组件中未一体成型的棱镜和准直部可以通过粘贴剂固定。
相关技术中,准直镜组中的各个准直部均一体成型,各个准直部的相对位置固定,该准直镜组中每个准直部的位置根据对应的棱镜反射出的激光的理论照射位置进行设计。若激光器中发光芯片、热沉以及棱镜均按照对应的理论位置设置,则棱镜反射出的光线可以射向对应的准直部的中心位置。但是由于热沉、发光芯片以及棱镜在组装时难免会存在位置偏差,导致棱镜实际反射出的光线的照射位置与理论照射位置存在位置偏差,且不同棱镜对应的位置偏差也均不相同。因此,很难保证每个棱镜反射的光线均射向对应的准直部的中心位置,各个准直部射出的光线的亮度差异较大,且激光器射出的光线的准直度较低。
而本申请实施例中,各个发光组件可以包括独立的准直部,或者至少两个发光组件中的准直部一体成型。对于每个发光组件,即使发光芯片与热沉的设置位置与理论位置存在偏差,也可以在贴装准直部时对应地调整准直部的设置位置,使得发光芯片射出的光线能够较为精准地射向准直部的中心位置;进而可以保证准直部对光线的准直效果较高,保证激光器射出的光线的准直度以及亮度。由于可以针对各个发光组件对准直部进行单独调整,无需基于所有发光组件整体设计各个部件的位置,故增大了激光器的光路设计的自由度。
图5示出了另一种发光组件的结构示意图,与图2、图3、图4中所示的发光组件所不同的是,图5所示的发光组件中,第一透射面M1为凸弧面,从而与棱镜的其他部分构成准直透镜。发光芯片1021发出的激光光束先入射第一透射面M1后进入棱镜,进行一定程度的准直,再入射至反光面M2,反光面M2将准直后的激光光束经第二透射面M3出射。在一些实施中,第二透射面M3可以为平面,或者为了更进一步的准直效果,第二透射面M3也可以为曲面,比如凸弧面。
图5示出的发光组件示例方案也可以应用于图2,图3,图4的多芯片激光器封装结构中。以及,图5示出的发光组件中的棱镜也可以适用上述实施例中提到的一体成型方案,以及图5所示的发光组件也可以适用上述实施例中提到的排列方式。在此不再赘述。
以及,图6示出了又一种激光器封装结构。如图6所示,该封装结构同样用于进行多激光发光芯片的封装。具体地,包括底板1011,侧壁1012,透光密封层104,其中,侧壁1012可以为陶瓷材质制成的环状结构,侧壁1012与底板1011进行焊接或粘接。底板1011可以为陶瓷材质或金属材质。透光密封层104可以通过金锡焊方式与侧壁1012焊接,从而底板1011,侧壁1012,透光密封层104形成一个密封空间,在该密封空间内可以设置多个发光组件。该多个发光组件可以为图5所示的发光组件,也可以是图2,图3,图4中所示的发光组件。
本申请上述多个实施例中的激光器可以为单色激光器也可以为多色激光器,本申请实施例不做限定。单色激光器中的各个发光组件用于发出同一颜色的激光,多色激光器中的多个发光组件至少包括:用于发出第一颜色的激光的第一发光组件,以及用于发出第二颜色的激光的第二发光组件。如多色激光器可以包括用于发出红色激光的发光组件、用于发出绿色激光的发光组件和用于发出蓝色激光的发光组件。
对于多色激光器,其中由不同发光芯片发出的不同颜色的激光的发散角度不同;如红色发光芯片发出的红色激光的发散角度大于35度,蓝色发光芯片发出的蓝色激光的发散角度大于23度,红色激光形成的光斑大于蓝色激光形成的光斑。相关技术中,由于各个准直部一体成型,且形状大小均相同,若根据红色激光的发散角度设计准直部,则设计得 到的准直镜组体积较大,不利于激光器的小型化。若根据蓝色激光的发散角度设计准直部,则设计得到的准直镜组中红色激光射向的准直部无法对全部的红色激光进行准直,会造成红色激光的损失。
而本申请实施例中,单个发光组件可以包括单独的准直部,或者一行发光组件可以包括一体成型的准直部,如此可以根据该发光组件中发光芯片发出的激光的发散角度对准直部进行对应的设计,保证激光器同时具有较小的体积和较高的发光效率。
以图2为例,激光器10还可以包括:密封盖板103和透光密封层104。该密封盖板103和透光密封层104可以覆盖管壳101的开口。密封盖板103呈环形,密封盖板103的外边缘固定于管壳101的开口所在侧,如固定于管壳101的侧壁1012远离底板1011的表面。密封盖板103的内边缘相对于外边缘朝底板1011凹陷。透光密封层104与密封盖板103的内边缘固定,如透光密封层104的边缘与密封盖板103的内边缘固定。
本申请实施例中密封盖板103的外边缘的厚度可以小于预设的厚度阈值,该外边缘的厚度较薄,该外边缘可以通过平行封焊技术固定于侧壁1012远离底板的表面上。密封盖板103的内边缘可以相对于外边缘朝底板1011凹陷。在一些实施中,该密封盖板103可以为钣金件,该密封盖板103的各个位置的厚度相同或大致相同。该密封盖板103可以通过钣金工艺制成,如可以对一块环形板状结构进行冲压,使得该板状结构中适当的位置弯折、凹陷或凸起,以得到本申请实施例提供的密封盖板。
需要说明的是,在通过平行封焊技术固定密封盖板103的外边缘与管壳101的侧壁1012时,会先将密封盖板103放置在管壳101的侧壁1012远离底板1011的一侧,且使密封盖板103的外边缘搭接在管壳101的侧壁1012远离底板1011的表面上。接着需要采用封焊设备对该外边缘进行加热,使该外边缘与侧壁1012的连接位置熔融,进而将该外边缘与管壳101的侧壁1012焊接在一起。在一些实施中,在将密封盖板103与管壳101固定之前,可以先将透光密封层104与密封盖板103固定,如可以通过密封胶将透光密封层104的边缘与密封盖板103的内边缘进行固定。
本申请实施例中,透光密封层104可以为板状结构。该板状结构可以包括两个平行的较大的表面以及连接该两个表面的多个较小的侧面,透光密封层104的侧面可以通过密封胶(图中未示出)与密封盖板103的内边缘固定。本申请实施例中,透光密封层可以直接与密封盖板固定,或者激光器还可以包括辅助支撑框,透光密封层可以先与辅助支撑框固定,进而辅助支撑框再与密封盖板固定。示例地,该辅助支撑框可以为目字框,如此该透光密封层的中间区域可以被该支撑框支撑,进而可以提升透光密封层的设置牢固度。在一些实施中,透光密封层靠近底板的表面和远离底板的表面中,至少一个表面上还可以贴附 有增亮膜,以提高激光器的出光亮度。
本申请实施例中该管壳的材质可以为铜,如无氧铜,该透光密封层的材质可以为玻璃,该密封盖板的材质可以为不锈钢。需要说明的是,铜的导热系数较大,本申请实施例中管壳的材质为铜,如此可以保证管壳的底板上设置的发光组件在工作时产生的热量可以快速地通过管壳进行传导,进而较快的散发,避免热量聚集对发光组件的损伤。在一些实施中,管壳的材质也可以为铝、氮化铝和碳化硅中的一种或多种。本申请实施例中密封盖板的材质也可以为其他可伐材料,如铁镍钴合金或其他合金。透光密封层的材质也可以为其他透光且可靠性较强的材质,如树脂材料等。
本申请实施例中,管壳101、密封盖板103和透光密封层104可以构成密闭空间,以使发光组件102可以处于密闭空间中,防止水氧对发光组件102的侵蚀。
请继续参考图3和4,管壳101的侧壁1012的相对两侧可以具有多个开孔,激光器10还可以包括:多个导电引脚106,该多个导电引脚106可以分别穿过侧壁1012中的开孔伸向管壳101内,进而与管壳101固定。导电引脚106可以与发光组件中的发光芯片的电极电连接,以将外部电源传输至发光芯片,进而激发发光芯片射出光线。在一些实施中,该开孔的孔径可以为1.2毫米,导电引脚106的直径可以为0.55毫米。
在一些实施中,本申请实施例中在组装激光器时,可以先在管壳的侧壁上的开孔中放置环状的焊料结构(如环状玻璃珠),将导电引脚穿过该焊料结构及该焊料结构所在的开孔。然后,将侧壁放置在底板的四周边缘,且在底板与管壳之间放置环形银铜焊料,接着将该底板、侧壁和导电引脚的结构放入高温炉中进行密封烧结,待密封烧结并固化后底板、侧壁、导电引脚以及焊料即可为一个整体,进而实现侧壁开口处的气密。还可以将透光密封层与密封盖板进行固定,如透光密封层的边缘粘贴于密封盖板的内边缘,得到上盖组件。接着可以将发光组件中的各个结构焊接在管壳的容置空间内的底板上,继而采用平行封焊技术将上盖组件焊接在管壳的侧壁远离底板的表面上,至此完成激光器的组装。需要说明的是,上述组装过程仅为本申请实施例提供的一种示例性的过程,其中的各个步骤中采用的焊接工艺也可以采用其他工艺代替,各个步骤的先后顺序也可以适应调整,本申请实施例对此不做限定。
需要说明的是,本申请以上实施例均以管壳的底板与侧壁为需要组装的两个单独的结构为例进行说明。在一些实施中,底板与侧壁也可以一体成型。如此可以避免底板与侧壁在高温焊接时由于底板与侧壁的热膨胀系数不同导致的底板产生褶皱,进而可以保证底板的平坦度,保证发光组件在底板上的设置可靠性,且保证发光芯片发出的光线按照预定的发光角度出射,提高激光器的发光效果。
以及,上述单色激光器或多色激光器封装结构还可以是图6所示的封装方式。图6所示的封装方式中,侧壁为陶瓷材质,可以通过陶瓷内部设置金属层形成发光芯片的导电路径,而不需要贯穿侧壁打孔并适用引脚方式,从而可以大大减小激光器的体积。
综上所述,本申请上述多个实施例提供的激光器中,每个发光组件中,准直部和反光部均设在一个棱镜上,位于激光器管壳内部,无需在管壳外设置准直镜组,因此减小了激光器的体积,有利于激光器的小型化。
需要指出的是,在本申请实施例中,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。“大致”和“近似”是指在可接受的误差范围内,本领域技术人员能够在一定误差范围内解决所需解决的技术问题,基本达到所需达到的技术效果。在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。通篇相似的参考标记指示相似的元件。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种激光器,其特征在于,所述激光器包括:
    管壳,所述管壳的一面具有开口;
    多个发光组件,位于所述管壳的容置空间中;
    其中,所述发光组件包括热沉、发光芯片、棱镜;所述热沉和所述棱镜固定于所述管壳上,所述发光芯片固定于所述热沉上,其中,所述棱镜包括反射部和准直部;
    所述发光芯片用于朝向所述棱镜发出激光,所述棱镜用于将射入的激光准直并射向所述管壳的开口。
  2. 根据权利要求1所述的激光器,其特征在于,在所述发光组件中,所述棱镜具有第一透射面、反光面、第二透射面;所述第一透射面为平面,所述反射部包括所述反光面;所述准直部包括所述第二透射面;
    所述发光芯片用于向所述棱镜的所述第一透射面发出激光,所述第一透射面用于将射入的激光透射至所述反光面,所述反光面用于将射入的激光反射至所述准直部。
  3. 根据权利要求1所述的激光器,其特征在于,在所述发光组件中,所述棱镜具有第一透射面、反光面、第二透射面;所述准直部包括所述第一透射面,所述反光部包括所述反光面;
    所述发光芯片用于向所述棱镜的准直部发出激光,所述准直部用于将射入的激光透射并准直角度后至所述反射部,所述反射部用于将射入的激光反射至所述第二透射面并出射。
  4. 根据权利要求2或3所述的激光器,其特征在于,所述棱镜的底面与所述管壳粘贴,所述反光面与所述底面所成的角为钝角。
  5. 根据权利要求2或3所述的激光器,其特征在于,所述反光面是所述棱镜上设置有反射膜的表面。
  6. 根据权利要求2或3所述的激光器,其特征在于,所述发光组件还包括:设置于所述棱镜中所述第一透射面或所述第二透射面上的增透膜。
  7. 根据权利要求1至3任一所述的激光器,其特征在于,所述准直部中远离所述棱镜的一侧具有凸弧面,所述凸弧面的曲率半径小于10毫米。
  8. 根据权利要求1至3任一所述的激光器,其特征在于,所述准直部在所述管壳上的正投影面积范围为20平方毫米~50平方毫米。
  9. 根据权利要求1所述的激光器,其特征在于,所述棱镜的所述准直部与所述反射部一体成型。
  10. 根据权利要求1或9所述的激光器,其特征在于,所述多个发光组件中,相邻的至少两个所述发光组件中的所述棱镜一体成型。
  11. 根据权利要求10所述的激光器,其特征在于,所述多个发光组件在所述管壳的容置空间中排成多行多列,每行所述发光组件中的所述棱镜一体成型;
    在每行所述发光组件中,发光芯片沿行方向排成一行,且棱镜沿行方向排成一行,一行所述发光芯片与一行所述棱镜沿列方向排布。
PCT/CN2021/118078 2020-09-22 2021-09-13 激光器 WO2022062947A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180064347.0A CN116235376A (zh) 2020-09-22 2021-09-13 激光器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011004368.7 2020-09-22
CN202011004368.7A CN114256732A (zh) 2020-09-22 2020-09-22 激光器

Publications (1)

Publication Number Publication Date
WO2022062947A1 true WO2022062947A1 (zh) 2022-03-31

Family

ID=80789712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118078 WO2022062947A1 (zh) 2020-09-22 2021-09-13 激光器

Country Status (2)

Country Link
CN (2) CN114256732A (zh)
WO (1) WO2022062947A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792596A (zh) * 2012-10-30 2014-05-14 鸿富锦精密工业(深圳)有限公司 透镜及使用该透镜的光学模组
JP2015018039A (ja) * 2013-07-09 2015-01-29 株式会社オートネットワーク技術研究所 光モジュール
CN207250931U (zh) * 2017-09-30 2018-04-17 厦门市三安光电科技有限公司 一种导光结构
JP2018190864A (ja) * 2017-05-09 2018-11-29 ウシオ電機株式会社 半導体レーザ装置
US20190252852A1 (en) * 2016-10-28 2019-08-15 Osram Opto Semiconductors Gmbh Laser component and method of producing a laser component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792596A (zh) * 2012-10-30 2014-05-14 鸿富锦精密工业(深圳)有限公司 透镜及使用该透镜的光学模组
JP2015018039A (ja) * 2013-07-09 2015-01-29 株式会社オートネットワーク技術研究所 光モジュール
US20190252852A1 (en) * 2016-10-28 2019-08-15 Osram Opto Semiconductors Gmbh Laser component and method of producing a laser component
JP2018190864A (ja) * 2017-05-09 2018-11-29 ウシオ電機株式会社 半導体レーザ装置
CN207250931U (zh) * 2017-09-30 2018-04-17 厦门市三安光电科技有限公司 一种导光结构

Also Published As

Publication number Publication date
CN116235376A (zh) 2023-06-06
CN114256732A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2022053052A1 (zh) 多芯片激光器封装组件
WO2021135847A1 (zh) 激光封装结构
CN112909729A (zh) 激光器
CN112825409A (zh) 激光器
CN213750521U (zh) 光源装置
CN113703272A (zh) 激光器及投影设备
CN113594847A (zh) 激光器
CN216773795U (zh) 激光器及投影光源
CN113764972B (zh) 激光器
WO2021052513A1 (zh) 激光器
CN112909731A (zh) 激光器
CN216773797U (zh) 激光器
CN112825413A (zh) 激光器
CN112825406A (zh) 激光器
CN217507922U (zh) 激光器
WO2022062947A1 (zh) 激光器
CN115912043A (zh) 激光器
WO2022116630A1 (zh) 光源装置
CN115986552A (zh) 激光器
CN114336265A (zh) 激光器
CN112909730A (zh) 激光器
CN113703271A (zh) 激光器及投影设备
CN114253061A (zh) 激光器及投影设备
CN113764973A (zh) 激光器及其制备方法
CN114122869A (zh) 激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871318

Country of ref document: EP

Kind code of ref document: A1