WO2022053052A1 - 多芯片激光器封装组件 - Google Patents

多芯片激光器封装组件 Download PDF

Info

Publication number
WO2022053052A1
WO2022053052A1 PCT/CN2021/118077 CN2021118077W WO2022053052A1 WO 2022053052 A1 WO2022053052 A1 WO 2022053052A1 CN 2021118077 W CN2021118077 W CN 2021118077W WO 2022053052 A1 WO2022053052 A1 WO 2022053052A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
collimating lens
laser
chip
lens group
Prior art date
Application number
PCT/CN2021/118077
Other languages
English (en)
French (fr)
Inventor
李巍
顾晓强
田有良
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202180062727.0A priority Critical patent/CN116406450A/zh
Publication of WO2022053052A1 publication Critical patent/WO2022053052A1/zh
Priority to US18/107,379 priority patent/US20230198219A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02216Butterfly-type, i.e. with electrode pins extending horizontally from the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Definitions

  • the present application relates to the field of optoelectronic technology, and in particular, to a multi-chip laser package assembly.
  • FIG. 1-1 shows a multi-chip laser package assembly
  • FIG. 1-2 shows a schematic diagram of light-emitting characteristics of a light-emitting chip.
  • the multi-chip laser package assembly includes a base plate 1011 and a case 102.
  • the base plate 1011 and the case 102 are enclosed to form an accommodation space, and a plurality of light-emitting chips 103 and reflecting prisms 104 are arranged on the base plate 1011.
  • a light-emitting chip is formed, and also includes a collimating lens group 105 disposed above the tube shell 102 .
  • the collimating lens group 005 includes a plurality of integrally formed convex lenses 1052, and the plurality of convex lenses 1052 are arranged on the main body 1051, and the edges of the main body 1051 maintain a relatively fixed relationship with the positions of the plurality of light-emitting chips by bonding. In this way, each convex lens in the collimating lens group 105 may correspond to one light-emitting chip.
  • the collimating lens group may also include a plurality of collimating lens units integrally formed in rows or columns, and each integrally formed collimating lens unit is in a row or a column, respectively bonding and covering the position of the light-emitting surface of the laser beam.
  • FIG. 1-2 are schematic diagrams showing the light-emitting propagation direction of a light-emitting chip.
  • the divergence angle ⁇ of the light beam emitted by the light-emitting chip 103 along the fast axis direction (that is, the direction X in the figure) is generally larger, and much larger than that along the slow axis direction (that is, the direction X in the figure).
  • the divergence angle ⁇ of the direction Y, the direction Y is perpendicular to the direction X).
  • the divergence angle ⁇ of the red laser beam along the fast axis direction can reach more than 68.2°, while the divergence angle ⁇ along the slow axis direction is only about 8°.
  • the red light emitted by the light-emitting chip 103 When the light beam enters the convex lens 1052, the width along the fast axis direction is larger, and the width along the slow axis direction is smaller.
  • the maximum width of the cross-section of the beam output by a single multi-chip laser package assembly is large, and the maximum width of the cross-section of the outgoing beam of the light source assembly including a plurality of the above-mentioned components is large, and the cross-section of the beam has a large long axis and a small short axis. Therefore, the size of some optical elements in the subsequent optical path assembly of the above-mentioned laser assembly needs to be designed to be larger in order to realize the transmission of the beam with the larger maximum width of the cross-section, which is not conducive to the optical path assembly and accommodating the optical path assembly.
  • the volume miniaturization design of the main casing of the optical path assembly is not conducive to the optical path assembly and accommodating the optical path assembly.
  • the multi-chip laser package assembly includes:
  • a base plate on which a light-emitting chip is attached
  • Tube shell one side of the tube shell is open, and it is enclosed with the bottom plate to form an accommodating space;
  • a plurality of light-emitting chips emit laser beams with slow-axis directions and fast-axis directions;
  • the collimating lens group is arranged above the tube shell; wherein, the collimating lens group includes a plurality of collimating lenses, and the plurality of collimating lenses are used for one-to-one correspondence with a plurality of light-emitting chips, so as to make the divergence angle of the laser beam on the slow axis
  • the reduction is smaller than the reduction in divergence angle on the fast axis.
  • Figure 1-1 is a schematic structural diagram of a multi-chip laser package assembly provided by the related art
  • 1-2 are schematic diagrams of light-emitting beams of light-emitting chips in the related art
  • 2-1 is a schematic structural diagram of a multi-chip laser package assembly provided by an embodiment of the present application.
  • FIG. 2-2 is a schematic structural diagram of another multi-chip laser package assembly provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a collimating lens provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of optical path transmission on the slow axis of a laser beam incident on a collimating lens provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of optical path transmission on the fast axis of a laser beam incident on a collimating lens provided by an embodiment of the present application;
  • FIG. 6 is a schematic structural diagram of a collimating lens group provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another collimating lens group provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another collimating lens group provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another collimating lens group provided by an embodiment of the present application.
  • FIG. 10 is a schematic top plan view of the front of a collimating lens group provided by an embodiment of the present application.
  • multi-chip laser packaging components can be used in welding and cutting processes.
  • multi-chip laser packaging components are required to emit large energy.
  • the laser, and the collimation effect of the laser emitted by the multi-chip laser package assembly has a greater impact on the energy of the laser, and the better the collimation effect of the laser, the greater the energy.
  • the multi-chip laser package can also be used as a light source in laser projection or laser TV.
  • the collimation effect of the laser emitted by the multi-chip laser package has a greater impact on its brightness.
  • the better the collimation effect of the laser the brighter the brightness. high, and the display effect of the display screen formed by the laser is better.
  • the following embodiments of the present application provide a multi-chip laser package assembly, which can improve the collimation of laser light emitted by the multi-chip laser package assembly.
  • FIG. 2-1 is a schematic structural diagram of a multi-chip laser package assembly provided by an embodiment of the present application.
  • the multi-chip laser package assembly 10 may include: a base plate 1011 , a package 1012 , a plurality of light-emitting chips 102 , a sealing cover 103 , a light-transmitting sealing layer 104 and a collimating lens group 105 .
  • the plurality of light emitting chips 102 are mounted on the base plate 1011 in rows and columns.
  • a plurality of reflective chips 102 emit laser beams along a plane parallel to the base plate 1011, and after the optical path is turned by a reflector (not shown in the figure), they are emitted in a direction away from the base plate 1011, that is, from the base plate 1011 and the tube case. Exit at the opening of the space enclosed by 1012.
  • the casing 1012 is perpendicular to the side wall of the bottom plate 1011 .
  • the collimating lens group 105 is disposed above the tube shell 1012, and forms a fixed connection relationship with the tube shell 1012 by bonding.
  • the plurality of light-emitting chips 102 are located in the accommodating space enclosed by the bottom plate 1011 and the tube case 1012 .
  • the sealing cover 103 is annular, and the outer edge of the sealing cover 103 is fixed on the side where the opening of the bottom plate 1011 is located.
  • the edge of the light-transmitting sealing layer 104 is fixed with the inner edge of the sealing cover 103 .
  • the edge of the collimating lens group 105 is fixed with the outer edge of the sealing cover plate 103 away from the surface of the bottom plate 1011 .
  • the edge of the collimating lens group 105 may be adhered to the outer edge of the sealing cover by an adhesive, and the adhesive may include glass melt glue, low temperature glass solder, epoxy glue or other glues.
  • the collimating lens group 105 includes a plurality of collimating lenses T corresponding to the plurality of light-emitting chips 102 one-to-one, each light-emitting chip 102 is used to emit laser light to the corresponding collimating lens T, and the collimating lens T is used to reduce
  • the divergence angle of the incident laser light is small, and the decrease of the divergence angle of the laser light on the slow axis is smaller than the decrease of the divergence angle on the fast axis. That is, the collimation effect of the collimating lens on the slow axis of the laser light is weaker than that on the fast axis.
  • the preparation material of the collimating lens may be glass.
  • the plurality of light-emitting chips may be arranged in various manners, such as in M rows and N columns, where both M and N are greater than 1, so correspondingly, the plurality of collimating lenses of the collimating lens group are also arranged in multiple rows A multi-column arrangement, rendering a matrix of M rows and N columns.
  • the plurality of light-emitting chips may also be arranged in a row, in the shape of a long strip, and correspondingly, the plurality of collimating lenses are also arranged in a row.
  • the plurality of light-emitting chips may also be arranged in a staggered arrangement in multiple rows or in a honeycomb arrangement.
  • the plurality of collimating lenses of the collimating lens group may be arranged in a staggered arrangement or in a honeycomb arrangement.
  • the plurality of light-emitting chips may be arranged in a polygonal arrangement, and correspondingly, the plurality of collimating lenses are arranged in a polygonal arrangement, wherein the number of sides of the polygon is greater than or equal to five.
  • the collimating lens group 105 also includes a plurality of collimating lenses arranged in rows and columns, which are used to reduce the difference between the divergence angle of the laser beam on the slow axis and the divergence angle on the fast axis, and reduce the divergence ratio of angles.
  • the slow axis direction of the laser beam emitted by the light-emitting chip 102 is parallel to the row direction of the light-emitting chip, or, in other words, diverges outward along the row direction.
  • the fast axis direction of the laser beam is parallel to the column direction of the light emitting chips 102 , or in other words, it diverges outward along the column direction.
  • the collimating lens group includes collimating lenses in 4 rows and 5 columns.
  • the vertex distance between two adjacent rows is greater than the vertex distance between two adjacent columns in the column direction of the collimating lens group, such as the distance D2 between adjacent rows as shown in Figure 10 greater than the distance D1 between adjacent columns.
  • the collimating lenses in the two outermost columns of the collimating lens group have a width in the row direction greater than the width in the row direction of the collimating lenses in other columns of the collimating lens group, as shown in Fig.
  • the width L2 of the collimating lens in the outermost column is greater than the width L1 of the collimating lens in the middle column.
  • the collimating lenses in different rows or columns of the collimating lens group may be different, and the difference means that the curvatures of the collimating lenses in different rows are different in the row direction or the column direction.
  • the curvature of the collimating lens of the collimating lens group 105 in the row direction and the curvature in the column direction of the collimating lens group are different, so that the slow axis direction and the fast axis direction of the laser beam incident thereon are different
  • the divergence angle varies in different magnitudes.
  • the divergence angle of the laser light emitted by the light-emitting chip on the fast axis is greater than the divergence angle on the slow axis, and the divergence angle of the laser light on the fast axis and the divergence angle on the slow axis are quite different.
  • the divergence angle of the laser light emitted by the light-emitting chip on the fast axis ranges from 25 degrees to 35 degrees, and the divergence angle on the slow axis ranges from 5 degrees to 7 degrees.
  • the collimating lens in the collimating lens group includes two opposite surfaces, one surface is a plane surface, and the other has a convex arc surface, and the collimating lens can collimate the incident laser light through the action of the convex arc surface.
  • the convex arc surface is a part of the spherical surface, and the curvatures of the convex arc surface in all directions are equal, so the convex arc surface has the collimation effect on the fast axis and the slow axis of the incident laser.
  • collimating the light means converging the light, so that the divergence angle of the light becomes smaller and closer to parallel light.
  • each collimating lens in the collimating lens group can reduce the divergence angle of the incident laser on the slow axis after passing through the collimating lens to be smaller than that on the fast axis.
  • the reduction of the divergence angle that is, the collimation effect of the collimating lens on the slow axis of the laser is weaker than that on the fast axis, so in this application, the laser can reduce the fast axis and The difference in the divergence angle on the slow axis improves the overall collimation effect of the laser light emitted by the multi-chip laser package assembly.
  • the collimating lens can reduce the divergence angle of the laser light, so as to collimate the laser light .
  • the collimating lens in the embodiment of the present application can reduce the divergence angle of the laser light entering the collimating lens on the slow axis after passing through the collimating lens by less than The divergence angle on the fast axis is reduced, so in the present application, after the laser passes through the collimating lens, the difference between the divergence angles on the fast axis and the slow axis can be reduced, which improves the overall collimation of the laser emitted by the multi-chip laser package assembly. straight effect.
  • the collimating lens in the collimating lens group can use various methods to reduce the divergence angle of the incident laser light on the slow axis to be smaller than the divergence angle decrease on the fast axis.
  • the two possible implementations are explained as examples.
  • FIG. 3 is a schematic structural diagram of a collimating lens provided by an embodiment of the present application.
  • the collimating lens is cylindrical, and the collimating lens has a first surface D1 and a second surface D2.
  • the first surface D1 and the second surface D2 are two opposite surfaces of the collimating lens, and the first surface D1 and D2 are opposite to each other in the collimating lens.
  • D1 is close to the sealing cover with respect to the second face D2.
  • the first surface D1 may be a plane
  • the second surface D2 has a convex arc surface
  • the curvature of the convex arc surface in the row direction of the collimating lens group is smaller than the curvature in the column direction.
  • the first surface D1 has a concave arc surface
  • the second surface D2 has a convex arc surface.
  • the curvature radius of the concave arc surface on the slow axis of the incident laser is smaller than the curvature radius on the fast axis; the curvature of the arc surface is the reciprocal of the curvature radius, so the curvature of the concave arc surface on the slow axis of the incident laser greater than the curvature on the fast axis.
  • the first surface D1 is a concave arc surface
  • the second surface D2 is a convex arc surface, wherein the convex arc surface is outward along the exit direction of the laser beam, that is, the concave arc surface is used to receive the laser first.
  • convex arc surface is used for outgoing laser.
  • only part or all of the first surface is a concave arc surface
  • only part or all of the second surface can be a convex arc surface, which is not limited in the embodiment of the present application.
  • the concave arc surface of the lens has a diffusing effect on the incoming light.
  • the curvature radius of the concave arc surface of the collimating lens on the slow axis of the incident laser light is smaller than the curvature radius on the fast axis. Therefore, the laser light emitted by the light-emitting chip passes through the concave arc surface of the collimating lens.
  • the diffusion amount of the divergence angle of the laser light on the fast axis is smaller than the diffusion amount of the divergence angle on the slow axis. Since the divergence angle of the laser emitted by the light-emitting chip on the fast axis is greater than the divergence angle on the slow axis, the divergence angle on the slow axis of the laser after passing through the concave arc surface of the collimating lens is the same as the divergence on the fast axis. The angle difference is small.
  • the divergence angle of the laser beam on the fast axis can be increased by 1.1 degrees to 1.5 degrees, or, not By changing the divergence angle of the laser beam on the fast axis, the divergence angle of the laser beam on the slow axis can be increased by 1.5 degrees to 2.5 degrees, so that the angle difference between the fast axis and the slow axis of the laser beam can be reduced.
  • the concave arc surface of the collimating lens may be a cylinder, and the straight generatrix of the cylinder is parallel to the fast axis of the laser light incident on the concave arc surface.
  • a cylinder is a curved surface formed by parallel movement of a straight line along a fixed curve, and the moving straight line is called the straight generatrix of the cylinder.
  • the cylinder can be a part of the side surface of a cylinder, and the straight generatrix of the cylinder is parallel to the height direction of the cylinder.
  • the concave arc surface of the collimating lens is a cylindrical surface
  • the curvature of the concave arc surface on the fast axis of the incident laser light is 0, the radius of curvature is infinite, and the concave arc surface is on the slow axis of the incident laser light. has a curvature greater than 0.
  • the concave curved surface is similar to a plane, and the change amount of the divergence angle of the laser light incident on the concave curved surface on the fast axis is the same as the divergence angle of the laser light incident on the flat glass.
  • the curvature of the concave arc surface is larger, and the diffusion angle of the laser beam on the slow axis is larger.
  • the laser light entering the collimating lens can be emitted through the convex arc surface of the collimating lens after adjusting the divergence angles on the fast axis and the slow axis of the laser through the concave arc surface of the collimating lens.
  • the convex arc surface can further collimate the incoming laser light, thereby ensuring better collimation effect of the laser light emitted from the collimating lens.
  • the convex arc surface of the lens has a converging effect on the incident light, and the larger the curvature radius of the convex arc surface is, the smaller the degree of curvature of the convex arc surface is, and the more the converging effect of the convex arc surface on the light is. Weak, the smaller the reduction in the divergence angle of the light.
  • the curvature of the convex arc surface of the collimating lens on the slow axis and the fast axis of the incident laser beam is the same, if the convex arc surface is a spherical surface
  • the first surface of the collimating lens is a cylindrical concave arc surface. Since the divergence angle between the fast axis and the slow axis of the laser can be made smaller by the concave arc surface of the collimating lens, the convex arc surface can only collimate the laser as a whole, so that the laser beam diverges on the fast axis.
  • the reduction degree of the angle may be similar to the reduction degree of the divergence angle on the slow axis, so that different designs of the curvature of the convex arc surface in different directions are not required, and the preparation process of the collimating lens is ensured relatively simple.
  • the convex arc surface of the collimating lens is on the slow axis of the incident laser beam, or in other words, the radius of curvature of the collimating lens group in the row direction is the same as The laser beam has a different radius of curvature on the fast axis, or in the row direction of the collimating mirror group.
  • the curvature radius of the convex arc surface of the collimating lens in the row direction of the collimating lens group is larger than the curvature radius in the column direction of the collimating lens group.
  • the convex arc surface can adjust the divergence angle of the incident laser on the fast axis and the slow axis again, so that the degree of reduction of the divergence angle of the laser on the fast axis is higher than that on the slow axis. , to further reduce the difference between the divergence angles of the laser light emitted by the collimating lens on the fast axis and the slow axis.
  • the curvature radius of the concave arc surface in the collimating lens may be larger than the curvature radius of the convex arc surface, for example, the ratio of the curvature radius of the concave arc surface to the curvature radius of the convex arc surface ranges from 1.5 to 4.
  • the concave arc surface in the collimating lens is only curved on the slow axis of the incident laser light, so the curvature radius of the concave arc surface can refer to the curvature radius of the concave arc surface on the slow axis.
  • the ratio of the radius of curvature of the concave arc surface on the slow axis of the incident laser to the radius of curvature of the convex arc surface on the slow axis and the fast axis can both be in the range of 1.5-4.
  • the curvature radii of the concave arc surface on the fast axis and the slow axis of the incident laser light may be both larger than the curvature radii of the convex arc surface on the fast axis and the slow axis.
  • the collimating lens as a whole is used for collimating and converging the light rays, that is, the divergence angle of the laser light exiting the collimating lens is smaller than the divergence angle of the laser light entering the collimating lens.
  • FIG. 4 is a schematic diagram of optical path transmission on the slow axis of the laser light entering the collimating lens provided by the embodiment of the present application
  • FIG. 5 is provided by the embodiment of the present application.
  • the first surface D1 of the collimating lens is a plane
  • the second surface D2 of the collimating lens has a convex arc surface; the curvature radius of the convex arc surface on the slow axis of the incident laser is greater than The radius of curvature on the fast axis, as shown in FIG.
  • the radius of curvature of the convex arc surface is larger than that of the convex arc surface in FIG. 5 .
  • the collimating lens may be referred to as a free-form surface lens, and the convex arc surface in the collimating lens may be similar to a partial spherical surface of a football.
  • the convex arc surface satisfies: the radius of curvature on the slow axis of the incident laser light is in the range of 3.5 mm to 4 mm, and/or the radius of curvature on the fast axis of the incident laser light is in the range of 3.1 to 3.3 mm.
  • the radius of curvature of the convex arc surface on the fast axis of the incident laser light can be 3.282 mm.
  • the degree of change of the divergence angle of the incident laser light on the first surface on the slow axis is the same as the degree of change of the divergence angle on the fast axis, After the laser enters the first surface of the collimating lens, the difference between the divergence angle of the laser on the fast axis and the divergence angle on the slow axis is still large, so the laser beam directed to the convex surface of the collimating lens is on the fast axis.
  • the divergence angle of , and the divergence angle on the slow axis are still quite different. Since the curvature radius of the convex arc surface of the collimating lens on the slow axis of the incident laser is greater than that on the fast axis, the converging effect of the convex arc surface on the fast axis of the incident laser is stronger than that on the slow axis. The convergence effect on the axis further reduces the difference between the divergence angles of the laser light emitted from the collimating lens (that is, the laser light emitted from the convex arc surface) on the fast axis and the slow axis.
  • FIG. 6 is a schematic structural diagram of a collimating lens group provided by an embodiment of the present application
  • FIG. 7 is a schematic diagram of another collimating lens group provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the structure of another collimating lens group provided by an embodiment of the present application
  • FIGS. 7 and 8 can both be right views of the collimating lens group shown in FIG. 6 .
  • the collimating lens group 105 can be integrally formed.
  • the collimating lens group 105 may have a light incident surface M1 and a light exit surface M2, the light incident surface M1 and the light exit surface M2 are two opposite surfaces in the collimating lens group 105, and the light incident surface M1 is opposite to the light exit surface M2 Close to the sealing cover 103 .
  • the light incident surface M1 of the collimating lens group 105 includes the first surface D1 of each collimating lens in the collimating lens group 105
  • the light exit surface M2 includes the second surface D2 of each collimating lens.
  • the light incident surface M1 of the collimating lens group 105 has multiple concave arc surfaces
  • the light exit surface M2 of the collimating lens group 105 has multiple Convex arc surface
  • the part where each concave arc surface and the corresponding convex arc surface in the collimating lens group 105 are located is a collimating lens T.
  • the orthographic projection of each convex arc surface on the light incident surface of the collimating lens group 105 may coincide with the orthographic projection of the corresponding convex arc surface on the light incident surface.
  • the light incident surface of the collimating lens group 105 is a plane, and the light exit surface M2 of the collimating lens group 105 has a plurality of convex arc surfaces.
  • the part where each convex arc surface of the straight lens group 105 is located is a collimating lens T.
  • FIG. 9 is a schematic structural diagram of another collimating lens group provided by the embodiment of the present application.
  • the collimating lens group 105 can also be composed of a plurality of independent collimating lenses T.
  • the multi-chip laser package assembly may further include a support frame K, the edge of the support frame may be fixed to the outer edge of the sealing cover plate away from the surface of the package, and the support frame may have a plurality of hollow areas (not shown in the figure). ), each collimating lens in the collimating lens group can cover one hollow area in the plurality of hollow areas.
  • the plurality of hollowed-out regions may correspond to the plurality of light-emitting chips in the multi-chip laser package assembly, and the laser light emitted by each light-emitting chip may pass through the corresponding hollowed-out region to the collimating lens covering the hollowed-out region.
  • the multi-chip laser package assembly 10 may be a multi-chip laser diode (multi_chip Laser Diode, MCL) type multi-chip laser package assembly.
  • the multiple light-emitting chips in the multi-chip laser package assembly may be arranged in a package.
  • the multi-chip laser package assembly may be a single-color MCL multi-chip laser package assembly, or may also be a multi-color MCL multi-chip laser package assembly.
  • Each light-emitting chip in a monochromatic MCL multi-chip laser package assembly emits light of the same color.
  • the multi-color MCL multi-chip laser package assembly can include multiple types of light-emitting chips, and different types of light-emitting chips can emit light of different colors.
  • the multi-chip laser package component is a multi-color MCL multi-chip laser package component.
  • the plurality of light-emitting chips 102 in the multi-chip laser package component may include a first light-emitting chip for emitting laser light of a first color , and a second light-emitting chip for emitting laser light of a second color, the divergence angle of the laser light of the first color is smaller than the divergence angle of the laser light of the second color.
  • the collimating lens group 105 can satisfy: the amount of reduction of the divergence angle of the collimating lens corresponding to the first light-emitting chip to the incident laser light is smaller than the divergence angle of the collimating lens corresponding to the second light-emitting chip to the incident laser light. decrease amount.
  • the first color may include blue and green
  • the first light-emitting chip may include a blue light-emitting chip and a green light-emitting chip
  • the second color may be red
  • the second light-emitting chip may be a red light-emitting chip.
  • the divergence angle of the red laser light emitted by the red light-emitting chip may be greater than the divergence angle of the blue laser light emitted by the blue light-emitting chip, and greater than the divergence angle of the green laser light emitted by the green light-emitting chip.
  • the divergence angles of the red laser light on both the fast axis and the slow axis may be greater than the divergence angles of the green laser light and the blue laser light on the fast axis and the slow axis.
  • the divergence angle of the red laser on the fast axis is greater than the divergence angle of the green laser and the blue laser on the fast axis
  • the divergence angle of the red laser on the slow axis is greater than the divergence angle of the green laser and the blue laser on the slow axis
  • the divergence angle of the red laser on the slow axis is smaller than that of the blue and green lasers on the fast axis.
  • the reduction of the divergence angle of the laser light by the collimating lens corresponding to the light-emitting chip that emits the laser light of each color can be adjusted accordingly.
  • the divergence angle of the red laser on the fast axis of the input laser is greater than the divergence angle of the blue laser on the fast axis
  • the divergence angle of the blue laser on the fast axis is greater than the divergence angle of the red laser on the slow axis.
  • the curvature radius of the concave arc surface on the slow axis of the collimating lens directed by the blue laser can be greater than the radius of curvature of the collimating lens directed by the red laser
  • the radius of curvature of the concave arc surface in the collimating lens is smaller than the curvature radius of the concave arc surface on the fast axis in the collimating lens to which the red laser is directed.
  • the curvature radius of the convex arc surface on the fast axis of the collimating lens directed by the blue laser can be larger than that of the collimating lens directed by the red laser.
  • the curvature radius of the convex arc surface in the lens on the fast axis is smaller than the curvature radius of the convex arc surface in the collimating lens to which the red laser is directed on the slow axis.
  • Other magnitude relationships of the divergence angles of the laser light of each color can be deduced by analogy, which is not repeated in this embodiment of the present application.
  • the spot size of the red laser emitted by each red light-emitting chip on the fast axis can reach 350 microns, and the blue light-emitting chip and There can be only one light-emitting point in the green light-emitting chip, the size of the laser spot on the fast axis of the blue light-emitting chip and the green light-emitting chip can be about 35 microns, and the size of the laser light emitted by each light-emitting chip on the slow axis around 1 micron. In this way, the light spot of the laser light emitted by each light-emitting chip in the multi-chip laser package assembly is elongated. After the laser is emitted through the collimating lens, the aspect ratio of the formed light spot can be reduced.
  • the bottom plate 1011 may include a bottom plate 10111 and an annular tube shell 1012 fixed on the bottom plate 10111 , the bottom plate 10111 and the tube shell 1012 enclose an accommodation space of the bottom plate 1011 .
  • the opening of the tube shell 1012 away from the bottom plate 10111 is the opening of the bottom plate 1011 .
  • the bottom plate 10111 and the tube shell 1012 in the bottom plate 1011 may be an integral structure, or may be independent structures, and the bottom plate 1011 is formed by welding together.
  • the thickness of the outer edge of the sealing cover 103 may be smaller than a preset thickness threshold, the thickness of the outer edge is relatively thin, and the outer edge may be fixed to the side where the opening of the bottom plate 1011 is located by parallel sealing technology.
  • the outer edge of the sealing cover plate 103 can be fixed on the surface of the tube shell 1012 away from the bottom plate 10111 by parallel sealing technology.
  • the sealing cover 103 may be a sheet metal part, and the thickness of each position of the sealing cover 103 is the same or approximately the same.
  • the inner edge of the sealing cover 103 may be recessed toward the bottom plate 10111 relative to the outer edge.
  • the sealing cover plate 103 can be made by a sheet metal process, for example, a ring-shaped plate-shaped structure can be punched, so that appropriate positions in the plate-shaped structure can be bent, recessed or raised, so as to obtain the sealing provided by the embodiments of the present application cover plate.
  • the light-transmitting sealing layer 104 may be a plate-like structure.
  • the plate-like structure may include two parallel larger surfaces and a plurality of smaller side surfaces connecting the two surfaces, and the side surfaces of the light-transmitting sealing layer 104 may be fixed to the inner edge of the sealing cover plate 103 by a sealant.
  • the light-transmitting sealing layer may be directly fixed to the sealing cover, or the multi-chip laser package assembly may further include a support frame for supporting the light-transmitting sealing layer, and the light-transmitting sealing layer may be fixed to the supporting frame first, Then, the support frame is fixed with the sealing cover.
  • the support frame may be a mesh frame, so that the middle area of the light-transmitting sealing layer can be supported by the supporting frame, thereby improving the installation firmness of the light-transmitting sealing layer.
  • a brightness enhancement film may be attached to at least one surface of the light-transmitting sealing layer close to the base plate and a surface far away from the base plate, so as to improve the light output brightness of the multi-chip laser package assembly.
  • the light-emitting chip 102 may include a light-emitting chip, a heat sink, and a reflective prism (not shown separately in the embodiments of the present application).
  • the heat sink can be arranged on the bottom plate of the tube case, the light-emitting chip can be arranged on the heat sink, and the heat sink is used to assist the light-emitting chip to dissipate heat, and the reflective prism can be located on the light-emitting side of the light-emitting chip.
  • the light emitted by the light-emitting chip can be directed to the reflective prism, and then reflected on the reflective prism to be emitted through the light-transmitting sealing layer and the collimating lens group.
  • the material of the tube shell may be copper, such as oxygen-free copper
  • the material of the light-transmitting sealing layer may be glass
  • the material of the sealing cover plate may be stainless steel.
  • the thermal conductivity of copper is relatively large, and the material of the tube shell in the embodiment of the present application is copper, which can ensure that the heat generated by the light-emitting chip arranged on the bottom plate of the tube shell during operation can be quickly conducted through the tube shell. , and then dissipate quickly, avoiding damage to the light-emitting chip due to heat accumulation.
  • the material of the tube shell can also be one or more of aluminum, aluminum nitride and silicon carbide.
  • the material of the sealing cover plate in the embodiment of the present application may also be other Kovar materials, such as iron-nickel-cobalt alloy or other alloys.
  • the material of the light-transmitting sealing layer may also be other light-transmitting and highly reliable materials, such as resin materials.
  • the bottom plate 1011 , the sealing cover 103 and the light-transmitting sealing layer 104 may form a closed space, so that the light-emitting chip 102 can be placed in the closed space to prevent the light-emitting chip 102 from being eroded by water and oxygen.
  • the sealing effect of the sealed space can be ensured, thereby prolonging the life of the light-emitting chip.
  • the sealing cover 103 when the outer edge of the sealing cover 103 and the bottom plate 1011 are fixed by the parallel sealing technology, the sealing cover 103 is first placed on the side where the opening of the bottom plate 1011 is located, and the outer edge of the sealing cover 103 is The surface of the tube shell 1012 that is overlapped on the bottom plate 1011 away from the bottom plate 10111 . Next, it is necessary to heat the outer edge with a sealing and welding equipment to melt the position of the connection between the outer edge and the tube shell 1012 , and then weld the outer edge and the side wall of the bottom plate 1011 together.
  • the light-transmitting sealing layer 104 and the sealing cover 103 may be fixed first, for example, the edge of the light-transmitting sealing layer 104 and the sealing cover may be fixed by adhesive.
  • the inner edge of the plate 103 is fixed.
  • the adhesive can coat the side surface of the light-transmitting sealing layer 104, so as to ensure the adhesion reliability of the light-transmitting sealing layer.
  • the collimating lens group 105 can be suspended in the air to debug the light collimation effect. adhesive, and then the collimating lens group 105 and the sealing cover 103 are fixed by the adhesive.
  • the collimating lens group can also be directly enclosed with the tube shell and the bottom plate to form a sealed space, and the sealed light-transmitting layer is no longer provided separately.
  • opposite sides of the package 1012 of the base plate 1011 may have a plurality of openings
  • the multi-chip laser package assembly 10 may further include: a plurality of conductive pins 106, and the plurality of conductive pins 106 may be respectively It extends into the bottom plate 1011 through the opening in the tube shell 1012 and is then fixed to the bottom plate 1011 .
  • the conductive pins 106 may be electrically connected to electrodes of the light-emitting chips in the light-emitting chips 102 to transmit external power to the light-emitting chips, thereby exciting the light-emitting chips to emit light.
  • the diameter of the opening may be 1.2 mm
  • the diameter of the conductive pin 106 may be 0.55 mm.
  • a ring-shaped solder structure (such as ring-shaped glass beads) may be placed in the opening on the side wall of the package to guide the conductive The feet pass through the solder structure and the opening in which the solder structure is located. Then, place the side walls on the surrounding edges of the bottom plate, and place annular silver-copper solder between the bottom plate and the tube shell, and then put the structure of the bottom plate, the side walls and the conductive pins into a high-temperature furnace for sealing and sintering.
  • the bottom plate, the side wall, the conductive pins and the solder can be integrated, thereby realizing the airtightness at the opening of the side wall.
  • the light-transmitting sealing layer and the sealing cover plate can also be fixed, for example, the edge of the light-transmitting sealing layer is pasted on the inner edge of the sealing cover plate to obtain the upper cover assembly.
  • the light-emitting chip can be welded on the bottom plate in the accommodating space of the tube shell, and then the upper cover assembly can be welded on the surface of the side wall of the tube shell away from the bottom plate by using the parallel sealing technology, and finally the collimating lens group is passed through epoxy resin
  • the glue is fixed on the side of the upper cover assembly away from the bottom plate, and the assembly of the multi-chip laser package assembly is completed.
  • the collimating lens can reduce the divergence angle of the laser light, so as to collimate the laser light .
  • the collimating lens in the embodiment of the present application can reduce the divergence angle of the laser light entering the collimating lens on the slow axis after passing through the collimating lens by less than The divergence angle on the fast axis is reduced, so in the present application, after the laser passes through the collimating lens, the difference between the divergence angles on the fast axis and the slow axis can be reduced, which improves the overall collimation of the laser emitted by the multi-chip laser package assembly. straight effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种多芯片激光器封装组件(10),包括底板(1011),底板上贴装有多个发光芯片(102);管壳(1012),管壳的一面开口,与底板围合成容置空间;多个发光芯片发出激光光束,激光光束具有慢轴方向和快轴方向;准直镜组(105),设置于管壳的上方。准直镜组包括多个准直透镜(T),准直透镜用于使激光光束在慢轴上的发散角度减小量小于在快轴上的发散角度减小量。

Description

多芯片激光器封装组件
相关申请的交叉引用
本申请要求在2020年9月14日提交中国专利局、申请号为202010961002.2,发明名称为“多芯片激光器封装组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,特别涉及一种多芯片激光器封装组件。
背景技术
随着光电技术的发展,多芯片激光器封装组件被广泛应用。
相关技术中,图1-1示出了一种多芯片激光器封装组件,图1-2示出了一种发光芯片的发光特性示意图。
如图1-1所示,多芯片激光器封装组件包括底板1011、管壳102,底板1011和管壳102围合形成一个容纳空间,在底板1011上设置有多个由发光芯片103和反射棱镜104组成的发光芯片,以及还包括设置于管壳102上方的准直镜组105。
准直镜组005包括多个一体成型的凸透镜1052,多个凸透镜1052设置在本体1051上,本体1051的边缘通过粘接与多个发光芯片的位置保持相对固定关系。这样,准直镜组105中的每个凸透镜可以对应一个发光芯片。
或者,准直镜组也可以包括多个呈行或列一体成型的准直透镜单元,每个一体成型的准直透镜单元为一行或一列,分别粘接覆盖激光光束的出光面位置。
图1-2示出了一种发光芯片的发光传播方向示意图。如图1-2所示,发光芯片103发出的光束沿快轴方向(也即是图中的方向X)的发散角α通常较大,且远大于沿慢轴方向(也即为图中的方向Y,方向Y与方向X垂直)的发散角β。尤其是发出红色激光的发光芯片,红色激光光束沿快轴方向的发散角α能够达到68.2°以上,而沿慢轴方向的发散角β仅有8°左右,这样,发光芯片103发出的红光光束在射入凸透镜1052时,沿快轴方向的宽度较大,沿慢轴方向的宽度较小,由凸透镜1052准直后的光束沿快轴方向的宽度较大,沿慢轴方向的宽度较小,单个多芯片激光器封装组件输出的光束的截面最大宽度较大,包括多个上述组件的光源组件的出射光束的截面的最大宽度较大,光束的截面呈长轴很大短轴很小的椭圆形,从而,在应用上述的激光器组件后续光路组件中的某些光学元件的尺寸需 设计得较大,才能实现此截面最大宽度较大的光束的传输,由此不利于光路组件以及容纳该光路组件的主壳体的体积小型化设计。
发明内容
本申请提供了一种多芯片激光器封装组件,采用技术方案如下:所述多芯片激光器封装组件包括:
底板,底板上贴装有发光芯片;
管壳,管壳的一面开口,与底板围合成容置空间;
多个发光芯片发出激光光束,具有慢轴方向和快轴方向;
准直镜组,设置于管壳的上方;其中,准直镜组包括多个准直透镜,多个准直透镜用于一一对应多个发光芯片,使激光光束在慢轴上的发散角度减小量小于在快轴上的发散角度减小量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1是相关技术提供的一种多芯片激光器封装组件的结构示意图;
图1-2是相关技术中发光芯片的发光光束示意图;
图2-1是本申请实施例提供的一种多芯片激光器封装组件的结构示意图;
图2-2是本申请实施例提供的另一多芯片激光器封装组件的结构示意图;
图3是本申请实施例提供的一种准直透镜的结构示意图;
图4是本申请实施例提供的一种射入准直透镜的激光在慢轴上的光路传输示意图;
图5是本申请实施例提供的一种射入准直透镜的激光在快轴上的光路传输示意图;
图6是本申请实施例提供的一种准直镜组的结构示意图;
图7是本申请实施例提供的另一种准直镜组的结构示意图;
图8是本申请实施例提供的再一种准直镜组的结构示意图;
图9是本申请实施例提供的又一种准直镜组的结构示意图;
图10为本申请实施例提供的一种准直镜组正面俯视示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
随着光电技术的发展,多芯片激光器封装组件的应用越来越广,例如多芯片激光器封装组件可以应用在焊接工艺和切割工艺等方面,此时要求多芯片激光器封装组件射出具有较大能量的激光,而多芯片激光器封装组件射出的激光的准直效果对激光的能量影响较大,激光的准直效果越好其能量越大。多芯片激光器封装组件还可以在激光投影或激光电视中用作光源,此时多芯片激光器封装组件射出的激光的准直效果对其亮度的影响较大,激光的准直效果越好其亮度越高,进而根据该激光形成的显示画面的显示效果较好。本申请以下实施例提供了一种多芯片激光器封装组件,可以提高多芯片激光器封装组件射出的激光的准直性。
图2-1是本申请实施例提供的一种多芯片激光器封装组件的结构示意图。如图2-1所示,该多芯片激光器封装组件10可以包括:底板1011、管壳1012、多个发光芯片102、密封盖板103、透光密封层104和准直镜组105。
在一些实施例中,多个发光芯片102按照行和列贴装于底板1011上。多个反光芯片102沿着平行于底板1011所在的平面发出激光光束,并经过反射镜(图中未示出)进行光路转折后沿着远离于底板1011的方向出射,即从底板1011和管壳1012围合的空间的开口处出射。
管壳1012为垂直于底板1011的侧壁。
准直镜组105设置于管壳1012的上方,通过粘接与管壳1012形成固定连接关系。
该多个发光芯片102位于底板1011和管壳1012围合形成的容置空间中。密封盖板103呈环形,且密封盖板103的外边缘固定于底板1011的开口所在侧。透光密封层104的边缘与密封盖板103的内边缘固定。准直镜组105的边缘与密封盖板103的外边缘远离底板1011的表面固定。在一些实施方式中,准直镜组105的边缘可以通过粘接剂与密封盖板的外边缘粘接,该粘接剂可以包括玻璃熔胶、低温玻璃焊料、环氧胶或其他胶水。
其中,准直镜组105包括与该多个发光芯片102一一对应的多个准直透镜T,每个发光芯片102用于向对应的准直透镜T发出激光,准直透镜T用于减小射入的激光的发散角度,且使该激光在慢轴上的发散角度减小量小于在快轴上的发散角度减小量。也即,准直透镜对激光在慢轴上的准直效果弱于在快轴上的准直效果。在一种实施中,准直透镜的制备材料可以为玻璃。
在一种示例中,多个发光芯片可以有多种排列方式,比如呈M行和N列,M和N均 大于1,这样对应地,准直镜组的多个准直透镜也呈多行多列排列,呈现M行和N列的矩阵。
或者,多个发光芯片也可以呈一行排列,呈长条形,对应地,多个准直透镜也呈一行排列。
或者,多个发光芯片也可以多行错位排列或呈蜂窝状排列,对应地,准直镜组的多个准直透镜错位排列或呈蜂窝状排列。
或者,多个发光芯片可以呈多边形排列,对应地,多个准直透镜呈多边形排列,其中多边形的边数大于等于五。
在本示例中,准直镜组105也包括多个成行和列排列的准直透镜,用于使激光光束在慢轴上的发散角度与在快轴上的发散角度的差异缩小,减小发散角度的比值。
在本示例中,发光芯片102发出的激光光束的慢轴方向与发光芯片的行方向平行,或者说,沿着行方向向外发散。激光光束的快轴方向与发光芯片102的列方向平行,或者说,沿着列方向向外发散。
在本示例中,多个准直透镜也呈行和列排列,则如图10所示,准直镜组包括4行5列的准直透镜。准直镜组的行方向上,相邻两行之间的顶点距离大于,准直镜组列方向上相邻两列之间的顶点距离,如图10所示的相邻行之间的距离D2大于相邻列之间的距离D1。
在一示例中,再次参见图10,准直镜组位于最外侧的两列的准直透镜,在行方向上的宽度大于准直镜组的其他列的准直透镜在行方向上的宽度,如图10所示,最外侧的一列准直透镜的宽度L2大于位于中间列的准直透镜的宽度L1。
在一示例中,准直镜组的不同行或列的准直透镜可以不同,所述的不同是指不同行的准直透镜在行方向或列方向上的曲率不同。
以及,在本示例中,准直镜组105的准直透镜在准直镜组行方向上的曲率和在列方向上的曲率不同,从而入射其上的激光光束的慢轴方向和快轴方向上的发散角度的改变幅度不同。
需要说明的是,发光芯片发出的激光在快轴上的发散角度大于在慢轴上的发散角度,且激光在快轴上的发散角度与慢轴上的发散角度相差较大。示例地,发光芯片发出的激光在快轴上的发散角度范围为25度~35度,在慢轴上的发散角度范围在5度~7度。相关技术中,准直镜组中的准直透镜包括相对的两个面,一个面为平面,另一个具有凸弧面,准直透镜能通过该凸弧面的作用对射入的激光进行准直。但是相关技术中该凸弧面为球面中的一部分,该凸弧面中各个方向上的曲率均相等,故该凸弧面在射入的激光的快轴和慢轴 上对激光的准直效果均相同,穿过准直透镜的激光在快轴和慢轴上的发散角度差异仍较大,因此多芯片激光器封装组件射出的激光的准直性较差。需要说明的是,对光线进行准直也即是对光线进行汇聚,使得光线的发散角度变小,更加接近平行光。
而本申请实施例提供的多芯片激光器封装组件中,准直镜组中每个准直透镜可以使射入的激光在通过准直透镜后慢轴上发散角度减小量小于在快轴上的发散角度减小量,也即是准直透镜对激光在慢轴上的准直效果弱于在快轴上的准直效果,故本申请中激光在穿过准直透镜后可以缩小快轴和慢轴上的发散角度的差异,提高了多芯片激光器封装组件射出的激光整体的准直效果。
综上所述,本申请实施例提供的多芯片激光器封装组件中,每个发光芯片向对应的准直透镜发出激光后,准直透镜可以减小该激光的发散角度,以对该激光准直。由于激光在快轴上的发散角度大于在慢轴上的发散角度,本申请实施例中准直透镜可以使射入准直透镜的激光在通过准直透镜后慢轴上发散角度减小量小于在快轴上的发散角度减小量,故本申请中激光在穿过准直透镜后可以缩小快轴和慢轴上的发散角度的差异,提高了多芯片激光器封装组件射出的激光整体的准直效果。
本申请实施例中,准直镜组中的准直透镜可以通过多种方式来使射入的激光在慢轴上发散角度减小量小于在快轴上的发散角度减小量,下面以其中的两种可实现方式为例进行解释说明。
在准直透镜的一些可选实现方式中,图3是本申请实施例提供的一种准直透镜的结构示意图。如图3所示,准直透镜呈柱状,准直透镜具有第一面D1和第二面D2,该第一面D1和第二面D2为准直透镜中相对的两面,且该第一面D1相对于第二面D2靠近密封盖板。
该第一面D1可以为平面,第二面D2具有凸弧面,且该凸弧面在准直镜组的行方向上的曲率在列方向上的曲率小于在列方向上的曲率。
或者,该第一面D1具有凹弧面,第二面D2具有凸弧面。该凹弧面在射入的激光的慢轴上的曲率半径小于在快轴上的曲率半径;弧面的曲率为曲率半径的倒数,故凹弧面在射入的激光的慢轴上的曲率大于在快轴上的曲率。本申请实施例以该第一面D1为凹弧面,第二面D2为凸弧面,其中凸弧面向外,沿着激光光束的出射方向,也即是凹弧面用于先接收激光的入射,凸弧面用于出射激光。在一些实施中,该第一面也以仅部分区域或全部区域为凹弧面,第二面中可以仅部分区域或全部区域为凸弧面,本申请实施例不做限定。
需要说明的是,透镜的凹弧面对于射入的光线有扩散作用,凹弧面的曲率半径越大表明该凹弧面的弯曲程度越小,曲率越小,进而该凹弧面对光线的扩散效果越弱,对光线的 发散角度的扩散量越小。本申请实施例中准直透镜的凹弧面在射入的激光的慢轴上的曲率半径小于在快轴上的曲率半径,因此,发光芯片发出的激光在穿过准直透镜的凹弧面后,该激光在快轴上的发散角度的扩散量小于在慢轴上的发散角度的扩散量。由于发光芯片射出的激光原本在快轴上的发散角度大于在慢轴上的发散角度,因此该激光在穿过准直透镜的凹弧面后慢轴上的发散角度与在快轴上的发散角度相差较小。相对于相关技术中射入准直透镜后的发散角度,本申请实施例中激光在穿过该凹弧面后,激光光束在快轴上的发散角度可增加1.1度~1.5度,或者,不改变激光光束在快轴上的发散角度,而激光光束在慢轴上的发散角度可增加1.5度~2.5度,如此可以实现将激光光束在快轴和慢轴上的角度差异变小。
示例地,准直透镜的凹弧面可以为柱面(cylinder),且该柱面的直母线平行于射入凹弧面的激光的快轴。需要说明的是,柱面是直线沿着一条定曲线平行移动所形成的曲面,该动直线称为柱面的直母线。如该柱面可以为一圆柱的侧面中的部分,该柱面的直母线平行于圆柱的高度方向。准直透镜的凹弧面为柱面的情况中,该凹弧面在射入的激光的快轴上的曲率为0,曲率半径无限大,该凹弧面在射入的激光的慢轴上的曲率大于0。如此,在射入该凹弧面的激光的快轴上该凹弧面近似于平面,射入该凹弧面的激光在快轴上发散角度的改变量与射入平面玻璃的激光的发散角度的改变量相近;而在射入该凹弧面的激光的慢轴上该凹弧面的弯曲程度较大,该激光在慢轴上发散角度的扩散量较大。
射入准直透镜的激光在通过准直透镜的凹弧面对激光的快轴和慢轴上的发散角度的调整后,可以通过准直透镜的凸弧面射出。该凸弧面可以对射入的激光进行进一步地准直,进而保证从准直透镜射出的激光的准直效果较好。需要说明的是,透镜的凸弧面对于射入的光线有会聚作用,且凸弧面的曲率半径越大表明该凸弧面的弯曲程度越小,进而该凸弧面对光线的会聚效果越弱,对光线的发散角度减小量越小。
在准直透镜的凸弧面的一种可选实现方式中,准直透镜的凸弧面在射入的激光光束的慢轴和快轴上的曲率相同,如该凸弧面为球面中的部分,此时准直透镜的第一面为柱面面型的凹弧面。由于通过准直透镜的凹弧面已经可使激光的快轴和慢轴上的发散角度相差较小,故该凸弧面可以仅对激光进行整体的准直,使激光在快轴上的发散角度的缩小程度与在慢轴上的发散角度的缩小程度相近即可,如此可以无需对该凸弧面的不同方向的曲率进行不同的设计,保证准直透镜的制备过程较为简单。
在准直透镜的凸弧面的另一种可选实现方式中,准直透镜的凸弧面在射入的激光光束的慢轴上,或者说,准直镜组的行方向上的曲率半径与激光光束在快轴上,或者说,与准直镜组的行方向上的曲率半径不同。在一具体实施中,准直透镜的凸弧面在准直镜组的行 方向上的曲率半径大于在准直镜组的列方向上的曲率半径。如此该凸弧面可以对射入的激光在快轴和慢轴上的发散角度再次分别进行调整,使激光在快轴上的发散角度的缩小程度高于在慢轴上的发散角度的缩小程度,进一步缩小准直透镜射出的激光在快轴和慢轴上发散角度的差异。
本申请实施例中,准直透镜中凹弧面的曲率半径可以大于凸弧面的曲率半径,如凹弧面的曲率半径与凸弧面的曲率半径的比值范围为1.5~4。示例地,准直透镜中凹弧面仅在射入的激光的慢轴上弯曲,故该凹弧面的曲率半径可以指该凹弧面在该慢轴上的曲率半径。凹弧面在射入的激光的慢轴上的曲率半径与凸弧面在慢轴和快轴上的曲率半径的比值范围均可以为1.5~4。在一种实施中,该凹弧面在射入的激光的快轴和慢轴上的曲率半径,可以均大于凸弧面在该快轴和慢轴上的曲率半径。如此可以保证准直透镜整体用于对光线进行准直会聚,也即是射出准直透镜的激光的发散角度小于射入准直透镜的激光的发散角度。示例地,准直透镜整体的焦距可以大于0,该焦距f=1/R2-1/R1,其中,R2表示准直透镜中凸弧面的曲率半径,R1表示准直透镜中凹弧面的曲率半径。
在准直透镜的第二种可选实现方式中,图4是本申请实施例提供的一种射入准直透镜的激光在慢轴上的光路传输示意图,图5是本申请实施例提供的一种射入准直透镜的激光在快轴上的光路传输示意图。如图4和5所示,准直透镜的第一面的D1为平面,准直透镜的第二面D2具有凸弧面;该凸弧面在射入的激光的慢轴上的曲率半径大于在快轴上的曲率半径,如图4中凸弧面的曲率半径大于图5中凸弧面的曲率半径。此种可选实现方式中,该准直透镜可以称为自由曲面透镜,该准直透镜中的凸弧面可以类似于橄榄球的部分球面。在一种实施中,该凸弧面满足:在射入的激光的慢轴上的曲率半径范围为3.5毫米~4毫米,和/或,在射入的激光的快轴上的曲率半径范围为3.1~3.3毫米。如凸弧面在射入的激光的快轴上的曲率半径可以为3.282毫米。
需要说明的是,凸弧面的曲率半径越小,该凸弧面的弯曲程度越大,该凸弧面对激光的会聚效果越好。本申请实施例中,由于准直透镜的第一面为平面,故该第一面对射入的激光在慢轴上的发散角度的改变程度与在快轴上的发散角度的改变程度相同,激光在射入准直透镜的第一面之后,激光在快轴上的发散角度与慢轴上的发散角度的差异仍较大,故射向准直透镜的凸弧面的激光在快轴上的发散角度与慢轴上的发散角度的差异仍较大。由于准直透镜的凸弧面在射入的激光的慢轴上的曲率半径大于在快轴上的曲率半径,故该凸弧面对射入的激光在快轴上的会聚效果强于在慢轴上的会聚效果,进而降低了准直透镜射出的激光(也即是从该凸弧面射出的激光)在快轴上和慢轴上的发散角度的差异。
下面结合附图对准直镜组的两种可选实现方式进行解释说明:
在准直镜组的一种可选实现方式中,图6是本申请实施例提供的一种准直镜组的结构示意图,图7是本申请实施例提供的另一种准直镜组的结构示意图,图8是本申请实施例提供的再一种准直镜组的结构示意图,图7和图8均可以为图6所示的准直镜组的右视图。准直镜组105可以一体成型。该准直镜组105可以具有入光面M1和出光面M2,该入光面M1和出光面M2为准直镜组105中相对的两个表面,该入光面M1相对于该出光面M2靠近密封盖板103。该准直镜组105的入光面M1包括准直镜组105中各个准直透镜的第一面D1,该出光面M2包括各个准直透镜的第二面D2。在上述准直透镜的第一种可选实现方式中,如图7所示,准直镜组105的入光面M1具有多个凹弧面,准直镜组105的出光面M2具有多个凸弧面,准直镜组105中每个凹弧面和对应的凸弧面所在的部分为一个准直透镜T。在一种实施中,每个凸弧面在准直镜组105的入光面上的正投影可以与对应的凸弧面在该入光面上的正投影重合。在上述准直透镜的第二种可选实现方式中,如图8所示,准直镜组105的入光面为平面,准直镜组105的出光面M2具有多个凸弧面,准直镜组105中每个凸弧面所在的部分为一个准直透镜T。
在准直镜组的另一种可选实现方式中,图9是本申请实施例提供的又一种准直镜组的结构示意图。如图9所示,准直镜组105也可以由多个独立的准直透镜T组成。示例地,多芯片激光器封装组件还可以包括支撑框K,该支撑框的边缘可以固定于密封盖板的外边缘远离管壳的表面,该支撑框可以具有多个镂空区域(图中未示出),准直镜组中的每个准直透镜可以覆盖该多个镂空区域中的一个镂空区域。该多个镂空区域可以与多芯片激光器封装组件中的多个发光芯片一一对应,每个发光芯片射出的激光可以穿过对应的镂空区域射向覆盖该镂空区域的准直透镜。
本申请实施例中,多芯片激光器封装组件10可以为多芯片激光二极管(multi_chip Laser Diode,MCL)型的多芯片激光器封装组件该多芯片激光器封装组件中的多个发光芯片可以在管壳中排成多行多列,该多芯片激光器封装组件可以为单色MCL多芯片激光器封装组件,或者也可以为多色MCL多芯片激光器封装组件。单色MCL多芯片激光器封装组件中的各个发光芯片均发出相同颜色的光,多色MCL多芯片激光器封装组件中可以包括多种类型的发光芯片,不同类型的发光芯片可以发出不同颜色的光。本申请实施例中以多芯片激光器封装组件为多色MCL多芯片激光器封装组件为例,多芯片激光器封装组件中的多个发光芯片102可以包括用于发出第一颜色的激光的第一发光芯片,以及用于发出第二颜色的激光的第二发光芯片,该第一颜色的激光的发散角度小于第二颜色的激光的发散角度。准直镜组105可以满足:第一发光芯片对应的准直透镜对射入的激光的发散角度的减小量,小于对第二发光芯片对应的准直透镜对射入的激光的发散角度的减小量。
示例地,该第一颜色可以包括蓝色和绿色,该第一发光芯片可以包括蓝色发光芯片和绿色发光芯片;该第二颜色可以为红色,该第二发光芯片可以为红色发光芯片。红色发光芯片发出的红色激光的发散角度可以大于蓝色发光芯片发出的蓝色激光的发散角度,且大于绿色发光芯片发出的绿色激光的发散角度。
在一种实施中,红色激光在快轴上和慢轴上的发散角度均可以大于绿色激光和蓝色激光在快轴和慢轴上的发散角度。或者,红色激光在快轴上的发散角度大于绿色激光和蓝色激光在快轴上的发散角度,红色激光在慢轴上的发散角度大于绿色激光和蓝色激光在慢轴上的发散角度,但是红色激光在慢轴上的发散角度小于蓝色激光和绿色激光在快轴上的发散角度。根据红色激光、蓝色激光和绿色激光在快轴和慢轴上的发散角度的大小,可以相应地调整发出各个颜色的激光的发光芯片对应的准直透镜对激光的发散角度的减小量,如调整准直透镜的凸弧面在快轴和慢轴上的曲率半径的大小。
示例地,红色激光在输入的激光的快轴上的发散角度大于蓝色激光在快轴上的发散角度,蓝色激光在快轴上的发散角度大于红色激光在慢轴上的发散角度。此时,若准直镜组中的准直透镜采用上述第一种可实现方式,则蓝色激光射向的准直透镜中凹弧面在慢轴上的曲率半径,可以大于红色激光射向的准直透镜中的凹弧面在慢轴上的曲率半径,且小于红色激光射向的准直透镜中的凹弧面在快轴上的曲率半径。若准直镜组中的准直透镜采用上述第二种可实现方式,则蓝色激光射向的准直透镜中凸弧面在快轴上的曲率半径,可以大于红色激光射向的准直透镜中的凸弧面在快轴上的曲率半径,且小于红色激光射向的准直透镜中的凸弧面在慢轴上的曲率半径。对于各个颜色的激光的发散角度的其他大小关系,均可以以此类推,本申请实施例不再赘述。
本申请实施例中,多芯片激光器封装组件中红色发光芯片中可以存在多个发光点,每个红色发光芯片射出的红色激光的光斑在快轴上的尺寸可达350微米,蓝色发光芯片和绿色发光芯片中可以仅存在一个发光点,蓝色发光芯片和绿色发光芯片发出的激光的光斑在快轴上的尺寸可在35微米左右,而每个发光芯片发出的激光在慢轴上的尺寸在1微米左右。这样多芯片激光器封装组件中每个发光芯片发出的激光的光斑呈扁长型。该激光在经过准直透镜射出后,形成的光斑的长宽比可以减小。
下面对本申请实施例的多芯片激光器封装组件中的管壳、发光芯片以及密封盖板进行介绍:
请继续参考图2-1,底板1011可以包括底板10111和固定于底板10111上的环形的管壳1012,该底板10111和该管壳1012围合成底板1011的容置空间。该管壳1012中远离底板10111的开口即为底板1011的开口。在一种实施中,底板1011中的底板10111与管 壳1012可以为一体结构,或者也可以为独立的结构,通过焊接在一起形成底板1011。
密封盖板103的外边缘的厚度可以小于预设的厚度阈值,该外边缘的厚度较薄,该外边缘可以通过平行封焊技术固定于底板1011的开口所在侧。如密封盖板103的外边缘可以通过平行封焊技术固定于该管壳1012远离底板10111的表面上。在一种实施中,该密封盖板103可以为钣金件,该密封盖板103的各个位置的厚度相同或大致相同。该密封盖板103的内边缘可以相对于外边缘朝底板10111凹陷。该密封盖板103可以通过钣金工艺制成,如可以对一块环形板状结构进行冲压,使得该板状结构中适当的位置弯折、凹陷或凸起,以得到本申请实施例提供的密封盖板。
透光密封层104可以为板状结构。该板状结构可以包括两个平行的较大的表面以及连接该两个表面的多个较小的侧面,透光密封层104的侧面可以通过密封胶与密封盖板103的内边缘固定。本申请实施例中,透光密封层可以直接与密封盖板固定,或者多芯片激光器封装组件还可以包括用于支撑透光密封层的支撑框,透光密封层可以先与该支撑框固定,进而该支撑框再与密封盖板固定。示例地,该支撑框可以为目字框,如此该透光密封层的中间区域可以被该支撑框支撑,进而可以提升透光密封层的设置牢固度。在一种实施中,透光密封层靠近底板的表面和远离底板的表面中,至少一个表面上还可以贴附有增亮膜,以提高多芯片激光器封装组件的出光亮度。
发光芯片102可以包括发光芯片、热沉以及反射棱镜(本申请实施例未分别进行示意)。热沉可以设置在管壳的底板上,发光芯片可以设置在热沉上,该热沉用于辅助发光芯片散热,反射棱镜可以位于发光芯片的出光侧。发光芯片发出的光线可以射向反射棱镜,进而在反射棱镜上反射以穿过透光密封层和准直镜组射出。
本申请实施例中该管壳的材质可以为铜,如无氧铜,该透光密封层的材质可以为玻璃,该密封盖板的材质可以为不锈钢。需要说明的是,铜的导热系数较大,本申请实施例中管壳的材质为铜,如此可以保证管壳的底板上设置的发光芯片在工作时产生的热量可以快速地通过管壳进行传导,进而较快的散发,避免热量聚集对发光芯片的损伤。在一种实施中,管壳的材质也可以为铝、氮化铝和碳化硅中的一种或多种。本申请实施例中密封盖板的材质也可以为其他可伐材料,如铁镍钴合金或其他合金。透光密封层的材质也可以为其他透光且可靠性较强的材质,如树脂材料等。
底板1011、密封盖板103和透光密封层104可以构成密闭空间,以使发光芯片102可以处于密闭空间中,防止水氧对发光芯片102的侵蚀。且由于降低了由于发光芯片102工作时产生的热量导致的透光密封层104的破裂风险,故可以保证该密闭空间的密闭效果,进而延长发光芯片的寿命。
本申请实施例中,在通过平行封焊技术固定密封盖板103的外边缘与底板1011时,会先将密封盖板103放置在底板1011的开口所在侧,且使密封盖板103的外边缘搭接在底板1011的管壳1012远离底板10111的表面上。接着需要采用封焊设备对该外边缘进行加热,使该外边缘与管壳1012的连接件位置熔融,进而将该外边缘与底板1011的侧壁焊接在一起。在一种实施中,在将密封盖板103与底板1011固定之前,可以先将透光密封层104与密封盖板103固定,如可以通过粘接剂将透光密封层104的边缘与密封盖板103的内边缘进行固定。该粘接剂可以包覆透光密封层104的侧面,以保证对透光密封层的粘贴可靠度。在将密封盖板103与底板1011固定之后可以将准直镜组105悬空进行光线准直效果的调试,在调试确定准直镜组105的位置后,在密封盖板103的外边缘涂覆粘接剂,进而通过该粘接剂将准直镜组105与密封盖板103固定。
或者,准直镜组也可以直接与管壳、底板围合形成密封空间,不再单独设置密封透光层。
请参考图2-2,底板1011的管壳1012的相对两侧可以具有多个开孔,多芯片激光器封装组件10还可以包括:多个导电引脚106,该多个导电引脚106可以分别穿过管壳1012中的开孔伸向底板1011内,进而与底板1011固定。导电引脚106可以与发光芯片102中的发光芯片的电极电连接,以将外部电源传输至发光芯片,进而激发发光芯片射出光线。在一种实施中,该开孔的孔径可以为1.2毫米,导电引脚106的直径可以为0.55毫米。
在一种实施中,本申请实施例中在组装多芯片激光器封装组件时,可以先在管壳的侧壁上的开孔中放置环状的焊料结构(如环状玻璃珠),将导电引脚穿过该焊料结构及该焊料结构所在的开孔。然后,将侧壁放置在底板的四周边缘,且在底板与管壳之间放置环形银铜焊料,接着将该底板、侧壁和导电引脚的结构放入高温炉中进行密封烧结,待密封烧结并固化后底板、侧壁、导电引脚以及焊料即可为一个整体,进而实现侧壁开口处的气密。还可以将透光密封层与密封盖板进行固定,如透光密封层的边缘粘贴于密封盖板的内边缘,得到上盖组件。接着可以将发光芯片焊接在管壳的容置空间内的底板上,继而采用平行封焊技术将上盖组件焊接在管壳的侧壁远离底板的表面上,最后将准直镜组通过环氧胶固定在上盖组件远离底板的一侧,至此完成多芯片激光器封装组件的组装。需要说明的是,上述组装过程仅为本申请实施例提供的一种示例性的过程,其中的各个步骤中采用的焊接工艺也可以采用其他工艺代替,各个步骤的先后顺序也可以适应调整,本申请实施例对此不做限定。
综上所述,本申请实施例提供的多芯片激光器封装组件中,每个发光芯片向对应的准直透镜发出激光后,准直透镜可以减小该激光的发散角度,以对该激光准直。由于激光在 快轴上的发散角度大于在慢轴上的发散角度,本申请实施例中准直透镜可以使射入准直透镜的激光在通过准直透镜后慢轴上发散角度减小量小于在快轴上的发散角度减小量,故本申请中激光在穿过准直透镜后可以缩小快轴和慢轴上的发散角度的差异,提高了多芯片激光器封装组件射出的激光整体的准直效果。
需要指出的是,在本申请实施例中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。“大致”是指在可接受的误差范围内,本领域技术人员能够在一定误差范围内解决所述技术问题,基本达到所述技术效果。在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。通篇相似的参考标记指示相似的元件。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种多芯片激光器封装组件,其特征在于,所述多芯片激光器封装组件包括:
    底板,所述底板上贴装有多个发光芯片;
    管壳,所述管壳的一面开口,与所述底板围合成容置空间;
    所述多个发光芯片发出激光光束,具有慢轴方向和快轴方向;
    准直镜组,设置于所述管壳的上方;
    其中,所述准直镜组包括多个准直透镜,所述多个准直透镜用于一一对应所述多个发光芯片,使所述激光光束在慢轴上的发散角度减小量小于在快轴上的发散角度减小量。
  2. 根据权利要求1所述的多芯片激光器封装组件,其特征在于,所述多个发光芯片呈多行和多列排列,所述多个准直透镜呈多行和多列排列;
    或者,
    所述多个发光芯片呈一行排列,所述多个准直透镜呈一行排列。
  3. 根据权利要求1所述的多芯片激光器封装组件,其特征在于,所述多个发光芯片呈多边形排列,所述多个准直透镜呈多边形排列,所述多边形的边数大于等于五。
  4. 根据权利要求2所述的多芯片激光器封装组件,其特征在于,
    所述激光光束的慢轴方向与所述发光芯片的行方向平行;
    所述激光光束的快轴方向与所述发光芯片的列方向平行。
  5. 根据权利要求2所述的多芯片激光器封装组件,其特征在于,所述准直镜组的行方向上,相邻两行之间的顶点距离大于所述准直镜组列方向上相邻两列之间的顶点距离。
  6. 根据权利要求2所述的多芯片激光器封装组件,其特征在于,所述准直镜组位于最外侧的两列的准直透镜,在行方向上的宽度大于所述准直镜组的其他列的准直透镜在行方向上的宽度。
  7. 根据权利要求2或3所述的多芯片激光器封装组件,其特征在于,所述准直镜组的准直透镜在射入的激光光束的快轴上的曲率和慢轴上的曲率不同。
  8. 根据权利要求2所述的多芯片激光器封装组件,其特征在于,所述准直镜组的准直透镜在行方向上的曲率在列方向上的曲率小于在列方向上的曲率。
  9. 根据权利要求8所述的多芯片激光器封装组件,其特征在于,
    所述准直透镜的第一面为平面或凹弧面,第二面具有凸弧面,所述第一面和所述第二面为所述准直透镜中相对的两面,所述第二面向外。
  10. 根据权利要求9所述的多芯片激光器封装组件,其特征在于,所述凸弧面满足:在激射入的激光光束的所述慢轴上的曲率半径范围为3.5毫米~4毫米,和/或,在所述快轴上的曲率半径范围为3.1~3.3毫米。
  11. 根据权利要求9所述的多芯片激光器封装组件,其特征在于,所述凸弧面为柱面,和/或,所述凹弧面且为柱面。
  12. 根据权利要求7所述的多芯片激光器封装组件,其特征在于,所述准直透镜的第一面为柱面,第二面具有凸弧面,所述第一面和所述第二面为所述准直透镜中相对的两面,所述第二面向外,所述凸弧面在射入的激光光束的慢轴和快轴上的曲率相同。
  13. 根据权利要求1所述的多芯片激光器封装组件,其特征在于,所述多个发光芯片至少包括用于发出第一颜色的激光的第一发光芯片,以及用于发出第二颜色的激光的第二发光芯片,所述第一颜色的激光的发散角度小于所述第二颜色的激光的发散角度;
    所述第一发光芯片对应的准直透镜对射入的激光的发散角度的减小量小于对所述第二发光芯片对应的准直透镜对射入的激光的发散角度的减小量。
  14. 根据权利要求2所述的多芯片激光器封装组件,其特征在于,所述准直镜组一体成型;或者,所述准直镜组包括多个呈行或呈列一体成型的准直透镜单元。
  15. 根据权利要求3所述的多芯片激光器封装组件,其特征在于,所述多个发光芯片错位排列或呈蜂窝状排列,所述准直镜组的多个准直透镜错位排列或呈蜂窝状排列。
  16. 根据权利要求1所述的多芯片激光器封装组件,其特征在于,所述准直镜组与所述管壳和所述底板围合形成密封空间;
    或者,
    所述管壳、所述底板和密封透光层围合形成密封空间,所述准直镜组置于所述密封透光件之上。
PCT/CN2021/118077 2020-09-14 2021-09-13 多芯片激光器封装组件 WO2022053052A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180062727.0A CN116406450A (zh) 2020-09-14 2021-09-13 多芯片激光器封装组件
US18/107,379 US20230198219A1 (en) 2020-09-14 2023-02-08 Laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010961002.2A CN112103764A (zh) 2020-09-14 2020-09-14 多芯片激光器封装组件
CN202010961002.2 2020-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/107,379 Continuation US20230198219A1 (en) 2020-09-14 2023-02-08 Laser device

Publications (1)

Publication Number Publication Date
WO2022053052A1 true WO2022053052A1 (zh) 2022-03-17

Family

ID=73752390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118077 WO2022053052A1 (zh) 2020-09-14 2021-09-13 多芯片激光器封装组件

Country Status (3)

Country Link
US (1) US20230198219A1 (zh)
CN (2) CN112103764A (zh)
WO (1) WO2022053052A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116047471A (zh) * 2023-03-28 2023-05-02 北醒(北京)光子科技有限公司 一种雷达发射系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103764A (zh) * 2020-09-14 2020-12-18 青岛海信激光显示股份有限公司 多芯片激光器封装组件
CN113193474A (zh) * 2021-04-28 2021-07-30 华进半导体封装先导技术研发中心有限公司 激光器芯片封装结构和激光雷达
WO2023030542A1 (zh) * 2021-09-06 2023-03-09 青岛海信激光显示股份有限公司 激光器
CN117254342A (zh) * 2021-09-06 2023-12-19 青岛海信激光显示股份有限公司 激光器
WO2023109778A1 (zh) * 2021-12-13 2023-06-22 青岛海信激光显示股份有限公司 激光器及投影光源

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744395A (zh) * 2005-09-30 2006-03-08 北京工业大学 二极管激光器光束整形微透镜阵列
CN102162932A (zh) * 2011-04-14 2011-08-24 中国科学院西安光学精密机械研究所 用于半导体激光器的准直器
CN209086575U (zh) * 2018-12-06 2019-07-09 上海高意激光技术有限公司 激光准直镜
CN111562713A (zh) * 2020-03-31 2020-08-21 青岛海信激光显示股份有限公司 激光投影设备
CN112103764A (zh) * 2020-09-14 2020-12-18 青岛海信激光显示股份有限公司 多芯片激光器封装组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1744395A (zh) * 2005-09-30 2006-03-08 北京工业大学 二极管激光器光束整形微透镜阵列
CN102162932A (zh) * 2011-04-14 2011-08-24 中国科学院西安光学精密机械研究所 用于半导体激光器的准直器
CN209086575U (zh) * 2018-12-06 2019-07-09 上海高意激光技术有限公司 激光准直镜
CN111562713A (zh) * 2020-03-31 2020-08-21 青岛海信激光显示股份有限公司 激光投影设备
CN112103764A (zh) * 2020-09-14 2020-12-18 青岛海信激光显示股份有限公司 多芯片激光器封装组件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116047471A (zh) * 2023-03-28 2023-05-02 北醒(北京)光子科技有限公司 一种雷达发射系统
CN116047471B (zh) * 2023-03-28 2023-06-27 北醒(北京)光子科技有限公司 一种雷达发射系统

Also Published As

Publication number Publication date
US20230198219A1 (en) 2023-06-22
CN116406450A (zh) 2023-07-07
CN112103764A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2022053052A1 (zh) 多芯片激光器封装组件
WO2021135847A1 (zh) 激光封装结构
CN113594847A (zh) 激光器
CN112825409A (zh) 激光器
CN112909729A (zh) 激光器
CN113703272A (zh) 激光器及投影设备
CN113764972B (zh) 激光器
CN113922204A (zh) 一种激光器及投影设备
CN112909731A (zh) 激光器
CN112825413A (zh) 激光器
WO2022116630A1 (zh) 光源装置
CN113703271A (zh) 激光器及投影设备
CN114336265A (zh) 激光器
WO2022062947A1 (zh) 激光器
CN112909730B (zh) 激光器
CN114253061A (zh) 激光器及投影设备
CN113764973A (zh) 激光器及其制备方法
CN112825406A (zh) 激光器
CN217522371U (zh) 激光器
CN217507922U (zh) 激光器
WO2023284880A1 (zh) 激光器和激光投影设备
WO2022111334A1 (zh) 激光器和投影设备
CN217507923U (zh) 激光器
US20230013971A1 (en) Laser device and laser projection apparatus
US20240128709A1 (en) Laser device and laser projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21866104

Country of ref document: EP

Kind code of ref document: A1