WO2021052514A1 - 激光器 - Google Patents

激光器 Download PDF

Info

Publication number
WO2021052514A1
WO2021052514A1 PCT/CN2020/121632 CN2020121632W WO2021052514A1 WO 2021052514 A1 WO2021052514 A1 WO 2021052514A1 CN 2020121632 W CN2020121632 W CN 2020121632W WO 2021052514 A1 WO2021052514 A1 WO 2021052514A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
prism
heat sink
heat dissipation
laser chip
Prior art date
Application number
PCT/CN2020/121632
Other languages
English (en)
French (fr)
Inventor
周子楠
田有良
杜光超
韩继弘
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2021052514A1 publication Critical patent/WO2021052514A1/zh
Priority to US17/698,419 priority Critical patent/US20220209499A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC

Definitions

  • This application relates to the field of optoelectronic technology, in particular to a laser.
  • Lasers include laser chips, and currently there is a greater demand for lasers with higher output power of laser chips.
  • the laser chip generates heat when it emits laser light, and the heat generated by the laser chip is positively correlated with its output power. Therefore, a laser chip with a larger output power generates more heat. In addition, as the laser chip continues to emit light, the temperature of the laser chip will continue to rise rapidly, which will cause the temperature of the laser chip to easily exceed its normal operating temperature upper limit, and the laser chip is more likely to be damaged.
  • This application provides a laser, including: a tube case, at least one heat sink, a plurality of laser chips, and at least one prism;
  • the at least one heat sink, the plurality of laser chips, and the at least one prism are all located in the shell, and the at least one heat sink and the at least one prism are all located on the surface of the shell;
  • Each of the heat sinks and each of the prisms corresponds to one or more of the laser chips
  • the laser chip is located on the side of the corresponding heat sink away from the package, and the prisms are located It corresponds to the light exit side of the laser chip; the prism is used to reflect the light emitted by the corresponding laser chip;
  • the heat sink includes: a heat dissipation substrate, a heat dissipation layer, an auxiliary layer, and a conductive layer stacked in a direction away from the tube case, the heat dissipation layer has a thermal conductivity greater than 20 watts/m ⁇ degree, and the auxiliary layer is made of material It is different from the material of the heat dissipation layer and different from the material of the conductive layer.
  • FIG. 1 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another laser provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of still another laser provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a laser provided by another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of still another laser provided by another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another laser provided by another embodiment of the present application.
  • lasers with higher output power are more and more widely used.
  • lasers can be used in welding processes, cutting processes, and laser projection.
  • the laser chip in the laser usually generates more heat during the light-emitting process, and this heat is an important factor that causes damage to the laser chip.
  • the embodiment of the present application provides a laser.
  • the heat sink in the laser can be attached to the laser chip in the laser to assist the laser chip to dissipate heat, thereby preventing the laser chip from being damaged due to excessive temperature.
  • FIG. 1 is a schematic structural diagram of a laser provided by an embodiment of the present application.
  • the laser 20 includes a tube case 201, at least one heat sink 10, multiple laser chips 202 and at least one prism 203.
  • the at least one heat sink 10, the plurality of laser chips 202, and the at least one prism 203 are all located in the tube shell 201 ( Figure 2 only shows a partial structure of the tube shell), and the at least one heat sink 10 and the at least one The prisms 203 are all located on the surface of the tube shell 201.
  • Each heat sink 10 and each prism 203 corresponds to one or more laser chips 202.
  • the laser chip 202 is located on the side of the corresponding heat sink 10 away from the package 201, and the prism 203 is located on the side of the corresponding laser chip 202. On the light emitting side, the prism 203 is used to reflect the light emitted by the corresponding laser chip 202.
  • the tube shell 201 includes a bottom plate and side walls protruding on the bottom plate.
  • FIG. 1 only shows a part of the bottom plate of the tube shell 201, and the heat sink 10 and the prism 203 are all located on the bottom plate.
  • FIG. 1 only illustrates the two laser chips 202 in the laser 20, and the number of the laser chips 202 in the laser 20 can also be three, four, or even more. This is not the case in the embodiment of the present application. Make a limit.
  • the laser may also include only one laser chip.
  • the heat sink 10 in the laser 20 includes: a heat dissipation substrate 101, a heat dissipation layer 102, an auxiliary layer 103, and a conductive layer 104 stacked in a direction away from the tube case 201.
  • the thermal conductivity of the heat dissipation layer 102 is greater than 20 W/m ⁇ degree, and the auxiliary
  • the material of the layer 103 is different from the material of the heat dissipation layer 102 and the material of the conductive layer 104 is different.
  • the laser chip 202 may be attached to the conductive layer 104 in the corresponding heat sink 10.
  • thermal conductivity is:, where x is the direction of heat flow, is the heat flow density in the direction of heat flow, the unit is watts/square meter (that is, W/m2), is the temperature gradient in the direction of heat flow, and the unit is Degree/meter (the degree can be degrees Celsius or Kelvin temperature, so the unit can be degrees Celsius/m or K/m).
  • the thermal conductivity of the heat dissipation layer in the heat sink is relatively large, so the heat sink has a better heat dissipation effect.
  • the laser chip is located on the corresponding heat sink. The heat generated by the laser chip during light emission can be quickly transferred to the outside through the heat sink, and the temperature on the laser chip can be quickly reduced, avoiding damage to the laser chip due to heat accumulation. Can extend the life of the laser.
  • the thermal expansion coefficient of the heat dissipation layer 102 in the heat sink 10 can be matched with the thermal expansion coefficient of the heat dissipation substrate 101.
  • the absolute value of the difference between the thermal expansion coefficient of the heat dissipation layer 102 and the thermal expansion coefficient of the heat dissipation substrate 101 may be less than 30*10-6/degree Celsius.
  • the heat dissipating layer 102 and the heat dissipating substrate 101 from having a large difference in expansion amount when heated, thereby avoiding a large difference in force on the contact surface of the heat dissipating layer 102 and the heat dissipating substrate 101, so that the heat dissipating layer 102 and the heat dissipating substrate 101 There are gaps between them, or the contact surface of the heat dissipation layer 102 and the heat dissipation substrate 101 is wrinkled, which ensures the firmness of the heat dissipation layer 102 on the heat dissipation substrate 101.
  • the material of the heat dissipation layer may be copper, and its thermal expansion coefficient is 16.7*10-6/degree Celsius
  • the material of the heat dissipation substrate may be aluminum nitride, and its thermal expansion coefficient is 4.5*10-6/degree Celsius.
  • the thermal expansion coefficient of the heat dissipation layer and the thermal expansion coefficient of the heat dissipation substrate may be the same.
  • the heat dissipation layer and the heat dissipation substrate have the same amount of expansion when heated, and the force on the contact surface of the heat dissipation layer and the heat dissipation substrate is uniform. Avoid damage to the heat dissipation layer or the internal structure of the heat dissipation substrate, and improve the firmness of the heat dissipation layer on the heat dissipation substrate.
  • the thermal conductivity and thermal expansion coefficient of the heat dissipation layer need to be comprehensively considered when determining the manufacturing material of the heat dissipation layer.
  • the restriction on the thermal expansion coefficient of the heat dissipation layer can be relaxed accordingly.
  • the absolute value of the difference between the thermal expansion coefficient of the heat dissipation layer and the thermal expansion coefficient of the heat dissipation substrate can also be greater than or equal to 30*10-6/degree Celsius.
  • the material of the heat dissipation layer 102 may include copper, and the thermal conductivity of copper may be 401 W/m ⁇ degree.
  • the material of the scattering layer 102 may also include one or more of silver and aluminum.
  • titanium is usually used to make the heat sink in the heat sink.
  • the thermal conductivity of titanium is 20 watts/degree ⁇ m.
  • the heat sink can only effectively dissipate the laser chip with the output power of microwatts. When the output power of the laser chip is large, the temperature of the heat sink will continue to rise rapidly, and the laser chip cannot be effectively dissipated.
  • the thermal conductivity of the heat dissipation layer in the heat sink provided in the embodiment of the present application is greater than 20 watts/degree ⁇ m, and when the heat dissipation layer is made of copper, the thermal conductivity of the heat dissipation layer can reach 401 watts/degree ⁇ m. Therefore, the heat can be quickly conducted in the heat dissipation layer, and the heat capacity of the heat dissipation layer is large.
  • the heat sink can effectively dissipate the laser chip with higher output power, thereby ensuring that the actual working temperature of the laser chip is lower to increase the laser The life of the chip.
  • the thickness of the heat dissipation layer 102 may be greater than 1 micrometer.
  • the thickness of the heat dissipation layer 102 may also be greater than 30 microns.
  • the thickness of the heat dissipation layer 102 may be 35 micrometers, 40 micrometers, 45 micrometers, or 50 micrometers. Since the thickness of the heat dissipation layer 102 in the embodiment of the present application is relatively thick, the heat generated by the laser chip 202 can be conducted in the heat dissipation layer 102 for a long time, so that the heat on the heat dissipation layer 102 is evenly distributed, and the heat generated by the laser chip 202 can be Disperse evenly.
  • the thickness of the heat dissipation layer 102 may be less than 75 microns, so as to prevent the heat conduction time in the heat dissipation layer 102 from being too long, so as to ensure a faster heat dissipation speed. It should be noted that the thickness of the heat dissipation layer 102 may also be greater than or equal to 75 ⁇ m. For example, the thickness of the heat dissipation layer 102 is 80 ⁇ m or 85 ⁇ m, which is not limited in the embodiment of the present application.
  • the material of the conductive layer 104 may include gold.
  • the conductive layer 104 may be electrically connected to an electrode (such as a negative electrode or a positive electrode) of the laser chip 202, and the conductive layer 104 may be connected to a power source through a wire, so that the power source supplies power to the laser chip 202 through the conductive layer 104.
  • the conductive layer 104 may also have strong corrosion resistance, and further, the conductive layer 104 may protect the laser chip 202 and prevent the electrodes of the laser chip 202 from being oxidized.
  • the thickness of the conductive layer 104 may be greater than 0.1 micrometers.
  • the thickness of the conductive layer may be 0.2 micrometers, 0.3 micrometers, or 0.5 micrometers. Due to the large thickness of the conductive layer, it can ensure that the bonding quality between the conductive layer and the auxiliary layer is good, and the conductive layer can transmit a large current, thereby preventing the conduction caused by the excessive current transmitted to the laser chip The layer is damaged.
  • the auxiliary layer 103 in the heat sink 10 is used to assist the adhesion of the heat dissipation layer 102 and the conductive layer 104 to ensure the reliability of the adhesion between the heat dissipation layer 102 and the conductive layer 104.
  • the material of the auxiliary layer 103 includes nickel.
  • the material of the heat dissipation layer 102 includes copper, and the material of the conductive layer 104 includes gold.
  • the gold layer is directly formed on the copper layer, the adhesion between the gold and the copper layer is poor, but the gold layer and the nickel layer The adhesion and the adhesion between the nickel layer and the copper layer are good, so the nickel layer can be formed on the copper layer first, and then the gold layer can be formed on the nickel layer to ensure the stability of the gold layer.
  • the thickness of the auxiliary layer ranges from 1 micrometer to 2 micrometers.
  • the material of the heat dissipation substrate 101 may include one or more of aluminum, copper, aluminum nitride, and silicon carbide.
  • the heat sink in the embodiment of the present application may also be used to assist other light-emitting devices other than the laser chip to dissipate heat.
  • the other light-emitting devices may be light-emitting diodes (LEDs).
  • the heat sink 10 may further include an isolation layer and a solder layer sequentially stacked on the conductive layer 104.
  • the solder layer is used to weld the laser chip during melting, and the isolation layer is used to isolate the conductive layer and the solder layer to prevent the conductive layer from fusing with the solder layer in a high temperature state, so that the characteristics of the solder layer and the conductive layer change.
  • the material of the solder layer may be a gold-tin alloy, wherein the proportion of gold may range from 75% to 80%, and the material of the isolation layer may be platinum.
  • the material of the conductive layer is gold. Since the proportion of gold in the gold-tin alloy is related to the soldering effect of the gold-tin alloy, an isolation layer is provided between the conductive layer and the solder layer to prevent the conductive layer from interacting with each other at high temperatures. The fusion of the solder layer, which changes the proportion of gold in the solder layer, occurs, ensuring the soldering effect of the solder layer.
  • the thickness of the solder layer may range from 1 micrometer to 10 micrometers.
  • the heat dissipation substrate 101 may be provided first, and then the heat dissipation layer 102 is formed on the heat dissipation substrate 101 by a thin film method or a method of directly sintering a copper layer.
  • the thin film method is to use evaporation, magnetron sputtering and other surface deposition processes to first metalize the substrate surface, such as sputtering titanium and chromium under vacuum conditions, then sputtering copper particles, and finally electroplating to increase copper The thickness of the layer.
  • the sputtering thickness of the copper particles may be less than or equal to 5 microns.
  • the method of direct sintering of the copper layer is also a method of sintering the copper foil to form it directly on the surface of the substrate.
  • an auxiliary layer 103, a conductive layer 104, an isolation layer, and a solder layer may be sequentially formed on the heat dissipation layer 102.
  • a high-precision eutectic machine can be used to solder the laser chip.
  • the first end C of the laser 202 can be located between the heat sink 10 where the laser chip 202 is located and the laser
  • the distance d between the prisms 203 corresponding to the chip 202 and the first end C and the second end D of the heat sink 10 in the x direction in FIG. 1 may be less than 15 microns.
  • the first end C is the end of the laser chip 202 close to the prism 203
  • the second end D is the end of the heat sink 10 close to the prism 203
  • the x direction is the laser chip 202 and its corresponding end.
  • the arrangement direction of the prism 203 can be 10 microns or 9 microns.
  • the distance between the first end C and the second end D in the x direction may be less than 5 microns.
  • the distance can be 4 microns or 3 microns.
  • FIG. 2 is a schematic structural diagram of another laser provided in an embodiment of the present application. As shown in FIG. 2, the first end C of any laser chip 202 in the laser 20 may be flush with the second end D of the heat sink 10 where the laser chip 202 is located.
  • the light emitted by the laser chip is directed to the corresponding prism, and then reflected on the surface of the prism, and directed away from the tube shell, so as to realize the light emission of the laser.
  • the heat sink is usually thin in the related technology, in order to avoid the light emitted by the laser chip hitting the tube shell and causing light waste, which reduces the brightness of the laser, the laser chip needs to be extended in the related technology.
  • the first end of the laser chip is located between the second end of the heat sink where the laser chip is located and the prism corresponding to the laser chip, and usually the first end and the second end are between the heat sink and the prism.
  • the distance in the arrangement direction is greater than 15 microns. In this way, the part of the laser chip protruding from the heat sink cannot be attached to the heat sink. When the laser chip emits light, the heat generated by the part that is not attached to the heat sink cannot be conducted through the heat sink, and the heat dissipation rate is slow. In turn, the heat dissipation effect of the laser chip is poor.
  • the thickness of the heat sink is relatively large, thereby avoiding the waste of light caused by the light emitted by the laser chip hitting the tube shell, so the brightness of the light emitted by the laser is relatively high.
  • the distance between the first end of the laser chip and the second end of the heat sink where the laser chip is located in the arrangement direction of the heat sink and the prism corresponding to the laser chip is relatively small, even the first end and the second end can Flush.
  • the contact area between the laser chip and the heat sink can be increased, thereby increasing the size of the supported area in the laser chip, and improving the installation stability of the light-emitting device.
  • the heat generated in each area of the laser chip can be conducted through the heat sink, thereby improving the heat dissipation effect of the laser chip.
  • the orthographic projection area of the heat sink 10 on the tube case 201 can be larger than the orthographic projection area of the laser chip 202 on the tube case 201, which can ensure that all positions of the laser chip 202 are supported by the heat sink 10 to improve the laser chip.
  • the setting stability of 202 and the larger heat sink 10 can facilitate the diffusion of the heat generated by the laser chip 202.
  • the orthographic projection of the heat sink 10 on the tube shell 201 refers to the orthographic projection of the heat sink 10 as a whole on the tube shell 201.
  • the surface m of the prism 203 close to the heat sink 10 may be a concave surface or an inclined surface inclined away from the laser chip 202.
  • FIGS. 1 and 2 use this surface m as an inclined surface for illustration.
  • the angle between the inclined plane and the surface of the shell can be 45 degrees.
  • the concave surface may be an aspheric surface, and the curvature of each position in the concave surface is different.
  • the light emitted by the laser chip 202 may be condensed into a relatively collimated light after being directed to the aspheric surface and then emitted.
  • the at least one heat sink 10 in the laser 20 may correspond to the at least one prism 203 on a one-to-one basis, and the heat sink 10 and the corresponding prism 203 may correspond to the same laser chip 202.
  • the prism 203 can reflect the light emitted by the laser chip 202 on the corresponding heat sink 10.
  • the prism 203 and the laser chip 202 may have two corresponding relationships.
  • each prism 203 of at least one prism 203 in the laser 20 may correspond to a laser chip 202 for reflecting only the light emitted by the laser chip 202.
  • FIG. 3 takes the heat sink 10 where the first end of the laser chip 202 protrudes as an example.
  • FIG. 1 may be a schematic diagram of the cross-section a-a' in the laser shown in FIG. 3, and FIG. Only the position of the heat sink 10 is shown in the figure, and the specific structure of the heat sink 10 is not shown.
  • the first end of the laser chip 202 in FIG. 3 may also be flush with the second end of the heat sink 10 where it is located, which is not illustrated in the embodiment of the present application.
  • the at least one prism 203 in the laser 20 may further include: a target prism corresponding to the plurality of laser chips 202, and the target prism may be used to reflect the light emitted by the plurality of laser chips 202.
  • each prism 203 in the laser 20 may be a target prism, the target prism may be strip-shaped, the length direction of the target prism is perpendicular to the height direction of the target prism, and the direction of the target prism is perpendicular to the direction of the target prism.
  • the direction of the corresponding laser chip (the x direction in any one of Fig. 1 to Fig. 3).
  • FIG. 4 takes the first end of the laser chip 202 to be flush with the second end of the heat sink 10 as an example, and FIG. 2 may be a schematic diagram of the cross-section a-a' in the laser shown in FIG. 4 , And FIG. 4 only illustrates the location of the heat sink 10, and does not show the specific structure of the heat sink 10.
  • the first end of the laser chip 202 in FIG. 4 can also extend out of the heat sink 10 where it is located, which is not illustrated in the embodiment of the present application.
  • FIG. 4 takes as an example that each prism in the laser is a target prism.
  • the laser 20 may also include a target prism and an ordinary prism corresponding to only one laser chip. This is not the case in the embodiment of the present application. Give a gesture.
  • FIG. 5 is a schematic structural diagram of a laser provided by another embodiment of the present application. It should be noted that FIG. 5 takes the heat sink 10 where the first end of the laser chip 202 extends as an example, FIG. 5 may be a top view of the laser shown in FIG. 1, and FIG. 1 may be the one shown in FIG. 5.
  • the laser 20 may further include a terminal 204, a wire 205 and a connection platform 206 located in the tube housing 201.
  • the terminal 204 is electrically connected to an external power source
  • the terminal 204 and the connection platform 206 are electrically connected through a wire 205
  • the connection terminal 206 and the electrode of the laser chip 202 are electrically connected through a wire 205.
  • connection platform 206 is arranged between the terminal 204 and the laser chip 202 to realize the transfer of the wire 205, which can prevent the wire 205 from being broken due to the excessively long laid wire 205, thereby improving the reliability of the wire connection.
  • the wire 205 may be a gold wire, that is, the material of the wire may be gold.
  • a Zener diode can be connected in series between the laser chip and the power supply as a protection resistor.
  • the Zener diode can be located between the laser chip and the connection station, that is, the laser chip, the Zener diode, and the connection station can be connected in sequence by wires.
  • the Zener diode can prohibit the current from passing when the input current is greater than the current threshold, thereby protecting the laser chip and preventing damage to the laser chip under the action of excessive current.
  • FIG. 6 is a schematic structural diagram of still another laser provided by another embodiment of the present application.
  • the laser 20 may further include a carrier substrate 200 located in the tube case 201, and each heat sink 10 and each prism 203 in the laser 20 may be located on the surface of the carrier substrate 200 away from the tube case 201, and the heat sink 10
  • the heat dissipating substrate 101 can be integrally formed with the carrier substrate 200.
  • FIG. 6 takes the first end C of the laser chip 202 extending out of the heat sink 10 where it is located as an example for illustration.
  • the first end C of the laser chip 202 may also be connected to the second end D of the heat sink 10. Flush.
  • the carrier substrate 200 has a recessed area, and the first part of the carrier substrate 200 that is convex relative to the recessed area can serve as the heat sink substrate 101 in the heat sink 10. Since the heat dissipation substrate 101 and the carrier substrate 200 in the heat sink 10 are integrally formed, the pasting error caused by pasting the heat dissipation substrate is avoided, the overall error of laser preparation is reduced, and the collimation of the light emitted by the laser can be improved.
  • the prism 203 in the laser 20 may also be integrally formed with the carrier substrate 200. Therefore, there is no need to paste the prism on the carrier substrate, avoid the paste error caused by pasting the prism, further reduce the overall error of preparing the laser, and improve the collimation of the light emitted by the laser.
  • the material of the carrier substrate 200 may include ceramics.
  • the etchability of the carrier substrate in the embodiments of the present application may be better.
  • Ceramics may include silicon materials, such as silicon dioxide.
  • the ceramic may also include aluminum oxide or aluminum nitride.
  • the material of the carrier substrate may be a transparent material.
  • the thickness of the carrier substrate may range from 4 mm to 7 mm.
  • the laser 20 may also include a cover plate 207, a sealing glass 208, and a multi-layer film on the side of the laser chip 202 away from the tube case 201, which are sequentially superimposed in the direction away from the tube case 201.
  • Each laser chip 202 corresponds to a plurality of collimating lenses 209 one by one, and the light emitted by each laser chip 202 is reflected by the corresponding prism 203 and then directed toward the corresponding collimating lens 209.
  • the collimating lens 209 can adjust the direction of the light, reduce the divergence angle of the light, and improve the collimation of the light.
  • FIG. 7 takes the heat sink 10 where the first end of the laser chip 202 protrudes as an example, and FIG. 7 illustrates that each prism 203 corresponds to one laser chip 202 as an example.
  • the laser may not be provided with collimation at this time.
  • one or more of the cover plate 207, the sealing glass 208, and the collimating lens 209 may have the same thermal expansion coefficient as the carrier substrate 200. Since each component in the laser usually needs to be heated when assembling each component, the thermal expansion coefficient of each component in the laser is the same, you can directly use the same process and perform the assembly of each component at the same temperature, without the need to assemble each component The assembly environment is set separately, so the assembly process of the laser is relatively convenient.
  • the one or more structures are made of the same material as the carrier substrate. Since the various components of the laser are usually assembled by heating and welding, and materials of the same material are easily integrated during heating and welding, the robustness of the assembled laser can be improved.
  • the material of the supporting substrate, the cover plate, the sealing glass and the collimating lens may all be ceramics. Due to the high transmittance of ceramics to infrared light, the laser chip in the laser can be made to emit infrared light, so that the intensity of the light emitted by the laser is relatively high.
  • the thermal conductivity of the heat dissipation layer in the heat sink is relatively large, so the heat sink has a better heat dissipation effect.
  • the laser chip is located on the corresponding heat sink. The heat generated by the laser chip during light emission can be quickly transferred to the outside through the heat sink, and the temperature on the laser chip can be quickly reduced, avoiding damage to the laser chip due to heat accumulation. Can extend the life of the laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种激光器(20),属于光电技术领域。激光器(20)包括:管壳(201)、至少一个热沉(10)、多个激光器芯片(202)和至少一个棱镜(203);至少一个热沉(10)、多个激光器芯片(202)与至少一个棱镜(203)均位于管壳(201)内,且至少一个热沉(10)与至少一个棱镜(203)均位于管壳(201)表面;每个热沉(10)和每个棱镜(203)均与一个或多个激光器芯片(202)对应,激光器芯片(202)位于其对应的热沉(10)远离管壳(201)的一侧,且棱镜(203)位于其对应的激光器芯片(202)的出光侧;棱镜(203)用于反射对应的激光器芯片(202)射出的光线;热沉(10)包括:沿远离管壳(201)的方向依次叠加的散热基板(101)、散热层(102)、辅助层(103)和导电层(104),散热层(102)的导热系数大于20瓦/米·度,辅助层(103)的材质与散热层(102)的材质不同,且与导电层(104)的材质不同。

Description

激光器
本申请要求在2019年9月20日提交中国专利局、申请号为201910892998.3、发明名称为“激光器”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光电技术领域,特别涉及一种激光器。
背景技术
随着光电技术的发展,激光器被广泛应用。激光器包括激光器芯片,目前对激光器芯片的输出功率较大的激光器需求较大。
激光器芯片在发出激光时会产生热量,且激光器芯片产生的热量与其输出功率正相关。所以,输出功率较大的激光器芯片产生的热量较多。并且,随着激光器芯片的持续发光,激光器芯片的温度会持续快速上升,如此会导致激光器芯片的温度较易超过其正常工作温度上限,激光器芯片较易损坏。
因此,相关技术中激光器的寿命较短。
发明内容
本申请提供了一种激光器,包括:管壳、至少一个热沉、多个激光器芯片和至少一个棱镜;
所述至少一个热沉、所述多个激光器芯片与所述至少一个棱镜均位于所述管壳内,且所述至少一个热沉与所述至少一个棱镜均位于所述管壳表面;
每个所述热沉和每个所述棱镜均与一个或多个所述激光器芯片对应,所述激光器芯片位于其对应的所述热沉远离所述管壳的一侧,且所述棱镜位于其对应的所述激光器芯片的出光侧;所述棱镜用于反射对应的所述激光器芯片射出的光线;
所述热沉包括:沿远离所述管壳的方向依次叠加的散热基板、散热层、辅助层和导电层,所述散热层的导热系数大于20瓦/米·度,所述辅助层的材质与所述散热层的材质不同,且与所述导电层的材质不同。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种激光器的结构示意图;
图2是本申请实施例提供的另一种激光器的结构示意图;
图3是本申请实施例提供的又一种激光器的结构示意图;
图4是本申请实施例提供的再一种激光器的结构示意图;
图5是本申请另一实施例提供的一种激光器的结构示意图;
图6是本申请另一实施例提供的再一种激光器的结构示意图;
图7是本申请另一实施例提供的又一种激光器的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
随着光电技术的发展,输出功率较大的激光器的应用越来越广,例如激光器可以应用在焊接工艺,切割工艺以及激光投影等方面。激光器中的激光器芯片在发光过程中通常会产生较多的热量,该热量是致使激光器芯片损坏的重要因素。本申请实施例提供了一种激光器,该激光器中的热沉可以与激光器中的激光器芯片贴合,以辅助激光器芯片散热,进而防止激光器芯片由于温度过高而损坏。
图1是本申请实施例提供的一种激光器的结构示意图,如图1所示,该激光器20包括:管壳201、至少一个热沉10、多个激光器芯片202和至少一个棱镜203。该至少一个热沉10、该多个激光器芯片202与该至少一个棱镜203均位于管壳201内(图2仅示出了管壳的部分结构),且该至少一个热沉10与该至少一个棱镜203均位于管壳201表面。每个热沉10和每个棱镜203均与一个或多个激光器芯片202对应,激光器芯片202位于其对应的热沉10远离管壳201的一侧,且棱镜203位于其对应的激光器芯片202的出光侧,棱镜203用于反射对应的激光器芯片202射出的光线。
需要说明的是,管壳201包括底板以及在底板上凸起的侧壁,图1仅示出了管壳201的部分底板,热沉10及棱镜203均位于该底板上。还需要说明的是,图1仅对激光器20中的两个激光器芯片202进行示意,激光器20中激光器芯片202的个数也可以为三个、四个甚至更多,本申请实施例对此不做限定。可选地,激光器也可以仅包括一个激光器芯片。
激光器20中的热沉10包括:沿远离管壳201的方向依次叠加的散热基板101、散热层102、辅助层103和导电层104,散热层102的导热系数大于20瓦/米·度,辅助层103的材质与散热层102的材质不同,且与导电层104的材质不同。激光器芯片202可以与其对应的热沉10中的导电层104贴合。
其中,导热系数的定义式为:,其中,x为热流方向,为热流方向上的热流密度,单位为瓦/平方米(也即是W/m2),为热流方向上的温度梯度,单位为度/米(其中的度可以是摄氏度或者开尔文温度,故该单位可以是℃/m,也可以是K/m)。
综上所述,本申请实施例提供的激光器中,热沉中散热层的导热系数较大,故热沉的散热效果较好。激光器芯片位于对应的热沉上,激光器芯片在发光时产生的热量可以通过该热沉快速地传导至外界,进而激光器芯片上的温度可以快速降低,避免了激光器芯片由于热量聚集而发生损坏,进而可以延长激光器的寿命。
以下对本申请实施例提供的激光器20中的热沉10进行介绍:
可选地,热沉10中散热层102的热膨胀系数可以与散热基板101的热膨胀系数相匹配。示例地,散热层102的热膨胀系数与散热基板101的热膨胀系数的差值的绝对值可以小于30*10-6/摄氏度。进而,可以防止散热层102与散热基板101在受热时膨胀量相差过大,进而避免散热层102与散热基板101的接触面上各点受力相差较大,使得散热层102与散热基板101之间出现缝隙,或者散热层102与散热基板101的接触面发生褶皱的情况,保证了散热层102在散热基板101上的设置牢固度。
示例地,散热层的材质可以为铜,其热膨胀系数为16.7*10-6/摄氏度,散热基板的材质可以为氮化铝,其热膨胀系数为4.5*10-6/摄氏度。
可选地,散热层的热膨胀系数与散热基板的热膨胀系数可以相同,此时散热层与散热基板在受热时的膨胀量相同,散热层与散热基板的接触面上各点受力均匀,可以进一步避免散热层或散热基板内部结构的破坏,提高散热层在散热基板上的设置牢固度。
需要说明的是,在确定散热层的制造材质时需要综合考虑散热层的导热系数与热膨胀系数。当散热层的导热系数较高,导热性较为优良时,可以相应地放宽对散热层的热膨胀系数的限制。如散热层的热膨胀系数与散热基板的热膨胀系数的差值的绝对值也可以大于或等于30*10-6/摄氏度。
本申请实施例中该散热层102的材质可以包括铜,铜的导热系数可以为401瓦/米·度。可选地,该散射层102的材质也可以包括银和铝中的一种或多种。
需要说明的是,相关技术中通常采用钛制作热沉中的散热层,钛的导热系数为20瓦/度·米,该热沉仅可对输出功率为微瓦级别的激光器芯片进行有效散热,当激光器芯片的输出功率较大时,该热沉的温度会持续快速上升,进而无法对激光器芯片进行有效散热。
而本申请实施例中提供的热沉中的散热层的导热系数大于20瓦/度·米,且采用铜制作散热层时,该散热层的导热系数可以达到401瓦/度·米。因此热量可以在该散热层中快速传导,且散热层的热容量较大,该热沉可以对输出功率较高的激光器芯片进行有效地散热,进而保证激光器芯片的实际工作温度较低,以增加激光器芯片的寿命。
可选地,散热层102的厚度可以大于1微米。可选地,散热层102的厚度也可以大于30微米。例如,散热层102的厚度可以为35微米、40微米、45微米或者50微米。由于本申请实施例中散热层102的厚度较厚,故激光器芯片202产生的热量可以在散热层102中传导较长时间,使得散热层102上的热量均匀分布,进而激光器芯片202产生的热量可以均匀地分散。
可选地,散热层102的厚度可以小于75微米,进而可以避免热量在散热层102中的传导时间过长,以保证较快的散热速度。需要说明的是,散热层102的厚度也可以大于或等于75微米,如散热层102的厚度为80微米或85微米,本申请实施例对此不做限定。
本申请实施例中,导电层104的材质可以包括金。导电层104可以与激光器芯片202的电极(如负极或正极)电连接,且导电层104可以通过导线连接至电源,以实现电源通过导电层104向激光器芯片202供电的目的。可选地,导电层104还可以具有较强的抗腐蚀性,进而导电层104可以对激光器芯片202起到保护作用,防止激光器芯片202的电极被氧化。
可选地,导电层104的厚度可以大于0.1微米。示例地,导电层的厚度可以为0.2微米、0.3微米或0.5微米。由于导电层的厚度较大,可以保证导电层与辅助层之间的粘接质量较好,且导电层可以传输较大的电流,进而可以防止由于传输至激光器芯片的电流过大而导致的导电层损坏。
本申请实施例中,热沉10中的辅助层103用于辅助散热层102与导电层104的粘接,保证散热层102与导电层104之间的粘接可靠性。
可选地,辅助层103的材质包括镍。可选地,散热层102的材质包括铜,导电层104的材质包括金,由于金层直接形成在铜层上时,金与铜层之间的粘接性较差,但是金层与镍层的粘接性以及镍层与铜层的粘接性均较好,故可以先在铜层上形成镍层,接着再在镍层上形成金层,以保证金层的设置稳固性。可选地,辅助层的厚度范围为1微米~2微米。
本申请实施例中,散热基板101的材质可以包括铝、铜、氮化铝和碳化硅中的一种或多种。可选地,本申请实施例中的热沉也可以用于辅助除激光器芯片之外的其他发光器件散热,如该其他发光器件可以为发光二极管(Light Emitting Diode,LED)。
可选地,热沉10还可以包括依次叠加在导电层104上的隔离层和焊料层。该焊料层用于在熔化时焊接激光器芯片,该隔离层用于隔离导电层与焊料层,以防止高温状态下导电层与焊料层融合,使得焊料层与导电层的特性发生改变的情况发生。
可选地,焊料层的材质可以为金锡合金,其中金的占比范围可以为75%~80%,隔离层的材质可以为铂。示例地,导电层的材质为金,由于金锡合金中金的占比与金锡合金的焊接效果相关,所以在导电层与焊料层之间设置隔离层,可以防止在高温状态下导电层与焊料层融合,进而改变焊料层中金的占比的情况发生,保证了焊料层的焊接效果。
可选地,焊料层的厚度范围可以为1微米~10微米。
在形成本申请实施例中的热沉时,可以先提供散热基板101,之后在散热基板101上采用薄膜法或者直接烧结铜层的方法形成散热层102。其中,薄膜法也即是用蒸发、磁控溅射等面沉积工艺进行先对基板表面进行金属化,如在真空条件下溅射钛和铬,然后再溅射铜颗粒,最后进行电镀增加铜层的厚度。可选地,铜颗粒的溅射厚度可以小于或等于5微米。直接烧结铜层的方法也即是将铜箔进行烧结使其直接形成在基板表面的方法。在形成散热层102后可以在散热层102上依次形成辅助层103、导电层104、隔离层和焊料层。可选地,在形成焊料层之后可以采用高精度共晶机焊接激光器芯片。
以下对本申请实施例中提供的激光器20中热沉10、激光器芯片202以及棱镜203的位置关系进行介绍:
可选地,请继续参考图1,对于激光器20中的多个激光器芯片202中的任一激光器芯片202:该激光器202的第一端C可以位于该激光器芯片202所在的热沉10与该激光器芯片202对应的棱镜203之间,且该第一端C与该热沉10的第二端D在图1中的x方向上的距离d可以小于15微米。其中,该第一端C为该激光器芯片202靠近该棱镜203的一端,该第二端D为该热沉10靠近该棱镜203的一端,该x方向即为该激光器芯片202和其对应的该棱镜203的排布方向。例如,该距离可以为10微米或9微米。可选地,第一端C与第二端D在x方向上的距离可以小于5微米。例如,该距离可以为4微米或3 微米。
可选地,图2是本申请实施例提供的另一种激光器的结构示意图。如图2所示,激光器20中任一激光器芯片202的第一端C可以与该激光器芯片202所在的热沉10的第二端D平齐。
需要说明的是,激光器芯片发出的光线射向对应的棱镜,进而在棱镜的表面发生反射,并射向远离管壳的方向,以实现激光器的发光。由于激光器芯片发出的光线具有发散角,且相关技术中热沉通常较薄,为了避免激光器芯片发出的光线射向管壳而造成光线浪费,使得激光器发光亮度降低,相关技术中需要使激光器芯片伸出热沉,也即是使激光器芯片的第一端位于激光器芯片所在的热沉的第二端与该激光器芯片对应的棱镜之间,且通常第一端与第二端在热沉和棱镜的排布方向上的距离大于15微米。如此使得激光器芯片中伸出热沉的部分无法与热沉贴合,激光器芯片在发光时,该未与热沉贴合的部分产生的热量无法通过热沉传导,该热量的散发速度较慢,进而使得激光器芯片的散热效果较差。
而本申请实施例提供的激光器中,热沉的厚度较大,进而可以避免激光器芯片发出的光线射向管壳造成的光线浪费,因此激光器发出的光线亮度较高。另外,激光器芯片的第一端与激光器芯片所在的热沉的第二端在该热沉和该激光器芯片对应的棱镜的排布方向上的距离较小,甚至该第一端与第二端可以平齐。如此一来,可以增大激光器芯片与热沉的接触面积,进而增加了激光器芯片中被支撑的区域大小,提高了发光装置的设置稳固性。并且,激光器芯片中各个区域产生的热量均可以通过热沉进行传导,因此提高了激光器芯片的散热效果。
可选地,热沉10在管壳201上的正投影面积可以大于激光器芯片202在管壳201上的正投影面积,进而可以保证激光器芯片202的各个位置均被热沉10支撑,提高激光器芯片202的设置稳固性,且热沉10较大可以更加便于激光器芯片202产生的热量的扩散。需要说明的是,热沉10在管壳201上的正投影指的是热沉10整体在管壳201上的正投影。
以下对本申请实施例中提供的激光器20中的棱镜203进行介绍:
本申请实施例中,棱镜203靠近热沉10的表面m可以为凹面或者朝远离激光器芯片202的方向倾斜的斜面,图1和图2以该表面m为斜面进行示意。可选地,该斜面与管壳表面的夹角可以为45度。可选地,当该表面为凹面时,该凹面可以为非球面,该凹面中各个位置的曲率不同。此时,激光器芯片202发出的光线可以在射向非球面之后汇聚成较为准直的光线进而射出。
可选地,激光器20中的该至少一个热沉10可以与该至少一个棱镜203一一对应,且热沉10与对应的棱镜203可以对应相同的激光器芯片202。此时,棱镜203可以反射对应的热沉10上的激光器芯片202射出的光线。
本申请实施例中,棱镜203与激光器芯片202可以具有两种对应关系。
在第一种对应关系中,请参考图3示出的激光器的结构示意图。其中,激光器20中的至少一个棱镜203中每个棱镜203均可以对应一个激光器芯片202,用于仅反射该激光器芯片202射出的光。
需要说明的是,图3以激光器芯片202的第一端伸出其所在的热沉10为例进行示意, 图1可以为图3所示的激光器中截面a-a’的示意图,且图3中仅对热沉10的所处位置进行示意,并未示出热沉10的具体结构。图3中激光器芯片202的第一端也可以与其所在的热沉10的第二端平齐,本申请实施例未对此种情况进行示意。
在第二种对应关系中,请参考图4示出的激光器的结构示意图。其中,激光器20中的该至少一个棱镜203还可以包括:对应多个激光器芯片202的目标棱镜,该目标棱镜可以用于反射多个激光器芯片202射出的光线。如图4所示,激光器20中的每个棱镜203均可以为目标棱镜,该目标棱镜可以呈条状,该目标棱镜的长度方向垂直于该目标棱镜的高度方向,且垂直于该目标棱镜朝向对应的激光器芯片的方向(如图1至图3任一中的x方向)。
需要说明的是,图4以激光器芯片202的第一端与其所在的热沉10的第二端平齐为例进行示意,图2可以为图4所示的激光器中截面a-a’的示意图,且图4中仅对热沉10的所处位置进行示意,并未示出热沉10的具体结构。图4中激光器芯片202的第一端也可以伸出其所在的热沉10,本申请实施例未对此种情况进行示意。图4以激光器中的每个棱镜均为目标棱镜为例进行示意,可选地,激光器20中也可以同时包括目标棱镜以及仅对应一个激光器芯片的普通棱镜,本申请实施例未对此种情况进行示意。
图5是本申请另一实施例提供的一种激光器的结构示意图。需要说明的是,图5以激光器芯片202的第一端伸出其所在的热沉10为例进行示意,图5可以为图1所示的激光器的俯视图,图1可以为图5所示的激光器中截面A-A’的示意图,且图5以激光器20包括两个激光器芯片202为例进行示意。可选地,如图5所示,激光器20还可以包括位于管壳201内的接线柱204、导线205和连接台206。接线柱204与外部电源电连接,接线柱204与连接台206通过导线205电连接,连接台206与激光器芯片202的电极通过导线205电连接。
需要说明的是,由于若直接采用导线连接接线柱204与激光器芯片202,则需要较长的导线。在接线柱204与激光器芯片202之间设置连接台206实现导线205的转接,可以防止由于铺设的导线205过长导致的导线断裂,进而可以提高导线连接的可靠性。可选地,该导线205可以为金线,也即是该导线的材质可以为金。
可选地,激光器芯片与电源之间还可以串联有齐纳二极管作为保护电阻。例如,该齐纳二极管可以位于激光器芯片与连接台之间,也即是激光器芯片、齐纳二极管和连接台可以通过导线顺次连接。该齐纳二级管可以在输入的电流大于电流阈值时禁止电流通过,进而对激光器芯片起到保护作用,防止激光器芯片在过大的电流作用下损坏。
图6是本申请另一实施例提供的再一种激光器的结构示意图。如图6所示,激光器20还可以包括位于管壳201内的承载基板200,激光器20中的各个热沉10与各个棱镜203均可以位于承载基板200远离管壳201的表面,且热沉10中的散热基板101可以与该承载基板200一体成型。需要说明的是,图6以激光器芯片202的第一端C伸出其所在的热沉10为例进行示意,该激光器芯片202的第一端C也可以与该热沉10的第二端D平齐。
如图6所示,该承载基板200具有凹陷区域,该承载基板200中相对于该凹陷区域凸 起的第一部分可以作为热沉10中的散热基板101。由于热沉10中的散热基板101与承载基板200一体成型,因此避免了粘贴散热基板导致的粘贴误差,降低了激光器的制备总体误差,进而可以提高激光器射出的光线的准直度。
可选地,请继续参考图6,激光器20中的棱镜203也可以与承载基板200一体成型。因此,可以无需在承载基板上粘贴棱镜,避免了粘贴棱镜带来的粘贴误差,进一步降低了制备激光器的总体误差,提高了激光器射出的光线的准直度。
可选地,承载基板200的材质可以包括陶瓷。本申请实施例中承载基板的可刻蚀性可以较好。陶瓷可以包括硅材料,如二氧化硅。陶瓷还可以包括氧化铝或氮化铝。可选地,承载基板的材质可以为透明材质。可选地,承载基板的厚度范围可以为4毫米~7毫米。
如图7所示,在图6的基础上,激光器20还可以包括在激光器芯片202远离管壳201的一侧,沿远离管壳201的方向依次叠加的盖板207、密封玻璃208和与多个激光器芯片202一一对应的多个准直透镜209,每个激光器芯片202发出的光经过对应的棱镜203反射后射向对应的准直透镜209。该准直透镜209可以调整光线方向,降低光线的发散角度,提高光线的准直性。需要说明的是,图7以激光器芯片202的第一端伸出其所在的热沉10为例,且图7以每个棱镜203与一个激光器芯片202对应为例进行示意。
可选地,当激光器20中的棱镜203靠近热沉10的表面为凹面,且为非球面时,由于激光器芯片202发出的光线可以较为准直地射出,此时激光器中也可以并不设置准直透镜209。
可选地,盖板207、密封玻璃208和准直透镜209中的一个或多个结构可以与承载基板200的热膨胀系数相同。由于在对激光器中的各个部件进行组装时通常需要进行加热,激光器中的各个部件热膨胀系数相同,则可以直接采用同一工艺并在相同的温度下进行各个部件的组装,无需为每个部件的组装均单独设置组装环境,因此激光器的组装过程较为便捷。
可选地,该一个或多个结构与承载基板的材质相同。由于通常通过加热焊接的方式对激光器中各个部件进行组装,而材质相同的材料在加热焊接时容易融为一体,因此可以提高组装后的激光器的牢固性。
可选地,承载基板、盖板、密封玻璃以及准直透镜的材质均可以为陶瓷。由于陶瓷对红外光线的透过率较高,故可以使得激光器中的激光器芯片为发出红外光线的激光器芯片,以使得激光器射出的光线强度较高。
综上所述,本申请实施例提供的激光器中,热沉中散热层的导热系数较大,故热沉的散热效果较好。激光器芯片位于对应的热沉上,激光器芯片在发光时产生的热量可以通过该热沉快速地传导至外界,进而激光器芯片上的温度可以快速降低,避免了激光器芯片由于热量聚集而发生损坏,进而可以延长激光器的寿命。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种激光器,其特征在于,所述激光器包括:管壳、至少一个热沉、多个激光器芯片和至少一个棱镜;
    所述至少一个热沉、所述多个激光器芯片与所述至少一个棱镜均位于所述管壳内,且所述至少一个热沉与所述至少一个棱镜均位于所述管壳表面;
    每个所述热沉和每个所述棱镜均与一个或多个所述激光器芯片对应,所述激光器芯片位于其对应的所述热沉远离所述管壳的一侧,且所述棱镜位于其对应的所述激光器芯片的出光侧;所述棱镜用于反射对应的所述激光器芯片射出的光线;
    所述热沉包括:沿远离所述管壳的方向依次叠加的散热基板、散热层、辅助层和导电层,所述散热层的导热系数大于20瓦/米·度,所述辅助层的材质与所述散热层的材质不同,且与所述导电层的材质不同。
  2. 根据权利要求1所述的激光器,其特征在于,所述散热基板的热膨胀系数与所述散热层的热膨胀系数的差值的绝对值小于30*10-6/摄氏度。
  3. 根据权利要求1或2所述的激光器,其特征在于,所述散热层的材质包括铜。
  4. 根据权利要求1或2所述的激光器,其特征在于,所述散热层的厚度大于1微米。
  5. 根据权利要求4所述的激光器,其特征在于,所述散热层的厚度范围为30微米~75微米。
  6. 根据权利要求1或2所述的激光器,其特征在于,所述辅助层的材质包括镍。
  7. 根据权利要求1或2所述的激光器,其特征在于,所述导电层的厚度大于0.1微米。
  8. 根据权利要求1或2所述的激光器,其特征在于,对于所述多个激光器芯片中的任一所述激光器芯片:
    所述激光器芯片的第一端与所述激光器芯片所在的热沉的第二端平齐,其中,所述第一端为所述激光器芯片靠近其对应的所述棱镜的一端,所述第二端为所述激光器芯片所在的热沉靠近所述激光器芯片对应的所述棱镜的一端;
    或者,所述第一端位于所述第二端与所述激光器芯片对应的所述棱镜之间,且所述第一端与所述第二端在所述激光器芯片和其对应的所述棱镜的排布方向上的距离小于15微米。
  9. 根据权利要求8所述的激光器,其特征在于,所述第一端位于所述第二端与所述棱镜之间,且所述第一端与所述第二端在所述目标芯片和其对应的所述棱镜的排布方向上的距离小于5微米。
  10. 根据权利要求1或2所述的激光器,其特征在于,所述至少一个棱镜包括:对应多个激光器芯片的目标棱镜。
  11. 根据权利要求10所述的激光器,其特征在于,所述目标棱镜呈条状,所述目标棱镜的长度方向垂直于所述目标棱镜的高度方向,且垂直于所述目标棱镜朝向对应的激光器芯片的方向。
  12. 根据权利要求1所述的激光器,其特征在于,所述激光器还包括:位于所述管壳内的承载基板,所述至少一个热沉与所述至少一个棱镜位于所述承载基板远离所述管壳的表面,且所述热沉中的所述散热基板与所述承载基板一体成型。
  13. 根据权利要求12所述的激光器,其特征在于,所述棱镜与所述承载基板一体成型。
  14. 根据权利要求12或13所述的激光器,其特征在于,所述承载基板的材质包括陶瓷。
  15. 根据权利要求12或13所述的激光器,其特征在于,所述激光器还包括:在所述激光器芯片远离所述管壳的一侧,沿远离所述管壳的方向依次叠加的盖板、密封玻璃以及准直透镜;
    所述盖板、所述密封玻璃以及所述准直透镜中的一个或多个结构与所述承载基板的热膨胀系数相同。
PCT/CN2020/121632 2019-09-20 2020-10-16 激光器 WO2021052514A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/698,419 US20220209499A1 (en) 2019-09-20 2022-03-18 Laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910892998.3 2019-09-20
CN201910892998.3A CN112542758B (zh) 2019-09-20 2019-09-20 激光器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/698,419 Continuation US20220209499A1 (en) 2019-09-20 2022-03-18 Laser device

Publications (1)

Publication Number Publication Date
WO2021052514A1 true WO2021052514A1 (zh) 2021-03-25

Family

ID=74883949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121632 WO2021052514A1 (zh) 2019-09-20 2020-10-16 激光器

Country Status (3)

Country Link
US (1) US20220209499A1 (zh)
CN (1) CN112542758B (zh)
WO (1) WO2021052514A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089059A3 (en) * 2021-11-19 2023-07-27 Ams-Osram International Gmbh Laser package and method for manufacturing a laser package

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070857A1 (ja) * 2022-09-29 2024-04-04 日亜化学工業株式会社 発光装置および発光モジュール
CN116565697A (zh) * 2023-04-20 2023-08-08 浙江热刺激光技术有限公司 激光器及激光器的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2306597Y (zh) * 1997-09-06 1999-02-03 黄益富 一种复合波长激光器
US7003006B2 (en) * 2004-01-26 2006-02-21 Li-Ning You Green diode laser
CN102401949A (zh) * 2011-12-02 2012-04-04 北京工业大学 一种平台式折转反射单管半导体激光器光纤耦合模块
CN103887703A (zh) * 2014-03-27 2014-06-25 北京牡丹电子集团有限责任公司 一种带石墨烯层的半导体激光器热沉及其制作方法
CN104201557A (zh) * 2014-08-28 2014-12-10 青岛海信宽带多媒体技术有限公司 一种可调激光器的封装结构及其封装方法
CN106451057A (zh) * 2016-11-30 2017-02-22 武汉光迅科技股份有限公司 一种to结构的低成本可调激光器
CN106848839A (zh) * 2017-01-26 2017-06-13 中国科学院半导体研究所 量子级联激光器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202759153U (zh) * 2012-02-13 2013-02-27 苏州华必大激光有限公司 高热负载大功率半导体激光器
CN104051954A (zh) * 2014-06-19 2014-09-17 中国科学院半导体研究所 应用于光电子器件光信号监测的光耦合结构
CN106019496B (zh) * 2016-05-31 2018-05-08 武汉光迅科技股份有限公司 一种光源封装结构及其定位、耦合方法
CN207250929U (zh) * 2017-05-31 2018-04-17 深圳市杰普特光电股份有限公司 半导体激光器热沉
CN207338899U (zh) * 2017-08-16 2018-05-08 江苏天元激光科技有限公司 一种半导体激光器阵列封装结构
CN109560455A (zh) * 2017-09-26 2019-04-02 青岛海信激光显示股份有限公司 一种激光器阵列
CN109725392A (zh) * 2019-02-19 2019-05-07 武汉电信器件有限公司 一种光发射组件和光接收组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2306597Y (zh) * 1997-09-06 1999-02-03 黄益富 一种复合波长激光器
US7003006B2 (en) * 2004-01-26 2006-02-21 Li-Ning You Green diode laser
CN102401949A (zh) * 2011-12-02 2012-04-04 北京工业大学 一种平台式折转反射单管半导体激光器光纤耦合模块
CN103887703A (zh) * 2014-03-27 2014-06-25 北京牡丹电子集团有限责任公司 一种带石墨烯层的半导体激光器热沉及其制作方法
CN104201557A (zh) * 2014-08-28 2014-12-10 青岛海信宽带多媒体技术有限公司 一种可调激光器的封装结构及其封装方法
CN106451057A (zh) * 2016-11-30 2017-02-22 武汉光迅科技股份有限公司 一种to结构的低成本可调激光器
CN106848839A (zh) * 2017-01-26 2017-06-13 中国科学院半导体研究所 量子级联激光器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023089059A3 (en) * 2021-11-19 2023-07-27 Ams-Osram International Gmbh Laser package and method for manufacturing a laser package

Also Published As

Publication number Publication date
CN112542758A (zh) 2021-03-23
US20220209499A1 (en) 2022-06-30
CN112542758B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2021052514A1 (zh) 激光器
US20220052506A1 (en) Light emitting device
TW465123B (en) High power white light LED
US7329982B2 (en) LED package with non-bonded optical element
US20040012958A1 (en) Light emitting device comprising led chip
JP5067140B2 (ja) 光源装置
JP6705462B2 (ja) 発光装置
JP2005109282A (ja) 発光装置
JP2006086176A (ja) Led用サブマウント及びその製造方法
US20060091414A1 (en) LED package with front surface heat extractor
JP2022179778A (ja) 発光装置
JP2023014090A (ja) 光源装置
US20220209495A1 (en) Laser device
JP4893601B2 (ja) 光源装置
CN220086615U (zh) 激光器
CN216162111U (zh) 激光器
JP2020113718A (ja) 発光装置およびその製造方法
US20140321489A1 (en) Silicon-Based Cooling Package for Light-Emitting Devices
US11560994B2 (en) Lighting device with light guide
WO2021210348A1 (ja) 光源装置
JP2021190463A (ja) 発光装置
WO2023284880A1 (zh) 激光器和激光投影设备
JP6982268B2 (ja) 発光装置
JPH033276A (ja) Ledランプ
JP7371642B2 (ja) 半導体発光デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866419

Country of ref document: EP

Kind code of ref document: A1