WO2023030419A1 - 激光投影设备 - Google Patents

激光投影设备 Download PDF

Info

Publication number
WO2023030419A1
WO2023030419A1 PCT/CN2022/116368 CN2022116368W WO2023030419A1 WO 2023030419 A1 WO2023030419 A1 WO 2023030419A1 CN 2022116368 W CN2022116368 W CN 2022116368W WO 2023030419 A1 WO2023030419 A1 WO 2023030419A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser beam
type
laser
bottom plate
Prior art date
Application number
PCT/CN2022/116368
Other languages
English (en)
French (fr)
Inventor
张昕
田有良
颜珂
周子楠
卢瑶
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111025826.XA external-priority patent/CN113889839A/zh
Priority claimed from CN202111056662.7A external-priority patent/CN113703272A/zh
Priority claimed from CN202111160879.2A external-priority patent/CN113922202A/zh
Priority claimed from CN202111163821.3A external-priority patent/CN113922204A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280059727.XA priority Critical patent/CN117916659A/zh
Publication of WO2023030419A1 publication Critical patent/WO2023030419A1/zh
Priority to US18/476,085 priority patent/US20240022696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3155Modulator illumination systems for controlling the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02315Support members, e.g. bases or carriers

Definitions

  • the present disclosure relates to the field of display technology, in particular to a laser projection device.
  • Laser projection equipment includes light source components, light machines and lenses.
  • the illuminating light beam provided by the light source module becomes the projecting light beam after being optically mechanically modulated, and is projected onto the screen or the wall by the lens to form a projected image.
  • the laser of the light source component includes a plurality of light-emitting chips arranged in an array, and the plurality of light-emitting chips are configured to emit laser light.
  • the laser also includes a collimating lens group. The laser light emitted by the light-emitting chip is collimated by the collimating lens group and then emitted from the laser to form an illumination beam of the laser projection device.
  • the laser projection equipment includes: a light source assembly, an optical machine and a lens.
  • the light source assembly is configured to provide an illumination beam.
  • the optical machine is configured to modulate the illumination beam with an image signal to obtain a projection beam.
  • the lens is configured to project the projection beam into an image.
  • the light source assembly includes: a bottom plate, a side wall, a first light-emitting chip, a first reflection part, a first collimation part and a uniform light component.
  • the side wall is located on the bottom plate, and an accommodation space is defined between the side wall and the bottom plate.
  • the first light emitting chip is located in the containing space and configured to emit a first laser beam.
  • the light emitting direction of the first light emitting chip is parallel to the bottom plate.
  • the first reflection part is located in the accommodation space.
  • the first reflection part is disposed on the light-emitting side of the first light-emitting chip, and is configured to guide the first laser beam in a direction away from the bottom plate.
  • the first collimating part is located in the accommodation space and is configured to collimate the first laser beam and transmit the first laser beam to a uniform light component.
  • the homogenizing component is located on the side of the side wall away from the bottom plate, and is configured to homogenize the first laser beam and emit the first laser beam out of the accommodation space, so that the first laser beam A laser beam constitutes at least part of said illumination beam.
  • FIG. 1 is a block diagram of a laser projection device according to some embodiments
  • FIG. 2 is a timing diagram of a light source assembly in a laser projection device according to some embodiments
  • FIG. 3 is a diagram of an optical path in a laser projection device according to some embodiments.
  • FIG. 4 is a structural diagram of a color filter assembly according to some embodiments.
  • FIG. 5 is a structural diagram of a digital micromirror device according to some embodiments.
  • Fig. 6 is the position figure that a tiny mirror mirror swings in the digital micromirror device among Fig. 5;
  • Fig. 7 is a working principle diagram of a tiny mirror according to some embodiments.
  • FIG. 8 is another block diagram of a laser projection device according to some embodiments.
  • FIG. 9 is an optical path diagram in a laser projection device in the related art.
  • FIG. 10 is a structural diagram of a laser in the related art
  • Figure 11 is a block diagram of a laser according to some embodiments.
  • Figure 12 is another block diagram of a laser according to some embodiments.
  • Figure 13 is yet another block diagram of a laser according to some embodiments.
  • Figure 14 is yet another block diagram of a laser according to some embodiments.
  • Figure 15 is yet another block diagram of a laser according to some embodiments.
  • Figure 16 is yet another block diagram of a laser according to some embodiments.
  • Figure 17 is a top view of a laser according to some embodiments.
  • Figure 18 is another top view of a laser according to some embodiments.
  • Figure 19 is yet another top view of a laser according to some embodiments.
  • Figure 20 is yet another top view of a laser according to some embodiments.
  • Figure 21 is yet another block diagram of a laser according to some embodiments.
  • Figure 22 is yet another block diagram of a laser according to some embodiments.
  • Fig. 23 is a working principle diagram of the second collimator according to some embodiments.
  • Fig. 24 is another working principle diagram of the second collimator according to some embodiments.
  • Light source assembly 1 laser 10; shell 101; bottom plate 1011; side wall 1012; first light emitting chip 102; first type light emitting chip 1021; second type light emitting chip 1022; first sub light emitting chip 10221; second sub light emitting chip 10222; the first reflection part 103; the first reflection surface 1031; the supporting surface 1032; the first side 1033; the second side 1034; the third side 1035; the fourth side 1036; 103b; the first collimating part 104; the uniform light component 105; the body 1051; the first convex lens 1052; the second convex lens 1053; the first mounting part 106; the second mounting part 107; the first collimating lens 108; the cover plate 109; Light-transmitting layer 110; boss 111; second light-emitting chip 112; second collimating part 113; second collimating lens 114; second reflecting part 115; third reflecting part 116; conductive pin 117; heat sink 118; Concentrating assembly 12; color filter assembly 13; green color
  • Optical machine 2 Diffusion assembly 21; First lens assembly 22; Second lens assembly 23; Digital micromirror device 24;
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • connection When describing some embodiments, the expression “connected” and its derivatives may be used. For example, the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other. The embodiments disclosed herein are not necessarily limited by the context herein.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The acceptable deviation ranges are as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallel and approximately parallel, wherein the acceptable deviation range of approximately parallel can be, for example, a deviation within 5 degrees; Deviation within 5 degrees.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • the laser projection device 1000 includes a light source assembly 1 , an optical engine 2 , and a lens 3 .
  • the light source assembly 1 is configured to provide an illumination beam.
  • the optical machine 2 is configured to use an image signal to modulate the illumination beam provided by the light source assembly 1 to obtain a projection beam.
  • the lens 3 is configured to project the projection beam onto a screen or a wall to form an image.
  • the light source assembly 1, the light engine 2 and the lens 3 are sequentially connected along the beam propagation direction.
  • one end of the optical machine 2 is connected to the light source assembly 1 , and the light source assembly 1 and the optical machine 2 are arranged along the outgoing direction of the illumination beam of the laser projection device 1000 (refer to the direction M in FIG. 1 ).
  • the other end of the optical machine 2 is connected to the lens 3, and the optical machine 2 and the lens 3 are arranged along the outgoing direction of the projection beam of the laser projection device 1000 (refer to the direction N in FIG. 1 ).
  • the emission direction M of the illumination light beam of the laser projection device 1000 is substantially perpendicular to the emission direction N of the projection light beam of the laser projection device 1000 .
  • Such setting can make the structural arrangement of the laser projection device 1000 reasonable, and avoid the optical path of the laser projection device 1000 in a certain direction (for example, direction M or direction N) from being too long.
  • the light source assembly 1 can sequentially provide three primary colors of light (ie, red light, green light and blue light). In some other embodiments, the light source assembly 1 can output three primary colors of light at the same time, so as to continuously emit white light. Of course, the light beam provided by the light source assembly 1 may also include lights other than the three primary colors, such as yellow light.
  • the light source assembly 1 includes a laser that can emit light of at least one color, such as blue laser.
  • the light source assembly 1 may sequentially output blue, red and green lighting beams.
  • the light source assembly 1 outputs blue laser light in the first time period T1, outputs red laser light in the second time period T2, and outputs green laser light in the third time period T3.
  • the time for the light source assembly 1 to complete a round of sequential output of the primary color light beams is one cycle of the output of the primary color light beams from the light source assembly 1 .
  • the light source assembly 1 performs a round of sequential output of each primary color light beam.
  • the display period of one frame of target image is equal to one cycle of the primary color light beam output by the light source assembly 1, which is equal to the first time period T1 , the sum of the second time period T2 and the third time period T3.
  • the human eye will superimpose the colors of the sequentially output blue beam, red beam and green beam. Therefore, what the human eye perceives is white light after the three primary color beams are mixed.
  • the light source assembly 1 includes: a laser 10 , a light-combining mirror assembly 14 , a light-condensing assembly 12 and a color filter assembly 13 .
  • the laser 10 is configured to provide an illumination beam.
  • the light-combining mirror assembly 14 is disposed on the light-emitting side of the laser 10 and is configured to reflect the illumination beam provided by the laser 10 to the light-condensing assembly 12 .
  • the light-condensing assembly 12 is disposed on the light-emitting side of the light-combining mirror assembly 14 and is configured to converge the illumination beam from the light-combining mirror assembly 14 .
  • the color filter assembly 13 is disposed on the light emitting side of the light concentrating assembly 12 and is configured to filter the illumination beams converged by the light concentrating assembly 12 to sequentially output three primary colors of light.
  • light combining mirror assembly 14 may be a dichroic mirror.
  • the light combining mirror assembly 14 can combine the red laser, green laser and blue laser emitted by the laser 10 reflected to the light-collecting assembly 12.
  • the light concentrating assembly 12 includes at least one plano-convex lens, and the convex surface of the at least one plano-convex lens faces the light output direction of the light combining lens assembly 14 .
  • the color filter assembly 13 may include a green color filter 131 , a blue color filter 132 , a red color filter 133 and a driving part 134 .
  • the driving unit 134 is configured to drive the color filter assembly 13 to rotate, so that the illumination light beam emitted by the laser 10 can be filtered by color filters of different colors during the display period of one frame of target image.
  • the color filter assembly 13 rotates to the position where the red color filter 133 covers the light spots of the three primary colors of light, other colors of the three primary colors of light except the red beam The light beams are blocked, while the red light beams pass through the red color filter 133 and transmit the color filter assembly 13 .
  • the optical machine 2 includes a digital micromirror device 24 .
  • the digital micromirror device 24 is located at the light output side of the light source assembly 1 , and is configured to use an image signal to modulate the illumination beam provided by the light source assembly 1 to obtain a projection beam, and reflect the projection beam to the lens 3 . Since the digital micromirror device 24 can control the projected light beam to display different colors and brightness for different pixels of the image to be displayed to finally form a projected image, the digital micromirror device 24 is also called a light modulation device (or light valve). In addition, according to the number of digital micromirror devices 24 used in the optical machine 2, the optical machine 2 can be divided into a single-chip system, a two-chip system or a three-chip system.
  • the optical machine 2 shown in FIG. 3 applies a digital light processing (Digital Light Processing, DLP) projection architecture
  • the light modulation device in some embodiments of the present disclosure is Digital Micromirror Device (Digital Micromirror Device, DMD).
  • DMD Digital Micromirror Device
  • the present disclosure does not limit the architecture applied to the optical machine 2, the type of the optical modulation device, and the like.
  • the digital micromirror device 24 includes thousands of tiny reflective mirrors 241 that can be individually driven to rotate, these tiny reflective mirrors 241 are arranged in an array, and each tiny reflective mirror 241 corresponds to of a pixel.
  • each tiny mirror 241 is equivalent to a digital switch, which can swing within the range of ⁇ 12 degrees or ⁇ 17 degrees under the action of external force.
  • FIG. 6 takes an example in which each tiny reflective mirror 241 can swing within a range of ⁇ 12 degrees for illustration.
  • the light reflected by the micro mirror 241 at a negative deflection angle is called OFF light.
  • OFF light is invalid light.
  • the light reflected by the tiny mirror 241 at a positive deflection angle is called ON light.
  • the ON light is an effective light beam that is irradiated by the tiny reflective lens 241 on the surface of the digital micromirror device 24 to receive the illumination beam, and enters the lens 3 through a positive deflection angle, and is used for projection imaging.
  • the open state of the micro-reflector 241 is the state where the micro-reflector 241 is and can be maintained when the illumination beam emitted by the light source assembly 1 is reflected by the micro-reflector 241 and can enter the lens 3, that is, the micro-reflector 241 is at a positive deflection angle. status.
  • the closed state of the tiny reflective mirror 241 is the state where the tiny reflective mirror 241 is and can be maintained when the illuminating light beam emitted by the light source assembly 1 is reflected by the tiny reflective mirror 241 and does not enter the lens 3, that is, the tiny reflective mirror 241 is in a negative deflection angle status.
  • the tiny mirrors 241 will switch between the on state and the off state at least once, so as to realize a frame of image according to the duration of the tiny mirrors 241 in the on state and the off state respectively.
  • the gray scale of each pixel in . For example, when a pixel has 256 gray scales from 0 to 255, the tiny reflective mirror 241 corresponding to the pixel with the gray scale of 0 is in the off state during the entire display period of the frame of image, corresponding to the pixel with the gray scale of 255.
  • the tiny reflective mirror 241 is in the on state during the entire display period of a frame of image, and the tiny reflective mirror 241 corresponding to the pixel with a gray scale of 127 is in the on state half of the time in the display period of a frame image, and the other half of the time is in the on state. off state. Therefore, by controlling the state of each tiny mirror 241 in the display period of a frame image and the maintenance time of each state in the digital micromirror device 24 through the image signal, the brightness (gray gray) of the corresponding pixel of the tiny mirror 241 can be controlled. order), so as to modulate the illumination beam projected to the digital micromirror device 24 .
  • the optical machine 2 further includes: a diffusion assembly 21 , a first lens assembly 22 , a second lens assembly 23 and a prism assembly 25 . It should be noted that the optical machine 2 may also include fewer or more components than those shown in FIG. 3 , which is not limited in the present disclosure.
  • the diffusion component 21 is located at the light output side of the light source component 1 and is configured to diffuse the illumination beam from the light source component 1 .
  • the first lens assembly 22 is located on the light emitting side of the diffusion assembly 21 and is configured to converge the illumination beam diffused by the diffusion assembly 21 .
  • the second lens assembly 23 is located on the light emitting side of the first lens assembly 22 and is configured to transmit the illuminating beam converged by the first lens assembly 22 to the prism assembly 25 .
  • the prism assembly 25 reflects the illumination beam to the DMD 24 .
  • the lens 3 includes a multi-lens combination, which is usually divided into groups, and is divided into three sections of front group, middle group and rear group, or two sections of front group and rear group.
  • the front group is the lens group close to the light-emitting side of the laser projection device 1000 (that is, the side of the lens 3 in the direction N away from the optical machine 2 in FIG.
  • the lens 3 is a lens group on the side close to the optical engine 2 in the direction N).
  • the light source assembly 1 ′ of the laser projection device 1000 ′ further includes a light guide 15 ′.
  • the light pipe 15' is arranged on the light exit side of the color filter assembly 13', and is configured to homogenize the illumination beam filtered by the color filter assembly 13'.
  • the light guide 15' in the related art may be a tubular device spliced by four planar reflectors, that is, a hollow light guide.
  • the light guide 15' can also be a solid light guide.
  • the illuminating light beam enters from the light entrance of the light guide 15', is reflected multiple times inside the light guide 15', and then exits from the light exit of the light guide 15', and the light beam is homogenized during this process.
  • the laser projection device 1000' in the above related art has the problem of many components, which is not conducive to miniaturization design.
  • a possible improvement solution is: omit the light guide 15' in the light source assembly 1', so that the illumination beam filtered by the color filter assembly 13' directly enters the light machine 2'.
  • this improved solution will reduce the uniformity of the illumination beam entering the optical machine 2', thereby reducing the display quality of the projected image.
  • Another possible improvement solution is to reduce the spot area of the illumination beam at the light entrance of the light guide 15 ′, so that the volume of the light guide 15 ′ can be reduced.
  • the spot area of the illuminating light beam after being converged by the light-concentrating component 12' can be reduced by reducing the radius of curvature of the convex surface of the plano-convex lens, thereby reducing the illumination light beam
  • This improved solution will lead to more concentrated energy of the illumination beam provided to the light machine 2' through the light pipe 15', thereby increasing the probability of overheating damage to components in the light machine 2' after being irradiated by the illumination beam.
  • the light guide 15' is arranged to homogenize the illumination beam. That is to say, if it is possible to integrate components with homogenization in the laser 10' to improve the uniformity of the illumination beam provided by the laser 10', it is possible to avoid setting the light guide 15' in the light source assembly 1', thereby realizing laser Miniaturized design of projection device 1000'.
  • an embodiment of the present disclosure provides a laser 10 .
  • the laser 10 includes a bottom plate 1011 , a side wall 1012 , a first light-emitting chip 102 , a first reflection part 103 , a first collimation part 104 and a uniform light component 105 .
  • the side wall 1012 is located on the bottom plate 1011 , and a receiving space S is defined between the side wall 1012 and the bottom plate 1011 .
  • the first light-emitting chip 102 is located in the accommodation space S and is configured to emit a first laser beam.
  • the light emitting direction of the first light emitting chip 102 is parallel to the bottom plate 1011 .
  • the first reflection part 103 is located in the accommodation space S. As shown in FIG. The first reflection part 103 is disposed on the light-emitting side of the first light-emitting chip 102 and is configured to direct the first laser beam to a direction away from the bottom plate 1011 .
  • the first collimator 104 is located in the accommodation space S and is configured to collimate the first laser beam and transmit the first laser beam to the uniform component 105 .
  • the homogenizing component 105 is located on the side of the sidewall 1012 away from the bottom plate 1011 and is configured to homogenize the first laser beam and emit the first laser beam out of the accommodation space S, so that the first laser beam constitutes at least part of the illumination beam.
  • the above-mentioned structure composed of the bottom plate 1011 and the side wall 1012 can be called the tube case 101 , and the accommodation space S defined between the bottom plate 1011 and the side wall 1012 is the accommodation space S of the tube case 101 .
  • the laser projection device 1000 integrates the first collimator 104 and the uniform light component 105 in the laser 10, so that the first laser beam with a certain divergence angle emitted by the first light-emitting chip 102 can pass through the first After being collimated by the collimator 104 , it becomes a parallel light beam and transmits it to the uniform light component 105 .
  • the homogenization component 105 homogenizes the first laser beam collimated by the first collimator 104 and emits it, so that the homogenized first laser beam constitutes at least part of the illumination beam, thereby improving the laser beam provided by the laser 10. Uniformity of the illumination beam.
  • the first light-emitting chip 102 is disposed on the base plate 1011 , and the first reflective portion 103 is disposed on the base plate 1011 .
  • the heat generated by the first light-emitting chip 102 during operation can be dissipated to the outside of the laser 10 through the bottom plate 1011 , which is beneficial to improve the heat dissipation efficiency of the laser 10 .
  • the first light-emitting chip 102 is disposed on the base plate 1011 and the first reflective part 103 is disposed on the base plate 1011 as an example for illustration.
  • the first light-emitting chip 102 and the first reflective part 103 can also be arranged in other positions in the accommodation space S.
  • the first light-emitting chip 102 can be arranged on the first surface of the side wall 1012 facing the accommodation space S, and emit the first laser beam toward the accommodation space S;
  • the first reflector 103 can be arranged on the side wall 1012 facing the accommodation space On the second surface on one side of the space S, and the first surface is opposite to the second surface.
  • the above-mentioned uniform light component 105 includes a body 1051 , a first convex lens 1052 and a second convex lens 1053 .
  • the first convex lens 1052 is located on the side of the body 1051 close to the bottom plate 1011
  • the second convex lens 1053 is located on the side of the body 1051 away from the bottom plate 1011
  • the second convex lens 1053 is opposite to the first convex lens 1052 .
  • the light uniform component 105 may be called a fly-eye lens.
  • the first convex lens 1052 After the first laser beam collimated by the first collimator 104 is transmitted to the first convex lens 1052, it is converged by the first convex lens 1052 into a thin beam (that is, a beam with a small spot), and then transmitted to the second convex lens 1053 .
  • the first convex lens 1052 can focus the first laser beam to the focal point of the second convex lens 1053 .
  • the first convex lens 1052 can diverge the thin beam so that the thin beam becomes a wide beam (that is, a beam with a larger spot).
  • the multiple first laser beams After the multiple first laser beams are converged by the first convex lens 1052 and diverged by the second convex lens 1053 respectively, the multiple first laser beams become multiple wide beams, and the spots of the multiple wide beams overlap with each other. In this way, after the first laser beam passes through the homogenizing component 105, the uniformity and illumination brightness of the first laser beam are improved.
  • the first laser beam is transmitted to the homogenizing component 105 to form the first spot
  • the orthographic area of the first convex lens 1052 on the body 1051 is greater than or equal to the area of the first spot
  • the second convex lens 1053 is on the body 1051
  • the orthographic projection area of is greater than or equal to the area of the first spot.
  • a first convex lens 1052 and a second convex lens 1053 corresponding to the first convex lens 1052 may be referred to as a group of uniform light convex lenses.
  • the light in the first laser beam only needs to pass through a first convex lens 1052 and One second convex lens 1053 can realize homogenization. In this way, the number of the first convex lens 1052 and the second convex lens 1053 in the light uniform component 105 can be reduced, thereby simplifying the structure of the light uniform component 105 .
  • the present disclosure does not limit whether the first spot of the first laser beam overlaps with the orthographic projection of a certain group of uniform convex lenses on the body 1051 . Since the first laser beam is collimated into a parallel beam by the first collimator 104 and then transmitted to the homogenizing component 105, even if the first spot of the first laser beam is not aligned with a certain group of homogenizing convex lenses on the body 1051 The orthographic projections of are overlapped, and the first laser beam can also be homogenized by the homogenization component 105 .
  • the first reflective portion 103 includes a first reflective surface 1031 , and the first reflective surface 1031 is a concave arc surface.
  • the first collimating portion 104 is the first reflective surface 1031 .
  • the first reflective surface 1031 is a surface of the first reflective portion 103 facing the first light-emitting chip 102 , and the first reflective surface 1031 is configured to guide the first laser beam away from the base plate 1011 .
  • the laser 10 ′ includes a bottom plate 1011 ′, a side wall 1012 ′, a plurality of light emitting chips 102 ′, a plurality of reflective prisms 103 ′, and a collimating mirror group 104 ′.
  • the collimator lens group 104' is disposed on the side of the side wall 1012' away from the bottom plate 1011'.
  • the collimating lens group 104' includes a plurality of collimating lenses 1041'.
  • a light emitting chip 102' corresponds to a reflective prism 103' and a collimating lens 1041' respectively.
  • the laser beam emitted by a light-emitting chip 102' is reflected by the corresponding reflective prism 103' to the collimator lens group 104', collimated by the corresponding collimator lens 1041', and exits the laser 10' to form an illumination beam.
  • the first reflective surface 1031 of the first reflective part 103 is configured as a concave arc surface.
  • the incident angle of the light that is, the angle between the incident light and the normal of the incident point
  • the outgoing angle of the light that is, the normal of the outgoing light and the incident point angle between.
  • the first ray L 1 is transmitted parallel to the bottom plate 1011 to the first reflective surface 1031 , and after being reflected by the first reflective surface 1031 , the incident angle of the first ray L 1 is equal to the outgoing angle.
  • the incident angle of the second light L 2 is greater than the outgoing angle.
  • the incident angle of the third light L 3 is greater than the outgoing angle. Therefore, the first laser beam emitted by the first light-emitting chip 102 with a certain divergence angle can be collimated into a parallel beam after being reflected by the concave arc surface. In this way, the laser 10 does not need to be provided with the collimating mirror group 104 ′, thereby reducing the number of components in the laser 10 , and facilitating the realization of a miniaturized design of the laser 10 .
  • the laser 10 in the light source assembly 1 further includes a first collimating lens 108 , and the first collimating part 104 is the first collimating lens 108 .
  • the first reflective portion 103 includes a support surface 1032 , which is a surface of the first reflective portion 103 away from the bottom plate 1011 .
  • the light source assembly 1 further includes a first mounting part 106 and a second mounting part 107 .
  • the first mounting member 106 is disposed on the bottom plate 1011 or the supporting surface 1032 and located in the receiving space S. As shown in FIG. It should be noted that, in FIG. 12 , the first mounting member 106 is disposed on the bottom plate 1011 as an example for illustration.
  • the second mounting part 107 is disposed on a side of the first mounting part 106 away from the bottom plate 1011
  • the first collimating lens 108 is disposed on a side of the second mounting part 107 away from the bottom plate 1011 .
  • the optical path of the first laser beam transmitted to the first collimator lens 108 is shortened, thereby reducing the distance between the first laser beam and the first collimator lens.
  • the area of the light spot formed on the collimating lens 108 because the area of the orthographic projection of the first collimating lens 108 on the base plate 1011 usually needs to be larger than the area of the light spot formed by the first laser beam on the first collimating lens 108, the first collimating lens 108 can More rays in a laser beam are collimated. Therefore, the above-described embodiment reduces the volume required for the first collimating lens 108 to collimate the first laser beam, thereby reducing the volume of the laser 10, which is beneficial to the miniaturization of the laser 10. design.
  • the edge of the dodging component 105 is fixed to the side of the side wall 1012 away from the bottom plate 1011 , and a receiving space S is defined between the dodging component 105 , the side wall 1012 and the bottom plate 1011 .
  • the laser 10 has fewer components and is smaller in size.
  • the first light-emitting chip 102 can be placed in the closed accommodation space S, thereby preventing water, oxygen, etc. from corroding the first light-emitting chip 102 .
  • the first convex lens 1052 or the second convex lens 1053 may not be disposed on the edge of the uniform light component 105 .
  • the dodging component 105 can be fixed to the side of the side wall 1012 away from the bottom plate 1011 through the body 1051 . Since the body 1051 is relatively flat, it can improve the fixing effect between the edge of the dodging component 105 and the side wall 1012 .
  • the laser 10 in the light source assembly 1 further includes a cover plate 109 .
  • the cover plate 109 is ring-shaped, and the outer edge of the cover plate 109 is fixed to the side of the side wall 1012 away from the bottom plate 1011 .
  • the edge of the dodging component 105 is fixed to the inner edge of the cover plate 109 .
  • the laser 10 in the light source assembly 1 further includes a light-transmitting layer 110 , and the light-homogenizing component 105 is located on a side of the light-transmitting layer 110 away from the bottom plate 1011 .
  • the edge of the transparent layer 110 is fixed to the side of the side wall 1012 away from the bottom plate 1011 .
  • the laser 10 further includes the above-mentioned cover plate 109 .
  • the outer edge of the cover plate 109 is fixed to the side of the side wall 1012 away from the bottom plate 1011 , and the edge of the transparent layer 110 is fixed to the inner edge of the cover plate 109 .
  • the light source assembly 1 further includes a boss 111 .
  • the boss 111 is located in the accommodation space S, and the outer edge of the boss 111 is fixed to the side wall 1012 , and the inner edge of the boss 111 is fixed to the outer edge of the light uniform component 105 .
  • the boss 111 may be an annular boss, or a plurality of sub-bosses.
  • the side wall 1012 is continuously provided with bosses 111 .
  • the dodging component 105 can be more firmly arranged on the boss 111 .
  • the boss 111 is a plurality of sub-bosses
  • the side wall 1012 is provided with bosses 111 at intervals. In this way, the space occupied by the boss 111 in the accommodation space S is small, which is beneficial to the miniaturization design of the laser 10 .
  • the side of the side wall 1012 away from the bottom plate 1011 can be fixedly connected to the transparent layer 110 or the cover plate 109 .
  • the inner edge of the cover plate 109 may be fixedly connected to the light-transmitting layer 110 .
  • the first light emitting chip 102 includes a first type light emitting chip 1021 and a second type light emitting chip 1022 .
  • the first type of light emitting chip 1021 is configured to emit the first type of laser beam in the first laser beam
  • the second type of light emitting chip 1022 is configured to emit the second type of laser beam in the first laser beam.
  • the polarization direction of the first type of laser beam is perpendicular to the polarization direction of the second type of laser beam.
  • the first type of laser beam may be P-polarized light, such as a red laser beam
  • the second type of laser beam may be S-polarized light, such as at least one of a green laser beam or a blue laser beam.
  • the light emitting direction of the first type of light emitting chips 1021 is parallel to the first direction X
  • the light emitting direction of the second type of light emitting chips 1022 is parallel to the second direction Y
  • the first direction X is perpendicular to the second direction Y.
  • laser light with different polarization directions has different transmittance when it passes through other optical components (for example, the lens 3) in the laser projection device 1000, if the illumination beam provided by the laser 10 includes laser light with multiple polarization directions, the illumination After the light beam is modulated by the optical machine 2 and projected by the lens 3, there will be color spots, color blocks, etc. in the projected image, and the display effect is poor.
  • the polarization direction of the first type of laser beam is perpendicular to the polarization direction of the second type of laser beam
  • the light emitting direction is such that the first type of laser beam and the second type of laser beam have the same polarization direction after they are directed away from the bottom plate 1011 by the first reflector 103 . Therefore, the polarization direction of the first laser beam in the illumination beam is consistent, so that the transmittance of the illumination beam through the optical components is consistent, and the occurrence of color spots, color blocks, etc. in the projection image presented by the laser projection device 1000 is avoided, and finally Improved display of projected images.
  • the light source assembly 1 includes a plurality of first-type light-emitting chips 1021 and a plurality of second-type light-emitting chips 1022 .
  • a plurality of first-type light-emitting chips 1021 are arranged in multiple rows along the first direction X, and multiple rows of first-type light-emitting chips 1021 are arranged alternately.
  • a plurality of second-type light-emitting chips 1022 are arranged in multiple rows along the second direction Y, and multiple rows of second-type light-emitting chips 1022 are arranged alternately.
  • the laser 10 in the above embodiment increases the number of first-type light-emitting chips 1021 adjacent to the first-type light-emitting chips 1021 The distance between the first-type light-emitting chips 1021 in two rows is beneficial to improve the heat dissipation efficiency of the first-type light-emitting chips 1021 .
  • the laser 10 in the above embodiment is beneficial to improve the heat dissipation efficiency of the second type light emitting chip 1022 .
  • the staggered arrangement of two rows of first-type light-emitting chips 1021 means that the two rows of first-type light-emitting chips 1021 are misaligned in the column direction (second direction Y), that is, one row of first-type light-emitting chips 1021 At least one first-type light-emitting chip 1021 is not aligned with the first-type light-emitting chips 1021 in another row of first-type light-emitting chips 1021 in the column direction.
  • the staggered arrangement of two rows of second-type light-emitting chips 1022 means that the two rows of second-type light-emitting chips 1022 are misaligned in the column direction (first direction X), that is, there are two rows of second-type light-emitting chips 1022 in one row. At least one second-type light-emitting chip 1022 is not aligned with the second-type light-emitting chips 1022 in another row of second-type light-emitting chips 1022 in the column direction.
  • staggered arrangement of multiple rows of first-type light-emitting chips 1021 means that there are at least two rows of first-type light-emitting chips 1021 that are staggered in the multiple rows of first-type light-emitting chips 1021 .
  • multiple rows of second-type light-emitting chips 1022 are staggered means that there are at least two rows of second-type light-emitting chips 1022 in the multiple rows of second-type light-emitting chips 1022 that are staggered.
  • the laser 10 in the light source assembly 1 includes a plurality of second-type light-emitting chips 1022 , and the plurality of second-type light-emitting chips 1022 includes a first sub-light-emitting chip 10221 and a second sub-light-emitting chip 10222 .
  • the first sub-light-emitting chip 10221 is configured to emit the first sub-laser beam of the second type of laser beam, such as a green laser beam; the second sub-light-emitting chip 10222 is configured to emit the first sub-laser beam of the second type of laser beam.
  • Two sub-laser beams such as blue laser beams.
  • the light emitting direction of the first sub-light-emitting chip 10221 is away from the light-emitting direction of the second sub-light-emitting chip 10222 .
  • the light-emitting direction of the first sub-light-emitting chip 10221 is along the second direction Y, and the first sub-light-emitting chip 10221 can also be called the second-type light-emitting chip 1022 arranged in the front direction.
  • the light-emitting direction of the second sub-light-emitting chip 10222 is along the direction opposite to the second direction Y, and the second sub-light-emitting chip 10222 can also be called a second-type light-emitting chip 1022 arranged in reverse.
  • the first sub-laser beam emitted by the first sub-light-emitting chip 10221 and the second sub-laser beam emitted by the second sub-light-emitting chip 10222 will not intersect, and the gap between the first sub-laser beam and the second sub-laser beam can be avoided.
  • Mutual interference occurs so that the quality of the illumination beam provided by the laser 10 is guaranteed.
  • the laser 10 includes a plurality of first-type light-emitting chips 1021 .
  • the first reflection part 103 is one piece.
  • the first reflective portion 103 includes a first side 1033 and a second side 1034 , and the first side 1033 and the second side 1034 are disposed opposite to each other along the first direction X.
  • the first side 1033 corresponds to at least one first-type light-emitting chip 1021 among the plurality of first-type light-emitting chips 1021, and is configured to transmit the first One type of laser beam is directed in a direction away from the bottom plate 1011 .
  • first side 1033 and second side 1034 may be concave arc surfaces or planes.
  • the first side 1033 and the second side 1034 are concave arc surfaces
  • the first side 1033 and the second side 1034 can collimate the first-type light emitted by the corresponding at least one first-type light-emitting chip 1021 respectively. laser beam.
  • the first collimating part 104 includes a first side 1033 and a second side 1034 .
  • the laser 10 includes a plurality of second-type light-emitting chips 1022 .
  • the first reflection part 103 further includes a third side 1035 and a fourth side 1036 , and the third side 1035 and the fourth side 1036 are disposed opposite to each other along the second direction Y.
  • the third side 1035 corresponds to at least one second-type light-emitting chip 1022 in the plurality of second-type light-emitting chips 1022 , and is configured to transmit the first light emitted by the corresponding at least one second-type light-emitting chip 1022
  • the second type of laser beam is directed away from the base plate 1011 .
  • the above-mentioned third side 1035 and fourth side 1036 may be concave arc surfaces or planes.
  • the third side 1035 and the fourth side 1036 are concave arc surfaces, the third side 1035 and the fourth side 1036 can collimate the second-type light emitted by the corresponding at least one second-type light-emitting chip 1022 respectively. laser beam.
  • the first collimating part 104 includes a third side 1035 and a fourth side 1036 .
  • the first collimating part 104 may be the above-mentioned first collimating lens 108 .
  • the laser 10 includes a first type light emitting chip 1021 and a second type light emitting chip 1022 .
  • the first reflection part 103 is a separate part.
  • the first reflective part 103 includes a first sub-reflective part 103a and a second sub-reflective part 103b.
  • the first sub-reflecting portion 103a is disposed on the light emitting side of the first type of light emitting chip 1021
  • the second sub reflecting portion 103b is disposed on the light emitting side of the second type of light emitting chip 1022 .
  • the first type of laser beam and the second type of laser beam can be directed away from the bottom plate 1011 through the first sub-reflecting portion 103a and the second sub-reflecting portion 103b. In this way, mutual interference between the first type of laser beam and the second type of laser beam can be avoided, thereby improving the quality of the illumination beam provided by the laser 10 .
  • FIG. 17 and Fig. 18 take one first sub-reflective part 103a corresponding to multiple first-type light-emitting chips 1021, and one second sub-reflective part 103b corresponding to multiple second-type light-emitting chips 1022 as an example to illustrate illustrate.
  • the present disclosure does not limit the number of first-type light-emitting chips 1021 (or second-type light-emitting chips 1022 ) corresponding to one first sub-reflective portion 103 a (or one second sub-reflective portion 103 b ).
  • FIG. 17 may include six first sub-reflectors 103a, which are respectively arranged corresponding to six first-type light-emitting chips 1021 .
  • the first reflection part 103 includes a supporting surface 1032 .
  • the supporting surface 1032 is a surface of the first reflecting portion 103 away from the bottom plate 1011 .
  • the light source assembly 1 includes a second collimating portion 113 in addition to the above-mentioned light-transmitting layer 110 and the second light-emitting chip 112 .
  • the second light-emitting chip 112 is disposed on the bottom plate 1011 or the support surface 1032 and located in the accommodation space S, and is configured to emit a second laser beam.
  • the light emitting direction of the second light emitting chip 112 is perpendicular to the base plate 1011 . It should be noted that, in FIG. 21 , the second light-emitting chip 112 is disposed on the support surface 1032 as an example for illustration.
  • the light-transmitting layer 110 is located in the receiving space S, and is disposed on a side of the side wall 1012 away from the bottom plate 1011 .
  • the second collimating portion 113 is located in the receiving space S, and is disposed on a side of the transparent layer 110 away from the bottom plate 1011 .
  • the second collimator 113 is configured to collimate the second laser beam, and transmit the second laser beam to the uniform component 105 .
  • the homogenization component 105 is further configured to homogenize the second laser beam, so that the second laser beam exits the accommodation space S, so that the second laser beam and the first laser beam together form an illumination beam.
  • the laser 10 in the above embodiment has the characteristics of high luminous brightness, small volume and high heat dissipation efficiency.
  • the second light emitting chip 112 is connected to the above-mentioned first mounting part 106 .
  • the second light-emitting chip 112 can be set more stably, and the heat generated by the second light-emitting chip 112 can be transmitted to the first reflector 103 and the bottom plate 1011 through the first mount 106, thereby improving the performance of the second light-emitting chip 112. cooling efficiency.
  • the optical path of the first laser beam transmitted from the first light-emitting chip 102 to the first collimator 104 is the same as the optical path of the second laser beam transmitted from the second light-emitting chip 112 to the second collimator 113 equal.
  • the shape and size of the spot of the first laser beam collimated by the first collimator 104 are consistent with the shape and size of the spot of the second laser beam collimated by the second collimator 113, so that The consistency between the first laser beam and the second laser beam in the illumination beam provided by the laser 10 is relatively high, thereby improving the quality of the illumination beam.
  • the distance between the transparent layer 110 and the bottom plate 1011 is smaller than the distance between the light uniform component 105 and the bottom plate 1011 .
  • the present disclosure does not limit the disposition manner of the light-transmitting layer 110 and the uniform light component 105 .
  • the laser 10 further includes the above-mentioned cover plate 109, the edge of the light-transmitting layer 110 is fixed to the inner edge of the cover plate 109, and the edge of the uniform light component 105 and the outer edge of the cover plate 109 are away from the side wall.
  • One side of 1012 is fixed.
  • the laser 10 further includes the above-mentioned boss 111 , the edge of the light-transmitting layer 110 is fixed to the inner edge of the boss 111 , and the edge of the uniform light component 105 is fixed to the side of the side wall 1012 away from the bottom plate 1011 .
  • the laser 10 further includes the above-mentioned cover plate 109 and the boss 111 , and the distance between the boss 111 and the bottom plate 1011 is smaller than the distance between the cover plate 109 and the bottom plate 1011 .
  • the edge of the transparent layer 110 can be fixed to the inner edge of the boss 111
  • the edge of the light uniform component 105 can be fixed to the inner edge of the cover plate 109 .
  • the second collimating part 113 includes a second collimating lens 114 .
  • the second collimating lens 114 is a single-sided convex lens, and the plane of the single-sided convex lens faces the bottom plate 1011 , and the convex surface of the single-sided convex lens faces the light uniform component 105 .
  • the second collimating lens 114 can be fixed with the light-transmitting layer 110 by using a plane, so that the second collimating lens 114 can be arranged more stably.
  • the second collimating lens 114 can collimate the second laser beam into a parallel beam, so that the homogenization component 105 can homogenize the second laser beam, thereby improving the quality of the illumination beam provided by the laser 10 .
  • the first collimating part 104 is taken as the first collimating lens 108 as an example for an exemplary description.
  • the first collimating portion 104 may also be the first reflective surface 1031 .
  • the second collimating portion 113 includes a second reflecting portion 115 and a third reflecting portion 116 .
  • the second reflection part 115 is configured to guide the second laser beam in a direction parallel to the bottom plate 1011 .
  • the third reflective part 116 is located on the light emitting side of the second reflective part 115 and is configured to direct the second laser beam away from the bottom plate 1011 so as to transmit the second laser beam to the uniform light component 105 .
  • the second reflection part 115 or the third reflection part 116 is also configured to collimate the second laser beam.
  • the second reflective portion 115 has a second reflective surface 1151 , which is a surface of the second reflective portion 115 facing the second light-emitting chip 112 .
  • the third reflective portion 116 has a third reflective surface 1161 , and the third reflective surface 1161 is a surface of the third reflective portion 116 facing the second reflective surface 1151 .
  • the second reflective surface 1151 is a concave arc surface configured to collimate the second laser beam and reflect the second laser beam to a direction parallel to the bottom plate 1011 .
  • the third reflective surface 1161 is a plane and is configured to reflect the second laser beam in a direction away from the bottom plate 1011 .
  • the second reflective surface 1151 is a plane and is configured to reflect the second laser beam in a direction parallel to the bottom plate 1011 .
  • the above-mentioned third reflective surface 1161 is a concave arc surface, and is configured to collimate the second laser beam and reflect the second laser beam to a direction away from the bottom plate 1011 .
  • the first laser beam is transmitted to the transparent layer 110 to form the second light spot.
  • the orthographic projection of the second collimator 113 on the transparent layer 110 does not overlap with the second light spot.
  • the second collimator 113 will not interfere with the first laser beam, and the utilization rate of the first laser beam in the laser 10 can be improved, thereby improving the luminous efficiency of the laser 10 .
  • the light in the first laser beam can pass through the light transmission layer 110 to reach the The homogenizing component 105 will not be reflected to other directions by the second reflective part 115 or the third reflective part 116 .
  • the second light emitting chip 112 includes a third type light emitting chip 1121 and a fourth type light emitting chip 1122 .
  • the third type of light emitting chip 1121 is configured to emit the first type of laser beam in the second laser beam.
  • the fourth type of light emitting chip 1122 is configured to emit a second type of laser beam among the second laser beams.
  • the polarization direction of the first type of laser beam is perpendicular to the polarization direction of the second type of laser beam.
  • the second mount 107 includes a wave plate and is configured to change the polarization direction of the first type of laser beam or the polarization of the second type of laser beam at least one of the directions, so that the polarization direction of the first type of laser beam is the same as that of the second type of laser beam.
  • the second mounting part 107 can adjust the polarization direction of a part of the incident laser beams in the second laser beams.
  • the second mounting member 107 may rotate the polarization direction of the first type of laser beam by 90 degrees without adjusting the polarization direction of the second type of laser beam.
  • the second mounting member 107 may rotate the polarization direction of the second type of laser beam by 90 degrees without adjusting the polarization direction of the first type of laser beam. Since the polarization direction of the first type of laser beam is perpendicular to the polarization direction of the second type of laser beam, the second installation part 107 can adjust the polarization directions of the incident first type of laser beam and the second type of laser beam to be the same.
  • the second mounting part 107 may be a half-wave plate, for example.
  • the second mounting part 107 can adjust the polarization direction of all incident laser light.
  • the second mounting member 107 can rotate the polarization direction of the first type of laser beam by 45 degrees, and rotate the polarization direction of the second type of laser beam by 45 degrees.
  • the second mount 107 may be, for example, a quarter-wave plate.
  • the adjustment angle of the second mounting part 107 to the polarization direction of the laser beam is related to the thickness D of the second mounting part 107 and the wavelength ⁇ of the laser beam.
  • the thickness of the half-wave plate is greater than that of the quarter-wave plate.
  • the laser 10 of the light source assembly 1 further includes multiple conductive pins 117 .
  • the plurality of conductive pins 117 pass through the plurality of openings in the sidewall 1012 , extend into the receiving space S, and are fixed in the plurality of openings. Exemplarily, one opening corresponds to one conductive pin 117 .
  • the plurality of conductive pins 117 are configured to be electrically connected to electrodes of at least one of the first light-emitting chip 102 or the second light-emitting chip 112, so as to transmit current to the first light-emitting chip 102 or the second light-emitting chip 112 through an external power supply. At least one of them, so as to supply power to at least one of the first light emitting chip 102 or the second light emitting chip 112 .
  • the laser 10 further includes a plurality of heat sinks 118 .
  • the plurality of heat sinks 118 correspond to the first light emitting chip 102 or the second light emitting chip 112 .
  • a heat sink 118 is located between the corresponding first light-emitting chip 102 or the second light-emitting chip 112 and the base plate 1011, and is configured to assist the first light-emitting chip 102 or the second light-emitting chip 112 to dissipate heat, so that the first light-emitting chip The heat generated by the chip 102 or the second light emitting chip 112 is conducted to the bottom plate 1011 faster.
  • multiple first light-emitting chips 102 or multiple second light-emitting chips 112 may also share one heat sink 118 , which is not limited in the present disclosure.
  • the homogenizing component 105 is integrated in the laser 10, so that the first laser beam emitted by the first light-emitting chip 102 can be homogenized by the homogenizing component 105 and emitted.
  • the homogenized first laser beam constitutes at least part of the illumination beam, thereby improving the uniformity of the illumination beam provided by the laser 10 .
  • a light guide in the light source assembly 1 of the laser projection device 1000 to homogenize the illumination beam filtered by the color filter assembly 13, thereby reducing the number of components in the light source assembly 1, and finally facilitating the realization of the laser projection device. 1000 miniaturized design.
  • the polarization directions of the first-type laser beams and the second-type laser beams are consistent, so that the laser 10 provides The transmittance of the illumination beam transmitted through the optical components is consistent, thereby improving the display effect of the projected image.

Abstract

一种激光投影设备(1000),涉及显示技术领域。该激光投影设备(1000)包括光源组件(1)、光机(2)和镜头(3)。其中,光源组件(1)包括底板(1011)、侧壁(1012)、第一发光芯片(1022)、第一反射部(103)、第一准直部(104)和匀光部件(105)。侧壁(1012)位于底板(1011)上,侧壁(1012)与底板(1011)之间限定出容纳空间。第一发光芯片(1022)位于容纳空间中,且被配置为发出第一激光光束。第一发光芯片(1022)的出光方向平行于底板(1011)。第一反射部(103)位于容纳空间中且设置在第一发光芯片(1022)的出光侧,且被配置为将第一激光光束导向远离底板(1011)的方向。第一准直部(104)位于容纳空间中,且被配置为准直第一激光光束。匀光部件(105)位于侧壁(1012)远离底板(1011)的一侧,且被配置为匀化第一激光光束并将第一激光光束射出容纳空间,以使第一激光光束构成照明光束中的至少部分。

Description

激光投影设备
本申请要求于2021年09月02日提交的、申请号为202111025826.X的中国专利申请的优先权,于2021年09月09日提交的、申请号为202111056662.7的中国专利申请的优先权,于2021年09月30日提交的、申请号为202111160879.2的中国专利申请的优先权,以及于2021年09月30日提交的、申请号为202111163821.3的中国专利申请的优先权;其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种激光投影设备。
背景技术
激光投影设备包括光源组件、光机和镜头。光源组件提供的照明光束经光机调制后成为投影光束,并由镜头投影至屏幕或墙壁上,形成投影图像。其中,光源组件的激光器中包括多个阵列排布的发光芯片,该多个发光芯片被配置为发出激光。该激光器还包括准直镜组,发光芯片发出的激光经准直镜组准直后射出该激光器,以构成激光投影设备的照明光束。
发明内容
本公开一些实施例提供了一种激光投影设备。该激光投影设备包括:光源组件、光机和镜头。所述光源组件被配置为提供照明光束。所述光机被配置为利用图像信号对所述照明光束进行调制,以获得投影光束。所述镜头被配置为将所述投影光束投影成像。所述光源组件包括:底板、侧壁、第一发光芯片、第一反射部、第一准直部和匀光部件。所述侧壁位于所述底板上,所述侧壁与所述底板之间限定出容纳空间。所述第一发光芯片位于所述容纳空间中,且被配置为发出第一激光光束。所述第一发光芯片的出光方向平行于所述底板。所述第一反射部位于所述容纳空间中。所述第一反射部设置在所述第一发光芯片的出光侧,且被配置为将所述第一激光光束导向远离所述底板的方向。所述第一准直部位于所述容纳空间中,且被配置为准直所述第一激光光束,并将所述第一激光光束传输至匀光部件。所述匀光部件位于所述侧壁远离所述底板的一侧,且被配置为匀化所述第一激光光束并将所述第一激光光束射出所述容纳空间,以使所述第一激光光束构成所述照明光束中的至少部分。
附图说明
图1为根据一些实施例的激光投影设备的一个结构图;
图2为根据一些实施例的激光投影设备中光源组件的时序图;
图3为根据一些实施例的激光投影设备中的光路图;
图4为根据一些实施例的滤色组件的结构图;
图5为根据一些实施例的数字微镜器件的结构图;
图6为图5中的数字微镜器件中一个微小反射镜片摆动的位置图;
图7为根据一些实施例的微小反射镜片的工作原理图;
图8为根据一些实施例的激光投影设备的另一个结构图;
图9为相关技术中的激光投影设备中的光路图;
图10为相关技术中的激光器的结构图;
图11为根据一些实施例的激光器的一个结构图;
图12为根据一些实施例的激光器的另一个结构图;
图13为根据一些实施例的激光器的又一个结构图;
图14为根据一些实施例的激光器的又一个结构图;
图15为根据一些实施例的激光器的又一个结构图;
图16为根据一些实施例的激光器的又一个结构图;
图17为根据一些实施例的激光器的一个俯视图;
图18为根据一些实施例的激光器的另一个俯视图;
图19为根据一些实施例的激光器的又一个俯视图;
图20为根据一些实施例的激光器的又一个俯视图;
图21为根据一些实施例的激光器的又一个结构图;
图22为根据一些实施例的激光器的又一个结构图;
图23为根据一些实施例的第二准直部的一个工作原理图;
图24为根据一些实施例的第二准直部的另一个工作原理图。
附图标记:
激光投影设备1000;
光源组件1;激光器10;管壳101;底板1011;侧壁1012;第一发光芯片102;第一类发光芯片1021;第二类发光芯片1022;第一子发光芯片10221;第二子发光芯片10222;第一反射部103;第一反射面1031;支撑面1032;第一侧面1033;第二侧面1034;第三侧面1035;第四侧面1036;第一子反射部103a;第二子反射部103b;第一准直部104;匀光部件105;本体1051;第一凸透镜1052;第二凸透镜1053;第一安装件106;第二安装件107;第一准直透镜108;盖板109;透光层110;凸台111;第二发光芯片112;第二准直部113;第二准直透镜114;第二反射部115;第三反射部116;导电引脚117;热沉118;聚光组件12;滤色组件13;绿色滤色片131;蓝色滤色片132;红色滤色片133;驱动部134;合光镜组件14;
光机2;扩散组件21;第一透镜组件22;第二透镜组件23;数字微镜器件24;微小反射镜片241;光吸收部件242;棱镜组件25;
镜头3。
具体实施方式
下面将结合本公开实施例中的附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,然而,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适 当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。这里所公开的实施例并不必然限制于本文内容。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5度以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5度以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
本公开一些实施例提供了一种激光投影设备。如图1所示,该激光投影设备1000包括光源组件1,光机2,以及镜头3。该光源组件1被配置为提供照明光束。该光机2被配置为利用图像信号对光源组件1提供的照明光束进行调制以获得投影光束。该镜头3被配置为将投影光束投射在屏幕或墙壁上成像。
光源组件1、光机2和镜头3沿着光束传播方向依次连接。在一些示例中,光机2的一端与光源组件1连接,且光源组件1和光机2沿着激光投影设备1000的照明光束的出射方向(参照图1中的方向M)设置。光机2的另一端与镜头3连接,且光机2和镜头3沿着激光投影设备1000的投影光束的出射方向(参照图1中的方向N)设置。
如图1所示,在一些示例中,激光投影设备1000的照明光束的出射方向M与激光投影设备1000的投影光束的出射方向N大致垂直。这样设置,能够使得激光投影设备1000的结构排布合理,避免该激光投影设备1000在某一方向(例如,方向M或方向N)上的光路过长。
在一些实施例中,光源组件1可以时序性地提供三基色光(即,红光、绿光和蓝光)。在另一些实施例中,光源组件1可以同时输出三基色光,以持续发出白光。当然,光源组件1提供的照明光束中也可以包括三基色光之外的光,例如黄光等。光源组件1包括激光器,该激光器可发出至少一种颜色的光,比如蓝色激光。
在一些示例中,如图2所示,在一帧目标图像的投影过程中,光源组件1可以时序性地输出蓝色、红色和绿色照明光束。示例性地,光源组件1在第一时间段T1内输出蓝色激光,在第二时间段T2内输出红色激光,在第三时间段T3内输出绿色激光。在该示例中,光源组件1完成一轮各基色光束的时序性输出的时间为光源组件1的输出基色光束的一个周期。一帧目标图像的显示周期内,光源组件1进行一轮各基色光束的时序性输出,因此,一帧目标图像的显示周期与光源组件1输出基色光束的一个周期相等,等于第一时间段T1、第二时间段T2和第三时间段T3的和。在该示例中,由于视觉暂留现象,人眼会将时序性输出的蓝色光束、红色光束和绿色光束进行颜色叠加,因此,人眼感知到的 是三基色光束混合后的白光。
下面主要结合附图,对上述光源组件1、光机2和镜头3的结构进行示例性说明。
参照图3,光源组件1包括:激光器10、合光镜组件14、聚光组件12和滤色组件13。其中,激光器10被配置为提供照明光束。合光镜组件14设置在激光器10的出光侧,且被配置为将激光器10提供的照明光束反射至聚光组件12。聚光组件12设置在合光镜组件14的出光侧,且被配置为将来自合光镜组件14的照明光束进行会聚。滤色组件13设置在聚光组件12的出光侧,且被配置为对经聚光组件12会聚的照明光束进行滤色,以时序性地输出三基色光。
在一些实施例中,合光镜组件14可以为二向色镜。当光源组件1同时或时序性地输出三基色光(即,激光器10同时或时序性地输出三基色光)时,合光镜组件14可以将激光器10发出的红色激光、绿色激光和蓝色激光反射至聚光组件12。
在一些实施例中,聚光组件12包括至少一个平凸透镜,且该至少一个平凸透镜的凸面朝向合光镜组件14的出光方向。
在一些实施例中,如图4所示,滤色组件13可以包括绿色滤色片131、蓝色滤色片132、红色滤色片133和驱动部134。其中,驱动部134被配置为驱动滤色组件13旋转,以使在一帧目标图像的显示周期内,激光器10发出的照明光束得以被不同颜色的滤色片过滤。在一些示例中,当激光器10同时输出三基色光、且滤色组件13转动至红色滤色片133覆盖该三基色光的光斑的位置处时,该三基色光中除红色光束外的其他颜色的光束被阻挡,而红色光束通过红色滤色片133透射滤色组件13。
光源组件1发出的照明光束进入光机2。参照图3,光机2包括数字微镜器件24。
数字微镜器件24位于光源组件1的出光侧,且被配置为利用图像信号对光源组件1提供的照明光束进行调制以得到投影光束,并将该投影光束反射至镜头3中。由于数字微镜器件24可以控制投影光束针对待显示图像的不同像素显示不同的颜色和亮度,以最终形成投影图像,因此数字微镜器件24也被称为光调制器件(或光阀)。此外,根据光机2中使用的数字微镜器件24的数量,可以将光机2分为单片系统、双片系统或三片系统。
需要说明的是,由于在本公开的一些实施例中,图3所示的光机2应用数字光处理(Digital Light Processing,DLP)投影架构,因此,本公开一些实施例中的光调制器件为数字微镜器件(Digital Micromirror Device,DMD)。然而,本公开对光机2所应用的架构、光调制器件的类型等不做限制。
如图5所示,数字微镜器件24包含成千上万个可被单独驱动以转动的微小反射镜片241,这些微小反射镜片241呈阵列排布,每个微小反射镜片241对应待显示图像中的一个像素。如图6所示,在DLP投影架构中,每个微小反射镜片241相当于一个数字开关,在外力作用下可以在±12度或者±17度的范围内摆动。图6以每个微小反射镜片241可以在±12度的范围内摆动为例,进行示例性说明。
如图7所示,微小反射镜片241在负的偏转角度反射的光,称为OFF光。OFF光为无效光。微小反射镜片241在正的偏转角度反射的光,称为ON光。ON光是数字微镜器件24表面的微小反射镜片241接收照明光束照射,并通过正的偏转角度射入镜头3的有效光束,用于投影成像。微小反射镜片241的开状态为光源组件1发出的照明光束经微小反射镜片241反射后可以进入镜头3时,微小反射镜片241所处且可以保持的状态,即微小反射镜片241处于正的偏转角度的状态。微小反射镜片241的关状态为光源组件1发出 的照明光束经微小反射镜片241反射后未进入镜头3时,微小反射镜片241所处且可以保持的状态,即微小反射镜片241处于负的偏转角度的状态。
在一帧图像的显示周期内,部分或全部微小反射镜片241会在开状态和关状态之间切换至少一次,从而根据微小反射镜片241在开状态和关状态分别持续的时间来实现一帧图像中的各个像素的灰阶。例如,当像素具有0~255这256个灰阶时,与灰阶为0的像素对应的微小反射镜片241在该一帧图像的整个显示周期内处于关状态,与灰阶为255的像素对应的微小反射镜片241在一帧图像的整个显示周期内处于开状态,而与灰阶为127的像素对应的微小反射镜片241在一帧图像的显示周期内一半时间处于开状态、另一半时间处于关状态。因此,通过图像信号控制数字微镜器件24中每个微小反射镜片241在一帧图像的显示周期内所处的状态以及各状态的维持时间,可以控制该微小反射镜片241对应像素的亮度(灰阶),从而对投射至数字微镜器件24的照明光束进行调制。
在一些实施例中,继续参照图3,光机2还包括:扩散组件21,第一透镜组件22,第二透镜组件23以及棱镜组件25。需要说明的是,光机2中还可以包括比图3中示出的部件更少或更多的部件,本公开对此不做限制。
在该实施例中,扩散组件21位于光源组件1的出光侧,且被配置为扩散来自光源组件1的照明光束。第一透镜组件22位于扩散组件21的出光侧,且被配置为会聚经扩散组件21扩散的照明光束。第二透镜组件23位于第一透镜组件22的出光侧,且被配置为传输经第一透镜组件22会聚的照明光束至棱镜组件25。棱镜组件25将照明光束反射至数字微镜器件24。
如图8所示,镜头3包括多片透镜组合,通常按照群组进行划分,分为前群、中群和后群三段式,或者前群和后群两段式。前群是靠近激光投影设备1000出光侧(即,图8中镜头3在方向N上远离光机2的一侧)的镜片群组,后群是靠近光机2出光侧(即,图8中镜头3在方向N上靠近光机2的一侧)的镜片群组。
参照图9,相关技术中,激光投影设备1000′的光源组件1′还包括光导管15′。光导管15′设置在滤色组件13′的出光侧,且被配置为匀化滤色组件13′滤色后的照明光束。
相关技术中的光导管15′可以为由四片平面反射片拼接而成的管状器件,即,空心光导管。或者,光导管15′也可以为实心光导管。照明光束从光导管15′的入光口进入,在光导管15′内部多次反射后,再从光导管15′的出光口射出,并在该过程中完成光束匀化。
然而,上述相关技术中的激光投影设备1000′存在部件较多、不利于小型化设计的问题。
针对相关技术中的上述技术问题,一种可能的改进方案是:省去光源组件1′中的光导管15′,使得滤色组件13′滤色后的照明光束直接进入光机2′中。然而,该改进方案会降低进入光机2′的照明光束的均匀性,从而降低投影图像的显示质量。
另一种可能的改进方案是:缩小照明光束在光导管15′的入光口处的光斑面积,从而使得光导管15′的体积得以减小。示例性地,在聚光组件12′为一个平凸透镜的情况下,可以通过减小该平凸透镜的凸面的曲率半径,缩小照明光束经聚光组件12′会聚后的光斑面积,从而缩小照明光束在光导管15′的入光口处的光斑面积。然而,该改进方案会导致通过光导管15′提供给光机2′的照明光束的能量更集中,从而增大光机2′中的部件被照明光束照射后出现过热损坏的概率。
针对上述相关技术中以及可能的改进方案中存在的技术问题,本公开的发明人研究 发现:由于相关技术中的激光器10′提供的照明光束均匀性较差,因此需要在光源组件1′中额外设置光导管15′,以使照明光束得以匀化。也就是说,如果能够在激光器10′中集成具备匀光作用的部件,提高该激光器10′提供的照明光束的均匀性,就能够避免在光源组件1′中设置光导管15′,进而实现激光投影设备1000′的小型化设计。
在一些实施例中,如图11所示,本公开实施例提供了一种激光器10。该激光器10包括底板1011、侧壁1012、第一发光芯片102、第一反射部103、第一准直部104和匀光部件105。
侧壁1012位于底板1011上,侧壁1012与底板1011之间限定出容纳空间S。
第一发光芯片102位于容纳空间S中,且被配置为发出第一激光光束。第一发光芯片102的出光方向平行于底板1011。
第一反射部103位于容纳空间S中。第一反射部103设置在第一发光芯片102的出光侧,且被配置为将第一激光光束导向远离底板1011的方向。
第一准直部104位于容纳空间S中,且被配置为准直第一激光光束,并将第一激光光束传输至匀光部件105。
匀光部件105位于侧壁1012远离底板1011的一侧,且被配置为匀化第一激光光束并将第一激光光束射出容纳空间S,以使第一激光光束构成照明光束中的至少部分。
上述底板1011与侧壁1012组成的结构可以称为管壳101,底板1011和侧壁1012之间限定出的容纳空间S为管壳101的容纳空间S。
本公开实施例提供的激光投影设备1000,在激光器10中集成了第一准直部104和匀光部件105,使得第一发光芯片102发出的具有一定发散角度的第一激光光束得以通过第一准直部104准直后,变为平行光束传输至匀光部件105。该匀光部件105将第一准直部104准直后的第一激光光束匀化后射出,以使匀化后的第一激光光束构成照明光束中的至少部分,从而提高了激光器10提供的照明光束的均匀性。这样,无需在光源组件1中额外设置光导管以匀化滤色组件13滤色后的照明光束,从而减少了光源组件1中的部件的数量,有利于实现激光投影设备1000的小型化设计。
在一些实施例中,继续参照图11,第一发光芯片102设置在底板1011上,第一反射部103设置在底板1011上。这样,第一发光芯片102在工作中所产生的热量可以通过底板1011散发至激光器10外部,有利于提高激光器10的散热效率。
需要说明的是,下述实施例以第一发光芯片102设置在底板1011上、且第一反射部103设置在底板1011上为例,进行示例性说明,第一发光芯片102和第一反射部103也可以设置在容纳空间S中的其他位置。例如,第一发光芯片102可以设置在侧壁1012朝向容纳空间S一侧的第一表面上,并朝向该容纳空间S发射第一激光光束;第一反射部103可以设置在侧壁1012朝向容纳空间S一侧的第二表面上,且该第一表面与该第二表面相对。
在一些实施例中,继续参照图11,上述匀光部件105包括本体1051、第一凸透镜1052和第二凸透镜1053。第一凸透镜1052位于本体1051靠近底板1011的一侧,第二凸透镜1053位于本体1051远离底板1011的一侧,且第二凸透镜1053与第一凸透镜1052相对设置。示例性地,在匀光部件105包括多个第一凸透镜1052和多个第二凸透镜1053的情况下,该匀光部件105可以称为复眼透镜。
经第一准直部104准直后的第一激光光束传输至第一凸透镜1052后,被第一凸透镜 1052会聚为细光束(即,光斑较小的光束)后,再传输至第二凸透镜1053。示例性地,第一凸透镜1052可以将第一激光光束聚焦到第二凸透镜1053的焦点处。第一凸透镜1052可以对细光束进行发散,使该细光束变为宽光束(即,光斑较大的光束)。当多束第一激光光束分别经过第一凸透镜1052的会聚和第二凸透镜1053的发散后,该多束第一激光光束变为了多束宽光束,且该多束宽光束的光斑相互重叠。这样,第一激光光束经过匀光部件105后,该第一激光光束的均匀性和照明亮度得以提高。
在一些实施例中,第一激光光束传输至匀光部件105形成第一光斑,第一凸透镜1052在本体1051上的正投影面积大于或等于第一光斑的面积,第二凸透镜1053在本体1051上的正投影面积大于或等于第一光斑的面积。示例性地,一个第一凸透镜1052和与该第一凸透镜1052相对应的(如相对于本体1051设置)一个第二凸透镜1053,可以称为一组匀光凸透镜。在该实施例中,在第一激光光束的第一光斑与一组匀光凸透镜在本体1051上的正投影重叠的情况下,该第一激光光束中的光线仅需通过一个第一凸透镜1052和一个第二凸透镜1053即可实现匀化。这样,可以减少匀光部件105中第一凸透镜1052和第二凸透镜1053的数量,从而简化匀光部件105的结构。
需要说明的是,本公开对第一激光光束的第一光斑是否与某一组匀光凸透镜在本体1051上的正投影重叠不做限制。由于第一激光光束是经第一准直部104准直为平行光束后传输至匀光部件105的,因此,即使第一激光光束的第一光斑不与某一组匀光凸透镜在本体1051上的正投影重叠,该第一激光光束也可以被匀光部件105匀光。
在一些实施例中,继续参照图11,第一反射部103包括第一反射面1031,且该第一反射面1031为凹弧面。示例性地,具有一定发散角度的光线传输至该凹弧面后,可以被该凹弧面会聚,变成平行光。在该实施例中,第一准直部104为该第一反射面1031。
第一反射面1031为第一反射部103朝向第一发光芯片102的一表面,第一反射面1031被配置为将第一激光光束导向远离底板1011的方向。
在相关技术中,继续参照图10,激光器10′包括底板1011′、侧壁1012′、多个发光芯片102′、多个反射棱镜103′和准直镜组104′。准直镜组104′设置在侧壁1012′远离底板1011′的一侧。准直镜组104′包括多个准直透镜1041′。一个发光芯片102′分别与一个反射棱镜103′和一个准直透镜1041′相对应。一个发光芯片102′发出的激光光束经由对应的反射棱镜103′反射至准直镜组104′后,经由对应的准直透镜1041′准直后射出激光器10′,以构成照明光束。
相较于上述相关技术,在上述实施例中,通过将第一反射部103的第一反射面1031设置为凹弧面。当光线被凹弧面反射时,该光线的入射角(即,入射光线与入射点的法线之间的夹角)不一定等于该光线的出射角(即,出射光线与入射点的法线之间的夹角)。示例性地,参照图11,第一光线L 1平行于底板1011传输至第一反射面1031,经由第一反射面1031反射后,该第一光线L 1的入射角等于出射角。第二光线L 2经由第一反射面1031反射后,该第二光线L 2的入射角大于出射角。第三光线L 3经由第一反射面1031反射后,该第三光线L 3的入射角大于出射角。因此,第一发光芯片102发出的具有一定发散角度的第一激光光束经该凹弧面反射后,可以被准直为平行光束。这样,激光器10中无需设置准直镜组104′,从而减少了激光器10中部件的数量,有利于实现激光器10的小型化设计。
在另一些实施例中,参照图12,光源组件1中的激光器10还包括第一准直透镜108, 第一准直部104为第一准直透镜108。
第一反射部103包括支撑面1032,该支撑面1032为第一反射部103远离底板1011的一表面。光源组件1还包括第一安装件106和第二安装件107。第一安装件106设置在底板1011或支撑面1032上且位于容纳空间S中。需要说明的是,图12以第一安装件106设置在底板1011上为例进行示例性说明。第二安装件107设置在第一安装件106远离底板1011的一侧,第一准直透镜108设置在第二安装件107远离底板1011的一侧。
在该实施例中,通过将第一准直透镜108设置在容纳空间S中,缩短了第一激光光束传输至第一准直透镜108的光程,从而减小了第一激光光束在第一准直透镜108上形成的光斑的面积。由于第一准直透镜108在底板1011上的正投影的面积,通常需要大于第一激光光束在第一准直透镜108上形成的光斑的面积,该第一准直透镜108才能够对该第一激光光束中的较多光线进行准直,因此,上述实施例缩小了第一准直透镜108准直第一激光光束所需的体积,从而缩小了激光器10的体积,有利于激光器10的小型化设计。
下面主要结合附图,对上述匀光部件105在激光器10中的设置方式进行示例性介绍。
在一些实施例中,继续参照图11,匀光部件105的边缘与侧壁1012远离底板1011的一侧固定,匀光部件105、侧壁1012与底板1011之间限定出容纳空间S。这样,激光器10中的部件较少、体积较小。并且,可以使第一发光芯片102处于封闭的容纳空间S中,从而可以防止水、氧等侵蚀第一发光芯片102。
需要说明的是,上述封闭的容纳空间S允许存在装配误差。也就是说,该封闭的容纳空间S不要求绝对密封。
在该实施例中,匀光部件105的边缘可以不设置第一凸透镜1052或第二凸透镜1053。这样,匀光部件105可以通过本体1051与侧壁1012远离底板1011的一侧固定。由于本体1051较为平整,这样可以提升匀光部件105的边缘与侧壁1012之间的固定效果。
在另一些实施例中,如图13所示,光源组件1中的激光器10还包括盖板109。盖板109呈环状,盖板109的外边缘与侧壁1012远离底板1011的一侧固定。在该实施例中,匀光部件105的边缘与盖板109的内边缘固定。
在又一些实施例中,光源组件1中的激光器10还包括透光层110,匀光部件105位于透光层110远离底板1011的一侧。
在一些示例中,如图14所示,透光层110的边缘与侧壁1012远离底板1011的一侧固定。
在另一些示例中,如图15所示,激光器10还包括上述盖板109。盖板109的外边缘与侧壁1012远离底板1011的一侧固定,透光层110的边缘与盖板109的内边缘固定。
在又一些实施例中,如图16所示,光源组件1还包括凸台111。凸台111位于容纳空间S内,且凸台111的外边缘与侧壁1012固定,凸台111的内边缘与匀光部件105的外边缘固定。
需要说明的是,凸台111可以为环状凸台,也可以为多个子凸台。示例性地,当凸台111为环状凸台时,侧壁1012上连续设置有凸台111。这样,匀光部件105可以更稳固地设置在凸台111上。或者,当凸台111为多个子凸台时,侧壁1012上间隔设置有凸台111。这样,该凸台111在容纳空间S中占用的空间较小,有利于激光器10的小型化设计。
在该实施例中,侧壁1012远离底板1011的一侧可以与透光层110或盖板109固定连接。示例性地,在侧壁1012远离底板1011的一侧与盖板109的外边缘固定连接的情况下, 盖板109的内边缘可以与透光层110固定连接。
在一些实施例中,参照图17,第一发光芯片102包括第一类发光芯片1021和第二类发光芯片1022。第一类发光芯片1021被配置为发出第一激光光束中的第一类激光光束,第二类发光芯片1022被配置为发出第一激光光束中的第二类激光光束。第一类激光光束的偏振方向垂直于第二类激光光束的偏振方向。示例性地,第一类激光光束可以为P偏振光,例如红色激光光束;第二类激光光束可以为S偏振光,例如绿色激光光束或蓝色激光光束中的至少一种。
此时,第一类发光芯片1021的出光方向平行于第一方向X,第二类发光芯片1022的出光方向平行于第二方向Y,且第一方向X垂直于第二方向Y。
由于偏振方向不同的激光在透射激光投影设备1000中其他光学部件(例如,镜头3)时的透过率不同,因此,若激光器10提供的照明光束中包括多种偏振方向的激光,则该照明光束经光机2调制、镜头3投影后,呈现的投影图像中会出现色斑、色块等,显示效果较差。在上述实施例中,由于第一类激光光束的偏振方向垂直于第二类激光光束的偏振方向,因此,通过将第一类发光芯片1021的出光方向设置为垂直于第二类发光芯片1022的出光方向,使得第一类激光光束和第二类激光光束被第一反射部103导向远离底板1011的方向后,第一类激光光束和第二类激光光束具有相同的偏振方向。从而,使得照明光束中第一激光光束的偏振方向一致,从而使得该照明光束透射光学部件的透过率一致,避免了激光投影设备1000呈现出的投影图像中出现色斑、色块等,最终提升了投影图像的显示效果。
在一些实施例中,如图18所示,光源组件1包括多个第一类发光芯片1021和多个第二类发光芯片1022。多个第一类发光芯片1021沿第一方向X排列成多行,多行第一类发光芯片1021交错排布。多个第二类发光芯片1022沿第二方向Y排列成多行,多行第二类发光芯片1022交错排布。
这样,一方面,可以在不增加激光器10的尺寸的前提下,在激光器10中排布更多的第一类发光芯片1021和第二类发光芯片1022,从而提高激光器10的发光亮度。另一方面,在相邻两行第一类发光芯片1021的行间距不变的情况下,上述实施例中的激光器10增大了第一类发光芯片1021与该第一类发光芯片1021相邻两行的第一类发光芯片1021之间的距离,从而有利于提高第一类发光芯片1021的散热效率。同理,上述实施例中的激光器10有利于提高第二类发光芯片1022的散热效率。
需要说明的是,两行第一类发光芯片1021交错排布指的是该两行第一类发光芯片1021在列方向(第二方向Y)上存在错位,即,一行第一类发光芯片1021中有至少一个第一类发光芯片1021在列方向上未对齐另一行第一类发光芯片1021中的第一类发光芯片1021。类似地,两行第二类发光芯片1022交错排布指的是该两行第二类发光芯片1022在列方向(第一方向X)上存在错位,即,一行第二类发光芯片1022中有至少一个第二类发光芯片1022在列方向上未对齐另一行第二类发光芯片1022中的第二类发光芯片1022。
另外,多行第一类发光芯片1021交错排布是指该多行第一类发光芯片1021中具有至少两行交错排布的第一类发光芯片1021。类似地,多行第二类发光芯片1022交错排布是指该多行第二类发光芯片1022中具有至少两行交错排布的第二类发光芯片1022。
在一些实施例中,光源组件1中的激光器10包括多个第二类发光芯片1022,多个第二类发光芯片1022包括第一子发光芯片10221和第二子发光芯片10222。
示例性地,第一子发光芯片10221被配置为发出第二类激光光束中的第一子激光光束,例如绿色激光光束;第二子发光芯片10222被配置为发出第二类激光光束中的第二子激光光束,例如蓝色激光光束。
第一子发光芯片10221的出光方向与第二子发光芯片10222的出光方向相背离。如图18所示,第一子发光芯片10221的出光方向沿第二方向Y,第一子发光芯片10221也可以称为正向设置的第二类发光芯片1022。第二子发光芯片10222的出光方向沿第二方向Y的反方向,第二子发光芯片10222也可以称为反向设置的第二类发光芯片1022。
这样,第一子发光芯片10221发出的第一子激光光束与第二子发光芯片10222发出的第二子激光光束不会相交,可以避免该第一子激光光束与该第二子激光光束之间发生相互干扰,从而保证激光器10提供的照明光束的质量。
下面主要结合附图,对第一反射部103的设置方式进行示例性介绍。
在一些实施例中,激光器10包括多个第一类发光芯片1021。第一反射部103为一体件。如图19所示,第一反射部103包括第一侧面1033和第二侧面1034,第一侧面1033与第二侧面1034沿第一方向X相对设置。
第一侧面1033(或第二侧面1034)与多个第一类发光芯片1021中的至少一个第一类发光芯片1021对应,且被配置为将对应的至少一个第一类发光芯片1021发出的第一类激光光束导向远离底板1011的方向。
需要说明的是,上述第一侧面1033和第二侧面1034可以为凹弧面,也可以为平面。
示例性地,在第一侧面1033和第二侧面1034为凹弧面的情况下,第一侧面1033和第二侧面1034可以准直各自对应的至少一个第一类发光芯片1021发出的第一类激光光束。此时,第一准直部104包括第一侧面1033和第二侧面1034。
在一些实施例中,激光器10包括多个第二类发光芯片1022。如图20所示,第一反射部103还包括第三侧面1035和第四侧面1036,第三侧面1035与第四侧面1036沿第二方向Y相对设置。
第三侧面1035(或第四侧面1036)与多个第二类发光芯片1022中的至少一个第二类发光芯片1022对应,且被配置为将对应的至少一个第二类发光芯片1022发出的第二类激光光束导向远离底板1011的方向。
需要说明的是,上述第三侧面1035和第四侧面1036可以为凹弧面,也可以为平面。示例性地,在第三侧面1035和第四侧面1036为凹弧面的情况下,第三侧面1035和第四侧面1036可以准直各自对应的至少一个第二类发光芯片1022发出的第二类激光光束。此时,第一准直部104包括第三侧面1035和第四侧面1036。
或者,在第一侧面1033和第二侧面1034为平面的情况下,第一侧面1033和第二侧面1034不具备准直第一类激光光束的作用。在第三侧面1035和第四侧面1036为平面的情况下,第三侧面1035和第四侧面1036不具备准直第一类激光光束的作用。此时,第一准直部104可以为上述第一准直透镜108。
在又一些实施例中,激光器10包括第一类发光芯片1021和第二类发光芯片1022。第一反射部103为分体件。如图17和图18所示,第一反射部103包括第一子反射部103a和第二子反射部103b。第一子反射部103a设置在第一类发光芯片1021的出光侧,第二子反射部103b设置在第二类发光芯片1022的出光侧。
在该实施例中,通过第一子反射部103a和第二子反射部103b可以将第一类激光光束 和第二类激光光束分别导向远离底板1011的方向。这样,可以避免第一类激光光束和第二类激光光束之间相互干扰,从而提升激光器10提供的照明光束的质量。
需要说明的是,图17和图18以一个第一子反射部103a对应多个第一类发光芯片1021、一个第二子反射部103b对应多个第二类发光芯片1022为例,进行示例性说明。本公开不限制一个第一子反射部103a(或一个第二子反射部103b)所对应的第一类发光芯片1021(或第二类发光芯片1022)的数量。例如,图17可以包括6个第一子反射部103a,分别与6个第一类发光芯片1021对应设置。
在一些实施例中,如图21、图23和图24所示,第一反射部103包括支撑面1032。支撑面1032为第一反射部103远离底板1011的一表面。光源组件1除了包括上述的透光层110和第二发光芯片112之外,还包括第二准直部113。
第二发光芯片112设置在底板1011或支撑面1032上且位于容纳空间S中,且被配置为发出第二激光光束。第二发光芯片112的出光方向垂直于底板1011。需要说明的是,图21以第二发光芯片112设置在支撑面1032上为例,进行示例性说明。
透光层110位于容纳空间S中,且设置在侧壁1012远离底板1011的一侧。
第二准直部113位于容纳空间S中,且设置在透光层110远离底板1011的一侧。该第二准直部113被配置为准直第二激光光束,并将第二激光光束传输至匀光部件105。
匀光部件105还被配置为匀化第二激光光束,以使第二激光光束射出容纳空间S,以使第二激光光束与第一激光光束共同构成照明光束。
这样,在不增加激光器10的尺寸的前提下,可以在激光器10中排布更多发光芯片,从而提高激光器10的发光亮度,且有利于激光器10的小型化设计。此外,在第二发光芯片112设置在支撑面1032上的情况下,第一发光芯片102与第二发光芯片112排布在激光器10中的不同平面内。因此,第一发光芯片102和第二发光芯片112的热量散发区域不重叠,该激光器10的散热效率较高。也就是说,上述实施例中的激光器10兼具发光亮度高、体积小和散热效率高的特点。
在一些实施例中,如图21所示,第二发光芯片112与上述第一安装件106连接。这样,能够更稳固的设置第二发光芯片112,且第二发光芯片112工作时产生的热量可以通过第一安装件106传导至第一反射部103和底板1011,从而提高第二发光芯片112的散热效率。
在一些实施例中,第一激光光束从第一发光芯片102传输至第一准直部104的光程,与第二激光光束从第二发光芯片112传输至第二准直部113的光程相等。
这样,经第一准直部104准直后的第一激光光束的光斑的形状和大小,与经第二准直部113准直后的第二激光光束的光斑的形状和大小一致,从而使得激光器10提供的照明光束中的第一激光光束与第二激光光束的一致性较高,进而提高该照明光束的质量。
需要说明的是,在该实施例中,透光层110与底板1011之间的距离,小于匀光部件105与底板1011之间的距离。本公开对透光层110与匀光部件105的设置方式不做限定。
示例性地,如图21所示,激光器10还包括上述盖板109,透光层110的边缘与盖板109的内边缘固定,匀光部件105的边缘与盖板109的外边缘远离侧壁1012的一侧固定。
或者,如图22所示,激光器10还包括上述凸台111,透光层110的边缘与凸台111的内边缘固定,匀光部件105的边缘与侧壁1012远离底板1011的一侧固定。
再或者,激光器10还包括上述盖板109和凸台111,且凸台111与底板1011之间的 距离小于盖板109与底板1011之间的距离。这样,透光层110的边缘可以与凸台111的内边缘固定,匀光部件105的边缘可以与盖板109的内边缘固定。
下面结合附图,对第二准直部113的结构进行示例性介绍。
在一些实施例中,如图21所示,第二准直部113包括第二准直透镜114。
示例性地,第二准直透镜114为单面凸透镜,且该单面凸透镜的平面朝向底板1011,该单面凸透镜的凸面朝向匀光部件105。这样,第二准直透镜114可以利用平面与透光层110固定,从而能够更稳固地设置第二准直透镜114。同时,该第二准直透镜114可以将第二激光光束准直为平行光束,以便匀光部件105对该第二激光光束进行匀光,从而提升激光器10提供的照明光束的质量。
需要说明的是,图21是以第一准直部104为第一准直透镜108为例,进行的示例性说明。该实施例中,第一准直部104也可以为第一反射面1031。
在另一些实施例中,如图22所示,第二准直部113包括第二反射部115和第三反射部116。
第二反射部115被配置为将第二激光光束导向平行于底板1011的方向。第三反射部116位于第二反射部115的出光侧,且被配置为将第二激光光束导向远离底板1011的方向,以使第二激光光束传输至匀光部件105。
第二反射部115或第三反射部116还被配置为准直第二激光光束。
在一些示例中,如图23所示,第二反射部115具有第二反射面1151,该第二反射面1151为第二反射部115朝向第二发光芯片112的一表面。第三反射部116具有第三反射面1161,该第三反射面1161为第三反射部116朝向第二反射面1151的一表面。该第二反射面1151为凹弧面,且被配置为准直第二激光光束并将第二激光光束反射向平行于底板1011的方向。该第三反射面1161为平面,且被配置为将第二激光光束反射向远离底板1011的方向。
在另一些示例中,如图24所示,上述第二反射面1151为平面,且被配置为将第二激光光束反射向平行于底板1011的方向。上述第三反射面1161为凹弧面,且被配置为准直第二激光光束并将第二激光光束反射向远离底板1011的方向。
在该实施例的一些示例中,第一激光光束传输至透光层110形成第二光斑。第二准直部113在透光层110上的正投影与第二光斑不重叠。这样,第二准直部113不会干扰第一激光光束,能够提高激光器10中第一激光光束的利用率,从而提高激光器10的发光效率。示例性地,以第二准直部113为第二反射部115和第三反射部116为例,第一激光光束中的光线传输至透光层110后,可以透过该透光层110到达匀光部件105,而不会被第二反射部115或第三反射部116反射至其他方向。
在一些实施例中,第二发光芯片112包括第三类发光芯片1121和第四类发光芯片1122。第三类发光芯片1121被配置为发出第二激光光束中的第一类激光光束。第四类发光芯片1122被配置为发出第二激光光束中的第二类激光光束。第一类激光光束的偏振方向垂直于第二类激光光束的偏振方向。关于第一类激光光束和第二类激光光束的举例可以参照前述实施例,在此不再赘述。
在该实施例中,在激光器10包括上述第二安装件107的情况下,第二安装件107包括波片,且被配置为改变第一类激光光束的偏振方向或第二类激光光束的偏振方向中的至少一个,以使第一类激光光束的偏振方向与第二类激光光束的偏振方向相同。
在一些示例中,第二安装件107可以对射入的第二激光光束中的部分激光光束进行偏振方向的调整。示例性地,第二安装件107可以将第一类激光光束的偏振方向旋转90度,而不对第二类激光光束的偏振方向进行调整。或者,第二安装件107可以将第二类激光光束的偏振方向旋转90度,而不对第一类激光光束的偏振方向进行调整。由于第一类激光光束的偏振方向垂直于第二类激光光束的偏振方向,这样,第二安装件107可以将射入的第一类激光光束和第二类激光光束的偏振方向调整至相同。在该示例中,第二安装件107例如可以为半波片。
在另一些示例中,第二安装件107可以对射入的所有激光进行偏振方向的调整。示例性地,第二安装件107可以将第一类激光光束的偏振方向旋转45度、并将第二类激光光束的偏振方向旋转45度。在该示例中,第二安装件107例如可以为四分之一波片。
需要说明的是,第二安装件107对激光光束的偏振方向的调整角度的大小,与第二安装件107的厚度D和激光光束的波长λ有关。示例性地,在激光光束的波长λ一定的情况下,第二安装件107的厚度D越大,第二安装件107对激光光束的偏振方向的调整角度越大。例如,在激光光束的波长λ一定的情况下,半波片的厚度大于四分之一波片的厚度。
在一些实施例中,继续参照图17,侧壁1012的相对两侧具有多个开孔,光源组件1的激光器10中还包括多个导电引脚117。该多个导电引脚117穿过侧壁1012中的多个开孔,伸向容纳空间S内,并固定在该多个开孔中。示例性地,一个开孔对应固定一个导电引脚117。该多个导电引脚117被配置为与第一发光芯片102或第二发光芯片112中的至少一个的电极电连接,以通过外部电源将电流传输至第一发光芯片102或第二发光芯片112中的至少一个,从而为第一发光芯片102或第二发光芯片112中的至少一个供电。
在一些实施例中,继续参照图11,激光器10还包括多个热沉118。该多个热沉118与第一发光芯片102或第二发光芯片112对应。一个热沉118位于所对应的第一发光芯片102或第二发光芯片112与底板1011之间,且被配置为辅助该第一发光芯片102或第二发光芯片112散热,以使该第一发光芯片102或第二发光芯片112产生的热量更快地传导至底板1011。在一些实施例中,也可以是多个第一发光芯片102或多个第二发光芯片112共用一个热沉118,本公开对此不作限制。
综上所述,本公开实施例提供的激光投影设备1000,在激光器10中集成了匀光部件105,使得第一发光芯片102发出的第一激光光束得以通过匀光部件105匀化后射出,以使匀化后的第一激光光束构成照明光束中的至少部分,从而提高了激光器10提供的照明光束的均匀性。这样,无需在激光投影设备1000的光源组件1中额外设置光导管,以匀化滤色组件13滤色后的照明光束,从而减少了光源组件1中的部件的数量,最终利于实现激光投影设备1000的小型化设计。此外,通过调整第一发光芯片102中的第一类发光芯片1021和第二类发光芯片1022的设置方式,使得第一类激光光束与第二类激光光束的偏振方向一致,从而使得激光器10提供的照明光束透射光学部件的透过率一致,进而提升了投影图像的显示效果。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种激光投影设备,包括:
    光源组件,被配置为提供照明光束;
    光机,被配置为利用图像信号对所述照明光束进行调制,以获得投影光束;和
    镜头,被配置为将所述投影光束投影成像;其中,所述光源组件包括:
    底板,
    侧壁,位于所述底板上,所述侧壁与所述底板之间限定出容纳空间;
    第一发光芯片,位于所述容纳空间中,且被配置为发出第一激光光束;所述第一发光芯片的出光方向平行于所述底板;
    第一反射部,位于所述容纳空间中;所述第一反射部设置在所述第一发光芯片的出光侧,且被配置为将所述第一激光光束导向远离所述底板的方向;
    第一准直部,位于所述容纳空间中,且被配置为准直所述第一激光光束,以使所述第一激光光束传输至匀光部件;和
    所述匀光部件,位于所述侧壁远离所述底板的一侧,且被配置为匀化所述第一激光光束并将所述第一激光光束射出所述容纳空间,以使所述第一激光光束构成所述照明光束中的至少部分。
  2. 根据权利要求1所述的激光投影设备,其中,所述第一发光芯片设置在所述底板上,所述第一反射部设置在所述底板上。
  3. 根据权利要求1或2所述的激光投影设备,其中,所述第一反射部包括第一反射面,所述第一反射面为所述第一反射部朝向所述第一发光芯片的一表面,所述第一反射面被配置为将所述第一激光光束导向远离所述底板的方向;
    所述第一反射面为凹弧面,所述第一准直部为所述第一反射面。
  4. 根据权利要求1或2所述的激光投影设备,其中,所述第一反射部包括支撑面;所述支撑面为所述第一反射部远离所述底板的一表面;
    所述光源组件还包括:
    第一安装件,设置在所述底板或所述支撑面上且位于所述容纳空间中;
    第二安装件,设置在所述第一安装件远离所述底板的一侧;
    第一准直透镜,设置在所述第二安装件远离所述底板的一侧;
    所述第一准直部为所述第一准直透镜。
  5. 根据权利要求1至4中任一项所述的激光投影设备,其中,所述匀光部件包括:
    本体;
    第一凸透镜,位于所述本体靠近所述底板的一侧;和
    第二凸透镜,位于所述本体远离所述底板的一侧,且与所述第一凸透镜相对设置;
    所述第一激光光束传输至所述匀光部件形成第一光斑,所述第一凸透镜、所述第二凸透镜在所述本体上的正投影面积大于或等于所述第一光斑的面积。
  6. 根据权利要求1至5中任一项所述的激光投影设备,其中,所述匀光部件的边缘与所述侧壁远离所述底板的一侧固定,所述匀光部件、所述侧壁与所述底板之间限定出所述容纳空间。
  7. 根据权利要求1至5中任一项所述的激光投影设备,其中,所述光源组件还包括:
    盖板,所述盖板呈环状,所述盖板的外边缘与所述侧壁远离所述底板的一侧固定;
    所述匀光部件的边缘与所述盖板的内边缘固定。
  8. 根据权利要求1至5中任一项所述的激光投影设备,其中,所述光源组件满足以下之一:
    所述光源组件还包括:
    透光层,所述透光层的边缘与所述侧壁远离所述底板的一侧固定;所述匀光部件位于所述透光层远离所述底板的一侧;
    或者,
    所述光源组件还包括:
    盖板,所述盖板呈环状,所述盖板的外边缘与所述侧壁远离所述底板的一侧固定;所述透光层的边缘与所述盖板的内边缘固定。
  9. 根据权利要求1至5中任一项所述的激光投影设备,其中,所述光源组件还包括:
    凸台,位于所述容纳空间内,且所述凸台的外边缘与所述侧壁固定,所述凸台的内边缘与所述匀光部件的外边缘固定。
  10. 根据权利要求1至9中任一项所述的激光投影设备,其中,所述第一发光芯片包括第一类发光芯片和第二类发光芯片;
    所述第一类发光芯片被配置为发出所述第一激光光束中的第一类激光光束,且所述第一类发光芯片的出光方向平行于第一方向;
    所述第二类发光芯片被配置为发出所述第一激光光束中的第二类激光光束,且所述第二类发光芯片的出光方向平行于第二方向;
    所述第一类激光光束的偏振方向垂直于所述第二类激光光束的偏振方向,且所述第一方向垂直于所述第二方向。
  11. 根据权利要求10所述的激光投影设备,其中,所述光源组件包括多个所述第一类发光芯片和多个所述第二类发光芯片;
    多个所述第一类发光芯片沿所述第一方向排列成多行;多行所述第一类发光芯片交错排布;
    多个所述第二类发光芯片沿所述第二方向排列成多行;多行所述第二类发光芯片交错排布。
  12. 根据权利要求10或11所述的激光投影设备,其中,所述光源组件包括多个所述第二类发光芯片,多个所述第二类发光芯片包括第一子发光芯片和第二子发光芯片;
    所述第一子发光芯片的出光方向与所述第二子发光芯片的出光方向相背离。
  13. 根据权利要求10至12中任一项所述的激光投影设备,其中,所述光源组件包括多个所述第一类发光芯片;
    所述第一反射部包括第一侧面和第二侧面,所述第一侧面与所述第二侧面沿所述第一方向相对设置;
    所述第一侧面、所述第二侧面与所述多个所述第一类发光芯片中的至少一个所述第一类发光芯片对应,且被配置为将对应的所述至少一个所述第一类发光芯片发出的所述第一类激光光束导向远离所述底板的方向。
  14. 根据权利要求10至13中任一项所述的激光投影设备,其中,所述光源组件包括多个所述第二类发光芯片;
    所述第一反射部包括第三侧面和第四侧面,所述第三侧面与所述第四侧面沿所述第二方向相对设置;
    所述第三侧面、所述第四侧面与所述多个所述第二类发光芯片中的至少一个所述第二类发光芯片对应,且被配置为将对应的所述至少一个所述第二类发光芯片发出的所述第二类激光光束导向远离所述底板的方向。
  15. 根据权利要求10至12中任一项所述的激光投影设备,其中,所述第一反射部包括:
    第一子反射部,设置在所述第一类发光芯片的出光侧,且被配置为将所述第一类激光光束导向远离所述底板的方向;
    第二子反射部,设置在所述第二类发光芯片的出光侧,且被配置为将所述第二类激光光束导向远离所述底板的方向。
  16. 根据权利要求1至15中任一项所述的激光投影设备,其中,所述第一反射部包括支撑面;所述支撑面为所述第一反射部远离所述底板的一表面;
    所述光源组件还包括:
    第二发光芯片,设置在所述底板或所述支撑面上且位于所述容纳空间中,且被配置为发出第二激光光束;所述第二发光芯片的出光方向垂直于所述底板;
    透光层,位于所述容纳空间中,且设置在所述侧壁远离所述底板的一侧;
    第二准直部,位于所述容纳空间中,且设置在所述透光层远离所述底板的一侧;所述第二准直部被配置为准直所述第二激光光束,并将所述第二激光光束传输至所述匀光部件;
    所述匀光部件还被配置为匀化所述第二激光光束,以使所述第二激光光束射出所述容纳空间,以使所述第二激光光束与所述第一激光光束共同构成所述照明光束。
  17. 根据权利要求16所述的激光投影设备,其中,所述第一激光光束从所述第一发光芯片传输至所述第一准直部的光程,与所述第二激光光束从所述第二发光芯片传输至所述第二准直部的光程相等。
  18. 根据权利要求16或17所述的激光投影设备,其中,所述第二准直部包括:
    第二反射部,被配置为将所述第二激光光束导向平行于所述底板的方向;
    第三反射部,位于所述第二反射部的出光侧,且被配置为将所述第二激光光束导向远离所述底板的方向,以使所述第二激光光束传输至所述匀光部件;
    所述第二反射部或所述第三反射部还被配置为准直所述第二激光光束。
  19. 根据权利要求16至18中任一项所述的激光投影设备,其中,所述第一激光光束传输至所述透光层形成第二光斑;所述第二准直部在所述透光层上的正投影与所述第二光斑不重叠。
  20. 根据权利要求16至19中任一项所述的激光投影设备,其中,所述第二发光芯片包括:
    第三类发光芯片,被配置为发出所述第二激光光束中的第一类激光光束;
    第四类发光芯片,被配置为发出所述第二激光光束中的第二类激光光束;所述第一类激光光束的偏振方向垂直于所述第二类激光光束的偏振方向;
    所述光源组件还包括:
    第一安装件,设置在所述底板或所述支撑面上且位于所述容纳空间中;所述第二发光芯片与所述第一安装件连接;
    第二安装件,设置在所述第一安装件远离所述底板的一侧;所述第二安装件包括波 片,且被配置为改变所述第一类激光光束的偏振方向或所述第二类激光光束的偏振方向中的至少一个,以使所述第一类激光光束的偏振方向与所述第二类激光光束的偏振方向相同。
PCT/CN2022/116368 2021-09-02 2022-08-31 激光投影设备 WO2023030419A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280059727.XA CN117916659A (zh) 2021-09-02 2022-08-31 激光投影设备
US18/476,085 US20240022696A1 (en) 2021-09-02 2023-09-27 Laser projection apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111025826.XA CN113889839A (zh) 2021-09-02 2021-09-02 一种激光器
CN202111025826.X 2021-09-02
CN202111056662.7A CN113703272A (zh) 2021-09-09 2021-09-09 激光器及投影设备
CN202111056662.7 2021-09-09
CN202111160879.2A CN113922202A (zh) 2021-09-30 2021-09-30 一种激光器及投影设备
CN202111163821.3 2021-09-30
CN202111163821.3A CN113922204A (zh) 2021-09-30 2021-09-30 一种激光器及投影设备
CN202111160879.2 2021-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/476,085 Continuation US20240022696A1 (en) 2021-09-02 2023-09-27 Laser projection apparatus

Publications (1)

Publication Number Publication Date
WO2023030419A1 true WO2023030419A1 (zh) 2023-03-09

Family

ID=85411944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116368 WO2023030419A1 (zh) 2021-09-02 2022-08-31 激光投影设备

Country Status (3)

Country Link
US (1) US20240022696A1 (zh)
CN (1) CN117916659A (zh)
WO (1) WO2023030419A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075648A (en) * 1997-07-25 2000-06-13 Fuji Photo Optical Co., Ltd. Projector-type display device
US20110037953A1 (en) * 2007-09-25 2011-02-17 Explay Ltd. Micro-projector
WO2015005329A1 (ja) * 2013-07-08 2015-01-15 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
JP2016046481A (ja) * 2014-08-26 2016-04-04 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
US20180143445A1 (en) * 2016-11-18 2018-05-24 Ii-Vi Suwtech, Inc. Laser array and a laser beam combining device
CN112636160A (zh) * 2019-09-20 2021-04-09 青岛海信激光显示股份有限公司 激光器
CN113067248A (zh) * 2019-12-31 2021-07-02 深圳市中光工业技术研究院 激光封装结构
CN113703272A (zh) * 2021-09-09 2021-11-26 青岛海信激光显示股份有限公司 激光器及投影设备
CN113889839A (zh) * 2021-09-02 2022-01-04 青岛海信激光显示股份有限公司 一种激光器
CN113922202A (zh) * 2021-09-30 2022-01-11 青岛海信激光显示股份有限公司 一种激光器及投影设备
CN113922204A (zh) * 2021-09-30 2022-01-11 青岛海信激光显示股份有限公司 一种激光器及投影设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075648A (en) * 1997-07-25 2000-06-13 Fuji Photo Optical Co., Ltd. Projector-type display device
US20110037953A1 (en) * 2007-09-25 2011-02-17 Explay Ltd. Micro-projector
WO2015005329A1 (ja) * 2013-07-08 2015-01-15 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
JP2016046481A (ja) * 2014-08-26 2016-04-04 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ
US20180143445A1 (en) * 2016-11-18 2018-05-24 Ii-Vi Suwtech, Inc. Laser array and a laser beam combining device
CN112636160A (zh) * 2019-09-20 2021-04-09 青岛海信激光显示股份有限公司 激光器
CN113067248A (zh) * 2019-12-31 2021-07-02 深圳市中光工业技术研究院 激光封装结构
CN113889839A (zh) * 2021-09-02 2022-01-04 青岛海信激光显示股份有限公司 一种激光器
CN113703272A (zh) * 2021-09-09 2021-11-26 青岛海信激光显示股份有限公司 激光器及投影设备
CN113922202A (zh) * 2021-09-30 2022-01-11 青岛海信激光显示股份有限公司 一种激光器及投影设备
CN113922204A (zh) * 2021-09-30 2022-01-11 青岛海信激光显示股份有限公司 一种激光器及投影设备

Also Published As

Publication number Publication date
CN117916659A (zh) 2024-04-19
US20240022696A1 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
CN111562713B (zh) 激光投影设备
CN111258165B (zh) 激光投影设备
WO2019071951A1 (zh) 复眼透镜组及投影装置
US11112684B2 (en) Projection apparatus with illumination system having plurality of laser modules
US20230007218A1 (en) Laser projection apparatus
US11275253B2 (en) Laser projector
US20090066920A1 (en) Projection type image display device
CN114609854A (zh) 投影光源及投影设备
WO2021259276A1 (zh) 光源组件和投影设备
US20190212640A1 (en) Light source device and projection type display apparatus
CN113960866B (zh) 激光光源及激光投影设备
WO2023030016A1 (zh) 激光投影设备
WO2023046197A1 (zh) 激光投影设备
WO2023030419A1 (zh) 激光投影设备
CN114721159A (zh) 投影光源
CN113885285A (zh) 光源组件与投影设备
WO2023124332A1 (zh) 激光投影设备
WO2023030068A1 (zh) 激光投影设备
US20240094615A1 (en) Illumination system and projection apparatus
WO2021259282A1 (zh) 光源组件和投影设备
CN219916163U (zh) 光学成像系统
WO2023029945A1 (zh) 激光投影设备
US20230359113A1 (en) Laser source and laser projection apparatus
US20240004278A1 (en) Light source and laser projection device
CN114527578B (zh) 投影光源及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE