WO2021051699A1 - 一种零负荷输出不停机的控制方法、装置及机组 - Google Patents

一种零负荷输出不停机的控制方法、装置及机组 Download PDF

Info

Publication number
WO2021051699A1
WO2021051699A1 PCT/CN2019/128064 CN2019128064W WO2021051699A1 WO 2021051699 A1 WO2021051699 A1 WO 2021051699A1 CN 2019128064 W CN2019128064 W CN 2019128064W WO 2021051699 A1 WO2021051699 A1 WO 2021051699A1
Authority
WO
WIPO (PCT)
Prior art keywords
solenoid valve
compressor
mixing tank
load
electronic expansion
Prior art date
Application number
PCT/CN2019/128064
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
龙忠铿
罗炽亮
张丙
赵明智
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/627,046 priority Critical patent/US20220275974A1/en
Publication of WO2021051699A1 publication Critical patent/WO2021051699A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present disclosure relates to the technical field of units, and in particular to a control method, device and unit for non-stop output with zero load.
  • the fixed-frequency screw unit is limited to slide valve control and can only achieve a minimum 25% load. If the load is less than 25%, the conventional fixed-frequency screw unit cannot be realized. Under the background of many industrial requirements, the unit is required to operate at 0% load without shutting down, which is equivalent to not shutting down during standby.
  • the minimum adjustable range of the screw unit through the compressor itself is 10%, which does not achieve the effect of non-stop operation under the condition of 0% output.
  • the embodiments of the present disclosure provide a control method, device, and unit for non-stop output at zero load, so as to solve the problem that the screw unit cannot achieve zero load output without shutdown in the prior art.
  • the present disclosure provides a load control device, wherein the device includes:
  • the three-way valve is set at the exhaust port of the compressor
  • the mixing tank is arranged between the suction port of the compressor and the condenser, and is used to mix the refrigerant discharged from the compressor with the refrigerant throttling through the condenser;
  • the first electronic expansion valve is arranged on the first pipeline from the condenser to the mixing tank, and is used to control the amount of refrigerant throttled by the condenser into the mixing tank;
  • the solenoid valve is arranged on the second pipeline from the three-way valve to the mixing tank, and is used to control the amount of refrigerant discharged by the compressor to directly enter the mixing tank.
  • the device further includes: a second electronic expansion valve, which is arranged between the condenser and the evaporator, and is used to control the amount of refrigerant that has been throttled by the condenser and enters the evaporator.
  • a second electronic expansion valve which is arranged between the condenser and the evaporator, and is used to control the amount of refrigerant that has been throttled by the condenser and enters the evaporator.
  • the device further includes: a controller for controlling the operation of the first electronic expansion valve, the second electronic expansion valve, and the solenoid valve according to the target load of the unit and the minimum adjustable load of the compressor. action.
  • the present disclosure also provides a load control method, which is applied to the above-mentioned load control device, wherein the method includes: comparing the target load of the unit with the adjustable minimum load of the compressor; and controlling the first electronic expansion valve and the second electronic expansion valve according to the comparison result.
  • the opening and closing of the electronic expansion valve and the solenoid valve wherein the first electronic expansion valve is arranged on the first pipeline from the condenser to the mixing tank, and the second electronic expansion valve is arranged on the condenser and the evaporator
  • the solenoid valve is arranged on the second pipeline from the compressor to the mixing tank.
  • controlling the opening and closing of the first electronic expansion valve, the second electronic expansion valve, and the solenoid valve according to the comparison result includes: if the target load of the unit> the minimum adjustable load of the compressor, controlling the first solenoid valve to close.
  • the second solenoid valve operates normally, and the solenoid valve is closed.
  • controlling the opening and closing of the first electronic expansion valve, the second electronic expansion valve and the solenoid valve according to the comparison result includes: if the target load of the unit ⁇ the compressor adjustable minimum load, controlling the first solenoid valve to fully open, The second solenoid valve is fully opened and the solenoid valve is closed.
  • controlling the opening and closing of the first electronic expansion valve, the second electronic expansion valve, and the solenoid valve according to the comparison result includes: if the target load of the unit ⁇ the adjustable minimum load of the compressor, and after a preset period of time, controlling the The solenoid valve is opened, the second solenoid valve is closed, and the opening degree of the first solenoid valve is controlled according to operating parameters.
  • operating parameters include at least one of the following: compressor discharge temperature, mixing tank liquid level, mixing tank temperature;
  • Controlling the opening degree of the first solenoid valve according to operating parameters includes:
  • the first solenoid valve is controlled to decrease the preset opening within a unit time.
  • controlling the opening degree of the first solenoid valve according to the operating parameter includes: linkage control of the opening degree of the first solenoid valve according to the priority of the operating parameter; wherein the priority of the operating parameter is determined by High to low: compressor discharge temperature, mixing tank liquid level, mixing tank temperature.
  • the method further includes: if a zero-load operation signal is received, then Reduce the compressor load to a minimum.
  • the present disclosure also provides a water-cooled screw unit, which includes the above-mentioned load control device.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, wherein the program is executed by a processor to implement the above-mentioned method.
  • zero-load output of the unit is realized without shutting down, so that the unit is always in a standby state, and the shortest time response can be achieved, and the reliability can be improved.
  • Fig. 1 is a schematic structural diagram of a load control device according to an embodiment of the present disclosure
  • Fig. 2 is a flowchart of a load control method according to an embodiment of the present disclosure.
  • the words “if” and “if” as used herein can be interpreted as “when” or “when” or “in response to determination” or “in response to detection”.
  • the phrase “if determined” or “if detected (statement or event)” can be interpreted as “when determined” or “in response to determination” or “when detected (statement or event) )” or “in response to detection (statement or event)”.
  • the mixing tank is set between the suction port of the compressor and the condenser to mix the refrigerant discharged from the compressor with the refrigerant throttling through the condenser; the first electronic expansion valve is set from the condenser to the mixing tank The first pipeline between the two is used to control the amount of refrigerant that has been throttled by the condenser into the mixing tank; the solenoid valve is set on the second pipeline from the three-way valve to the mixing tank to control the The refrigerant discharged from the compressor directly enters the refrigerant volume of the mixing tank.
  • the second electronic expansion valve is arranged between the condenser and the evaporator, and is used to control the amount of refrigerant that has been throttled by the condenser and enters the evaporator.
  • this embodiment also includes: a controller for controlling the actions of the first electronic expansion valve, the second electronic expansion valve and the solenoid valve according to the target load of the unit and the adjustable minimum load of the compressor. Based on this, the unit realizes stable and reliable operation under zero load by controlling the pipeline solenoid valve and electronic expansion valve.
  • This embodiment also provides a water-cooled screw unit, the load control device described above, to achieve zero-load output without shutting down.
  • this embodiment provides a load control method, which is applied to the load control device described above, as shown in the flowchart of the load control method in FIG. 2, the method includes:
  • Step S201 comparing the target load of the unit with the minimum adjustable load of the compressor
  • Step S202 controlling the opening and closing of the first electronic expansion valve, the second electronic expansion valve and the solenoid valve according to the comparison result
  • the first electronic expansion valve is arranged on the first pipeline from the condenser to the mixing tank, the second electronic expansion valve is arranged between the condenser and the evaporator, and the solenoid valve is arranged between the compressor and the mixing tank. On the second pipeline.
  • the comparison result of the target load of the unit and the adjustable minimum load of the compressor can be classified into two types:
  • the unit receives a signal for non-zero load operation, it also controls the first solenoid valve to close, the second solenoid valve to operate normally, and the solenoid valve to close. That is, all the refrigerant after throttling by the condenser enters the evaporator, and the unit can operate normally.
  • the second is that if the target load of the unit is ⁇ the compressor's adjustable minimum load, the first solenoid valve is fully opened, the second solenoid valve is fully opened, and the solenoid valve is closed. That is, part of the refrigerant throttling through the condenser enters the evaporator directly; the other part enters the mixing tank, and then directly returns to the compressor without passing through the evaporator.
  • the solenoid valve is controlled to open, the second solenoid valve is closed, and the first solenoid valve is controlled according to the operating parameters. Opening.
  • the solenoid valve is controlled to open, the second solenoid valve is closed, and the opening degree of the first solenoid valve is controlled according to the operating parameters.
  • the aforementioned operating parameters include at least one of the following: compressor discharge temperature, mixing tank liquid level, and mixing tank temperature.
  • the opening degree of the first solenoid valve can be controlled in linkage according to the priority of the operating parameters; among them, the priority of the operating parameters can be set from high to low as: compressor discharge temperature, mixing tank liquid level , Mixing tank temperature.
  • opening the solenoid valve can control part of the refrigerant not to pass through the condenser.
  • the compressor can operate normally under the minimum load. Adjust the first electronic expansion valve to offset the amount of refrigerant passing through the main liquid pipe with the heat of the bypass refrigerant, effectively balancing the system and achieving the effect of non-stop operation of the compressor. If the refrigerant only passes through the mixing tank and does not pass through the evaporator, the unit will not refrigerate to the outside, achieving the goal of zero load output.
  • This embodiment introduces the control logic for realizing zero-load output and non-stop.
  • the control solenoid valve is opened, the second electronic expansion valve is closed, and the first electronic expansion valve is automatically adjusted, specifically, through the mixing tank
  • the pressure, temperature, and liquid level in the compressor are compared with the set values to control the pressure of the refrigerant entering the compressor.
  • the adjustment method of the first electronic expansion valve is as follows:
  • Liquid level difference actual liquid level height-set liquid level height ⁇ 0, then control the electronic expansion valve to close X%/T;
  • the priority is c>a>b
  • X is a positive integer
  • T is the time
  • the unit is second.
  • the unit will receive a zero-load operation signal or a non-zero-load operation signal. If the unit receives a zero-load operation signal, reduce the compressor load. After reaching the minimum load, perform 3). If the unit receives a signal for non-zero load operation, it will operate according to 1).
  • the embodiments of the present disclosure provide a piece of software, which is used to execute the technical solutions described in the above-mentioned embodiments and preferred implementations.
  • the embodiment of the present disclosure provides a non-volatile computer storage medium, and the computer storage medium stores computer-executable instructions, and the computer-executable instructions can execute the load control method in any of the foregoing method embodiments.
  • the above-mentioned storage medium stores the above-mentioned software, and the storage medium includes, but is not limited to, an optical disk, a floppy disk, a hard disk, and an erasable memory.
  • the present disclosure communicates through the compressor discharge port and the compressor suction port, and when low load operation is reached, the load output is continuously reduced until zero load.
  • a solenoid valve and controlling the switch By adding a mixing tank, the two refrigerants separated from the exhaust of the unit are mixed, and the suction temperature and pressure are reduced and then enters the compressor again.
  • the liquid level, temperature and pressure in the mixing tank By controlling the liquid level, temperature and pressure in the mixing tank, the goal of controlling the stable and reliable operation of the compressor under small load is achieved.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each implementation manner can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the above technical solution essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic A disc, an optical disc, etc., include a number of instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute the methods described in each embodiment or some parts of the embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开公开一种零负荷输出不停机的控制方法、装置及机组。其中,该装置包括:三通阀,设置在压缩机的排气口处;混合罐,设置在压缩机的吸气口和冷凝器之间,用于将由压缩机排出的冷媒与经由冷凝器节流后的冷媒混合;第一电子膨胀阀,设置在由冷凝器到混合罐之间的第一管路上,用于控制经由冷凝器节流后的冷媒进入混合罐的冷媒量;电磁阀,设置在由三通阀到混合罐之间的第二管路上,用于控制由压缩机排除的冷媒直接进入混合罐的冷媒量。通过本公开,实现了机组零负荷输出且不停机,使得机组始终处于待命状态,可以做到最短时间响应,提高可靠性。

Description

一种零负荷输出不停机的控制方法、装置及机组
本公开以2019年9月16日递交的、申请号为201910871922.2且名称为“一种零负荷输出不停机的控制方法、装置及机组”的专利文件为优先权文件,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及机组技术领域,具体而言,涉及一种零负荷输出不停机的控制方法、装置及机组。
背景技术
在发明人了解到的一些技术中,定频螺杆机组限于滑阀控制,只能达到最小25%负荷。如果低于25%负荷,常规的定频螺杆机组是无法实现的。很多工业要求背景下,需要机组做到0%负荷运行,且不停机,相当于待机过程中不停机。
但是,螺杆机组通过压缩机自身可调节范围最小为10%,达不到0%输出情况下不停机运行的效果。
针对螺杆机组无法实现零负荷输出且不停机的问题,目前尚未提出有效的解决方案。
发明内容
本公开实施例中提供一种零负荷输出不停机的控制方法、装置及机组,以解决现有技术中螺杆机组无法实现零负荷输出且不停机的问题。
为解决上述技术问题,本公开提供了一种负荷控制装置,其中,该装置包括:
三通阀,设置在压缩机的排气口处;
混合罐,设置在所述压缩机的吸气口和冷凝器之间,用于将由所述压缩机排出的冷媒与经由所述冷凝器节流后的冷媒混合;
第一电子膨胀阀,设置在由所述冷凝器到所述混合罐之间的第一管路上,用于控制经由所述冷凝器节流后的冷媒进入所述混合罐的冷媒量;
电磁阀,设置在由所述三通阀到所述混合罐之间的第二管路上,用于控制由所述压缩机排除的冷媒直接进入所述混合罐的冷媒量。
进一步地,所述装置还包括:第二电子膨胀阀,设置在所述冷凝器和蒸发器之间,用于控制经由所述冷凝器节流后的冷媒进入所述蒸发器的冷媒量。
进一步地,所述装置还包括:控制器,用于根据机组目标负荷和所述压缩机可调最小负荷,控制所述第一电子膨胀阀、所述第二电子膨胀阀和所述电磁阀的动作。
本公开还提供了一种负荷控制方法,应用于上述的负荷控制装置,其中,所述方法包括:比较机组目标负荷和压缩机可调最小负荷;根据比较结果控制第一电子膨胀阀、第二电子膨胀阀和电磁阀的开闭;其中,所述第一电子膨胀阀设置在由冷凝器到混合罐之间的第一管路上,所述第二电子膨胀阀设置在所述冷凝器和蒸发器之间,所述电磁阀设置在由所述压缩机到所述混合罐之间的第二管路上。
进一步地,根据比较结果控制第一电子膨胀阀、第二电子膨胀阀和电磁阀的开闭,包括:如果机组目标负荷>压缩机可调最小负荷,则控制所述第一电磁阀关闭、所述第二电磁阀正常动作、所述电磁阀关闭。
进一步地,根据比较结果控制第一电子膨胀阀、第二电子膨胀阀和电磁阀的开闭,包括:如果机组目标负荷≤压缩机可调最小负荷,则控制所述第一电磁阀全开、所述第二电磁阀全开、所述电磁阀关闭。
进一步地,根据比较结果控制第一电子膨胀阀、第二电子膨胀阀和电磁阀的开闭,包括:如果机组目标负荷≤压缩机可调最小负荷,且持续预设时长后,则控制所述电磁阀开启、所述第二电磁阀关闭,以及,根据运行参数控制所述第一电磁阀的开度。
进一步地,所述运行参数包括以下至少之一:压缩机排气温度、 混合罐液位、混合罐温度;
根据运行参数控制所述第一电磁阀的开度,包括:
在所述压缩机排气温度超过预设温度时,控制所述第一电磁阀单位时间内增大预设开度;
在过热度<0时,控制所述第一电磁阀单位时间内减小所述预设开度;其中,所述过热度=所述混合罐温度-饱和压力对应温度;
在所述混合罐液位-预设液位≤0时,控制所述第一电磁阀单位时间内减小所述预设开度。
进一步地,根据运行参数控制所述第一电磁阀的开度,包括:按照所述运行参数的优先级,联动控制所述第一电磁阀的开度;其中,所述运行参数的优先级由高到低为:压缩机排气温度、混合罐液位、混合罐温度。
进一步地,控制所述电磁阀开启、所述第二电磁阀关闭,以及,根据运行参数控制所述第一电磁阀的开度之前,所述方法还包括:如果接收到零负荷运行信号,则降低所述压缩机负荷至最小。
本公开还提供了一种水冷螺杆机组,其中包括上述的负荷控制装置。
本公开还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如上述的方法。
应用本公开的技术方案,实现了机组零负荷输出且不停机,使得机组始终处于待命状态,可以做到最短时间响应,提高可靠性。缩短了常规机组待机重启的时间。减少了电机因反复启停而引起的疲劳,增加了使用寿命。提高了机组对末端响应的速度。减少待机油温降低的风险。
附图说明
图1是根据本公开实施例的负荷控制装置的架构示意图;
图2是根据本公开实施例的负荷控制方法的流程图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
下面结合附图详细说明本公开的可选实施例。
实施例1
本实施例为了实现机组零负荷输出且不停机,做了结构上的改进,如图1所示的负荷控制装置的架构示意图,压缩机排气口处增设了三通阀,气体分两路,一路进冷凝器后节流到混合罐,另一路通过电磁阀控制进入混合罐。
混合罐,设置在压缩机的吸气口和冷凝器之间,用于将由压缩机排出的冷媒与经由冷凝器节流后的冷媒混合;第一电子膨胀阀,设置在由冷凝器到混合罐之间的第一管路上,用于控制经由冷凝器节流后的冷媒进入混合罐的冷媒量;电磁阀,设置在由三通阀到混合罐之间的第二管路上,用于控制由压缩机排除的冷媒直接进入混合罐的冷媒量。第二电子膨胀阀,设置在冷凝器和蒸发器之间,用于控制经由冷凝器节流后的冷媒进入蒸发器的冷媒量。
在机组运行时,可以根据机组排量不同,使用与之相匹配的旁通管路。在旁通管路增加电磁阀,控制管路的通、断。对于上述控制逻辑,本实施例还包括:控制器,用于根据机组目标负荷和压缩机可调最小负荷,控制第一电子膨胀阀、第二电子膨胀阀和电磁阀的动作。基于此,机组通过控制管路电磁阀及电子膨胀阀实现机组零负荷下稳定、可靠运行。
本实施例还提供了一种水冷螺杆机组,上述介绍的负荷控制装置,以实现零负荷输出且不停机。
实施例2
基于上述改进后的结构,本实施例提供了一种负荷控制方法,应用于上述介绍的负荷控制装置,如图2所示的负荷控制方法的流程图,该方法包括:
步骤S201,比较机组目标负荷和压缩机可调最小负荷;
步骤S202,根据比较结果控制第一电子膨胀阀、第二电子膨胀阀和电磁阀的开闭;
其中,第一电子膨胀阀设置在由冷凝器到混合罐之间的第一管路上,第二电子膨胀阀设置在冷凝器和蒸发器之间,电磁阀设置在由压缩机到混合罐之间的第二管路上。具体结构前面已经进行了详细描述,此处不再赘述。
在本实施例中,机组目标负荷和压缩机可调最小负荷的比较结果可以归为两种,
其一是,机组目标负荷>压缩机可调最小负荷,则控制第一电磁阀关闭、第二电磁阀正常动作、电磁阀关闭。另外,如果机组接收到非零负荷运行的信号,也控制第一电磁阀关闭、第二电磁阀正常动作、 电磁阀关闭。即经由冷凝器节流后的冷媒全部进入蒸发器,机组正常运行即可。
其二是,如果机组目标负荷≤压缩机可调最小负荷,则控制第一电磁阀全开、第二电磁阀全开、电磁阀关闭。即经由冷凝器节流后的冷媒,一部分直接进入蒸发器;另一部分进入混合罐,之后直接回到压缩机,不经过蒸发器。
对于此种情况,进一步地,如果机组目标负荷≤压缩机可调最小负荷,且持续预设时长后,则控制电磁阀开启、第二电磁阀关闭,以及,根据运行参数控制第一电磁阀的开度。另外,如果接收到零负荷运行信号,则降低压缩机负荷至最小,之后也控制电磁阀开启、第二电磁阀关闭,以及,根据运行参数控制第一电磁阀的开度。
具体地,上述运行参数包括以下至少之一:压缩机排气温度、混合罐液位、混合罐温度。在压缩机排气温度超过预设温度时,控制第一电磁阀单位时间内增大预设开度;在过热度<0时,控制第一电磁阀单位时间内减小预设开度;其中,过热度=混合罐温度-饱和压力对应温度;在混合罐液位-预设液位≤0时,控制第一电磁阀单位时间内减小预设开度。基于此,可以控制进入压缩机的冷媒压力。
当然,在具体实施时,可以按照运行参数的优先级,联动控制第一电磁阀的开度;其中,运行参数的优先级由高到低可以设置为:压缩机排气温度、混合罐液位、混合罐温度。
需要说明的是,在本实施例中,打开电磁阀能够控制部分冷媒不经过冷凝器,通过与节流后的冷媒在混合罐混合,达到压缩机可以在最小负荷下能够正常运行。调整第一电子膨胀阀使经过主液管的冷媒量与旁通的冷媒热量抵消,有效使系统平衡,达到压缩机不停机运行的效果。冷媒只通过混合罐,不通过蒸发器,则机组对外不制冷,达到零负荷输出的目的。
实施例3
本实施例对于实现零负荷输出不停机的控制逻辑进行介绍。
1)在机组目标负荷>压缩机可调最小负荷时,控制电磁阀关,第一电子膨胀阀(电子膨胀阀1)关,第二电子膨胀阀(电子膨胀阀2)正常动作;
2)在机组目标负荷≤压缩机可调最小负荷,控制电磁阀关,第一电子膨胀阀和第二电子膨胀阀开至100%;
3)机组目标负荷<压缩机可调最小负荷,且连续预设时长(例如5min)时,控制电磁阀开,第二电子膨胀阀关,第一电子膨胀阀自动调节,具体地,通过混合罐中的压力、温度、液位与设定值进行比较,控制进入压缩机的冷媒压力。
具体地,第一电子膨胀阀的调节方式如下所示:
a.液位差值=实际液位高度-设定液位高度≤0,则控制电子膨胀阀关X%/T;
b.过热度=温度-饱和压力对应温度<0,则控制电子膨胀阀关X%/T;
c.压缩机排气温度>50℃,则控制电子膨胀阀开X%/T。
根据以上3个联动控制,优先级为c>a>b,X为正整数,T为时间,单位:秒。
需要说明的是,机组会接到零负荷运行信号或者非零负荷运行信号,如果机组接到零负荷运行信号,则降低压缩机负荷,至最小负荷后,执行3)。如果机组接到非零负荷运行的信号,则按1)运行。
实施例4
本公开实施例提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
本公开实施例提供了一种非易失性计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令可执行上述任意方法实施例中的负荷控制方法。上述存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
从以上的描述中可知,本公开通过压缩机排气口与压缩机吸气口加连通,达到低负荷运行时继续降低负荷输出直至零负荷。通过增加电磁阀,控制开关,实现对最小负荷状态的控制。通过增加混合罐,使机组排气分出的两路冷媒混合,吸气温度、压力降低后重新进入压缩机。通过对混合罐中的液位、温度、压力控制,达到控制小负荷下压缩机稳定、可靠运行的目的。在工业应用、特殊领域需要使机组长期处于运行状态并无任何输出负荷,且不停机,达到减少了开停机所 浪费的时间的目的。
上述介绍的机组设备等产品可执行本公开实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本公开实施例所提供的方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (12)

  1. 一种负荷控制装置,所述装置包括:
    三通阀,设置在压缩机的排气口处;
    混合罐,设置在所述压缩机的吸气口和冷凝器之间,用于将由所述压缩机排出的冷媒与经由所述冷凝器节流后的冷媒混合;
    第一电子膨胀阀,设置在由所述冷凝器到所述混合罐之间的第一管路上,用于控制经由所述冷凝器节流后的冷媒进入所述混合罐的冷媒量;
    电磁阀,设置在由所述三通阀到所述混合罐之间的第二管路上,用于控制由所述压缩机排除的冷媒直接进入所述混合罐的冷媒量。
  2. 根据权利要求1所述的装置,其中,所述装置还包括:
    第二电子膨胀阀,设置在所述冷凝器和蒸发器之间,用于控制经由所述冷凝器节流后的冷媒进入所述蒸发器的冷媒量。
  3. 根据权利要求2所述的装置,其中,所述装置还包括:
    控制器,用于根据机组目标负荷和所述压缩机可调最小负荷,控制所述第一电子膨胀阀、所述第二电子膨胀阀和所述电磁阀的动作。
  4. 一种负荷控制方法,应用于权利要求1至3中任一项所述的负荷控制装置,其中,所述方法包括:
    比较机组目标负荷和压缩机可调最小负荷;
    根据比较结果控制第一电子膨胀阀、第二电子膨胀阀和电磁阀的开闭;其中,所述第一电子膨胀阀设置在由冷凝器到混合罐之间的第一管路上,所述第二电子膨胀阀设置在所述冷凝器和蒸发器之间,所述电磁阀设置在由所述压缩机到所述混合罐之间的第二管路上。
  5. 根据权利要求4所述的方法,其中,根据比较结果控制第一电子膨胀阀、第二电子膨胀阀和电磁阀的开闭,包括:
    如果机组目标负荷>压缩机可调最小负荷,则控制所述第一电磁阀关闭、所述第二电磁阀正常动作、所述电磁阀关闭。
  6. 根据权利要求4所述的方法,其中,根据比较结果控制第一电子膨胀阀、第二电子膨胀阀和电磁阀的开闭,包括:
    如果机组目标负荷≤压缩机可调最小负荷,则控制所述第一电磁阀全开、所述第二电磁阀全开、所述电磁阀关闭。
  7. 根据权利要求4所述的方法,其中,根据比较结果控制第一电 子膨胀阀、第二电子膨胀阀和电磁阀的开闭,包括:
    如果机组目标负荷≤压缩机可调最小负荷,且持续预设时长后,则控制所述电磁阀开启、所述第二电磁阀关闭,以及,根据运行参数控制所述第一电磁阀的开度。
  8. 根据权利要求7所述的方法,其中,所述运行参数包括以下至少之一:压缩机排气温度、混合罐液位、混合罐温度;
    根据运行参数控制所述第一电磁阀的开度,包括:
    在所述压缩机排气温度超过预设温度时,控制所述第一电磁阀单位时间内增大预设开度;
    在过热度<0时,控制所述第一电磁阀单位时间内减小所述预设开度;其中,所述过热度=所述混合罐温度-饱和压力对应温度;
    在所述混合罐液位-预设液位≤0时,控制所述第一电磁阀单位时间内减小所述预设开度。
  9. 根据权利要求7所述的方法,其中,根据运行参数控制所述第一电磁阀的开度,包括:
    按照所述运行参数的优先级,联动控制所述第一电磁阀的开度;其中,所述运行参数的优先级由高到低为:压缩机排气温度、混合罐液位、混合罐温度。
  10. 根据权利要求7所述的方法,其中,控制所述电磁阀开启、所述第二电磁阀关闭,以及,根据运行参数控制所述第一电磁阀的开度之前,所述方法还包括:
    如果接收到零负荷运行信号,则降低所述压缩机负荷至最小。
  11. 一种水冷螺杆机组,其中,包括权利要求1至3中任一项所述的负荷控制装置。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求4至10中任一项所述的方法。
PCT/CN2019/128064 2019-09-16 2019-12-24 一种零负荷输出不停机的控制方法、装置及机组 WO2021051699A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/627,046 US20220275974A1 (en) 2019-09-16 2019-12-24 Zero-load output non-stop control method and apparatus, and unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910871922.2A CN110530075B (zh) 2019-09-16 2019-09-16 一种零负荷输出不停机的控制方法、装置及机组
CN201910871922.2 2019-09-16

Publications (1)

Publication Number Publication Date
WO2021051699A1 true WO2021051699A1 (zh) 2021-03-25

Family

ID=68668744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128064 WO2021051699A1 (zh) 2019-09-16 2019-12-24 一种零负荷输出不停机的控制方法、装置及机组

Country Status (3)

Country Link
US (1) US20220275974A1 (zh)
CN (1) CN110530075B (zh)
WO (1) WO2021051699A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530075B (zh) * 2019-09-16 2020-11-10 珠海格力电器股份有限公司 一种零负荷输出不停机的控制方法、装置及机组
CN115727577A (zh) * 2022-11-24 2023-03-03 珠海格力电器股份有限公司 制冷系统、其控制方法、空调设备、存储装置及处理器
CN118031333B (zh) * 2024-04-10 2024-07-02 珠海格力电器股份有限公司 空调系统、负荷控制方法及计算机可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575223B1 (ko) * 2005-01-17 2006-05-02 삼성전자주식회사 용량가변 냉동사이클
JP2010236830A (ja) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd 輸送用冷凍装置
CN201844626U (zh) * 2010-09-16 2011-05-25 麦克维尔空调制冷(武汉)有限公司 一种适应超低负荷稳定运行的冷水机组
CN202869095U (zh) * 2012-10-10 2013-04-10 合肥天鹅制冷科技有限公司 一种能量调节制冷装置
CN104713274A (zh) * 2015-03-19 2015-06-17 合肥天鹅制冷科技有限公司 能量调节制冷装置
CN206488498U (zh) * 2017-02-20 2017-09-12 英得艾斯(上海)冷冻空调有限公司 一种冷水机组
CN110530075A (zh) * 2019-09-16 2019-12-03 珠海格力电器股份有限公司 一种零负荷输出不停机的控制方法、装置及机组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848620B (zh) * 2015-05-11 2018-08-10 珠海格力电器股份有限公司 螺杆式冷水机组开机加载控制方法及系统
CN105910229B (zh) * 2016-04-29 2019-07-05 青岛海尔空调电子有限公司 一种空调机组节流控制方法及空调机组
CN109631376B (zh) * 2018-11-27 2022-01-28 珠海格力电器股份有限公司 螺杆式冷水机组及其控制方法、系统
CN109915952A (zh) * 2019-02-25 2019-06-21 珠海格力电器股份有限公司 具有0~100%输出负荷调节能力中央空气调节机组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575223B1 (ko) * 2005-01-17 2006-05-02 삼성전자주식회사 용량가변 냉동사이클
JP2010236830A (ja) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd 輸送用冷凍装置
CN201844626U (zh) * 2010-09-16 2011-05-25 麦克维尔空调制冷(武汉)有限公司 一种适应超低负荷稳定运行的冷水机组
CN202869095U (zh) * 2012-10-10 2013-04-10 合肥天鹅制冷科技有限公司 一种能量调节制冷装置
CN104713274A (zh) * 2015-03-19 2015-06-17 合肥天鹅制冷科技有限公司 能量调节制冷装置
CN206488498U (zh) * 2017-02-20 2017-09-12 英得艾斯(上海)冷冻空调有限公司 一种冷水机组
CN110530075A (zh) * 2019-09-16 2019-12-03 珠海格力电器股份有限公司 一种零负荷输出不停机的控制方法、装置及机组

Also Published As

Publication number Publication date
CN110530075A (zh) 2019-12-03
US20220275974A1 (en) 2022-09-01
CN110530075B (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2021051699A1 (zh) 一种零负荷输出不停机的控制方法、装置及机组
CN109631376B (zh) 螺杆式冷水机组及其控制方法、系统
US11585561B2 (en) Control method and device for air conditioning system and air conditioning system
JP3347103B2 (ja) 圧縮機の定常状態運転を行う方法
WO2021063088A1 (zh) 变频器的冷却系统、方法及空调设备
CN108518807A (zh) 控制方法、控制装置、制冷设备和计算机可读存储介质
US20190137153A1 (en) Multi-split system and control method thereof
US20210262713A1 (en) Method and Apparatus for Controlling Compressor to Switch Cylinder Mode, Unit, and Air Conditioner System
US20200191430A1 (en) Method and device for controlling expansion valve
CN110779146B (zh) 空调器及其电子膨胀阀控制方法、存储介质及计算机设备
CN109282516B (zh) 风冷螺杆机组及其控制方法
CN110486984A (zh) 一种可自由调控冷热能力的方法及机组
US11624538B2 (en) Refrigeration device provided with a secondary by-pass branch and method of use thereof
US10948211B2 (en) Water circulation system for air conditioning system and control method thereof
WO2024082771A1 (zh) 多联机回油控制方法、装置、电子设备及多联机系统
CN107499492B (zh) 冷水机组的控制方法
WO2024012144A1 (zh) 多联机系统的控制方法、装置、多联机系统和存储介质
KR20160022510A (ko) 원심압축기의 서지 방지 장치 및 방법
JP2013160440A (ja) ターボ冷凍機
CN113847762B (zh) 用于控制制冷设备的方法、装置及制冷设备
WO2022249437A1 (ja) ヒートポンプ装置および給湯装置
CN111207536B (zh) 一种增焓热泵系统的控制方法及控制装置
AU2018411936B2 (en) Hot water supply apparatus
CN112361633A (zh) 制冷系统及其控制方法
US11598549B2 (en) Thermal cycling system and control method of the thermal cycling system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945503

Country of ref document: EP

Kind code of ref document: A1