WO2021051448A1 - 一种氨法脱硫氧化装置及方法 - Google Patents

一种氨法脱硫氧化装置及方法 Download PDF

Info

Publication number
WO2021051448A1
WO2021051448A1 PCT/CN2019/108758 CN2019108758W WO2021051448A1 WO 2021051448 A1 WO2021051448 A1 WO 2021051448A1 CN 2019108758 W CN2019108758 W CN 2019108758W WO 2021051448 A1 WO2021051448 A1 WO 2021051448A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oxidation
liquid
ammonia
distribution plate
Prior art date
Application number
PCT/CN2019/108758
Other languages
English (en)
French (fr)
Inventor
马洪玺
冒兰军
孟祥立
孙国辉
Original Assignee
上海蓝科石化环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蓝科石化环保科技股份有限公司 filed Critical 上海蓝科石化环保科技股份有限公司
Priority to US17/642,960 priority Critical patent/US11534717B2/en
Publication of WO2021051448A1 publication Critical patent/WO2021051448A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1406Multiple stage absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • B01D53/185Liquid distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/11Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention belongs to the technical field of environmental protection and chemical engineering, and relates to an ammonia desulfurization and oxidation device and method.
  • Sulfur dioxide is one of the main pollutants of the flue gas from the combustion of sulfur fuels (such as coal and petroleum). Because it enters the atmosphere, it will not only cause environmental problems such as acid rain, but also cause physiological harm to the human body, which is the main pollution of waste gas treatment. Things.
  • the purification technology of flue gas SO 2 mainly adopts wet desulfurization.
  • the absorbents widely used in wet desulfurization include CaCO 3 (limestone-gypsum method), NaOH (sodium method), MgO (magnesium method), NH 3 ( As the absorbent, the ammonia desulfurization process does not produce waste water, and the by-product (NH 4 ) 2 SO 4 can be used as a chemical fertilizer for resource utilization, which has great technical advantages.
  • ammonia desulfurization has higher requirements on oxidation rate. If the oxidation rate is low, unoxidized ammonium sulfite will decompose in the ammonium sulfate concentration operation, releasing ammonia and acid gas, causing peculiar smell, Environment and equipment corrosion, etc. Due to the characteristics of the absorbent NH 3 , the oxidation rate is restricted by factors such as temperature and pH. The relationship between oxidation rate and PH value is: the higher the PH value, the worse the oxidation efficiency; the lower the PH value, the higher the oxidation efficiency; while the absorption efficiency of SO 2 is the higher the PH value, the higher the absorption efficiency, and vice versa. low. Due to the difference between oxidation rate and absorption efficiency, in recent years, it has always been a problem in the industry to take into account both high-efficiency oxidation and high-efficiency absorption.
  • Chinese patent document CN 208356491 U proposes an ammonia desulfurization ammonium sulfite oxidation device, which uses a multi-layer packing component and a liquid distribution ring between the components to increase the specific surface area of gas-liquid contact.
  • the oxidation rate of ammonium sulfite Since the ammonium sulfate in the ammonia desulfurization slurry is easily saturated and precipitated, although this packing structure can improve the gas-liquid mass transfer efficiency, it is easy to block.
  • Chinese patent document CN 109260895 A proposes an ammonia desulfurization oxidation circulation tank device and method with function-oriented product partitioning.
  • the oxidation circulation tank is divided into three areas: a single-phase liquid zone, an oxidation zone and a reduction zone by the tank wall plate and the partition board, which improves the absorption capacity of the absorption slurry for SO 2 and strengthens the flue gas desulfurization effect. Because this device separates the oxidation zone from the recycling absorption zone, it is not only difficult for industrial implementation, but also causes sulfite to circulate in the tower for a long time without oxidation, and decompose, causing ammonia to escape and tail. On the one hand, the oxidation residence time is short, which easily leads to insufficient oxidation.
  • Chinese patent document CN 208512251 U proposes a combined oxidation device suitable for ammonia desulfurization.
  • the device is an independent tank body optimized for gas-liquid distribution, with a built-in aeration tube and gas-liquid distributor. By increasing the gas-liquid contact area, the oxidation efficiency of ammonium sulfite can reach more than 99.5%.
  • this patent solves the problem of oxidation, it is separated from the absorption of SO 2 and is difficult to implement alone.
  • Chinese patent document CN201120164401.2 discloses a double oxide ammonia desulfurization device. This patent improves the absorption efficiency. The desulfurization efficiency is more than 95%, and ammonium sulfate crystals with a purity of more than 99% can be obtained, which reduces the amount of ammonia escaped. The escape amount is less than 8mg/m 3 .
  • the flue gas of this patent enters the pre-wash tower directly after dust removal, which makes the manufacturing process requirements of the pre-wash tower higher, requires more cost, and the service life of the pre-wash tower is reduced, and the flue gas is directly at a lower temperature after desulfurization. Exhaust through the chimney is highly corrosive to the chimney and affects the service life of the chimney.
  • Chinese Patent Document CN 206350984 U On the basis of CN201120164401.2, by installing a flue gas heat exchange device, the original flue gas is first passed through the device and the flue gas discharged from the desulfurization tower is heat exchanged, so that the temperature of the original flue gas is reduced , Thereby reducing the requirements for the manufacturing process of the pre-washing tower, saving costs, while increasing the temperature of the flue gas discharged from the chimney, reducing the corrosion of the chimney, and prolonging the service life of the chimney.
  • the patent includes dust collector, pre-wash tower, desulfurization tower, and heat exchanger. The process is complicated and the material requirements of the pre-wash tower are high.
  • the present invention provides a high-efficiency ammonia desulfurization and oxidation device and method.
  • the desulfurization tower is divided into an ammonia distribution zone, an absorption zone, and an absorption zone.
  • Oxidation zone with specially designed fluid agitator and multi-layer gas-liquid distribution plate to optimize gas-liquid and liquid-liquid mass transfer, increase the utilization rate of oxidized air, higher oxidation efficiency, optimize absorption and oxidation at the same time, and finally achieve desulfurization efficiency It is greater than 99.5%, and the oxidation efficiency is greater than 99%.
  • One of the objectives of the present invention is to provide an ammonia desulfurization and oxidation device, which adopts the following technical solutions:
  • An ammonia desulfurization and oxidation device comprising a desulfurization tower, in which a multi-stage spray layer and a tower kettle are arranged from top to bottom in the desulfurization tower, and the tower kettle is sequentially arranged from top to bottom: a first gas-liquid distribution plate , The second gas-liquid distribution plate, the third gas-liquid distribution plate;
  • An ammonia distribution area is formed between the first gas-liquid distribution plate and the second gas-liquid distribution plate; an ammonia water distributor is also arranged between the first gas-liquid distribution plate and the second gas-liquid distribution plate in the ammonia distribution area;
  • An absorption zone is formed between the second gas-liquid distribution plate and the third gas-liquid distribution plate;
  • An oxidation zone is formed between the third gas-liquid distribution plate and the bottom of the tower; in the oxidation zone, several levels of oxidizing wind distributors are arranged on the lower side of the third gas-liquid plate, and any level of oxidizing wind distributor is correspondingly provided with gas Liquid plate; above the oxidizing wind distributor is also provided with a fluid stirrer for increasing gas-liquid contact.
  • a secondary oxidizing wind distributor, a fourth gas-liquid distribution plate, a primary oxidizing wind distributor, and a fluid stirrer are arranged in order from bottom to top between the third gas-liquid distribution plate and the tower bottom.
  • the fluid agitator includes a closed circular tube and a plurality of fluid distribution tubes connected to the circular tube; and the fluid distribution tube is set to form an angle a diagonally downward with the tangent of the circular tube.
  • the fluid agitator is communicated with a stirring circulating pump located outside the tower through a fluid conveying pipe; the stirring circulating pump is communicated with the bottom of the desulfurization tower.
  • the tangent included angle a between the fluid distribution pipe and the circular coil pipe is 40°-60°.
  • the fluid distribution tube is evenly distributed along the circumference of the circular tube.
  • the diameter of the fluid distributor is D 1
  • the length of the fluid distribution pipe is 30-50 mm; and/or, 6-16 fluid distribution pipes are arranged on the fluid distributor.
  • the distance between the primary oxidation wind distributor and the secondary oxidation wind distributor is 1000-2000mm, and the distance between the secondary oxidation wind distributor and the tower bottom is 700-1000mm.
  • the fourth gas-liquid distribution plate is arranged 300-500mm above the secondary oxidation wind distributor, the fluid agitator is arranged 500-800mm above the primary oxidation wind distributor, and the first The three-gas-liquid distribution plate is arranged at 200-300mm above the fluid agitator.
  • the distance between the first gas-liquid distribution plate and the second gas-liquid distribution plate is 400-600mm; the ammonia water distributor is located between the first gas-liquid distribution plate and the second gas-liquid distribution plate.
  • the first gas-liquid distribution plate of the ammonia distribution zone is set at a position 500-1000 mm lower than the normal liquid level.
  • the absorption zone is connected with a spray liquid circulating pump through a pipeline, and the spray liquid circulating pump is connected to the spray layer on the upper part of the desulfurization tower through the pipeline; wherein the spray layer can be set with different stages according to actual needs. That is, the number of layers;
  • the desulfurization tower is also provided with a mist eliminator on the upper side of the spray layer.
  • the ammonia water distributor is set as a tree-type distributor; it comprises an ammonia water distribution main pipe and a plurality of ammonia water distribution branch pipes parallel to each other in a horizontal direction, and the ammonia water distribution main pipe is connected with the ammonia water distribution branch pipe;
  • any ammonia distribution branch pipe is provided with two rows of distribution holes with a diameter of L 0 , in the same row, the distance between adjacent distribution holes is L 2 , two rows of distribution holes Distributed symmetrically along the vertical direction, and the angle between the vertical direction is ⁇ , and the value range of ⁇ is 50-80°;
  • the two rows of distribution holes on the same ammonia distribution branch pipe are arranged in a staggered arrangement; the value range of L 1 is 100 to 200 mm, the value range of L 2 is 50 to 150 mm, and the value range of L 0 is 10 to 25 mm.
  • the oxidizing wind distributor is configured as a branch-type distributor, and includes an oxidizing wind distribution main pipe and a plurality of oxidizing wind distribution branch pipes parallel to each other in a horizontal direction, and the oxidizing wind distribution main pipe is connected with the oxidizing wind distribution branch pipe;
  • the distance between adjacent oxidizing wind distribution branch pipes is b 1
  • any oxidizing wind distribution branch pipe is provided with two rows of distribution holes with a diameter of b 0.
  • the distance between adjacent distribution holes is b 2
  • the distribution holes are symmetrically distributed along the vertical direction, and the angle between the vertical direction is ⁇ , and the value range of ⁇ is 15-25°;
  • the two rows of holes on the same oxidizing wind distribution branch pipe are arranged in staggered arrangement; the value range of b 1 is 40-100 mm, the value range of b 2 is 20-50 mm, and the value range of b 0 is 5-10 mm.
  • the stirring circulation pump is provided with an ammonium sulfate pumping outlet for quantitatively discharging the ammonium sulfate solution into the ammonium sulfate concentration unit.
  • the second objective of the present invention is to provide an ammonia desulfurization and oxidation method, which includes the following steps:
  • the slurry in the tower is sprayed circularly, comes into contact with the flue gas containing SO 2 in countercurrent, absorbs SO 2 to form an acid-rich slurry that falls into the tower kettle, and first enters the ammonia distribution area through the first gas-liquid distribution plate under the action of gravity , In the ammonia distribution zone, it is mixed with the ammonia distributed from the ammonia distributor, and a neutralization reaction occurs.
  • the sulfurous acid and ammonium bisulfite are converted into ammonium sulfite, and the acid-rich slurry becomes a neutralized slurry;
  • the neutralizing slurry moves downwards under the action of gravity, enters the absorption zone through the second gas-liquid distribution plate, and contacts the oxidizing air that escapes from the oxidation zone to achieve deep neutralization of ammonium bisulfite and part of sulfurous acid at the same time Ammonium is oxidized to ammonium sulfate;
  • the neutralizing slurry further moves downwards and enters the oxidation zone through the third gas-liquid distribution plate.
  • the ammonium sulfite is fully oxidized and converted into ammonium sulfate.
  • the pH of the ammonia distribution zone is controlled to be 7.2 to 7.8; the pH of the absorption zone is controlled to be 6 to 7; the pH of the oxidation zone is controlled to be 4.5 to 6.
  • step S1 taken by spraying liquid absorbent circulating pump from the absorption zone within the kettle liquid column into the column above the spray is circulated to absorb SO 2; removing the gas rises into the demister 2 SO, dried After defogging, the discharge reaches the standard.
  • the slurry is drawn from the bottom of the tower by a stirring circulating pump and circulated to the fluid agitator on the upper part of the primary oxidation wind distributor, forming a tangential jet to drive the oxidizing air and slurry in the oxidation zone to mix vigorously, and secondary oxidation
  • the fourth gas-liquid distribution plate above the wind distributor synchronously promotes the gas-liquid mass transfer in the oxidation zone, so that the neutralized slurry is fully oxidized to obtain the ammonium sulfate solution; and the stirring circulation pump quantitatively discharges the ammonium sulfate solution by setting the ammonium sulfate outlet Enter the ammonium sulfate concentration unit.
  • the device of the present invention divides the desulfurization tower into an ammonia distribution zone, an absorption zone, and an oxidation zone through the method of non-mechanical partitioning of the desulfurization tower pot; with a specially designed fluid agitator and a multilayer gas-liquid distribution plate to optimize gas-liquid, liquid-liquid Mass transfer improves the utilization rate of oxidized air and makes the oxidation efficiency higher.
  • Desulfurization and oxidation are performed in the same tower to optimize absorption and oxidation at the same time.
  • the final desulfurization efficiency is greater than 99.5% and the oxidation efficiency is greater than 99%.
  • the method of the present invention enables the neutralization, absorption and oxidation reactions to reach the optimal reaction conditions at the same time, and achieves the overall improvement of ammonia and ammonia.
  • the specially designed oxidizing wind distributor of the present invention enables the oxidizing wind to be evenly distributed downwards on the interface of the distributor, so that the oxidizing wind has a large initial velocity under the phase, which is not only conducive to the uniform mixing of gas and liquid, but also the first direction of oxygen Down, and then up to contact with the slurry, increase the stroke of the oxidizing wind in the slurry; increase the gas-liquid contact time and increase the oxidation efficiency.
  • the present invention adopts multi-stage oxidizing wind distribution, so that the utilization rate of oxygen is higher.
  • the remaining oxidizing wind that completes the oxidation reaction with the slurry in the oxidizing zone naturally enters the absorption zone upward and continues to perform oxidation reaction with the slurry to improve the utilization efficiency of the oxidizing wind and the absorption efficiency of SO 2 by the slurry.
  • the oxidized residual gas enters the spray absorption zone along with the flue gas, and after removing the entrained gas-phase pollutants, it is discharged into the atmosphere after reaching the standard after defogging treatment without secondary pollution.
  • the fluid agitator in the present invention forms a ring-shaped tangential liquid agitation to make the oxidation zone close to a fully mixed state, improve mass transfer efficiency and oxidation efficiency; and achieve full mixing and agitation of the fluid in the tower on the premise of preventing leakage.
  • Figure 1 is a schematic diagram of the structure of the ammonia desulfurization and oxidation device of the present invention
  • FIG. 2 is a schematic diagram of the structure of the fluid agitator in the ammonia desulfurization and oxidation device of the present invention
  • FIG. 3 is a schematic diagram of the structure of the ammonia distributor in the present invention.
  • Figure 4 is a schematic diagram of the structure of the ammonia distribution branch pipe in the ammonia distributor
  • Figure 5 is a schematic diagram of the structure of the oxidizing wind distributor of the present invention.
  • Fig. 6 is a schematic diagram of the structure of the oxidizing wind distribution branch pipe in the oxidizing wind distributor.
  • 1-Desulfurization tower 11-First gas-liquid distribution plate, 12-Second gas-liquid distribution plate, 13-third gas-liquid distribution plate, 14-fourth gas-liquid distribution plate; 2-ammonia water distributor, 20-ammonia water Distribution main pipe, 21-ammonia distribution branch pipe; 3-fluid agitator, 30-circular tube, 31-fluid distribution pipe, 32-fluid delivery pipe, 33-stirring circulation pump; 4-oxidizing wind distributor, 40-oxidizing wind Distribution main pipe, 400- oxidizing wind distribution branch pipe; 41- primary oxidizing wind distributor; 42- secondary oxidizing wind distributor; 5- spray layer, 50- spray liquid circulation pump; 6- demister.
  • FIG. 1 it is an ammonia desulfurization and oxidation device, which includes a desulfurization tower 1.
  • a desulfurization tower 1 a multi-stage spray layer 5 and a tower are sequentially arranged from top to bottom.
  • a first gas-liquid distribution plate 11, a second gas-liquid distribution plate 12, and a third gas-liquid distribution plate 13 are provided;
  • An ammonia distribution area is formed between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 12; the ammonia distribution area is also provided with ammonia water between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 12 Distributor 2;
  • An absorption zone is formed between the second gas-liquid distribution plate 12 and the third gas-liquid distribution plate 13;
  • An oxidation zone is formed between the third gas-liquid distribution plate 13 and the bottom of the tower; in the oxidation zone, several stages of oxidation wind distributor 4 are arranged on the lower side of the third gas-liquid plate, and any oxidation wind distributor 4 corresponds to A gas-liquid plate is provided; above the oxidizing wind distributor 4, a fluid agitator 3 for increasing gas-liquid contact is also provided.
  • the third and fourth gas-liquid distribution plates and the ammonia water distributor 2 constitute the ammonia distribution zone; through the non-mechanical partitioning method of the desulfurization tower, the desulfurization tower kettle is divided into an ammonia distribution zone, an absorption zone, and an oxidation zone; ammonia can be controlled
  • the pH value of the distribution zone, the pH value of the absorption zone and the pH value of the oxidation reaction zone are in different numerical ranges to achieve a comprehensive improvement of the neutralization efficiency of ammonia, sulfurous acid and ammonium bisulfite, the absorption efficiency of slurry for SO 2 , and oxygen to sulfurous acid.
  • the purpose of salt oxidation efficiency is a comprehensive improvement of the neutralization efficiency of ammonia, sulfurous acid and ammonium bisulfite, the absorption efficiency of slurry for SO 2 , and oxygen to sulfurous acid.
  • the fluid agitator 3 and the multi-layer gas-liquid distribution plate are assisted to improve the mass transfer of gas-liquid and liquid-liquid, increase the utilization rate of oxidized air, and optimize absorption and oxidation at the same time.
  • the oxidizing air adopts a multi-stage injection method. After the oxidizing air comes out of the distribution holes, it can cause greater disturbance to the slurry within a certain range, and any level of oxidizing air
  • the distributors are equipped with gas-liquid plates correspondingly, which will further improve the efficiency of gas-liquid mixing and oxidation.
  • the oxidation zone is provided with a secondary oxidation wind distributor 42, a fourth gas-liquid distribution plate 14, and a primary oxidation wind distributor in order from bottom to top between the third gas-liquid distribution plate and the bottom of the tower. 41.
  • Fluid agitator 3. This embodiment adopts the setting of two-stage oxidizing air distributor, which is more suitable for desulfurization towers of conventional size.
  • the number of oxidizing air distributors and the corresponding number of gas-liquid distribution plates can also be increased according to actual needs.
  • a multi-layer fluid agitator can also be set up according to requirements.
  • the fluid agitator 3 includes a closed circular tube 30 and a plurality of fluid distribution tubes 31 communicating with the circular tube 30; and
  • the fluid distribution pipe 31 is set as a short pipe obliquely downward and tangent to the circular coil 30 at an angle a;
  • the fluid agitator 3 communicates with a stirring circulating pump 33 located outside the tower through a fluid delivery pipe 32; the stirring circulating pump 33 communicates with the bottom of the desulfurization tower 1.
  • the stirring circulation pump 33 pumps the fluid from the bottom of the tower and pressurizes it, then transports the fluid into the circular coil 30 of the fluid agitator 3 through the fluid delivery pipe 32, and then passes through the fluid distribution pipe that is inclined downward on the circular coil 30. 31 High-speed injection into the tower kettle to stir the tower kettle materials. The short pipe is sprayed obliquely downward, so that the material in the tower produces a turbulent flow pattern similar to a paddle agitator.
  • the stirring circulation pump 33 of the present invention draws the slurry from the bottom of the tower and circulates it to the upper part of the first-stage oxidation wind distributor 41, combined with its specially designed annular tangential fluid stirring, to form a spiral tangential jet and drive the oxidation air and slurry at the lower part. Vigorous mixing; since the slurry is drawn from the lower part to the upper part, it is equivalent to using the oxidation zone in a fully mixed state, which improves the mass transfer efficiency and oxidation efficiency; achieves the purpose of simulating mechanical stirring, and realizes high-speed stirring of the fluid on the basis of preventing leakage .
  • the tangent angle a between the fluid distribution pipe 31 and the circular coil 30 is 40°-60°, which further enables the fluid injected from the short pipe to be injected into the tower at a high speed to fully agitate the fluid.
  • the fluid distribution pipes 31 are evenly distributed along the circumference of the circular coil 30, so that the fluid distribution pipes 31 are evenly spaced jets, which can improve the uniformity of fluid stirring and fully guarantee the stirring effect.
  • the diameter of the fluid stirrer 3 is D 1
  • the dimensional relationship in this embodiment can ensure that the fluid velocity of the disk tube 20 is equivalent to the fluid velocity of the fluid in the fluid conveying pipe 4, which makes the stirring and mixing effect more gentle and stable.
  • the length of the fluid distribution pipe 31 in the above embodiment can be set to 30-50 mm; the fluid agitator 3 can be provided with 6-16 fluid distribution pipes 31, and the short pipes are evenly distributed along the circumference.
  • the circulation volume per unit time (per hour) of controlling the stirring circulation pump 33 is 50-100 times the volume of the desulfurization tower 1 tower.
  • the circulation volume is too small, the mixing effect is poor, and the circulation volume is too large and the energy consumption is high;
  • the fluid is ejected from the fluid distribution pipe 31 at a certain angle, and while the fluid in the splitting tower is disturbed, it also drives the fluid in the tower kettle 3 in the direction of the initial velocity of the jet to stir.
  • the multi-fluid distribution pipes 31 uniformly distributed along the circumference form a multi-pipe jet, which promotes the clockwise swirling mixing of the fluid in the tower kettle.
  • the distribution direction of the fluid distribution pipe 31 on the circular coil 30 can also be changed to form a counterclockwise swirling flow mixing.
  • the stirring circulating pump 33 is provided with an ammonium sulfate pumping outlet for quantitatively discharging the ammonium sulfate solution into the ammonium sulfate concentration unit.
  • this embodiment can prevent oxidized air from entering the stirring circulation pump 33 and causing cavitation.
  • the fourth gas-liquid distribution plate 14 is arranged at 300-500mm above the secondary oxidation wind distributor 42, and the fluid agitator 3 is arranged at 500-800mm above the primary oxidation wind distributor 41.
  • the third gas-liquid distribution plate 13 described above is arranged 200-300 mm above the fluid agitator 3.
  • a gas-liquid distribution plate is installed above the two-stage oxidizing wind distributor to prevent the accumulation of oxidized air during the ascent process, promote gas-liquid remixing, renew the gas-liquid two-phase mass transfer surface, and improve the oxidation efficiency; fluid agitator 3
  • the arrangement above the primary oxidation wind distributor 41 can promote the vigorous mixing of the slurry circulating and returning the jet with the oxidizing air on the lower side, thereby improving the mass transfer efficiency and the oxidation efficiency.
  • the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 12 are 400-600 mm apart; the ammonia water distributor 2 is located between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 12.
  • the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 12 also play a role in preventing the accumulation of oxidized air during the ascent, promoting the remixing of gas and liquid, renewing the gas-liquid two-phase mass transfer surface, and improving the oxidation efficiency.
  • the first gas-liquid distribution plate 11 of the ammonia distribution zone is set at a position 500-1000 mm lower than the normal liquid level.
  • the size setting in the above-mentioned embodiment can make the multilayer gas-liquid plate fully play the role of gas-liquid mass transfer and liquid-liquid mass transfer in their respective functional areas, and improve the efficiency of desulfurization absorption and oxidation.
  • the first gas-liquid distribution plate 11, the second gas-liquid distribution plate 12, the third gas-liquid distribution plate 13, and the fourth gas-liquid distribution plate 13 are all perforated plates with a porosity of 30%-45%.
  • the arrangement of this embodiment is conducive to uniform gas-liquid mixing and can improve the efficiency of gas-liquid mass transfer.
  • the absorption zone is connected with a spray liquid circulating pump 50 through a pipeline, and the spray liquid circulating pump 50 is connected to the spray layer on the upper part of the desulfurization tower 1 through a pipeline. 5.
  • the number of spray layers can be selected according to actual needs. Therefore, the spray absorption slurry is drawn out from the lower part of the absorption zone, and after being pressurized by the circulating spray pump 50, it is sent to the spray layer 5 and sprayed downward, and is in countercurrent contact with the flue gas. More preferably, a mist eliminator 6 is further provided on the upper side of the spray layer 5 in the desulfurization tower 1.
  • the oxidizing air passes through the oxidation zone to oxidize the slurry, it enters the absorption zone to continue to oxidize the slurry, and finally enters the spray layer 5 and the mist eliminator 6 through the liquid surface of the tower kettle, and is mixed with the flue gas through multiple stages. After spray absorption and defogging, the discharge reaches the standard and will not cause secondary pollution.
  • the structure of the ammonia distributor 2 is preferably a tree-type distributor, as shown in Figures 3 and 4, including an ammonia distribution main pipe 20 and a plurality of ammonia distribution branch pipes 21 parallel to each other in the horizontal direction.
  • the main ammonia distribution main pipe 20 is connected to the ammonia distribution branch pipe 21;
  • the distance between adjacent ammonia distribution branch pipes 21 is L 1
  • any ammonia distribution branch pipe 21 is provided with two rows of distribution holes with a diameter of L 0. In the same row, the distance between adjacent distribution holes is L 2 .
  • the distribution holes are symmetrically distributed along the vertical direction, and the angle between the vertical direction is ⁇ , and the value range of ⁇ is 50-80°;
  • the two rows of distribution holes on the same ammonia distribution branch pipe 21 are arranged in a staggered arrangement; the value of L 1 ranges from 100 to 200 mm, the value range of L 2 ranges from 50 to 150 mm, and the value range of L 0 ranges from 10 to 25 mm. .
  • the arrangement of the ammonia water distributor 2 in this preferred embodiment facilitates the uniform distribution of ammonia water in the tower kettle slurry and improves the liquid-liquid mass transfer, so as to fully increase the neutralization reaction of the ammonia water absorbent and the SO 2 absorbing acid-rich slurry and improve the desulfurization effectiveness.
  • the structure of the oxidizing wind distributor is preferably a tree-type distributor, as shown in Figures 5 and 6, including an oxidizing wind distribution main pipe 40, and a plurality of oxidizing wind distributors parallel to each other in the horizontal direction.
  • the oxidizing wind distribution main pipe 40 is connected to the oxidizing wind distribution branch pipe 400;
  • any oxidizing wind distribution branch pipe 400 has two rows of distribution holes with a diameter of b 0. In the same row, the distance between adjacent distribution holes is b 2 , two rows The distribution holes are symmetrically distributed along the vertical direction, and the angle between the vertical direction is ⁇ , and the value range of ⁇ is 15-25°;
  • the two rows of holes on the same oxidizing wind distribution branch pipe 400 are arranged in a staggered arrangement; the value range of b 1 is 40-100 mm, the value range of b 2 is 20-50 mm, and the value range of b 0 is 5-10 mm.
  • the setting of the oxidizing wind distributor 4 in this preferred embodiment facilitates the uniform distribution and gas-liquid mass transfer between the oxygen and the slurry in the oxidizing wind, reduces the mass transfer resistance, and can further accelerate the oxidation reaction of oxygen and the neutralized slurry, and improve oxidation. effectiveness.
  • both the primary oxidation wind distributor 41 and the secondary oxidation wind distributor 42 have holes obliquely downward (as shown in Figure 6), and the oxidizing air coming out of the distribution holes has a relatively large downward velocity.
  • the slurry within 500mm below produces greater disturbance, which further improves the gas-liquid mixing efficiency and oxidation efficiency.
  • this embodiment is an ammonia desulfurization and oxidation method, which includes the following steps:
  • the slurry in the tower is circulated sprayed, and is in countercurrent contact with the flue gas containing SO 2 fed into the tower. After absorbing SO 2 , it falls into the tower kettle.
  • the slurry that falls into the tower kettle absorbs SO 2 , sulfurous acid and sulfurous acid.
  • the acid-rich slurry first enters the ammonia distribution area through the first gas-liquid distribution plate 11 under the action of gravity, and is mixed with the ammonia absorbent distributed from the ammonia distributor 2 in the ammonia distribution area.
  • a neutralization reaction occurs, in which sulfurous acid and ammonium bisulfite are converted into ammonium sulfite, and the acid-rich slurry becomes a neutralized slurry;
  • the neutralizing slurry moves downward under the action of gravity, enters the absorption zone through the second gas-liquid distribution plate 12, and contacts the oxidizing air escaping from the oxidation zone to achieve deep neutralization of ammonium bisulfite, and at the same time partially sub- Ammonium sulfate is oxidized to ammonium sulfate;
  • the neutralized slurry further moves downwards and enters the oxidation zone through the third gas-liquid distribution plate 13.
  • the ammonium sulfite is fully oxidized Converted to ammonium sulfate.
  • the concentration of ammonia water used as the absorbent in the ammonia water distributor 2 is 1 to 4 wt%.
  • the step S1 taken by spraying liquid absorbent from the absorption zone a circulation pump liquid into the tower above the spray tower is circulated to absorb SO 2; removing the gas rises into the demister 2 SO, dried After defogging, discharge up to the standard.
  • step S3 the slurry is drawn from the bottom of the tower by a stirring circulating pump and circulated to the fluid agitator 3 above the primary oxidation wind distributor 41, forming a tangential jet to drive the oxidation air and slurry in the oxidation zone to mix vigorously
  • the spiral tangential jet formed by the fluid agitator drives the oxidized air at the lower part and the slurry to mix vigorously; since the slurry is drawn from the lower part to the upper part, it is equivalent to the oxidation zone being in a fully mixed state
  • the second oxidation air distributor 42 above The four gas-liquid distribution plates simultaneously promote the gas-liquid mass transfer in the oxidation zone, so that the neutralized slurry is fully oxidized to obtain the ammonium sulfate solution; the stirring circulating pump 33 quantitatively discharges the ammonium sulfate solution into the ammonium sulfate concentration unit by setting the ammonium sulfate outlet.
  • the non-mechanical partition of the desulfurization tower kettle is controlled to form an ammonia distribution zone, an absorption zone, and an oxidation zone from top to bottom, and the PH value of the slurry is controlled to gradually decrease from top to bottom; in the ammonia distribution zone with higher pH and The absorption zone ensures the high absorption efficiency of SO 2 by the slurry.
  • the slurry sampling in the absorption zone is sprayed cyclically, which also ensures the high absorption efficiency of the spray slurry for the SO 2 in the flue gas sent to the desulfurization tower 1;
  • the pH gradually decreases to achieve higher oxidation efficiency, so that ammonium sulfite is fully oxidized and converted into ammonium sulfate;
  • the stirring circulation pump 33 is equipped with an ammonium sulfate pumping outlet to quantitatively discharge the ammonium sulfate solution Enter the ammonium sulfate concentration unit. Therefore, it is avoided that the unoxidized ammonium sulfite will decompose during the ammonium sulfate concentration operation, releasing ammonia and acid gas, causing the problems of peculiar smell, environment and equipment corrosion in the operation.
  • ammonia desulfurization and oxidation device including a desulfurization tower 1, in which a demister 6, a multi-stage spray layer 5, and a tower are arranged from top to bottom in the desulfurization tower 1, and the first gas is arranged in the tower kettle from top to bottom.
  • An ammonia distribution area is formed between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 12; an ammonia water distributor 2 is also provided between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 12 in the ammonia distribution area;
  • An absorption zone is formed between the second gas-liquid distribution plate 12 and the third gas-liquid distribution plate 13;
  • An oxidation zone is formed between the third gas-liquid distribution plate 13 and the bottom of the tower; the oxidation zone is sequentially provided with a secondary oxidation wind distributor 42, a fourth gas-liquid distribution plate 14, a primary oxidation wind distributor 41, and a fluid agitator from bottom to top. ⁇ 3;
  • the two-stage oxidizing wind distributor is 1500mm apart
  • the second-stage oxidizing wind distributor 42 is 700mm from the bottom of the tower
  • the fourth gas-liquid distribution plate 14 is 400mm above the second-stage oxidizing wind distributor 42
  • the fluid agitator 3 is set in the first stage.
  • the third gas-liquid distribution plate 13 is located 200mm above the liquid agitator 3, and 200mm above the third gas-liquid distribution plate 13 is provided with a sampling port for circulating spray liquid, and the upper part of the sampling port for circulating spray liquid
  • the second gas-liquid distribution plate 12 is set at 1500mm, the second gas-liquid distribution plate 12 is 500mm away from the first gas-liquid distribution plate 11, and the ammonia water distributor 2 is located between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 12 ;
  • the slurry in the tower is sprayed circularly, and it comes into countercurrent contact with the flue gas containing SO 2 entering the desulfurization tower 1.
  • the SO 2 content in the flue gas is 3000 mg/Nm 3 , specifically, the spray liquid circulating pump 50 is removed from the tower In the absorption zone, take the absorption liquid and send it to the top of the tower for circulating spraying to absorb SO 2 ; the gas after the removal of SO 2 rises into the mist eliminator 6, after defogging, it is discharged up to the standard; while the slurry after absorbing SO 2 falls, Since the slurry falling into the tower tank absorbs SO 2 , the content of sulfurous acid and ammonium bisulfite increases and becomes acid-rich slurry.
  • the acid-rich slurry first passes through the first gas-liquid distribution plate 11 and enters the ammonia distribution area.
  • the ammonia distribution zone is mixed with the ammonia water with a concentration of 2wt% distributed by the ammonia distributor 2 to cause a neutralization reaction to control the pH in the ammonia distribution zone to 7.5, and the sulfurous acid and ammonium bisulfite are converted into ammonium sulfite, which is rich Acid slurry becomes neutralized slurry;
  • the neutralized slurry moves downward under the action of gravity, enters the absorption zone through the second gas-liquid distribution plate 12, controls the PH in the absorption zone to 7, and contacts with the oxidizing air that escapes from the oxidation zone to complete the primary gas
  • the liquid is redistributed to achieve deep neutralization of ammonium bisulfite, and part of the ammonium sulfite is oxidized to ammonium sulfate;
  • the neutralized slurry further moves downwards and enters the oxidation zone through the third gas-liquid distribution plate 13, the pH of the oxidation zone is controlled to 5.8, and the oxidized air distributed in the primary oxidation wind distributor 41 and the secondary oxidation wind distributor 42 Under the action of ammonium sulfite, ammonium sulfite is fully oxidized and converted into ammonium sulfate.
  • the stirring and circulating pump 33 draws the slurry from the bottom of the tower and circulates it to the fluid agitator 3 on the upper part of the primary oxidation wind distributor 41.
  • the two-stage oxidation wind distributor is separated by 1300mm
  • the second oxidation wind distributor 42 is 800mm from the bottom of the tower
  • the fourth gas-liquid distribution plate 14 is 400mm above the second oxidation wind distributor 42
  • the fluid agitator 3 Set 700mm above the primary oxidation wind distributor 41
  • the third gas-liquid distribution plate 13 is located 200mm above the liquid agitator 3
  • the third gas-liquid distribution plate 13 is set with a sampling port for circulating spray liquid at 200mm above the third gas-liquid distribution plate.
  • a second gas-liquid distribution plate 12 is provided at the upper part of the leaching sampling port 1500mm.
  • the second gas-liquid distribution plate 12 is 400mm away from the first gas-liquid distribution plate 11, and the ammonia water distributor 2 is located between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 11.
  • ammonia desulfurization oxidation method 1wt% ammonia water is used as the absorbent, and the pH in the ammonia distribution zone is controlled to be 7.2, the pH in the absorption zone is 6 and the pH in the oxidation zone is 5.5.
  • the oxidative desulfurization effect finally obtained in this application example is: an oxidation efficiency of 99.6% and a desulfurization efficiency of 99.94%.
  • the two-stage oxidation wind distributor is 2000mm apart
  • the second oxidation wind distributor 42 is 700mm away from the bottom of the tower
  • the fourth gas-liquid distribution plate 14 is 300mm above the second oxidation wind distributor 42
  • the fluid agitator 3 Set 500mm above the primary oxidation wind distributor 41
  • the third gas-liquid distribution plate 13 is located 300mm above the liquid agitator 3
  • the third gas-liquid distribution plate 13 is set with a sampling port for circulating spray liquid at 200mm above the third gas-liquid distribution plate.
  • the second gas-liquid distribution plate 12 is set at 1800mm above the leaching sampling port.
  • the second gas-liquid distribution plate 12 is 400mm away from the first gas-liquid distribution plate 11, and the ammonia water distributor 2 is located between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 11.
  • ammonia desulfurization and oxidation method 4wt% ammonia water is used as the absorbent, and the pH in the ammonia distribution zone is 7.4, the pH in the absorption zone is 6.8, and the pH in the oxidation zone is 5.5.
  • the oxidative desulfurization effect finally obtained in this application example is: the oxidation efficiency is 99.8%, and the desulfurization efficiency is 99.95%.
  • the two-stage oxidation wind distributor is separated by 1500mm
  • the second oxidation wind distributor 42 is 700mm away from the bottom of the tower
  • the fourth gas-liquid distribution plate 14 is 400mm above the second oxidation wind distributor 42
  • the fluid agitator 3 Set 700mm above the primary oxidation wind distributor 41
  • the third gas-liquid distribution plate 13 is located 200mm above the liquid agitator 3
  • the third gas-liquid distribution plate 13 is set with a sampling port for circulating spray liquid at 200mm above the third gas-liquid distribution plate.
  • a second gas-liquid distribution plate 12 is provided at the upper part of the leaching sampling port 1500mm.
  • the second gas-liquid distribution plate 12 is 500 mm away from the first gas-liquid distribution plate 11, and the ammonia water distributor 2 is located between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 11 The middle of the liquid distribution plate 12.
  • ammonia desulfurization oxidation method 2wt% ammonia water is used as the absorbent, and the pH in the ammonia distribution zone is controlled to be 7.2, the pH in the absorption zone is 6.8, and the pH in the oxidation zone is 5.5.
  • the oxidative desulfurization effect finally obtained in this application example is: an oxidation efficiency of 99.6% and a desulfurization efficiency of 99.98%.
  • the two-stage oxidation wind distributor is 2000mm apart
  • the second oxidation wind distributor 42 is 700mm away from the bottom of the tower
  • the fourth gas-liquid distribution plate 14 is 300mm above the second oxidation wind distributor 42
  • the fluid agitator 3 Set 500mm above the primary oxidation wind distributor 41
  • the third gas-liquid distribution plate 13 is located 300mm above the liquid agitator 3
  • the third gas-liquid distribution plate 13 is set with a sampling port for circulating spray liquid at 200mm above the third gas-liquid distribution plate.
  • the second gas-liquid distribution plate 12 is set at 1800mm above the leaching sampling port.
  • the second gas-liquid distribution plate 12 is 400mm away from the first gas-liquid distribution plate 11, and the ammonia water distributor 2 is located between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 11.
  • ammonia desulfurization and oxidation method 3wt% ammonia water is used as the absorbent, the pH in the ammonia distribution zone is 7.8, the pH in the absorption zone is 7, and the pH in the oxidation zone is 6.0.
  • the oxidative desulfurization effect finally obtained in this application example is: the oxidation efficiency is 99.2%, and the desulfurization efficiency is 99.97%.
  • the two-stage oxidation wind distributor is 1800mm apart
  • the second oxidation wind distributor 42 is 700mm away from the bottom of the tower
  • the fourth gas-liquid distribution plate 11 is 300mm above the second oxidation wind distributor 42
  • the fluid agitator 3 Set 500mm above the primary oxidation wind distributor 41
  • the third gas-liquid distribution plate 13 is located 300mm above the liquid agitator 3
  • the third gas-liquid distribution plate 13 is set with a sampling port for circulating spray liquid at 200mm above the third gas-liquid distribution plate.
  • the second gas-liquid distribution plate 12 is set at 1800mm above the leaching sampling port.
  • the second gas-liquid distribution plate 12 is 400mm away from the first gas-liquid distribution plate 11, and the ammonia water distributor 2 is located between the first gas-liquid distribution plate 11 and the second gas-liquid distribution plate 11.
  • ammonia desulfurization and oxidation method 3wt% ammonia water is used as the absorbent, the pH in the ammonia distribution zone is 7.2, the pH in the absorption zone is 6, and the pH in the oxidation zone is 4.5.
  • the oxidative desulfurization effect finally obtained in this application example is: the oxidation efficiency is 99.8%, and the desulfurization efficiency is 99.6%.
  • the first gas-liquid distribution plate 11, the second gas-liquid distribution plate 12, and the third gas-liquid distribution plate 13 do not exist in the tower kettle of this comparative example. Although there is circulating stirring, there is no fluid distribution pipe 31; there is only a primary oxidation wind distribution. There is no secondary oxidizing wind distributor 42, and correspondingly, there is no fourth gas-liquid distribution plate 14.
  • the slurry in the tower is in countercurrent contact with the flue gas containing SO 2 entering the desulfurization tower 1.
  • the SO 2 content in the flue gas is 3000 mg/Nm 3 , specifically, the spray liquid circulating pump 50 is used from the tower kettle Take the absorption liquid and send it to the top of the tower kettle for circulating spraying to absorb SO 2 ; the gas after the removal of SO 2 rises into the mist eliminator 6, after defogging, it is discharged up to the standard; while the slurry after absorbing SO 2 falls and falls into Since the slurry in the tower still absorbs SO 2 , the content of sulfurous acid and ammonium bisulfite increases and becomes an acid-rich slurry.
  • the acid-rich slurry enters the tower under the action of gravity, and the pH of the tower is controlled to be 6.2; the acid-rich slurry first interacts with Ammonia water with a concentration of 2wt% distributed by the ammonia water distributor 2 is mixed, and a neutralization reaction occurs, in which sulfurous acid and ammonium bisulfite are converted into ammonium sulfite, and the acid-rich slurry becomes a neutralized slurry;
  • the neutralizing slurry moves downward under the action of gravity, and under the action of the oxidizing air distributed by the primary oxidation wind distributor 41, ammonium sulfite is oxidized and converted into ammonium sulfate.
  • the stirring circulation pump 33 draws the slurry from the bottom of the tower, and circulates it to the upper part of the first-stage oxidation wind distributor 41, where the slurry is circulated and stirred to promote oxidation to obtain the ammonium sulfate solution; the stirring circulation pump 33 is provided with an ammonium sulfate pumping outlet to discharge ammonium sulfate quantitatively The solution enters the ammonium sulfate concentration unit.
  • the oxidative desulfurization effect finally obtained in this comparative example is: the oxidation efficiency is 86.15%, and the desulfurization efficiency is 97.38%.
  • the neutralization reaction of acid-rich slurry and ammonia water and the oxidation reaction of converting ammonium sulfite into ammonium sulfate are not within the appropriate reaction pH range due to the lack of partitioning, which will significantly reduce the neutralization efficiency and oxidation efficiency; and synchronization Negative impact on absorption efficiency.
  • the oxidative desulfurization effect finally obtained in this example is: the oxidation efficiency is 84.69%, and the desulfurization efficiency is 98.75%. Because it is not partitioned, the neutralization reaction of acid-rich slurry with ammonia water and the oxidation reaction of converting ammonium sulfite into ammonium sulfate are not within the appropriate reaction pH range, which will significantly reduce the neutralization efficiency and oxidation efficiency; and simultaneous absorption efficiency have negative impacts.
  • the neutralized slurry further moves downwards, enters the oxidation zone through the third gas-liquid distribution plate 13, and under the action of the oxidation air distributed by the primary oxidation wind distributor 41, the sulfurous acid Ammonium is oxidized and converted to ammonium sulfate.
  • the stirring circulation pump 33 draws the slurry from the bottom of the tower, and circulates it to the upper part of the primary oxidation wind distributor 41 to cause the slurry to circulate and stir to promote the oxidation in the oxidation zone; and obtain the ammonium sulfate solution.
  • the pH in the control ammonia distribution zone is 7.4
  • the pH in the absorption zone is 6.5
  • the pH in the oxidation zone is 5.5.
  • the oxidative desulfurization effect finally obtained in this example is: the oxidation efficiency is 90.65%, and the desulfurization efficiency is 98.98%.
  • the oxidation zone in this example because there is only a primary oxidizing wind distribution, there is no secondary oxidizing wind distribution and more efficient fluid agitation, resulting in a decrease in oxidation efficiency, and a corresponding decrease in the yield of ammonium sulfate in the ammonium sulfate product.
  • the neutralized slurry further moves downwards, enters the oxidation zone through the third gas-liquid distribution plate 13, and under the action of the oxidation air distributed by the primary oxidation wind distributor 41, the sulfurous acid Ammonium is oxidized and converted to ammonium sulfate.
  • the stirring and circulating pump 33 draws the slurry from the bottom of the tower and circulates it to the fluid agitator 3 on the upper part of the primary oxidation wind distributor 41.
  • the oxidative desulfurization effect finally obtained in this example is: the oxidation efficiency is 94.79%, and the desulfurization efficiency is 96.46%. It shows that after the pH of the absorption zone is reduced to a certain range, the absorption efficiency of the slurry for SO 2 will be significantly reduced. Correspondingly, since there is only a first-level oxidizing wind distribution, the oxidation efficiency is also negatively affected.
  • This example is similar to Application Example 8, except that there is no first gas-liquid distribution plate 11, no second air dioxide distributor 42, and the ammonia distributor 2 and the fluid distribution pipe 31 are eliminated.
  • the pH in the ammonia distribution zone is 7.0
  • the pH in the absorption zone is 5.5
  • the pH in the oxidation zone is 5.0.
  • the oxidative desulfurization effect finally obtained in this example is: the oxidation efficiency is 91.68%, and the desulfurization efficiency is 93.5%. It shows that in this case, because there is no ammonia distributor, the uniform mixing degree of ammonia and the absorption liquid is poor, and the pH of the ammonia distribution area is low, which leads to poor reaction efficiency of NH 3 with sulfurous acid and ammonium bisulfite, which has a negative effect on the desulfurization efficiency. Cause a negative impact; the pH in the absorption zone is low, resulting in an increase in ammonium bisulfate, which is likely to cause a decrease in the efficiency of SO 2 absorption. At the same time, the absence of the first gas-liquid distribution plate and the secondary oxidizing wind distributor results in poor oxidation reaction effect and low oxidation efficiency in which gas-liquid contact depends on gas-liquid mass transfer.
  • the pH in the ammonia distribution zone is 8.0
  • the pH in the absorption zone is 7.2
  • the pH in the oxidation zone is 6.2.
  • the oxidative desulfurization effect finally obtained in this example is: the oxidation efficiency is 83.38%, and the desulfurization efficiency is 99.46%. Because the pH of the ammonia distribution area is too large and the pH of the absorption area is too high, although the absorption efficiency of SO 2 is high, the amount of ammonia escaped at the top of the tower is large; and the pH of the oxidation zone is too high, which obviously reduces the oxidation efficiency, and the unoxidized ammonium sulfite will In the ammonium sulfate concentration operation, it decomposes and releases ammonia and acid gas, which reduces the ammonium sulfate yield of the entire system.
  • the pH in the ammonia distribution zone is 6.8, the pH in the absorption zone is 5.0, and the pH in the oxidation zone is controlled to 4.0.
  • the oxidative desulfurization effect finally obtained in this example is: the oxidation efficiency is 99.58%, and the desulfurization efficiency is 89.66%. Because the pH of the oxidation zone is low, although the oxidation efficiency is high, the low pH of the ammonia distribution zone and the low pH of the absorption zone make the desulfurization efficiency low, and the increase of ammonium bisulfate in the slurry not only easily causes the ammonium sulfate concentration unit Gas phase decomposition and equipment corrosion, and affect the desulfurization efficiency.

Abstract

一种高效氨法脱硫氧化装置,在脱硫塔(1)内依次设置多级喷淋层(5)、塔釜;塔釜内依次设置第一气液分布板(11)、第二气液分布板(12)、第三气液分布板(13);第一、第二气液分布板之间形成氨分布区;氨分布区内在第一气液分布板(11)和第二气液分布板(12)之间还设置氨水分布器(2);第二、第三气液分布板之间形成吸收区;第三气液分布板(13)和塔底之间形成氧化区;氧化区内在第三气液板(13)下侧设置若干级氧化风分布器(4),任一级氧化风分布器上均对应设有气液板;在氧化风分布器(4)上方还设置流体搅拌器(3)。该装置通过非机械分区,将脱硫塔釜分为氨分布区、吸收区、氧化区,双重提升吸收氧化效率。同时公开了脱硫氧化方法,控制各区的pH值不同,使吸收和氧化同时达到最优化。

Description

一种氨法脱硫氧化装置及方法 技术领域
本发明属于环保和化工技术领域,涉及一种氨法脱硫氧化装置及方法。
背景技术
二氧化硫是硫燃料(如煤和石油)燃烧烟气的主要污染物之一,由于其进入大气中后,不仅会带来酸雨等环境问题,而且会对人体产生生理危害,是废气治理的主要污染物。
目前对烟气SO 2的净化技术主要是采用湿法脱硫,湿法脱硫中广泛采用的吸收剂有CaCO 3(石灰石-石膏法)、NaOH(钠法)、MgO(镁法)、NH 3(氨法)作为吸收剂,其中由于氨法脱硫工艺不产生废水、副产物(NH 4) 2SO 4可以作为化肥进行资源化利用,具有较大的技术优势。
氨法脱硫与钙法、钠法相比,对氧化率的要求高,如果氧化率低,未氧化的亚硫酸铵会在硫铵浓缩操作中分解,释放出氨和酸性气,造成操作间异味、环境与设备腐蚀等。由于吸收剂NH 3的自身特点,氧化率又受温度、PH值等因素的制约。氧化率与PH值的关系是:PH值越高,氧化效率越差;PH越低,氧化效率越高;而SO 2的吸收效率则是PH值越高,吸收效率越高,反之,则越低。由于氧化率与吸收效率的差异性,近年来,兼顾高效氧化和高效吸收一直是业内的难题。
为了改善氨法脱硫氧化效率,中国专利文献CN 208356491 U提出了一种氨法脱硫亚硫酸铵的氧化装置,采用多层填料组件和组件之间的液体分布环提升气液接触的比表面积,提高亚硫酸铵的氧化速率。由于氨法脱硫浆液中硫铵容易饱和析出,这种填料结构虽然可以提高气液传质效率,但容易堵塞。
中国专利文献CN 109260895 A提出了一种功能导向产物分区的氨法脱硫 氧化循环槽装置及方法。氧化循环槽被槽壁板、隔板分隔成单相液区、氧化区和还原区三个区域提高了吸收浆液对SO 2的吸收能力,强化了烟气脱硫效果。这种装置由于将氧化区与循环吸收区分开,不仅工业实施困难,而且会导致亚硫酸盐在得不到氧化情况下,长时间在塔内循环,发生分解,造成氨逃逸拖尾,另一方面则导致氧化停留时间短,容易导致氧化不充分。
中国专利文献CN 208512251 U提出了一种适于氨法脱硫的组合式氧化装置,该装置是一个优化气液分布的独立池体,内置曝气管和气液分布器。通过增大气液接触面积,使亚硫酸铵的氧化效率达到99.5%以上。该专利虽然解决了氧化问题,但与SO 2的吸收相割裂,很难单独实施。
中国专利文献CN201120164401.2中公开一种双氧化氨法脱硫装置,该专利提高了吸收效率,脱硫效率在95%以上,可以得到纯度在99%以上的硫酸铵晶体,降低了氨逃逸量,氨逃逸量小于8mg/m 3。但是该专利的烟气经除尘后直接进入预洗塔,使得预洗塔的制造工艺要求变高,需要投入更多的成本,且预洗塔使用寿命降低,脱硫后的温度较低烟气直接经烟囱排除,对烟囱腐蚀性较高,影响烟囱的使用寿命。
中国专利文献CN 206350984 U在CN201120164401.2的基础上,通过设置烟气热交换装置,将原烟气先经该装置与由脱硫塔排出的烟气进行热交换处理,使得原烟气的温度降低,从而降低对预洗塔制造工艺要求,节约成本,同时提高由烟囱排出的烟气温度,降低对烟囱的腐蚀,延长烟囱的使用寿命。该专利包括除尘器、预洗塔、脱硫塔、换热器,流程复杂,预洗塔材质要求高。
上述所有专利均是集中于氧化或集中于吸收,很难做到氧化和吸收效率的共同提升,这也是本领域技术人员迫切需要解决的技术问题。
发明内容
为了解决氨法脱硫氧化与吸收双重提效的难题,本发明提供了一种高效氨 法脱硫氧化装置及方法,通过脱硫塔釜非机械分区,将脱硫塔釜分为氨分布区、吸收区、氧化区;配合特殊设计的流体搅拌器和多层气液分布板优化气液、液液传质,提高氧化空气利用率、氧化效率更高,使吸收和氧化同时达到最优化,最终实现脱硫效率大于99.5%、氧化效率大于99%。
本发明的目的之一是提供一种氨法脱硫氧化装置,采用了如下的技术方案:
一种氨法脱硫氧化装置,包括脱硫塔,所述脱硫塔内由上及下依次设置多级喷淋层、塔釜,所述塔釜中由上及下依次设置:第一气液分布板、第二气液分布板、第三气液分布板;
所述第一气液分布板和第二气液分布板之间形成氨分布区;所述氨分布区内在第一气液分布板和第二气液分布板之间还设置氨水分布器;
所述第二气液分布板和第三气液分布板之间形成吸收区;
所述第三气液分布板和塔底之间形成氧化区;所述氧化区内在第三气液板下侧设置若干级氧化风分布器,任一级氧化风分布器上均对应设有气液板;在氧化风分布器上方还设置用于增加气液接触的流体搅拌器。
优选的,所述氧化区在第三气液分布板和塔底之间从下至上依次设置有二级氧化风分布器、第四气液分布板、一级氧化风分布器、流体搅拌器。
优选的,所述流体搅拌器包括封闭的圆盘管、在圆盘管上与之连通的多个流体分布管;且所述流体分布管设为斜向下与圆盘管切线成夹角a的短管;
所述流体搅拌器通过流体输送管与位于塔外的搅拌循环泵连通;所述搅拌循环泵与脱硫塔底部连通。
进一步的,所述流体分布管与圆盘管的切线夹角a为40°~60°。
优选的,所述流体分布管沿圆盘管的圆周均匀分布。
优选的,所述流体分布器的直径为D 1,D 1与塔径D 0之间的关系为D 1=0.3~0.8D 0
优选的,所述流体分布管的长度为30~50mm;和/或,所述流体分布器上布设有6~16根流体分布管。
进一步的,所述的一级氧化风分布器与二级氧化风分布器相距1000~2000mm,二级氧化风分布器与塔底相距700~1000mm。
进一步的,所述的第四气液分布板设在二级氧化风分布器上方300~500mm处,所述的流体搅拌器设在一级氧化风分布器上方500~800mm处,所述的第三气液分布板设在流体搅拌器上方200~300mm处。
进一步的,所述第一气液分布板与第二气液分布板相距400~600mm;所述氨水分布器处于第一气液分布板与第二气液分布板中间。
进一步的,所述氨分布区的第一气液分布板设在低于正常液位500~1000mm的位置。
进一步的,所述第一气液分布板、第二气液分布板、第三气液分布板、第四气液分布板均为孔隙率30%~45%的穿孔板,穿孔直径为d 0为5~10mm,孔间距d 1=(2~5)d 0
优选的,所述吸收区通过管道连接有喷淋液循环泵,所述喷淋液循环泵通过管道连接至脱硫塔上部的喷淋层;其中喷淋层可以根据实际需要设置不同的级数也即层数;
进一步的,所述脱硫塔内在喷淋层上侧还设置除雾器。
优选的,所述氨水分布器设为树枝型分布器;包括氨水分布主管、沿水平方向上相互平行的多根氨水分布支管,所述氨水分布主管与氨水分布支管相连;
相邻氨水分布支管之间的间距为L 1,任一氨水分布支管上均设有两排孔径为L 0的分布孔,同一排中,相邻分布孔的间距为L 2,两排分布孔沿竖直方向对称分布,且与竖直方向之间的夹角为β,β的取值范围为50~80°;
同一根氨水分布支管上的两排分布孔交错排列;其中L 1的取值范围为: 100~200mm,L 2的取值范围为50~150mm,L 0的取值范围为:10~25mm。
优选的,所述氧化风分布器设为树枝型分布器,包括氧化风分布主管、沿水平方向上相互平行的多根氧化风分布支管,所述氧化风分布主管与氧化风分布支管相连;
相邻氧化风分布支管之间的间距为b 1,任一氧化风分布支管上均设有两排孔径为b 0的分布孔,同一排中,相邻分布孔的间距为b 2,两排分布孔沿竖直方向对称分布,且与竖直方向之间的夹角为α,α的取值范围为15~25°;
同一根氧化风分布支管上的两排孔交错排列;其中b 1的取值范围为40~100mm,b 2的取值范围为20~50mm,b 0的取值范围为5~10mm。
优选的,所述搅拌循环泵设置硫铵抽出口,用于定量排放硫铵溶液进入硫铵浓缩单元。
本发明的目的之二是提供一种氨法脱硫氧化方法,包括如下步骤:
S1、塔内浆液经过循环喷淋,与含SO 2的烟气逆流接触,吸收SO 2后形成富酸浆液落入塔釜,在重力的作用下首先经过第一气液分布板进入氨分布区,在氨分布区与氨水分布器分布出来的氨水混合,发生中和反应,其中的亚硫酸、亚硫酸氢铵转化为亚硫酸铵,富酸浆液变成中和浆液;
S2、中和浆液在重力作用下,向下运动,经过第二气液分布板进入吸收区,与从氧化区逸出的氧化空气接触,实现亚硫酸氢铵的深度中和,同时部分亚硫酸铵被氧化为硫酸铵;
S3、中和浆液进一步向下运动,通过第三气液分布板进入氧化区,在多级氧化风分布器分布的氧化空气的作用下,亚硫酸铵充分氧化后转化为硫酸铵。
优选的,所述氨分布区的pH控制为7.2~7.8;所述吸收区的pH控制为6~7;所述氧化区的pH控制为4.5~6。
优选的,步骤S1中,通过喷淋液循环泵从塔釜内的吸收区取吸收液送入塔上方进行循环喷淋以吸收SO 2;脱除SO 2后的气体上升进入除雾器,经除雾 后达标排放。
优选的,步骤S3中,通过搅拌循环泵从塔底抽出浆液,循环至一级氧化风分布器上部的流体搅拌器中,形成切线射流带动氧化区内的氧化空气和浆液剧烈混合,二级氧化风分布器上方的第四气液分布板同步促进氧化区内气液传质,从而中和浆液被充分氧化得到硫铵溶液;且所述搅拌循环泵通过设置硫铵抽出口定量排放硫铵溶液进入硫铵浓缩单元。
本发明能够带来以下有益效果:
1)本发明装置通过脱硫塔釜非机械分区方法,将脱硫塔釜分为氨分布区、吸收区、氧化区;配合特殊设计的流体搅拌器和多层气液分布板优化气液、液液传质,提高氧化空气利用率、使氧化效率更高,在同一塔内进行脱硫氧化、使吸收和氧化同时达到最优化,最终实现脱硫效率大于99.5%,氧化效率大于99%。
2)本发明方法通过控制氨分布区PH值、吸收区PH值和氧化反应区PH值于不同的数值区间,使中和、吸收和氧化反应同时达到最优化反应条件,达到全面提高氨与亚硫酸和亚硫酸氢铵的中和效率、浆液对SO 2的吸收效率、氧气对亚硫酸盐的氧化效率的目的。
3)本发明特殊设计的氧化风分布器,使氧化风在分布器的界面上均匀向下分布,使氧化风具有较大的相下初速度,不仅有利于气液均匀混合,而且氧气先向下,然后再向上与浆液接触,提高了氧化风在浆液中的行程;提高气液接触时间,提高氧化效率。此外,本发明采用多级氧化风分布,使氧气的利用率更高。
4)本发明中氧化区内与浆液完成氧化反应的剩余氧化风自然向上进入吸收区,继续与浆液进行氧化反应,提高氧化风的利用效率、浆液对SO 2的吸收效率。
5)本发明中氧化余气随烟气一起进入喷淋吸收区,脱除所夹带的气相污 染物后,再经过除雾处理后达标排入大气,不产生二次污染。
6)本发明中的流体搅拌器形成环形切向液体搅拌,使氧化区接近全混状态,提高传质效率和氧化效率;并且在杜绝泄露的前提下实现了塔内流体的充分混合搅拌。
附图说明
下面将以明确易懂的方式,结合附图说明优选实施方式,对本发明的上述特性、技术特征、优点及其实现方式予以进一步说明。
图1是本发明氨法脱硫氧化装置的结构示意图;
图2是本发明氨法脱硫氧化装置中流体搅拌器的结构示意图;
图3是本发明中氨水分布器的结构示意图;
图4是氨水分布器中氨水分布支管的结构示意图;
图5是本发明中氧化风分布器的结构示意图;
图6是氧化风分布器中氧化风分布支管的结构示意图。
附图标号说明:
1-脱硫塔,11-第一气液分布板,12-第二气液分布板,13-第三气液分布板,14-第四气液分布板;2-氨水分布器,20-氨水分布主管,21-氨水分布支管;3-流体搅拌器,30-圆盘管,31-流体分布管,32-流体输送管,33-搅拌循环泵;4-氧化风分布器,40-氧化风分布主管,400-氧化风分布支管;41-一级氧化风分布器;42-二级氧化风分布器;5-喷淋层,50-喷淋液循环泵;6-除雾器。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
为使图面简洁,各图中只示意性地表示出了与本发明相关的部分,它们并不代表其作为产品的实际结构。
实施例1
如图1所示,为一种氨法脱硫氧化装置,包括脱硫塔1,脱硫塔1内由上及下依次设置多级喷淋层5、塔釜,所述塔釜内由上及下依次设置第一气液分布板11、第二气液分布板12、第三气液分布板13;
所述第一气液分布板11和第二气液分布板12之间形成氨分布区;所述氨分布区内在第一气液分布板11和第二气液分布板12之间还设置氨水分布器2;
所述第二气液分布板12和第三气液分布板13之间形成吸收区;
所述第三气液分布板13和塔底之间形成氧化区;所述氧化区内在第三气液板下侧设置若干级氧化风分布器4,任一级氧化风分布器4上均对应设有气液板;在氧化风分布器4上方还设置用于增加气液接触的流体搅拌器3。
本实施例中第三、第四气液分布板和氨水分布器2组成氨分布区;通过脱硫塔非机械分区方法,将脱硫塔釜分为氨分布区、吸收区、氧化区;可以控制氨分布区PH值、吸收区PH值和氧化反应区PH值于不同的数值区间,达到全面提高氨与亚硫酸和亚硫酸氢铵的中和效率、浆液对SO 2的吸收效率、氧气对亚硫酸盐的氧化效率的目的。同时辅助以流体搅拌器3和多层气液分布板,改善气液和液液传质,提高氧化空气利用率,使吸收和氧化同时达到最优化。并且,根据实际所需处理情况及脱硫塔的尺寸容量,氧化空气采用多级注入方式,氧化空气从分布孔出来后,可以对一定范围内的浆液产生较大的扰动,并且任一级氧化风分布器上均对应设有气液板,将进一步提高气液混合效率、氧化效率。
作为优选的实施例,所述氧化区在第三气液分布板和塔底之间从下至上依次设置有二级氧化风分布器42、第四气液分布板14、一级氧化风分布器41、流体搅拌器3。本实施例采用两级氧化风分布器的设置,对常规尺寸下的脱硫 塔更加适用,当然也可根据实际需要增加氧化风分布器的设置级数及相应的气液分布板数量。为了提高流体搅拌均匀性,也可根据需求设置多层流体搅拌器。
实施例2
结合图2所示,本实施例在实施例1的基础上,所述流体搅拌器3包括封闭的圆盘管30、在圆盘管30上与之连通的多个流体分布管31;且所述流体分布管31设为斜向下与圆盘管30切线成夹角a的短管;
所述流体搅拌器3通过流体输送管32与位于塔外的搅拌循环泵33连通;所述搅拌循环泵33与脱硫塔1底部连通。
本实施例中,搅拌循环泵33从塔底抽出流体增压后,经流体输送管32输送进流体搅拌器3的圆盘管30,然后再通过圆盘管30上斜向下的流体分布管31高速射入塔釜,对塔釜物料进行搅拌。短管斜向下喷射,使塔内物料产生类似浆式搅拌器的扰动流型。从而本发明搅拌循环泵33从塔底抽出浆液,循环至一级氧化风分布器41上部,结合其特殊设计的环形切向流体搅拌,形成螺旋型的切线射流并带动其下部的氧化空气和浆液剧烈混合;由于浆液从下部抽出返至上部,相当于氧化区处于全混状态利用,提高传质效率和氧化效率;达到模拟机械搅拌的目的,在杜绝泄露的基础上实现了对流体的高速搅拌。
作为优选的实施例,所述流体分布管31与圆盘管30的切线夹角a为40°~60°,进一步使短管中射出的流体能够高速射入塔内对流体进行充分搅拌。
作为优选的另一实施例,所述流体分布管31沿圆盘管30的圆周均匀分布,使流体分布管31均匀间隔射流,能够提高流体搅拌的均匀性、充分保障搅拌的效果。
作为优选的另一实施例,所述流体搅拌器3的直径为D 1,D 1与塔径D 0之间的关系为D 1=0.3~0.8D 0
本实施例中的尺寸关系能保证圆盘管20的流体流速与流体输送管4内流 体流速相当,使搅动混合作用更温和稳定。
在实际应用中,上述实施例中的流体分布管31长度可设为30~50mm;所述流体搅拌器3上可布设6~16根流体分布管31,短管沿圆周均匀分布。
更优的,控制搅拌循环泵33的单位时间内的循环量(每小时)是脱硫塔1塔釜容积的50~100倍,循环量太小,混合效果差,循环量太大能耗高;流体从流体分布管31以一定的角度射出,在劈开塔内流体形成扰动的同时,也在射流初速度方向驱动塔釜3内流体搅拌。如图所示,沿圆周均匀分布的多流体分布管31形成多管射流,促使塔釜内流体产生顺时针旋流混合。当然,也可更改流体分布管31的在圆盘管30上的分布朝向,形成逆时针旋流混合。更优的,所述搅拌循环泵33设置硫铵抽出口,用于定量排放硫铵溶液进入硫铵浓缩单元。
实施例3
本实施例在实施例1或2的基础上,所述的一级氧化风分布器41与二级氧化风分布器42相距1000~2000mm,二级氧化风分布器42与塔底相距700~1000mm,从而本实施例可以避免氧化空气进入搅拌循环泵33,造成气蚀。
或者,所述的第四气液分布板14设在二级氧化风分布器42上方300~500mm处,所述的流体搅拌器3设在一级氧化风分布器41上方500~800mm处,所述的第三气液分布板13设在流体搅拌器3上方200~300mm处。本本实施例中两级氧化风分布器上方均设有气液分布板,防止氧化空气在上升过程中聚集,促使气液重新混合,更新气液两相传质面,提高氧化效率;流体搅拌器3设在一级氧化风分布器41上方能够促进循环返回射流的浆液与下侧的氧化空气剧烈混合,提高传质效率和氧化效率。
或者,所述第一气液分布板11与第二气液分布板12相距400~600mm;所述氨水分布器2处于第一气液分布板11与第二气液分布板12中间。第一气液 分布板11和第二气液分布板12同样起到防止氧化空气在上升过程中聚集,促使气液重新混合,更新气液两相传质面,提高氧化效率的作用。
或者,所述氨分布区的第一气液分布板11设在低于正常液位500~1000mm的位置。
上述实施例中的尺寸设置可以使多层气液板在各自的功能区内充分发挥气液传质、液液传质的作用,提高脱硫吸收及氧化的效率。
此外,在实际应用中第一气液分布板11、第二气液分布板12、第三气液分布板13、第四气液分布板13均为孔隙率30%~45%的穿孔板,穿孔直径为d 0为5~10mm,孔间距d 1=2~5d 0。本实施例的设置有利于气液均匀混合、可以提高气液传质的效率。
实施例4
本实施例在实施例1或2或3的基础上,所述吸收区通过管道连接有喷淋液循环泵50,所述喷淋液循环泵50通过管道连接至脱硫塔1上部的喷淋层5。喷淋层可根据实际需要选择设置的层级数。从而,喷淋吸收浆液从吸收区的下部抽出,经循环喷淋泵50增压后,送入喷淋层5向下喷淋,与烟气逆流接触。更优的,所述脱硫塔1内在喷淋层5上侧还设置除雾器6。
本实施例中氧化空气经过氧化区完成对浆液的氧化后,进入吸收区继续对浆液进行氧化,最后通过塔釜液面进入喷淋层5、除雾器6,与烟气混合后经多级喷淋吸收和除雾后达标排放,不会引起二次污染。
上述实施例1~4中,对于氨水分布器2的结构优选设置为树枝型分布器,如图3、4所示,包括氨水分布主管20、沿水平方向上相互平行的多根氨水分布支管21,所述氨水分布主管20与氨水分布支管21相连;
相邻氨水分布支管21之间的间距为L 1,任一氨水分布支管21上均设有两排孔径为L 0的分布孔,同一排中,相邻分布孔的间距为L 2,两排分布孔沿竖 直方向对称分布,且与竖直方向之间的夹角为β,β的取值范围为50~80°;
同一根氨水分布支管21上的两排分布孔交错排列;其中L 1的取值范围为:100~200mm,L 2的取值范围为50~150mm,L 0的取值范围为:10~25mm。本优选例中的氨水分布器2的设置便于氨水在塔釜浆液中的均匀分布、提高液液传质,从而能够充分增加氨水吸收剂与吸收SO 2的富酸浆液的中和反应,提高脱硫效率。
上述实施例1~4中,对于氧化风分布器的结构优选设置为树枝型分布器,如图5、6所示,包括氧化风分布主管40、沿水平方向上相互平行的多根氧化风分布支管400的,所述氧化风分布主管40与氧化风分布支管400相连;
相邻氧化风分布支管400之间的间距为b 1,任一氧化风分布支管400上开两排孔径为b 0的分布孔,同一排中,相邻分布孔的间距为b 2,两排分布孔沿竖直方向对称分布,且与竖直方向之间的夹角为α,α的取值范围为15~25°;
同一根氧化风分布支管400上的两排孔交错排列;其中b 1的取值范围为40~100mm,b 2的取值范围为20~50mm,b 0的取值范围为5~10mm。本优选例中的氧化风分布器4的设置便于氧化风中的氧气与浆液之间的均匀分布和气液传质,减少传质阻力从而能够进一步的加快氧气与中和浆液的氧化反应,提高氧化效率。
更优的,一级氧化风分布器41、二级氧化风分布器42均斜向下开孔(如图6所示),从分布孔出来的氧化空气具有较大的向下分速度,对下方500mm以内的浆液产生较大的扰动,更加提高气液混合效率、氧化效率。
实施例5
结合图1,本实施例为一种氨法脱硫氧化方法,包括如下步骤:
S1、塔内浆液经过循环喷淋,与送入塔内的含SO 2的烟气逆流接触,吸收SO 2后落入塔釜,落入塔釜的浆液由于吸收了SO 2,亚硫酸、亚硫酸氢铵含量 增高变成富酸浆液,富酸浆液在重力的作用下首先经过第一气液分布板11进入氨分布区,在氨分布区与氨水分布器2分布出来的氨水吸收剂混合,发生中和反应,其中的亚硫酸、亚硫酸氢铵转化为亚硫酸铵,富酸浆液变成中和浆液;
S2、中和浆液在重力作用下,向下运动,经过第二气液分布板12进入吸收区,与从氧化区逸出的氧化空气接触,实现亚硫酸氢铵的深度中和,同时部分亚硫酸铵被氧化为硫酸铵;
S3、中和浆液进一步向下运动,通过第三气液分布板13进入氧化区,在一级氧化风分布器及二级氧化风分布器分布的氧化空气的作用下,亚硫酸铵被充分氧化转化为硫酸铵。
作为优选的实施例,所述氨分布区的pH控制为7.2~7.8,PH低于此范围,NH 3与亚硫酸和亚硫酸氢氨的反应效率差,高于此范围,容易引起氨逃逸。所述吸收区的pH控制为6~7,PH低于此范围,浆液对SO 2的吸收效率降低,高于此范围,容易引起氨逃逸;所述氧化区的pH控制为4.5~6,PH低于此范围,硫酸氢氨增多,容易造成硫铵浓缩单元的气相分解和设备腐蚀,高于此范围,降低氧化效率。
作为优选的另一实施例,氨水分布器2中作为吸收剂的氨水浓度为1~4wt%。
更优的,步骤S1中,通过喷淋液循环泵从塔内的吸收区取吸收液送入塔上方进行循环喷淋以吸收SO 2;脱除SO 2后的气体上升进入除雾器,经除雾后,达标排放。
更优的,步骤S3中,通过搅拌循环泵从塔底抽出浆液,循环至一级氧化风分布器41上部的流体搅拌器3中,形成切线射流带动氧化区内的氧化空气和浆液剧烈混合(流体搅拌器形成的螺旋型的切线射流带动其下部的氧化空气和浆液剧烈混合;由于浆液从下部抽出返至上部,相当于氧化区处于全混状态),二级氧化风分布器42上方的第四气液分布板同步促进氧化区内气液传质,从而中和浆液被充分氧化得到硫铵溶液;搅拌循环泵33通过设置硫铵抽出口 定量排放硫铵溶液进入硫铵浓缩单元。
本实施例中控制脱硫塔釜的非机械分区,由上到下形成氨分布区、吸收区、氧化区,并且控制浆液的PH值由上到下逐渐降低;在PH较高的氨分布区及吸收区保证了浆液对SO 2的高吸收效率,同时对吸收区的浆液取样进行循环喷淋,也保证了喷淋浆液对送入脱硫塔1内烟气中SO 2的高吸收效;在氧化区,随着硫铵浓度的增加,PH逐步降低,实现较高的氧化效率,使亚硫酸铵被充分氧化而转化为硫酸铵;同时搅拌循环泵33设置硫铵抽出口,定量排放硫铵溶液进入硫铵浓缩单元。从而避免了未氧化的亚硫酸铵会在硫铵浓缩操作中分解,释放出氨和酸性气,造成操作间异味、环境与设备腐蚀的问题。
应用例6
利用如下氨法脱硫氧化装置:包括脱硫塔1,脱硫塔1内由上及下依次设置除雾器6、多级喷淋层5、塔釜;塔釜内由上及下依次设置第一气液分布板11、第二气液分布板12、第三气液分布板13;
第一气液分布板11和第二气液分布板12之间形成氨分布区;氨分布区内在第一气液分布板11和第二气液分布板12之间还设置氨水分布器2;
第二气液分布板12和第三气液分布板13之间形成吸收区;
第三气液分布板13和塔底之间形成氧化区;氧化区从下至上依次设置有二级氧化风分布器42、第四气液分布板14、一级氧化风分布器41、流体搅拌器3;
其中,两级氧化风分布器相距1500mm,二级氧化风分布器42距塔底700mm,第四气液分布板14在二级氧化风分布器42上方400mm处,流体搅拌器3设置在一级氧化风分布器41上方700mm处,第三气液分布板13位于液体搅拌器3上方200mm处,第三气液分布板13上方200mm处设置循环喷淋液取样口,循环喷淋液取样口上部1500mm处设置第二气液分布板12,第二气液分布板12 与第一气液分布板11相距500mm,氨水分布器2处于第一气液分布板11与第二气液分布板12中间;
实施如下氨法脱硫氧化方法:
S1、塔内浆液经过循环喷淋,与进入脱硫塔1内的含SO 2的烟气逆流接触,烟气中SO 2含量3000mg/Nm 3,具体的,通过喷淋液循环泵50从塔内的吸收区取吸收液送入塔上方进行循环喷淋以吸收SO 2;脱除SO 2后的气体上升进入除雾器6,经除雾后,达标排放;而吸收SO 2后的浆液落下,落入塔釜的浆液由于吸收了SO 2,亚硫酸、亚硫酸氢铵含量增高变成富酸浆液,富酸浆液在重力的作用下首先经过第一气液分布板11进入氨分布区,在氨分布区与氨水分布器2分布出来的浓度为2wt%的氨水混合,发生中和反应,控制氨分布区中的PH为7.5,其中的亚硫酸、亚硫酸氢铵转化为亚硫酸铵,富酸浆液变成中和浆液;
S2、中和浆液在重力作用下,向下运动,经过第二气液分布板12进入吸收区,控制吸收区中的PH为7,并与从氧化区逸出的氧化空气接触,完成一次气液重新分布,实现亚硫酸氢铵的深度中和,同时部分亚硫酸铵被氧化为硫酸铵;
S3、中和浆液进一步向下运动,通过第三气液分布板13进入氧化区,氧化区的pH控制为5.8,在一级氧化风分布器41及二级氧化风分布器42分布的氧化空气的作用下,亚硫酸铵被充分氧化转化为硫酸铵。具体的:搅拌循环泵33从塔底抽出浆液,循环至一级氧化风分布器41上部的流体搅拌器3中,其螺旋型的切线射流带动其下部的氧化空气和浆液剧烈混合;由于浆液从下部抽出返至上部,相当于氧化区处于全混状态,二级氧化风分布器42上方的第四气液分布板14同步促进氧化区内气液传质,促进氧化区内的充分氧化作用得到硫铵溶液;搅拌循环泵33设置硫铵抽出口,定量排放硫铵溶液进入硫铵浓缩单元。
本应用例脱硫后,硫铵浓缩车间无异味(如果有亚硫酸氨会分解为氨和SO 2 而产生异味),硫铵产品中硫酸铵与亚硫酸氨的相对质量百分比为:99.5:0.5,净化烟气的SO 2含量为:0.5mg/Nm 3;从而最终得到的氧化脱硫效果为:氧化效率99.5%,脱硫效率99.98%。
应用例7
本应用例与应用例6类似,不同之处仅在于:
氨法脱硫氧化装置中:两级氧化风分布器相距1300mm,二级氧化风分布器42距塔底800mm,第四气液分布板14在二级氧化风分布器42上方400mm处,流体搅拌器3设置在一级氧化风分布器41上方700mm处,第三气液分布板13位于液体搅拌器3上方200mm处,第三气液分布板13上方200mm处设置循环喷淋液取样口,循环喷淋液取样口上部1500mm处设置第二气液分布板12,第二气液分布板12与第一气液分布板11相距400mm,氨水分布器2处于第一气液分布板11与第二气液分布板12中间。
氨法脱硫氧化方法中:采用1wt%浓度的氨水作为吸收剂,控制氨分布区中的PH为7.2,吸收区中的PH为6,氧化区PH为5.5。
本应用例最终得到的氧化脱硫效果为:氧化效率99.6%,脱硫效率99.94%。
应用例8
本应用例与应用例6类似,不同之处仅在于:
氨法脱硫氧化装置中:两级氧化风分布器相距2000mm,二级氧化风分布器42距塔底700mm,第四气液分布板14在二级氧化风分布器42上方300mm处,流体搅拌器3设置在一级氧化风分布器41上方500mm处,第三气液分布板13位于液体搅拌器3上方300mm处,第三气液分布板13上方200mm处设置循环喷淋液取样口,循环喷淋液取样口上部1800mm处设置第二气液分布板12,第二气液分布板12与第一气液分布板11相距400mm,氨水分布器2处于第一气液分布板11与第二气液分布板12中间。
氨法脱硫氧化方法中:采用4wt%浓度的氨水作为吸收剂,控制氨分布区中的PH为7.4,吸收区中的PH为6.8,氧化区PH为5.5。
本应用例最终得到的氧化脱硫效果为:氧化效率99.8%,脱硫效率99.95%。
应用例9
本应用例与应用例6类似,不同之处仅在于:
氨法脱硫氧化装置中:两级氧化风分布器相距1500mm,二级氧化风分布器42距塔底700mm,第四气液分布板14在二级氧化风分布器42上方400mm处,流体搅拌器3设置在一级氧化风分布器41上方700mm处,第三气液分布板13位于液体搅拌器3上方200mm处,第三气液分布板13上方200mm处设置循环喷淋液取样口,循环喷淋液取样口上部1500mm处设置第二气液分布板12,第二气液分布板12与第一气液分布板11相距500mm,氨水分布器2处于第一气液分布板11与第二气液分布板12中间。
氨法脱硫氧化方法中:采用2wt%浓度的氨水作为吸收剂,控制氨分布区中的PH为7.2,吸收区中的PH为6.8,氧化区PH为5.5。
本应用例最终得到的氧化脱硫效果为:氧化效率99.6%,脱硫效率99.98%。
应用例10
本应用例与应用例6类似,不同之处仅在于:
氨法脱硫氧化装置中:两级氧化风分布器相距2000mm,二级氧化风分布器42距塔底700mm,第四气液分布板14在二级氧化风分布器42上方300mm处,流体搅拌器3设置在一级氧化风分布器41上方500mm处,第三气液分布板13位于液体搅拌器3上方300mm处,第三气液分布板13上方200mm处设置循环喷淋液取样口,循环喷淋液取样口上部1800mm处设置第二气液分布板12,第二气液分布板12与第一气液分布板11相距400mm,氨水分布器2处于第一气液分布板11与第二气液分布板12中间。
氨法脱硫氧化方法中:采用3wt%浓度的氨水作为吸收剂,控制氨分布区中的PH为7.8,吸收区中的PH为7,氧化区PH为6.0。
本应用例最终得到的氧化脱硫效果为:氧化效率99.2%,脱硫效率99.97%。
应用例11
本应用例与应用例6类似,不同之处仅在于:
氨法脱硫氧化装置中:两级氧化风分布器相距1800mm,二级氧化风分布器42距塔底700mm,第四气液分布板11在二级氧化风分布器42上方300mm处,流体搅拌器3设置在一级氧化风分布器41上方500mm处,第三气液分布板13位于液体搅拌器3上方300mm处,第三气液分布板13上方200mm处设置循环喷淋液取样口,循环喷淋液取样口上部1800mm处设置第二气液分布板12,第二气液分布板12与第一气液分布板11相距400mm,氨水分布器2处于第一气液分布板11与第二气液分布板12中间。
氨法脱硫氧化方法中:采用3wt%浓度的氨水作为吸收剂,控制氨分布区中的PH为7.2,吸收区中的PH为6,氧化区PH为4.5。
本应用例最终得到的氧化脱硫效果为:氧化效率99.8%,脱硫效率99.6%。
对比例12
本比较例塔釜中不存在第一气液分布板11、第二气液分布板12、第三气液分布板13,虽然有循环搅拌,但没有流体分布管31;只有一级氧化风分布器41,没有二级氧化风分布器42、相应的也没有第四气液分布板14。
S1、塔内浆液经过循环喷淋,与进入脱硫塔1内的含SO 2的烟气逆流接触,烟气中SO 2含量3000mg/Nm 3,具体的,通过喷淋液循环泵50从塔釜取吸收液送入塔釜上方进行循环喷淋以吸收SO 2;脱除SO 2后的气体上升进入除雾器6,经除雾后,达标排放;而吸收SO 2后的浆液落下,落入塔釜的浆液由于吸收了SO 2,亚硫酸、亚硫酸氢铵含量增高变成富酸浆液,富酸浆液在重力的作用下 进入塔釜,控制塔釜的PH为6.2;富酸浆液首先与氨水分布器2分布出来的浓度为2wt%的氨水混合,发生中和反应,其中的亚硫酸、亚硫酸氢铵转化为亚硫酸铵,富酸浆液变成中和浆液;
S2、中和浆液在重力作用下,向下运动,在一级氧化风分布器41分布的氧化空气的作用下,亚硫酸铵被氧化转化为硫酸铵。具体的:搅拌循环泵33从塔底抽出浆液,循环至一级氧化风分布器41上部发生浆液循环搅拌,促进氧化作用得到硫铵溶液;搅拌循环泵33设置硫铵抽出口,定量排放硫铵溶液进入硫铵浓缩单元。
本对比例最终得到的氧化脱硫效果为:氧化效率86.15%,脱硫效率97.38%。本例中由于未分区,使富酸浆液与氨水的中和反应、亚硫酸铵转化为硫酸铵的氧化反应都不在适宜的反应PH范围内,从而将明显降低中和效率、氧化效率;并同步对吸收效率产生负面影响。
对比例13
本例与对比例12类似,不同之处仅在于:
氨法脱硫氧化方法中:控制塔釜的PH为6.8。
本例最终得到的氧化脱硫效果为:氧化效率84.69%,脱硫效率98.75%。由于未分区,使富酸浆液与氨水的中和反应、亚硫酸铵转化为硫酸铵的氧化反应都不在适宜的反应PH范围内,从而将明显降低中和效率、氧化效率;并同步对吸收效率产生负面影响。
对比例14
本例与应用例7类似,不同之处仅在于:
在装置中:在氧化区中只设置一级氧化风分布器41,取消二级氧化风分布器42;并且,取消流体分布管31的设置;
相应的在氨法脱硫氧化方法中:S3、中和浆液进一步向下运动,通过第三 气液分布板13进入氧化区,在一级氧化风分布器41分布的氧化空气的作用下,亚硫酸铵被氧化转化为硫酸铵。具体的,搅拌循环泵33从塔底抽出浆液,循环至一级氧化风分布器41上部发生浆液循环搅拌,促进氧化区内的氧化作用;得到硫铵溶液。其中,控制氨分布区中的PH为7.4,吸收区中的PH为6.5,氧化区PH为5.5。
本例最终得到的氧化脱硫效果为:氧化效率90.65%,脱硫效率98.98%。本例中氧化区由于只有一级氧化风分布,没有二级氧化风分布和更高效的流体搅拌,导致氧化效率降低,相应使硫铵产品中硫酸铵收率降低。
对比例15
本例与应用例7类似,不同之处仅在于:
在装置中:在氧化区中只设置一级氧化风分布器41,没有二级氧化风分布器42;
相应的在氨法脱硫氧化方法中:S3、中和浆液进一步向下运动,通过第三气液分布板13进入氧化区,在一级氧化风分布器41分布的氧化空气的作用下,亚硫酸铵被氧化转化为硫酸铵。具体的:搅拌循环泵33从塔底抽出浆液,循环至一级氧化风分布器41上部的流体搅拌器3中,其螺旋型的切线射流带动其下部的氧化空气和浆液剧烈混合;由于浆液从下部抽出返至上部,相当于氧化区处于全混状态,促进氧化区内的氧化作用;其中,控制氨分布区中的PH为7.2,吸收区中的PH为5.8,氧化区PH为5.3。
本例最终得到的氧化脱硫效果为:氧化效率94.79%,脱硫效率96.46%。表明,吸收区PH降低到一定范围后,将导致浆液对SO 2的吸收效率明显降低,相应的,由于只有一级氧化风分布,氧化效率也受到负面影响。
对比例16
本例与应用例8类似,不同之处仅在于:没有第一气液分布板11,没有第 二氧化风分布器42,取消氨水分布器2,取消流体分布管31的设置。
氨法脱硫氧化方法中:控制氨分布区中的PH为7.0,吸收区中的PH为5.5,氧化区PH为5.0。
本例最终得到的氧化脱硫效果为:氧化效率91.68%,脱硫效率93.5%。表明,本例中因没有氨水分布器,导致氨水与吸收液的均匀混合度差,且氨分布区PH偏低,导致NH 3与亚硫酸和亚硫酸氢氨的反应效率变差,对脱硫效率造成负面影响;吸收区内PH偏低,导致硫酸氢铵增多,容易造成SO 2吸收效率降低。同时,没有第一气液分布板和二级氧化风分布器,导致气液接触依赖于气液传质的氧化反应效果变差,氧化效率低。
对比例17
本例与应用例8类似,不同之处仅在于:
氨法脱硫氧化方法中:控制氨分布区中的PH为8.0,吸收区中的PH为7.2,氧化区PH为6.2。
本例最终得到的氧化脱硫效果为:氧化效率83.38%,脱硫效率99.46%。由于氨分布区的PH偏大、吸收区PH偏高,虽然SO 2的吸收效率高,但塔顶氨逃逸量大;且氧化区PH偏高,明显降低氧化效率,未氧化的亚硫酸铵会在硫铵浓缩操作中分解,释放出氨和酸性气,使整个体系的硫铵收率也相应降低。
对比例19
本例与应用例8类似,不同之处仅在于:
氨法脱硫氧化方法中:控制氨分布区中的PH为6.8,吸收区中的PH为5.0,控制氧化区PH为4.0。
本例最终得到的氧化脱硫效果为:氧化效率99.58%,脱硫效率89.66%。由于氧化区的PH偏低,虽然氧化效率高,但由于氨分布区的PH偏小、吸收区PH偏小,使脱硫效率低,且浆液中硫酸氢氨增多,不仅容易造成硫铵浓缩单元的 气相分解和设备腐蚀,而且影响脱硫效率。
应当说明的是,上述实施例均可根据需要自由组合,对于其它的众多组合,此处不再一一赘述。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种氨法脱硫氧化装置,包括脱硫塔,所述脱硫塔由上及下依次设置多级喷淋层、塔釜;其特征在于:
    所述塔釜内由上及下依次设置第一气液分布板、第二气液分布板、第三气液分布板;
    所述第一气液分布板和第二气液分布板之间形成氨分布区;所述氨分布区内在第一气液分布板和第二气液分布板之间还设置氨水分布器;
    所述第二气液分布板和第三气液分布板之间形成吸收区;
    所述第三气液分布板和塔底之间形成氧化区;所述氧化区内在第三气液板下侧设置若干级氧化风分布器,任一级氧化风分布器上均对应设有气液板;在氧化风分布器上方还设置用于增加气液接触的流体搅拌器。
  2. 根据权利要求1所述的氨法脱硫氧化装置,其特征在于:
    所述氧化区在第三气液分布板和塔底之间从下至上依次设置有二级氧化风分布器、第四气液分布板、一级氧化风分布器、流体搅拌器。
  3. 根据权利要求1或2所述的氨法脱硫氧化装置,其特征在于:
    所述流体搅拌器包括封闭的圆盘管、在圆盘管上与之连通的多个流体分布管;且所述流体分布管设为斜向下与圆盘管切线成夹角a的短管;
    所述流体搅拌器通过流体输送管与位于塔外的搅拌循环泵连通;所述搅拌循环泵与脱硫塔底部连通。
  4. 根据权利要求2所述的氨法脱硫氧化装置,其特征在于:
    所述的一级氧化风分布器与二级氧化风分布器相距1000~2000mm,二级氧化风分布器与塔底相距700~1000mm;和/或,
    所述的第四气液分布板设在二级氧化风分布器上方300~500mm处,所述 的流体搅拌器设在一级氧化风分布器上方500~800mm处,所述的第三气液分布板设在流体搅拌器上方200~300mm处;和/或,
    所述第一气液分布板与第二气液分布板相距400~600mm;所述氨水分布器处于第一气液分布板与第二气液分布板中间;和/或,
    所述氨分布区的第一气液分布板设在低于正常液位500~1000mm的位置。
  5. 根据权利要求2所述的氨法脱硫氧化装置,其特征在于:
    所述第一气液分布板、第二气液分布板、第三气液分布板、第四气液分布板均为孔隙率30%~45%的穿孔板,穿孔直径为d 0为5~10mm,孔间距d 1=(2~5)d 0
  6. 根据权利要求1所述的氨法脱硫氧化装置,其特征在于:
    所述吸收区通过管道连接有喷淋液循环泵,所述喷淋液循环泵通过管道连接至脱硫塔上部的喷淋层;
    所述脱硫塔内在喷淋层上侧还设置除雾器。
  7. 根据权利要求1所述的氨法脱硫氧化装置,其特征在于:
    所述氨水分布器设为树枝型分布器;包括氨水分布主管、沿水平方向上相互平行的多根氨水分布支管,所述氨水分布主管与氨水分布支管相连;
    相邻氨水分布支管之间的间距为L 1,任一氨水分布支管上均设有两排孔径为L 0的分布孔,同一排中,相邻分布孔的间距为L 2,两排分布孔沿竖直方向对称分布,且与竖直方向之间的夹角为β,β的取值范围为50~80°;
    同一根氨水分布支管上的两排分布孔交错排列;其中L 1的取值范围为:100~200mm,L 2的取值范围为50~150mm,L 0的取值范围为:10~25mm;
    和/或,
    所述氧化风分布器设为树枝型分布器,包括氧化风分布主管、沿水平方 向上相互平行的多根氧化风分布支管,所述氧化风分布主管与氧化风分布支管相连;
    相邻氧化风分布支管之间的间距为b 1,任一氧化风分布支管上均设有两排孔径为b 0的分布孔,同一排中,相邻分布孔的间距为b 2,两排分布孔沿竖直方向对称分布,且与竖直方向之间的夹角为α,α的取值范围为15~25°;
    同一根氧化风分布支管上的两排孔交错排列;其中b 1的取值范围为40~100mm,b 2的取值范围为20~50mm,b 0的取值范围为5~10mm。
  8. 一种氨法脱硫氧化方法,其特征在于,包括如下步骤:
    S1、塔内浆液经过循环喷淋,与含SO 2的烟气逆流接触,吸收SO 2后形成富酸浆液落下,在重力的作用下首先经过第一气液分布板进入氨分布区,在氨分布区与氨水分布器分布出来的氨水混合,发生中和反应,其中的亚硫酸、亚硫酸氢铵转化为亚硫酸铵,富酸浆液变成中和浆液;
    S2、中和浆液在重力作用下,向下运动,经过第二气液分布板进入吸收区,与从氧化区逸出的氧化空气接触,实现亚硫酸氢铵的深度中和,同时部分亚硫酸铵被氧化为硫酸铵;
    S3、中和浆液进一步向下运动,通过第三气液分布板进入氧化区,在多级氧化风分布器分布的氧化空气的作用下,亚硫酸铵充分氧化后转化为硫酸铵。
  9. 根据权利要求8所述的氨法脱硫氧化方法,其特征在于:
    所述氨分布区的pH控制为7.2~7.8;
    所述吸收区的pH控制为6~7;
    所述氧化区的pH控制为4.5~6。
  10. 根据权利要求8所述的氨法脱硫氧化方法,其特征在于:
    步骤S1中,通过喷淋液循环泵从塔内的吸收区吸收液送入塔上方进行循环喷淋以吸收SO 2;脱除SO 2后的气体上升进入除雾器,经除雾后达标排放;
    和/或,
    步骤S3中,通过搅拌循环泵从塔底抽出浆液,循环至一级氧化风分布器上部的流体搅拌器中,形成切线射流带动氧化区内的氧化空气和浆液剧烈混合,二级氧化风分布器上方的第四气液分布板同步促进氧化区内气液传质,从而中和浆液被充分氧化得到硫铵溶液;且所述搅拌循环泵通过设置硫铵抽出口定量排放硫铵溶液进入硫铵浓缩单元。
PCT/CN2019/108758 2019-09-17 2019-09-27 一种氨法脱硫氧化装置及方法 WO2021051448A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/642,960 US11534717B2 (en) 2019-09-17 2019-09-27 Ammonia desulphurization and oxidation apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910877286.4A CN110479077A (zh) 2019-09-17 2019-09-17 一种氨法脱硫氧化装置及方法
CN201910877286.4 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021051448A1 true WO2021051448A1 (zh) 2021-03-25

Family

ID=68558279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108758 WO2021051448A1 (zh) 2019-09-17 2019-09-27 一种氨法脱硫氧化装置及方法

Country Status (3)

Country Link
US (1) US11534717B2 (zh)
CN (1) CN110479077A (zh)
WO (1) WO2021051448A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332833A (zh) * 2021-06-24 2021-09-03 荆门市格林美新材料有限公司 一种循环喷淋式废气吸收塔
CN116440689A (zh) * 2023-04-03 2023-07-18 广州兴丰能源科技有限公司 一种高效引射均流的脱硫喷淋塔

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115703975A (zh) * 2021-08-04 2023-02-17 中国石油化工股份有限公司 一种c5/c6链烷烃吸附分离原料加氢脱烯烃的方法
CN115970626B (zh) * 2023-03-20 2023-09-22 山东宏旭化学股份有限公司 一种硫酸铵生产用脱硫脱硝装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147538A (ja) * 1997-08-01 1999-02-23 Babcock Hitachi Kk 吸収塔
CN101085410A (zh) * 2007-07-16 2007-12-12 娄爱娟 一种逆流烟气二氧化硫回收方法和装置
CN101474528A (zh) * 2008-12-31 2009-07-08 宁波金远东工业科技有限公司 脱除废气中二氧化硫的装置
CN201454395U (zh) * 2009-08-05 2010-05-12 上海弗卡斯环保工程有限公司 组合式氨法脱硫塔
US9272908B2 (en) * 2010-09-29 2016-03-01 Linde Aktiengesellschaft Gas stream purification apparatus
US10143957B2 (en) * 2015-07-21 2018-12-04 Huaneng Power International, Inc. High-efficiency gradient hierarchy complex desulfurizing tower

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100490942C (zh) * 2007-05-28 2009-05-27 北京中自控能源环境工程技术有限公司 一种氨法脱硫方法及装置
CN101100301A (zh) * 2007-07-16 2008-01-09 娄爱娟 由废气二氧化硫至硫铵的生产装置
CN201088903Y (zh) * 2007-07-31 2008-07-23 华电环保系统工程有限公司 湿法烟气脱硫塔
CN101444698B (zh) * 2008-12-05 2010-12-22 青岛碱业股份有限公司 海水白泥乳脱硫塔
CN201912884U (zh) * 2011-01-06 2011-08-03 江苏新世纪江南环保有限公司 一种带有两级气体分布器的氨法脱硫装置
CN202105585U (zh) 2011-05-23 2012-01-11 潍坊恒安散热器集团有限公司 双氧化氨法脱硫装置
CN206350984U (zh) 2016-12-19 2017-07-25 无锡中驰环保科技有限公司 一种双氧化氨法脱硫装置
CN207899255U (zh) * 2018-01-24 2018-09-25 宁夏三瑞机械环保设备有限公司 一种脱硫设备
CN208356491U (zh) 2018-04-12 2019-01-11 北京国发正源环保科技有限公司 一种氨法脱硫亚硫酸铵的氧化装置
CL2018002442A1 (es) * 2018-04-13 2018-10-12 Jiangnan Environmental Prot Group Inc Método y dispositivo para oxidar una solución para desulfuración de amoníaco.
CN208512251U (zh) 2018-06-22 2019-02-19 山东一然环保科技有限公司 一种适于氨法脱硫的组合式氧化装置
CN109012086A (zh) 2018-07-19 2018-12-18 昆明理工大学 一种净化烟气中二氧化硫和氮氧化物的装置及方法
CN109260895A (zh) 2018-09-21 2019-01-25 西安航天源动力工程有限公司 一种功能导向产物分区的氨法脱硫氧化循环槽装置及方法
CN109289475A (zh) * 2018-10-12 2019-02-01 上海翰忠环保有限公司 一种高效烟气顺流除尘脱硫消白处理方法及其装置
CN109260922A (zh) * 2018-11-28 2019-01-25 广东佳德环保科技有限公司 一种新型烟气脱硫脱硝一体化塔
CN109603501B (zh) * 2018-12-13 2023-12-19 国能龙源环保有限公司 一种氨法脱硫浆液分区氧化装置
CN210645857U (zh) * 2019-09-17 2020-06-02 上海蓝科石化环保科技股份有限公司 一种氨法脱硫氧化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1147538A (ja) * 1997-08-01 1999-02-23 Babcock Hitachi Kk 吸収塔
CN101085410A (zh) * 2007-07-16 2007-12-12 娄爱娟 一种逆流烟气二氧化硫回收方法和装置
CN101474528A (zh) * 2008-12-31 2009-07-08 宁波金远东工业科技有限公司 脱除废气中二氧化硫的装置
CN201454395U (zh) * 2009-08-05 2010-05-12 上海弗卡斯环保工程有限公司 组合式氨法脱硫塔
US9272908B2 (en) * 2010-09-29 2016-03-01 Linde Aktiengesellschaft Gas stream purification apparatus
US10143957B2 (en) * 2015-07-21 2018-12-04 Huaneng Power International, Inc. High-efficiency gradient hierarchy complex desulfurizing tower

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113332833A (zh) * 2021-06-24 2021-09-03 荆门市格林美新材料有限公司 一种循环喷淋式废气吸收塔
CN113332833B (zh) * 2021-06-24 2023-12-15 荆门市格林美新材料有限公司 一种循环喷淋式废气吸收塔
CN116440689A (zh) * 2023-04-03 2023-07-18 广州兴丰能源科技有限公司 一种高效引射均流的脱硫喷淋塔
CN116440689B (zh) * 2023-04-03 2024-03-15 广州兴丰能源科技有限公司 一种高效引射均流的脱硫喷淋塔

Also Published As

Publication number Publication date
US11534717B2 (en) 2022-12-27
US20220331735A1 (en) 2022-10-20
CN110479077A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021051448A1 (zh) 一种氨法脱硫氧化装置及方法
CN100435910C (zh) 多重循环稳定双碱法烟气脱硫工艺及装置
CN111408250A (zh) 一种脱硫液协同二氧化氯气相氧化脱硝集成烟气净化装置及工艺
CN110813043B (zh) 一种电石渣/浆烟气脱硫系统及方法
CN101549235A (zh) 一种连体湿式除尘及脱硫装置
CN204933240U (zh) 双塔双循环石灰石湿法脱硫处理系统
CN104602787A (zh) 湿式废气脱硫装置
JP6872287B2 (ja) アンモニア脱硫用の溶液を酸化する方法及び装置
CN107433113A (zh) 一种脱硫脱硝吸收塔
CN102824824A (zh) 一种氨基湿法联合脱硫脱硝装置及工艺
KR20190120045A (ko) 암모니아 탈황용 용액의 산화 방법 및 장치
CN210206434U (zh) 一种半干法脱硫灰资源化利用的湿法脱硫装置
CN210645857U (zh) 一种氨法脱硫氧化装置
CN206494730U (zh) 一种亚硫酸镁氧化为硫酸镁工艺系统
CN208356498U (zh) 一种烟气脱硫脱硝一体化装置
CN101450279B (zh) 作为脱硫装置的鼓泡塔及其用途
JPS6134026Y2 (zh)
CN108404640A (zh) 一种烟气脱硫脱硝一体化装置及方法
CN210159445U (zh) 一种工业废气的脱硫除尘装置
CN211562494U (zh) 一种新型的烟气脱硫排放一体化设备
CN112875740A (zh) 一种半干法脱硫灰制备高纯石膏的系统及方法
CN104587823B (zh) 除尘脱硫脱硝一体化装置
CN205832936U (zh) 一种对撞喷射重力沉降式脱硫装置
CN219539906U (zh) 一种脱硫系统
CN212819102U (zh) 一种酸碱性废气处理用净化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945708

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945708

Country of ref document: EP

Kind code of ref document: A1