WO2021049215A1 - 表示制御装置、および表示制御プログラム - Google Patents

表示制御装置、および表示制御プログラム Download PDF

Info

Publication number
WO2021049215A1
WO2021049215A1 PCT/JP2020/030119 JP2020030119W WO2021049215A1 WO 2021049215 A1 WO2021049215 A1 WO 2021049215A1 JP 2020030119 W JP2020030119 W JP 2020030119W WO 2021049215 A1 WO2021049215 A1 WO 2021049215A1
Authority
WO
WIPO (PCT)
Prior art keywords
precision
content
precision map
low
map information
Prior art date
Application number
PCT/JP2020/030119
Other languages
English (en)
French (fr)
Inventor
基宏 福本
智 堀畑
一輝 小島
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021049215A1 publication Critical patent/WO2021049215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/80Arrangements for controlling instruments
    • B60K35/81Arrangements for controlling instruments for controlling displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/20Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor
    • B60K35/21Output arrangements, i.e. from vehicle to user, associated with vehicle functions or specially adapted therefor using visual output, e.g. blinking lights or matrix displays
    • B60K35/23Head-up displays [HUD]
    • B60K35/231Head-up displays [HUD] characterised by their arrangement or structure for integration into vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the disclosure in this specification relates to a technique for controlling the display of content by a head-up display.
  • Patent Document 1 discloses a vehicle display device that superimposes and displays contents by a head-up display. This vehicle display device superimposes and displays a guidance display indicating a route from the traveling position of the own vehicle to the guidance point in the front view of the occupant.
  • map information of the traveling route may be required.
  • the map information includes high-precision map information and low-precision map information that is relatively less accurate than high-precision map information. Therefore, there may be a case where the map information used for content display is switched as the vehicle travels. In this case, if the content display using the high-precision map information and the content display using the low-precision map information are switched without notification, there is a risk of giving a sense of discomfort to the occupants.
  • An object of the present disclosure is to provide a display control device and a display control program capable of suppressing discomfort of occupants due to switching of map information to be used.
  • the display control device is a display control device used in a vehicle and controlling the display of contents by a head-up display, and is a display control device that controls the display of contents by a head-up display, and is more than high-precision map information and high-precision map information about the traveling path of the vehicle.
  • a map information acquisition unit that acquires at least one of low-precision low-precision map information, a high-precision map area that can acquire high-precision map information, and a high-precision map information that cannot be obtained and low-precision map information can be obtained. It is provided with a display control unit for displaying switching contents indicating the switching of the map area when the map area is switched with the low-precision map area.
  • the display control program is a display control program that is used in a vehicle and controls the display of contents by a head-up display, and has at least one processing unit that provides high-precision map information about the travel path of the vehicle. And the high-precision map area where at least one of the low-precision map information, which is less accurate than the high-precision map information, can be acquired and the high-precision map information can be acquired, and the high-precision map information cannot be acquired and the low-precision map information can be obtained.
  • the process including displaying the switching content indicating the switching of the map area is executed.
  • the switching content indicating the switching is displayed. Therefore, the occupant who visually recognizes the switching content can easily recognize the switching of the map area.
  • the display control device is a display control device used in a vehicle and controlling the display of contents by a head-up display, and is more than high-precision map information and high-precision map information about the traveling path of the vehicle.
  • High-precision map information is displayed by superimposing high-precision content based on high-precision map information in the map information acquisition unit that acquires at least one of low-precision low-precision map information and the high-precision map area that can acquire high-precision map information.
  • the display control unit is provided with a display control unit that superimposes and displays low-precision content based on the low-precision map information.
  • the display control program is a display control program that is used in a vehicle and controls the display of contents by a head-up display, and has at least one processing unit that provides high-precision map information about the travel path of the vehicle.
  • at least one of the low-precision map information which is less accurate than the high-precision map information, is acquired, and in the high-precision map area where the high-precision map information can be acquired, the high-precision content based on the high-precision map information is superimposed and displayed with high accuracy.
  • low-precision map area where map information cannot be acquired and low-precision map information can be acquired
  • low-precision content based on low-precision map information is superimposed and displayed, and when the high-precision map area and low-precision map area are switched, After hiding the high-precision content and the low-precision content before switching for a predetermined period of time, the processing including displaying the switching content is executed.
  • the content before the switching is hidden for a predetermined period, and then the content after the switching is displayed. Therefore, the occupant can easily recognize that the display is switched from one of the high-precision contents and the low-precision contents to the other by hiding the contents.
  • a display control device and a display control program capable of suppressing the discomfort of the occupant due to the switching of the map information to be used.
  • the display control device is a display control device used in a vehicle and controlling the display of contents by a head-up display, and is more than high-precision map information and high-precision map information about the traveling path of the vehicle.
  • the map information acquisition unit that acquires at least one of low-precision low-precision map information and the high-precision map area that can acquire high-precision map information, high-precision content based on high-precision map information is superimposed and displayed, and high-precision map information is displayed.
  • a display control unit that superimposes and displays low-precision content based on the low-precision map information is provided, and the display control unit is a high-precision map area.
  • the high-precision content is superimposed and displayed on the high-precision map area of the image angle of the head-up display, and the low-precision content is superimposed and displayed on the low-precision map area within the image angle.
  • the display control program is a display control program that is used in a vehicle and controls the display of contents by a head-up display, and has at least one processing unit that provides high-precision map information about the travel path of the vehicle.
  • at least one of the low-precision map information which is less accurate than the high-precision map information, is acquired, and in the high-precision map area where the high-precision map information can be obtained, the high-precision content based on the high-precision map information is superimposed and displayed with high accuracy.
  • low-precision map area where map information cannot be obtained and low-precision map information can be obtained
  • low-precision content based on low-precision map information is superimposed and displayed, and when the high-precision map area and low-precision map area are switched, the head
  • the processing including superimposing the high-precision content on the high-precision map area of the up-display image angle and superimposing the low-precision content on the low-precision map area within the image angle is executed.
  • the high-precision content is superimposed and displayed on the high-precision map area within the angle of view, and the low-precision map area is displayed with low precision.
  • the content is superimposed and displayed.
  • the contents corresponding to the different map areas are coexisted and displayed within the angle of view, so that the occupant can easily recognize the change of the map area.
  • the function of the display control device according to the first embodiment of the present disclosure is realized by the HCU (Human Machine Interface Control Unit) 100 shown in FIGS.
  • the HCU 100 comprises an HMI (Human Machine Interface) system 10 used in the vehicle A together with a head-up display (hereinafter, “HUD”) 20 and the like.
  • the HMI system 10 further includes an operation device 26, a DSM (Driver Status Monitor) 27, and the like.
  • the HMI system 10 includes an input interface function that accepts user operations by an occupant (for example, a driver) of vehicle A, and an output interface function that presents information to the driver.
  • the HMI system 10 is communicably connected to the communication bus 99 of the vehicle-mounted network mounted on the vehicle A.
  • the HMI system 10 is one of a plurality of nodes provided in the in-vehicle network.
  • a peripheral monitoring sensor 30, a locator 40, a DCM49, a driving support ECU 50, a navigation device 60, and the like are connected to the communication bus 99 of the vehicle-mounted network as nodes. These nodes connected to the communication bus 99 can communicate with each other.
  • the peripheral monitoring sensor 30 is an autonomous sensor that monitors the surrounding environment of the vehicle A. From the detection range around the own vehicle, the peripheral monitoring sensor 30 includes pedestrians, cyclists, animals other than humans, moving objects such as other vehicles B, falling objects on the road, guardrails, curbs, road markings, traveling lane markings, etc. It is possible to detect road markings and stationary objects such as roadside structures.
  • the peripheral monitoring sensor 30 provides the detection information of detecting an object around the vehicle A to the driving support ECU 50 and the like through the communication bus 99.
  • the peripheral monitoring sensor 30 has a front camera 31 and a millimeter wave radar 32 as a detection configuration for object detection.
  • the front camera 31 outputs at least one of the imaging data obtained by photographing the front range of the vehicle A and the analysis result of the imaging data as detection information.
  • a plurality of millimeter-wave radars 32 are arranged, for example, on the front and rear bumpers of the vehicle A at intervals from each other.
  • the millimeter wave radar 32 irradiates the millimeter wave or the quasi-millimeter wave toward the front range, the front side range, the rear range, the rear side range, and the like of the vehicle A.
  • the millimeter wave radar 32 generates detection information by a process of receiving reflected waves reflected by a moving object, a stationary object, or the like.
  • the sonar 33 irradiates ultrasonic waves toward the front range, the front side range, the rear range, the rear side range, and the like of the vehicle A.
  • the sonar 33 acquires detection information by a process of receiving ultrasonic waves reflected by a moving object, a stationary object, or the like existing in the irradiation direction.
  • other detection configurations such as a rider may be included in the peripheral monitoring sensor 30.
  • the locator 40 generates highly accurate position information of vehicle A and the like by compound positioning that combines a plurality of acquired information.
  • the locator 40 can specify, for example, the lane in which the vehicle A travels among a plurality of lanes.
  • the locator 40 includes a GNSS (Global Navigation Satellite System) receiver 41, an inertial sensor 42, a high-precision map database (hereinafter, “high-precision map DB”) 43, and a locator ECU 44.
  • GNSS Global Navigation Satellite System
  • the GNSS receiver 41 receives positioning signals transmitted from a plurality of artificial satellites (positioning satellites).
  • the GNSS receiver 41 can receive a positioning signal from each positioning satellite of at least one satellite positioning system among satellite positioning systems such as GPS, GLONASS, Galileo, IRNSS, QZSS, and Beidou.
  • the inertial sensor 42 has, for example, a gyro sensor and an acceleration sensor.
  • the high-precision map DB 43 is mainly composed of a non-volatile memory and stores high-precision map data (high-precision map information).
  • the high-precision map data has higher accuracy and higher density than the navigation map data described later.
  • the high-precision map data holds detailed information at least for information in the height (z) direction.
  • High-precision map data includes information that can be used for advanced driving assistance and autonomous driving.
  • high-precision map data has information on roads, lane markings such as white lines, information on road markings, information on structures, and so on.
  • Information about roads includes, for example, position information for each point, shape information such as curve curvature and slope, connection relationship with other roads, road type information, lane information such as the number of lanes and the direction of travel allowed for each lane.
  • Information on lane markings and road markings includes, for example, lane marking and road marking type information, location information, and three-dimensional shape information.
  • the information about the structure includes, for example, type information, position information, and shape information of each structure.
  • the structures are road signs, traffic lights, street lights, tunnels, overpasses, buildings facing roads, and the like.
  • the high-precision map data has the above-mentioned various position information and shape information as point cloud data, vector data, and the like of feature points represented by three-dimensional coordinates. That is, it can be said that the high-precision map data is a three-dimensional map that includes altitude in addition to latitude and longitude with respect to position information. High-precision map data has these position information with a relatively small error (for example, on the order of centimeters).
  • the high-precision map data is highly accurate map data in that it has position information in three-dimensional coordinates including height information. In addition, it can be said that the map data is highly accurate in that the error of the position information is relatively small.
  • High-precision map data is created based on the information collected by measurement vehicles traveling on actual roads. High-precision map data is created for areas where information is collected and is out of range for areas where information is not collected. In general, high-precision map data is currently maintained with relatively wide coverage for expressways and motorways, and relatively narrow coverage for general roads. In the following, the area where the high-precision map data is prepared, that is, the area where the high-precision map data can be acquired is referred to as the high-precision map area Mh.
  • the locator ECU 44 is a control unit having a configuration mainly including a microcomputer provided with a processor, RAM, a storage unit, an input / output interface, a bus connecting them, and the like.
  • the locator ECU 44 combines the positioning signal received by the GNSS receiver 41, the measurement result of the inertial sensor 42, the vehicle speed information output to the communication bus 99, and the like, and sequentially positions the own vehicle position, the traveling direction, and the like of the vehicle A.
  • the locator ECU 44 provides the position information and direction information of the vehicle A based on the positioning result to the HCU 100, the driving support ECU 50, and the like through the communication bus 99.
  • the vehicle speed information is information indicating the current traveling speed of the vehicle A, and is generated based on the detection signal of the wheel speed sensor provided in the hub portion of each wheel of the vehicle A.
  • the node (ECU) that generates vehicle speed information and outputs it to the communication bus 99 may be appropriately changed.
  • a brake control ECU that controls the distribution of braking force for each wheel, or an in-vehicle ECU such as the HCU100, is electrically connected to the wheel speed sensor of each wheel to generate vehicle speed information and output to the communication bus 99.
  • the locator ECU 44 determines the range included in the high-precision map area Mh for the traveling path of the vehicle A based on the positioned own vehicle position and the like. For example, the locator ECU 44 determines the range included in the high-precision map area Mh with respect to the travel path within the discrimination target range including at least the superposition range SA described later. The locator ECU 44 sequentially provides the determination result to the HCU 100. When at least a part of the determined travel path is included in the high-precision map area Mh, the locator ECU 44 reads the high-precision map data in the corresponding range from the high-precision map DB 43 and provides it to the HCU 100. The locator ECU 44 may further determine the range included in the navigation map area Mn, which will be described later, for the travel path based on the information provided by the navigation ECU 62.
  • DCM (Data Communication Module) 49 is a communication module mounted on vehicle A.
  • the DCM49 transmits and receives radio waves to and from base stations around the vehicle A by wireless communication in accordance with communication standards such as LTE (Long Term Evolution) and 5G.
  • LTE Long Term Evolution
  • the operation support ECU 50 is a control unit having a configuration mainly including a computer including a processing unit, a RAM, a storage unit, an input / output interface, and a bus connecting them.
  • the driving support ECU 50 has a driving support function that supports the driving operation of the driver.
  • the driving support ECU 50 analyzes the detection information about the peripheral range of the vehicle A acquired from the peripheral monitoring sensor 30, and recognizes the traveling environment around the vehicle A. Specifically, the driving support ECU 50 specifies the relative positions of the left and right lane markings or road edges of the lane in which the vehicle A is currently traveling (hereinafter, "own lane Lns", see FIGS. 4 and 5).
  • the left-right direction is a direction that coincides with the width direction of the vehicle A stationary on the horizontal plane, and is set with reference to the traveling direction of the vehicle A.
  • the driving support ECU 50 sequentially provides the analysis result of the detection information to the HCU 100 and the like as the analyzed detection information.
  • the driving support ECU 50 can exert a plurality of functions for realizing advanced driving support by executing a program stored in the storage unit by the processing unit.
  • the plurality of functions include, for example, an ACC (Adaptive Cruise Control) function, an LTC (Lane Trace Control) function, and the like.
  • the navigation device 60 searches for a route to the set destination and guides the traveling along the searched route.
  • the navigation device 60 includes a navigation map database (hereinafter, navigation map DB) 61 and a navigation ECU 62.
  • the navigation map DB 61 is a non-volatile memory and stores navigation map data (hereinafter, navigation map data) such as link data, node data, and road shape. Navigation map data is maintained in a relatively wider area than high-precision map data.
  • the link data is composed of data such as a link ID that identifies the link, a link length that indicates the length of the link, a link direction, a link travel time, node coordinates between the start and end of the link, and road attributes.
  • the node data includes node ID with a unique number for each node on the map, node coordinates, node name, node type, connection link ID in which the link ID of the link connecting to the node is described, intersection type, and the like. Consists of.
  • the navigation map data has node coordinates as two-dimensional position coordinate information. That is, it can be said that the navigation map data is a two-dimensional map including the latitude and longitude with respect to the position information.
  • the navigation map data is map data with lower accuracy than the high-precision map data in that it does not have height information regarding the position information. In addition, it can be said that the map data has low accuracy in that the error of the position information is relatively large.
  • the navigation map data is an example of low-precision map information.
  • navigation map data is maintained in a relatively wide range with respect to high-precision map data. That is, there may be an area where high-precision map data cannot be acquired and navigation map data can be acquired. In the following, such an area will be referred to as a navigation map area Mn.
  • the navigation map area Mn is an example of a low-precision map area.
  • the navigation ECU 62 is mainly composed of a microcomputer provided with a processor, RAM, a storage unit, an input / output interface, a bus connecting these, and the like.
  • the navigation ECU 62 acquires the position information and the direction information of the vehicle A (own vehicle) from the locator ECU 44 through the communication bus 99.
  • the navigation ECU 62 acquires the operation information input to the operation device 26 through the communication bus 99 and the HCU 100, and sets the destination based on the driver operation.
  • the navigation ECU 62 searches for a plurality of routes to the destination so as to satisfy conditions such as time priority and distance priority. When one of the searched plurality of routes is selected, the navigation ECU 62 provides the route information based on the set route to the HCU 100 through the communication bus 99 together with the related navigation map data.
  • the navigation ECU 62 sequentially outputs a guidance implementation request toward the HCU 100.
  • the guide point is set near the center of each of the intersection section and the branchable section as an example.
  • the guide points may be set on the front side or the back side of each of the intersection section and the branchable section.
  • the guidance implementation request is guidance information used for route guidance to the driver in the route guidance section including the guidance point.
  • the guidance implementation request includes the position information of the guidance point and the information indicating the direction in which the vehicle A should travel at the guidance point.
  • the guidance implementation request is output at the timing when the remaining distance from the vehicle A to the guidance point becomes less than the threshold value (for example, about 300 m).
  • the HCU 100 presents information related to route guidance based on the acquisition of the guidance implementation request from the navigation ECU 62.
  • the operation device 26 is an input unit that accepts user operations by a driver or the like.
  • a user operation for switching between activation and stop, setting the inter-vehicle distance, and the like is input to the operation device 26.
  • the operation device 26 includes a steering switch provided on the spoke portion of the steering wheel, an operation lever provided on the steering column portion 8, a voice input device for detecting the driver's utterance, and the like.
  • the DSM27 has a configuration including a near-infrared light source, a near-infrared camera, and a control unit for controlling them.
  • the DSM 27 is installed in a posture in which the near-infrared camera is directed toward the headrest portion of the driver's seat, for example, on the upper surface of the steering column portion 8 or the upper surface of the instrument panel 9.
  • the DSM27 uses a near-infrared camera to photograph the head of the driver irradiated with near-infrared light by a near-infrared light source.
  • the image captured by the near-infrared camera is image-analyzed by the control unit.
  • the control unit extracts information such as the position of the eye point EP and the line-of-sight direction from the captured image, and sequentially outputs the extracted state information to the HCU 100.
  • the HUD 20 is mounted on the vehicle A as one of a plurality of in-vehicle display devices together with a meter display, a center information display, and the like.
  • the HUD 20 is electrically connected to the HCU 100 and sequentially acquires video data generated by the HCU 100. Based on the video data, the HUD 20 presents various information related to the vehicle A, such as route information, sign information, and control information of each in-vehicle function, to the driver using the virtual image Vi.
  • the HUD 20 is housed in the storage space inside the instrument panel 9 below the windshield WS.
  • the HUD 20 projects the light formed as a virtual image Vi toward the projection range PA of the windshield WS.
  • the light projected on the windshield WS is reflected toward the driver's seat side in the projection range PA and is perceived by the driver.
  • the driver visually recognizes the display in which the virtual image Vi is superimposed on the foreground seen through the projection range PA.
  • the HUD 20 includes a projector 21 and a magnifying optical system 22.
  • the projector 21 has an LCD (Liquid Crystal Display) panel and a backlight.
  • the projector 21 is fixed to the housing of the HUD 20 with the display surface of the LCD panel facing the magnifying optical system 22.
  • the projector 21 displays each frame image of the video data on the display surface of the LCD panel, and transmits and illuminates the display surface with a backlight to emit light formed as a virtual image Vi toward the magnifying optical system 22.
  • the magnifying optical system 22 includes at least one concave mirror in which a metal such as aluminum is vapor-deposited on the surface of a base material made of synthetic resin or glass.
  • the magnifying optical system 22 projects the light emitted from the projector 21 onto the upper projection range PA while spreading it by reflection.
  • the angle of view VA is set for the above HUD20. Assuming that the virtual range in the space where the virtual image Vi can be imaged by the HUD 20 is the image plane IS, the angle of view VA is defined based on the virtual line connecting the driver's eye point EP and the outer edge of the image plane IS. The viewing angle.
  • the angle of view VA is an angle range in which the driver can visually recognize the virtual image Vi when viewed from the eye point EP. In the HUD 20, the horizontal angle of view in the horizontal direction is larger than the vertical angle of view in the vertical direction. When viewed from the eye point EP, the front range that overlaps with the image plane IS is the range within the angle of view VA.
  • the HUD 20 displays superimposed content CTs (see FIGS. 4 and 5) and non-superimposed content as virtual image Vi.
  • Superimposed content CTs are AR display objects used for augmented reality (hereinafter referred to as “AR”) display.
  • the display position of the superimposed content CTs is associated with a specific superimposed object existing in the foreground, such as a specific position on the road surface, a vehicle in front, a pedestrian, and a road sign.
  • the superimposed content CTs are superimposed and displayed on a specific superimposed object in the foreground, and can be moved in the appearance of the driver following the superimposed object so as to be relatively fixed to the superimposed object.
  • the shape of the superimposed content CTs may be continuously updated at a predetermined cycle according to the relative position and shape of the superimposed object.
  • the superimposed content CTs are displayed in a posture closer to horizontal than the non-superimposed content, and have a display shape extended in the depth direction (traveling direction) as seen from the driver, for example.
  • the non-superimposed content is a non-AR display object excluding the superimposed content CTs among the display objects superimposed and displayed in the foreground. Unlike the superimposed content CTs, the non-superimposed content is displayed superimposed on the foreground without specifying the superimposed target.
  • the non-superimposed content is displayed at a fixed position in the projection range PA, so that it is displayed as if it is relatively fixed to the vehicle configuration such as the windshield WS.
  • the HCU 100 is an electronic control device that integrally controls the display by a plurality of in-vehicle display devices including the HUD 20 in the HMI system 10.
  • the HCU 100 mainly includes a computer including a processing unit 11, a RAM 12, a storage unit 13, an input / output interface 14, and a bus connecting them.
  • the processing unit 11 is hardware for arithmetic processing combined with the RAM 12.
  • the processing unit 11 has a configuration including at least one arithmetic core such as a CPU (Central Processing Unit).
  • the RAM 12 may be configured to include a video RAM for video generation.
  • the processing unit 11 executes various processes for realizing the functions of each functional unit, which will be described later, by accessing the RAM 12.
  • the storage unit 13 is configured to include a non-volatile storage medium.
  • Various programs (display control programs, etc.) executed by the processing unit 11 are stored in the storage unit 13.
  • the HCU 100 shown in FIGS. 1 to 3 has a plurality of functional units for functioning as a control unit for controlling content display by the HUD 20 by executing a display control program stored in the storage unit 13 by the processing unit 11. ..
  • the HCU 100 is constructed with functional units such as a driver information acquisition unit 101, a position information acquisition unit 102, a map information acquisition unit 103, a guidance information acquisition unit 104, an outside world information acquisition unit 105, and a display generation unit 109.
  • a driver information acquisition unit 101 a position information acquisition unit 102, a map information acquisition unit 103, a guidance information acquisition unit 104, an outside world information acquisition unit 105, and a display generation unit 109.
  • the driver information acquisition unit 101 identifies the position and line-of-sight direction of the eye point EP of the driver seated in the driver's seat based on the state information acquired from the DSM 27, and acquires it as driver information.
  • the driver information acquisition unit 101 generates three-dimensional coordinates (hereinafter, “eye point coordinates”) indicating the position of the eye point EP, and sequentially provides the generated eye point coordinates to the display generation unit 109.
  • the position information acquisition unit 102 acquires the latest position information and direction information about the vehicle A from the locator ECU 44 as the own vehicle position information.
  • the position information acquisition unit 102 sequentially provides the display generation unit 109 with the acquired vehicle position information, the determination result, and the high-precision map data.
  • the map information acquisition unit 103 acquires the determination result of the range included in the high-precision map area Mh regarding the traveling path of the vehicle A from the locator ECU 44. Based on the discrimination result, the map information acquisition unit 103 acquires high-precision map data for the travel path from the locator ECU 44 when the entire area of the travel path within the discrimination target range is included in the high-precision map area Mh. When the travel path is not included in the high-precision map area Mh, the map information acquisition unit 103 acquires navigation map data for the travel path from the navigation ECU 62.
  • the map information acquisition unit 103 acquires high-precision map data for the area from the locator ECU 44 and navigates for the remaining area.
  • the map data is acquired from the navigation ECU 62. For example, such a situation may occur when the high-precision map area Mh ends in the middle of the traveling path and when the high-precision map area Mh starts in the middle of the traveling path.
  • the map information acquisition unit 103 sequentially provides the acquired map data to the display generation unit 109.
  • the guidance information acquisition unit 104 acquires route information used for route guidance to the destination when the destination is set in the navigation device 60. In addition, the guidance information acquisition unit 104 acquires the guidance implementation request output from the navigation ECU 62 as the guide point approaches. The guidance information acquisition unit 104 sequentially provides the route information and the guidance execution request to the display generation unit 109.
  • the external world information acquisition unit 105 acquires the detected detection information that has been analyzed for the peripheral range of the vehicle A, particularly the front range, from the driving support ECU 50. For example, the outside world information acquisition unit 105 acquires detection information indicating the relative positions of the left and right lane markings or road edges of the own lane Lns. The external world information acquisition unit 105 sequentially provides the acquired detection information to the display generation unit 109. The external world information acquisition unit 105 may acquire the imaging data of the front camera 31 as the detection information instead of the detection information as the analysis result acquired from the driving support ECU 50.
  • the display generation unit 109 includes a virtual layout function that simulates the display layout of superimposed content CTs (see FIGS. 4 and 5) based on various acquired information, and a content selection function that selects content to be used for information presentation. ing.
  • the display generation unit 109 has a generation function for generating video data to be sequentially output to the HUD 20 based on the information provided by the virtual layout function and the content selection function.
  • the display generation unit 109 is an example of a display control unit.
  • the display generation unit 109 reproduces the current driving environment of the vehicle A in the virtual space based on the own vehicle position information, high-precision map data, detection information, etc. by executing the virtual layout function. More specifically, as shown in FIG. 5, the display generation unit 109 sets the own vehicle object AO at a reference position in the virtual three-dimensional space. The display generation unit 109 maps the road model of the shape indicated by the map data in the three-dimensional space in association with the own vehicle object AO based on the own vehicle position information. The display generation unit 109 maps the road model of the high-precision map area Mh based on the high-precision map data, and maps the road model of the navigation map area Mn based on the navigation map data.
  • the display generation unit 109 sets the virtual camera position CP and the superimposition range SA in association with the own vehicle object AO.
  • the virtual camera position CP is a virtual position corresponding to the driver's eye point EP.
  • the display generation unit 109 sequentially corrects the virtual camera position CP with respect to the own vehicle object AO based on the latest eye point coordinates acquired by the driver information acquisition unit 101.
  • the superimposition range SA is a range in which the virtual image Vi can be superposed and displayed. When the display generation unit 109 looks forward from the virtual camera position CP based on the virtual camera position CP and the outer edge position (coordinates) information of the projection range PA stored in advance in the storage unit 13 (see FIG. 1) or the like.
  • the front range inside the imaging plane IS is set as the superimposition range SA.
  • the superimposition range SA corresponds to the angle of view VA of HUD20.
  • the display generation unit 109 arranges the first virtual object VO1, the second virtual object VO2, and the third virtual object VO3 in the virtual space.
  • the virtual objects VO1 and VO2 are arranged so as to overlap the planned travel route arranged on the road surface of the road model in the three-dimensional space.
  • the first virtual object VO1 is set in the virtual space when displaying the high-precision path content CTh described later as a virtual image.
  • the second virtual object VO2 is set in the virtual space when the low-precision path content CTrn, which will be described later, is displayed as a virtual image.
  • Each of the virtual objects VO1 and VO2 is a band-shaped object that is arranged in a plane on the virtual road surface along the planned travel route.
  • the first virtual object VO1 is arranged when the road surface in the superposition range SA is included in the high-precision map area Mh.
  • the position of the first virtual object VO1 is determined based on the high-precision map data.
  • the second virtual object VO2 is arranged when the road surface in the superimposition range SA is included in the navigation map area Mn.
  • the position of the second virtual object VO2 is determined based on the navigation map data.
  • Each virtual object VO1 and VO2 defines the position and shape of the route contents CTrh and CTrn. That is, the shapes of the virtual objects VO1 and VO2 seen from the virtual camera position CP become the virtual image shapes of the path contents CTrh and CTrn visually recognized from the eye point EP.
  • the third virtual object VO3 is set when the road surface in the superposition range SA described later is switched between the navigation map area Mn and the high-precision map area Mh.
  • the third virtual object VO3 is set in the virtual space when the transition content CTa described later is superimposed and displayed.
  • the third virtual object VO3 is an animation object that transforms its shape from one of the first virtual object VO1 and the second virtual object VO2 to the other. That is, when the map area changes from the high-precision map area Mh to the navigation map area Mn, the third virtual object VO3 is deformed from the first virtual object VO1 to the second virtual object VO2.
  • the third virtual object VO3 is deformed from the second virtual object VO2 to the first virtual object VO1.
  • the display generation unit 109 selects the content to be drawn in the video data based on the other vehicle information and the simulation result of the display layout by executing the content selection function. Then, the display generation unit 109 controls the presentation of information to the driver by the HUD 20 by executing the function of generating the video data sequentially output to the HUD 20. Specifically, the display generation unit 109 determines the original image to be drawn on each frame image constituting the video data based on the selection result by the content selection function. When drawing the original image of the superimposed content CTs (see FIGS. 4 and 5) on the frame image, the display generation unit 109 determines the drawing position of the original image in the frame image and the drawing position of the original image in the frame image according to the eye point EP and each position of the superimposed target. Correct the drawing shape. As described above, the superimposed content CTs are displayed at the position and shape correctly superimposed on the superimposed object when viewed from the eye point EP.
  • the display generation unit 109 can display the route content that presents the planned travel route of the vehicle A to the driver by the content selection function and the video data generation function described above.
  • the display generation unit 109 changes the display mode of the route content according to the map data that can be acquired for the current travel path.
  • the details of the display of the route contents will be described below with reference to FIGS. 4 and 5.
  • FIG. 4 shows a change in the mode of the route content when the vehicle A moves from the high-precision map area Mh to the navigation map area Mn.
  • FIG. 5 shows a change in the mode of the route content when the vehicle A moves from the navigation map area Mn to the high-precision map area Mh.
  • the route contents are superposed contents CTs that superimpose the road surface of the planned travel route.
  • the route content is drawn in a shape along the planned travel route, and indicates the lane in which the vehicle A should travel, a point where a right / left turn or a lane change is required, and the like.
  • the route content is a sheet-shaped road paint that extends in a strip shape along the traveling direction of the vehicle A in the lane of the planned travel route. When the lane is straight, the route content has a straight shape, and when the lane is curved, the route content is curved along the curve.
  • the route content is in a mode of connecting the approach lane and the exit lane on the planned travel route within the intersection.
  • the drawing shape of the route content is updated at a predetermined update cycle so as to match the road surface shape seen from the eye point EP according to the traveling of the vehicle A.
  • the display generation unit 109 displays either the high-precision route content CTr or the low-precision route content CTrn as the route content.
  • the high-precision route content CTh is the route content displayed when the traveling path of the vehicle A is the high-precision map area Mh. Specifically, the high-precision route content CTh is displayed when the road surface within the superposition range SA is included in the high-precision map area Mh.
  • the drawing position and drawing shape of the high-precision path content CTh are determined based on the first virtual object VO1 arranged in the display simulation. That is, the high-precision route content CTh is content generated based on the high-precision map data. As a result, the high-precision path content CTrh can be superimposed and displayed on the road surface with higher accuracy than the low-precision path content CTrn. The high-precision route content CTrh is displayed in a display mode different from that of the low-precision route content CTrn.
  • the high-precision path content CTrh has a band shape having a width larger than that of the low-precision path content CTrn described later, and has a display color (for example, blue) different from that of the low-precision path content CTrn.
  • the high-precision path content CTh is an example of high-precision content.
  • the low-precision route content CTrn is displayed when the traveling path of the vehicle A is the navigation map area Mn, specifically, when the road surface within the superposition range SA is included in the navigation map area Mn.
  • the drawing position and drawing shape of the low-precision path content CTrn are determined based on the second virtual object VO2 arranged in the display simulation. That is, the low-precision route content CTrn is content generated based on the navigation map data. As a result, the low-precision path content CTrn can be superimposed and displayed on the road surface with lower accuracy than the high-precision path content CTrn.
  • the low-precision path content CTrn has, for example, a band shape having a width smaller than that of the high-precision path content CTr, and a display color (for example, red) different from that of the high-precision path content CTr.
  • the low-precision path content CTrn is an example of low-precision content.
  • the display generation unit 109 displays the transition content CTa when the map area of the travel route is switched during the display of the route content.
  • the transition content CTa is an example of switching content that presents the driver with the switching of the map area.
  • the transition content CTa is the superimposed content CTs similar to the route content.
  • the transition content CTa is content that transitions from the route content corresponding to the map area before switching to the route content corresponding to the map area after switching.
  • the transition content CTa is an animation content that apparently continuously changes from the display mode of one route content to the display mode of the other route content. That is, in the case of the route content of the first embodiment, the transition content CTa is displayed as an animation in which the width and display color of the route content transition.
  • the transition content CTa may be a plurality of or one still image showing the transition from one route content to the other route content in an apparent stepwise manner.
  • the transition content CTa is superimposed and displayed on the road surface of the high-precision map area Mh before the superposition range SA enters the navigation map area Mn. That is, the transition content CTa is generated based on the high-precision map data.
  • the transition content CTa is started to be displayed at a predetermined distance or a predetermined time before reaching the navigation map area Mn so that the transition animation is completed before entering the navigation map area Mn.
  • the transition content CTa is superimposed and displayed on the road surface of the high-precision map area Mh after the superposition range SA enters the high-precision map area Mh. ..
  • the transition content CTa is generated based on the high-precision map data as described above.
  • the process shown in FIG. 6 is started by the HCU 100 that has completed the start-up process or the like, for example, by switching the vehicle power supply to the on state.
  • the HCU 100 first determines whether or not it is a route guidance section based on the acquired guidance information in step (hereinafter, "step" is omitted) S101. If it is determined that the route is a route guidance section, the process proceeds to S102, and map data related to the current travel route is acquired. Next, in S103, it is determined whether or not the current travel path is the high-precision map area Mh. If it is determined that the high-precision map area Mh, the process proceeds to S104.
  • the display generation unit 109 executes superimposition display of the high-precision route content CTh.
  • S105 it is determined whether or not the superimposition range SA is close to the navigation map area Mn. If it is not close to the navigation map area Mn, the process returns to S101. On the other hand, if it is determined that the navigation map area Mn is approaching, the process proceeds to S106.
  • the transition content CTa showing the transition from the high-precision route content CTr to the low-precision route content CTrn is displayed based on the high-precision map data.
  • transition content CTa is displayed in S106, or if it is determined in S103 that the travel path is not the high-precision map area Mh, the process proceeds to S107.
  • the superimposed display of the low-precision route content CTrn is executed based on the navigation map data.
  • S108 it is determined whether or not the superimposition range SA has entered the high-precision map area Mh.
  • the process proceeds to S109, and the transition content CTa indicating the transition from the low-precision route content CTrn to the high-precision route content CTr is displayed based on the high-precision map data.
  • the process returns to S104.
  • the process returns to S101.
  • the series of processing is continued until it is determined in S101 that it is not a route guidance section, and when it is determined that it is not a route guidance section, the process proceeds to S110 to finish displaying the content related to the route guidance, and then a series of processes. Ends the processing of.
  • the HCU 100 displays the transition content CTa as switching content indicating the switching of the map area when the high-precision map area Mh and the navigation map area Mn are switched. According to this, when the map area is switched between the high-precision map area Mh and the navigation map area Mn, the transition content CTa is displayed as the switching content indicating the switching. Therefore, the driver as an occupant who visually recognizes the transition content CTa can easily recognize the change of the map area. As described above, it is possible to suppress the driver's discomfort due to the switching of the map data to be used.
  • the transition content CTa is displayed as the content for transitioning the low-precision route content CTrn to the high-precision route content CTr.
  • the transition content CTa is displayed as content that transitions the high-precision route content CTr to the low-precision route content CTrn.
  • the route content corresponding to each map area transitions with the switching of the map area, and the switching is presented to the driver. Therefore, it is possible to present the switching of the map area to the driver with relatively little discomfort.
  • the angle of view VA is more complicated than the case where the content indicating the switching is additionally displayed. It can be suppressed.
  • the transition content CTa is superimposed and displayed on the road surface of the high-precision map area Mh. According to this, the transition content CTa can be displayed based on the high-precision map data. Therefore, the transition animation of the route content is more accurately superimposed and displayed on the road surface. Therefore, the discomfort of the display in the transition of the route content can be reduced.
  • the display generation unit 109 displays the fourth virtual object VO4 in the virtual space.
  • the fourth virtual object VO4 is arranged on a virtual road surface on the planned travel route.
  • the fourth virtual object VO4 is set in the high-precision map area Mh in the virtual space when the character information content CTt described later is displayed as a virtual image.
  • the fourth virtual object VO4 has a shape imitating the text corresponding to the character information content CTt.
  • the display generation unit 109 can display the character information content CTt as the content indicating the switching of the map area.
  • the character information content CTt are superimposed content CTs for which the road surface is superimposed.
  • the character information content CTt is displayed regardless of the presence or absence of other content such as route content.
  • the character information content CTt is content that indicates the switching of the map area by character information. For example, when switching from the navigation map area Mn to the high-precision map area Mh, it is displayed as text such as "high-precision map start", and when switching from the high-precision map area Mh to the navigation map area Mn, "navigation map" is displayed. It is displayed as text such as "Start".
  • the character information content CTt is superimposed and displayed based on the high-precision map data so as to stay at a specific position on the road surface of the high-precision map area Mh. That is, when switching from the navigation map area Mn to the high-precision map area Mh, the character information content CTt becomes visible after entering the high-precision map area Mh of the superposition range SA.
  • the character information content CTt becomes visible before the superimposition range SA enters the navigation map area Mn.
  • the character information content CTt is started to be displayed at a predetermined distance or a predetermined time before reaching the navigation map area Mn, and is hidden immediately before entering the navigation map area Mn.
  • the character information content CTt may move in synchronization with the progress of the vehicle A and may be displayed so as to be hidden after a predetermined time.
  • the HCU100 first acquires map data about the current travel path in S201. Next, in S202, it is determined whether or not the current travel path is included in the high-precision map area Mh. If it is determined that the high-precision map area Mh, the process proceeds to S203, and it is determined whether or not the vehicle is approaching the navigation map area Mn. If it is not approaching the navigation map area Mn, it waits until it is determined that it is approaching. On the other hand, if it is determined that the navigation map area Mn is approaching, the process proceeds to S205, the character information content CTt is displayed, and then a series of processes is completed.
  • S204 it is determined whether or not the vehicle has entered the high-precision map area Mh from the navigation map area Mn. If it has not entered the high-precision map area Mh, it waits until it is determined that it has entered. On the other hand, if it is determined that the player has entered the high-precision map area Mh, the process proceeds to S205, the character information content CTt is displayed, and then a series of processes is completed.
  • the switching of the map area is displayed by the character information content CTt. According to this, the driver can recognize the change of the map area by the character information. Therefore, the switching of the map area can be recognized more clearly.
  • the character information content CTt of the second embodiment is superimposed and displayed so as to stay at a specific position on the road surface, it is easy for the driver to induce the boundary of the map area of the road surface.
  • the display generation unit 109 displays the boundary content CTb as the switching content.
  • the boundary content CTb is displayed as superposed content CTs whose road surface is a superimposition target based on the band-shaped fifth virtual object VO5 arranged on the virtual road surface in the display simulation.
  • the boundary content CTb is content in which images of different modes corresponding to each map area are arranged along the traveling direction.
  • the boundary content CTb is a series of sheet-shaped images having different display colors.
  • the image corresponding to the navigation map area Mn has the same display color as the low-precision route content CTrn (for example, red), and the image corresponding to the high-precision map area Mh has the same display color as the high-precision route content CTrn. (For example, blue).
  • the boundary content CTb is the content displayed in red on the front side and blue on the back side.
  • the boundary content CTb is a sheet-like content in which the front side is displayed in blue and the back side is displayed in red.
  • the above boundary content CTb is superimposed on the road surface of the high-precision map area Mh based on the high-precision map data, similarly to the character information content CTt of the second embodiment.
  • the boundary content CTb is displayed so as to stay at a specific position on the road surface.
  • the boundary content CTb may be content that moves in synchronization with the progress of the vehicle A.
  • the display generation unit 109 displays the boundary content CTb as the switching content.
  • the boundary content CTb of the fourth embodiment is displayed as superimposed content CTs for which the road surface of the high-precision map area Mh is superimposed based on the strip-shaped sixth virtual object VO6 arranged on the virtual road surface in the display simulation.
  • the boundary content CTb of the fourth embodiment is a sheet-like content extending in the traveling direction starting from the boundary of the navigation map area Mn on the road surface of the high-precision map area Mh.
  • the boundary content CTb has a display mode different from that of the high-precision path content CTr and the low-precision path content CTrn.
  • the boundary content CTb is displayed in a display color (for example, green) different from that of the high-precision path content CTr and the low-precision path content CTrn.
  • the display generation unit 109 hides the route content when the map area is switched during the route guidance. For example, when switching from the high-precision map area Mh to the navigation map area Mn, the display generation unit 109 receives when the superposition range SA reaches the start point of the navigation map area Mn or a point on the front side of the start point. The high-precision route content CTr is hidden. In this case, the display generation unit 109 hides the high-precision route content CTr and displays the low-precision route content CTrn at the timing when a predetermined period has elapsed.
  • the low-precision route content CTrn is displayed by using the navigation map data in the high-precision map area Mh even when at least a part of the road surface of the superposition range SA is included in the high-precision map area Mh. Will be done.
  • the display generation unit 109 hides the low-precision route content CTrn, for example, after the start of entry of the superposition range SA into the high-precision map area Mh. To do.
  • the display generation unit 109 hides the low-precision route content CTrn and displays the high-precision route content CTrh at the timing when a predetermined period has elapsed. For example, the display generation unit 109 starts displaying the high-precision route content CTh after the entire superposition range SA becomes the high-precision map area Mh.
  • the HCU 100 determines in S302 that the current travel path is not included in the high-precision map area Mh, the HCU 100 displays the low-precision route content CTrn in S305. After executing the process of S304 or S305, the process proceeds to S306.
  • S306 it is determined whether or not the corresponding map area of the current travel path is switched. If it is determined that the current map area does not switch and continues, the process returns to S301. On the other hand, when it is determined that the map area is switched, the process proceeds to S307, and the route content displayed immediately before is hidden. When the non-display period in S307 is completed, the process returns to S303, the map area after switching is determined, and the display of the corresponding route content is started.
  • the route content before the switch is hidden for a predetermined period, and then the route content after the switch is displayed. Therefore, the driver can easily recognize that the display is switched from one of the high-precision route content CTr and the low-precision route content CTrn to the other by hiding the content. As described above, it is possible to suppress the driver's discomfort due to the switching of the map data to be used.
  • the display generation unit 109 when the map area is switched during the route guidance, the display generation unit 109 allows the high-precision route content CTr and the low-precision route content CTrn to coexist in the angle of view VA and each map area Mh. , Mn superimposed and displayed (see FIGS. 11 and 12).
  • FIG. 13 shows a display when switching from the navigation map area Mn to the high-precision map area Mh.
  • the first virtual object VO1 is arranged in the high-precision map area Mh in the superimposition range SA
  • the second virtual object VO2 is arranged in the navigation map area Mn. Will be done.
  • the high-precision route content CTh is superimposed and displayed on the front side of the road surface in the angle of view VA, which is included in the high-precision map area Mh.
  • the low-precision route content CTrn is superimposed and displayed on the inner portion of the road surface in the angle of view VA included in the navigation map area Mn.
  • the high-precision path content CTr in the angle of view VA continuously disappears from the back side to the front side, and the low-precision path content CTrn continuously disappears from the back side to the front side. Stretch.
  • FIG. 14 shows a display when switching from the high-precision map area Mh to the navigation map area Mn. Also in this case, the display mode of the route content is changed as in FIG. 13, except that the positional relationship between the low-precision route content CTrn and the high-precision route content CTr is reversed.
  • the display generation unit 109 increases the brightness of the front side of the two path contents. That is, in FIG. 13, the brightness of the low-precision path content CTrn is higher than that of the high-precision path content CTrn, and in FIG. 14, the opposite is true. As a result, the visibility of the content superimposed on the front road surface is higher than that of the content superimposed on the back road surface.
  • the display generation unit 109 may improve the visibility of the route content on the front side by increasing the transmittance of the route content on the back side.
  • the display generation unit 109 hides the low-precision path content CTrn before the low-precision path content CTrn is displayed outside the angle of view VA when the low-precision path content CTrn is displayed on the front side. ..
  • the display generation unit 109 is based on the high-precision map data of the adjacent high-precision map area Mh. Correct the display position of the low-precision path content CTrn. For example, the display generation unit 109 estimates the road shape of the navigation map area Mn from the road shape of the high-precision map area Mh, and uses the estimated information to calculate the display position of the low-precision route content CTrn. Further, the display generation unit 109 may use the display state of the high-precision path content CTr, such as aligning the end position of the low-precision path content CTrn with the end position of the high-precision path content CTr.
  • the HCU 100 determines whether or not the angle of view VA includes two map areas, a high-precision map area Mh and a navigation map area Mn. When it is determined that two map areas are included, the corresponding route contents are superimposed and displayed for each map area in the angle of view VA in S404. When the display process of S404 is executed, the process returns to S401.
  • the high-precision route content CTh is superimposed and displayed on the high-precision map area Mh in the angle of view VA, and the low-precision route content is displayed on the navigation map area Mn in the angle of view VA.
  • CTrn is superimposed and displayed. Therefore, the contents corresponding to the different map areas are coexisted and displayed in the angle of view VA, and the driver can easily recognize the switching of the map areas. As described above, it is possible to suppress the driver's discomfort due to the switching of the map data to be used.
  • the visibility of the route content on the front side is enhanced with respect to the route content on the back side. According to this, the driver can easily recognize the route content on the front side that is needed more recently. Therefore, the display can be more convenient for the driver.
  • the navigation map area Mn is before the angle of view VA is outside.
  • the low-precision route content CTrn is hidden. According to this, since the low-precision route content CTrn having relatively low accuracy is hidden early, it is possible to make the deviation of the display position of the low-precision route content CTrn more inconspicuous.
  • the display position of the low-precision route content CTrn is corrected based on the high-precision map data of the adjacent high-precision map area Mh, the deviation of the display position of the low-precision route content CTrn is suppressed. obtain.
  • the high-precision map data based on the high-precision route content CTrh may differ from the actual road condition and its reliability may decrease if the freshness deteriorates over time after it is prepared.
  • the HCU 100 presents the reliability of the high-precision map data to the driver in order to present the reliability of the high-precision map data based on the high-precision route content CTh to the driver.
  • the display generation unit 109 compares the high-precision map data acquired by the map information acquisition unit 103 with the detection information acquired by the external world information acquisition unit 105, and whether the degree of deviation is within the permissible range. Determine if it is out of tolerance. For example, the display generation unit 109 determines the amount of deviation of the position coordinates between the feature points such as the road shape and the structure included in the high-precision map data and the feature points detected by the front camera 31 or the rider. Calculated as the degree of deviation. The display generation unit 109 determines that the high-precision map data and the detection information match if the calculated deviation amount is within a predetermined error range.
  • the display generation unit 109 determines whether the degree of deviation between the high-precision map data and the detection information is within the permissible range or out of the permissible range.
  • the display generation unit 109 may calculate the degree of deviation between the high-precision map data and the probe map data generated based on the traveling information of a general vehicle.
  • the display generation unit 109 changes the display color of the high-precision route content CTh depending on whether the high-precision map data and the detection information match or are different. As a result, the high-precision route content CTh is displayed in different display modes depending on whether the high-precision map data and the detection information match or are different. As a result, the reliability of the high-precision map data is presented to the driver by the high-precision route content CTh.
  • the display generation unit 109 may change the brightness, transmittance, shape, and the like instead of the display color.
  • the process shown in FIG. 17 is started by the HCU 100 that has completed the start-up process or the like by switching to the on state of the vehicle power supply, and is repeatedly executed.
  • map data is acquired.
  • the process proceeds to S504, the high-precision route content CTh is set to a highly reliable display mode, and then a series of processes is completed.
  • the process proceeds to S505.
  • a series of processes is completed with the high-precision path content CTh as a display mode having a low reliability different from that of S504.
  • the HCU 100 updates the display mode of the high-precision route content CTh according to the reliability of the high-precision map data of the current location by repeatedly executing a series of processes. Further, the display generation unit 109 may continuously change the display mode according to the amount of deviation.
  • the map information acquisition unit 103 acquires high-precision map data generated in advance by the traveling of the measurement vehicle.
  • the map information acquisition unit 103 may acquire probe map data generated based on the traveling information of a plurality of general vehicles as high-precision map data.
  • the probe map data is map data including information in the height direction, and is acquired from a center server or the like on the network via DCM49.
  • the area where the probe map data can be acquired is the high-precision map area
  • the area where the probe map data cannot be acquired and the navigation map data can be acquired is the low-precision map area.
  • the area in which one of the probe map data and the map data stored in the locator 40 can be acquired with higher accuracy is defined as the high-precision map area, and the area in which one cannot be acquired and the other can be acquired is defined as the area. It may be a low-precision map area. In this case, more accurate map data may be determined based on the magnitude of the error, the novelty of the data, the density of feature points, and the like.
  • the display generation unit 109 displays each route content as sheet-shaped content having different widths, but the display mode of each route content is not limited to this.
  • the display generation unit 109 may display the high-precision route content CTr as a pair of linear contents extending on both sides of the own lane Lns.
  • the display generation unit 109 may use the low-precision route content CTrn as a plurality of triangular-shaped contents arranged along the scheduled travel path.
  • the low-precision route content CTrn of FIG. 18 is superimposed on the vicinity of the center of the own lane Lns more than the high-precision route content CTrn, so that the deviation of the superposed position is displayed as an inconspicuous mode.
  • the display generation unit 109 displays the route content according to the guidance information as the content based on each map data, but the content to be displayed is not limited to this.
  • the display generation unit 109 may display the content indicating the planned travel locus of the vehicle A by the LTC function based on each map data.
  • the display generation unit 109 displays the switching content as the superimposed content CTs, but it may be displayed as the non-superimposed content.
  • the display generation unit 109 displays the switching content while the angle of view VA inner road surface is included in the navigation map area Mn, and is included in the high-precision map area Mh. Hide while you are. According to this, the display generation unit 109 can effectively utilize the area in which the high-precision content can be superimposed in the angle of view VA.
  • the switching content is displayed regardless of the presence or absence of other content such as route content.
  • the character information content CTt as the switching content may be displayed so as to be superimposed on the route content in terms of the appearance of the driver.
  • the boundary content CTb as the switching content may be displayed so as to be continuous with the route content.
  • the display generation unit 109 corrects the display position of the low-precision route content CTrn when the route contents coexist and are displayed.
  • the display generation unit 109 may be configured to execute the correction as long as the correction based on the high-precision map data is possible.
  • the display generation unit 109 of the first to fifth embodiments is displaying the low-precision route content CTrn, the display position may be corrected based on the high-precision map data.
  • the processing unit and processor of the above-described embodiment include one or a plurality of CPUs (Central Processing Units).
  • a processing unit and a processor may be a processing unit including a GPU (Graphics Processing Unit), a DFP (Data Flow Processor), and the like in addition to the CPU.
  • the processing unit and the processor may be a processing unit including an FPGA (Field-Programmable Gate Array) and an IP core specialized in specific processing such as learning and inference of AI.
  • Each arithmetic circuit unit of such a processor may be individually mounted on a printed circuit board, or may be mounted on an ASIC (Application Specific Integrated Circuit), an FPGA, or the like.
  • ASIC Application Specific Integrated Circuit
  • non-transitory tangible storage mediums such as flash memory and hard disk can be adopted as the memory device for storing the control program.
  • the form of such a storage medium may also be changed as appropriate.
  • the storage medium may be in the form of a memory card or the like, and may be inserted into a slot portion provided in an in-vehicle ECU and electrically connected to a control circuit.
  • control unit and its method described in the present disclosure may be realized by a dedicated computer constituting a processor programmed to execute one or a plurality of functions embodied by a computer program.
  • the apparatus and method thereof described in the present disclosure may be realized by a dedicated hardware logic circuit.
  • the apparatus and method thereof described in the present disclosure may be realized by one or more dedicated computers configured by a combination of a processor that executes a computer program and one or more hardware logic circuits.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
  • (Appendix 2) A display control program used in the vehicle (A) to control the display on the head-up display (20).
  • At least one processing unit (11) High-precision map information including height information for each point is acquired for the traveling path of the vehicle (S501). With respect to the traveling road, the traveling road information from an information source different from the high-precision map information is acquired (S503). Display of high-precision content (CTrh) based on the high-precision map information depending on whether the degree of deviation between the high-precision map information and the roadway information is out of the permissible range or the degree of deviation is within the permissible range. Change the mode (S504, S505) A display control program that executes processing including that.
  • the display mode of the high-precision content can be recognized differently by the occupant depending on whether the degree of deviation between the high-precision map information and the driving road information is relatively large or small. Therefore, the occupant can grasp the change in the degree of deviation between the high-precision map information and the roadway information, that is, the change in the reliability of the high-precision map information. Therefore, it is possible to provide a display control device and a display control program capable of displaying the reliability of high-precision map information to the occupants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Automation & Control Theory (AREA)
  • Instrument Panels (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Abstract

HCU(100)は、車両において用いられ、HUD(20)によるコンテンツの表示を制御する。HCUは、車両の走行路について、高精度地図データおよび高精度地図データよりも精度の低いナビ地図データの少なくとも一方を取得する地図情報取得部(103)を備える。HCUは、切替コンテンツを表示させる表示生成部(109)を備える。切替コンテンツは、高精度地図データを取得可能な地図エリアと、高精度地図データを取得不可能でありナビ地図データを取得可能な地図エリアとが切り替わる場合に表示され、地図エリアの切り替わりを示す。

Description

表示制御装置、および表示制御プログラム 関連出願の相互参照
 この出願は、2019年9月10日に日本に出願された特許出願第2019-164856号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 この明細書における開示は、ヘッドアップディスプレイによるコンテンツの表示を制御する技術に関する。
 特許文献1には、ヘッドアップディスプレイによってコンテンツを重畳表示する車両用表示装置が開示されている。この車両用表示装置は、乗員の前方視界に自車両の走行位置から誘導地点までの経路を示す誘導表示を重畳表示させる。
国際公開第2015/118859号
 特許文献1に示すようなコンテンツの表示制御において、走行路の地図情報が必要となる場合がある。しかし、地図情報には、高精度地図情報と、高精度地図情報よりも比較的精度の低い低精度地図情報とが存在する。このため、車両の走行に伴って、コンテンツ表示に利用する地図情報が切り替わる場合が存在し得る。この場合に、高精度地図情報を利用したコンテンツ表示と、低精度地図情報を利用したコンテンツ表示とが通知なく切り替わると、乗員に違和感を与える虞が有る。
 本開示は、利用する地図情報の切り替わりに伴う乗員の違和感を抑制可能な表示制御装置、および表示制御プログラムの提供を目的とする。
 この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。また、請求の範囲等に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、技術的範囲を限定するものではない。
 本開示の一態様による表示制御装置は、車両において用いられ、ヘッドアップディスプレイによるコンテンツの表示を制御する表示制御装置であって、車両の走行路について、高精度地図情報および高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得する地図情報取得部と、高精度地図情報を取得可能な高精度地図エリアと、高精度地図情報を取得不可能であり低精度地図情報を取得可能な低精度地図エリアとで地図エリアが切り替わる場合に、地図エリアの切り替わりを示す切替コンテンツを表示させる表示制御部と、を備える。
 本開示の一態様による表示制御プログラムは、車両において用いられ、ヘッドアップディスプレイによるコンテンツの表示を制御する表示制御プログラムであって、少なくとも1つの処理部に、車両の走行路について、高精度地図情報および高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得し、高精度地図情報を取得可能な高精度地図エリアと、高精度地図情報を取得不可能であり低精度地図情報を取得可能な低精度地図エリアとで地図エリアが切り替わる場合に、地図エリアの切り替わりを示す切替コンテンツを表示させる、ことを含む処理を実行させる。
 これらの態様によれば、高精度地図エリアと低精度地図エリアとで地図エリアが切り替わる場合に、その切り替わりを示す切替コンテンツが表示される。故に、切替コンテンツを視認した乗員は、地図エリアの切り替わりを容易に認識し得る。以上により、利用する地図情報の切り替わりに伴う乗員の違和感を抑制可能な表示制御装置、および表示制御プログラムを提供することができる。
 本開示の一態様による表示制御装置は、車両において用いられ、ヘッドアップディスプレイによるコンテンツの表示を制御する表示制御装置であって、車両の走行路について、高精度地図情報および高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得する地図情報取得部と、高精度地図情報を取得可能な高精度地図エリアでは高精度地図情報に基づく高精度コンテンツを重畳表示させ、高精度地図情報を取得不可能であり低精度地図情報を取得可能な低精度地図エリアでは低精度地図情報に基づく低精度コンテンツを重畳表示させる表示制御部と、を備え、表示制御部は、高精度地図エリアと低精度地図エリアとが切り替わる場合に、高精度コンテンツおよび低精度コンテンツのうち切り替わる前のコンテンツを所定期間非表示とした後に、切り替わる後のコンテンツを表示する。
 本開示の一態様による表示制御プログラムは、車両において用いられ、ヘッドアップディスプレイによるコンテンツの表示を制御する表示制御プログラムであって、少なくとも1つの処理部に、車両の走行路について、高精度地図情報および高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得し、高精度地図情報を取得可能な高精度地図エリアでは高精度地図情報に基づく高精度コンテンツを重畳表示させ、高精度地図情報を取得不可能であり低精度地図情報を取得可能な低精度地図エリアでは低精度地図情報に基づく低精度コンテンツを重畳表示させ、高精度地図エリアと低精度地図エリアとが切り替わる場合に、高精度コンテンツおよび低精度コンテンツのうち切り替わる前のコンテンツを所定期間非表示とした後に、切り替わる後のコンテンツを表示する、ことを含む処理を実行させる。
 これらの態様によれば、高精度地図エリアと低精度地図エリアとが切り替わる場合に、切り替わる前のコンテンツが所定期間非表示となった後に、切り替わる後のコンテンツが表示される。故に、高精度コンテンツおよび低精度コンテンツの一方から他方へ表示が切り替わることを、コンテンツが非表示となることによって、乗員が容易に認識し得る。以上により、利用する地図情報の切り替わりに伴う乗員の違和感を抑制可能な表示制御装置、および表示制御プログラムを提供することができる。
 本開示の一態様による表示制御装置は、車両において用いられ、ヘッドアップディスプレイによるコンテンツの表示を制御する表示制御装置であって、車両の走行路について、高精度地図情報および高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得する地図情報取得部と、高精度地図情報を取得可能な高精度地図エリアでは高精度地図情報に基づく高精度コンテンツを重畳表示させ、高精度地図情報を取得不可能であり低精度地図情報を取得可能な低精度地図エリアでは低精度地図情報に基づく低精度コンテンツを重畳表示させる表示制御部と、を備え、表示制御部は、高精度地図エリアと低精度地図エリアとが切り替わる場合、ヘッドアップディスプレイの画角のうち高精度地図エリアに高精度コンテンツを重畳表示させるとともに、画角内のうち低精度地図エリアに低精度コンテンツを重畳表示させる。
 本開示の一態様による表示制御プログラムは、車両において用いられ、ヘッドアップディスプレイによるコンテンツの表示を制御する表示制御プログラムであって、少なくとも1つの処理部に、車両の走行路について、高精度地図情報および高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得し、高精度地図情報を取得可能な高精度地図エリアでは高精度地図情報に基づく高精度コンテンツを重畳表示させ、高精度地図情報を取得不可能であり低精度地図情報を取得可能な低精度地図エリアでは低精度地図情報に基づく低精度コンテンツを重畳表示させ、高精度地図エリアと低精度地図エリアとが切り替わる場合、ヘッドアップディスプレイの画角のうち高精度地図エリアに高精度コンテンツを重畳表示させるとともに、画角内のうち低精度地図エリアに低精度コンテンツを重畳表示させる、ことを含む処理を実行させる。
 これらの態様によれば、高精度地図エリアと低精度地図エリアとで地図エリアが切り替わる場合に、画角内のうち高精度地図エリアに高精度コンテンツが重畳表示され、低精度地図エリアに低精度コンテンツが重畳表示される。これにより、異なる各地図エリアに対応するコンテンツが画角内に共存して表示されるため、地図エリアの切り替わりを乗員が容易に認識し得る。以上により、利用する地図情報の切り替わりに伴う乗員の違和感を抑制可能な表示制御装置、および表示制御プログラムを提供することができる。
第1実施形態によるHCUを含む車載ネットワークの全体像を示す図である。 車両に搭載されるヘッドアップディスプレイの一例を示す図である。 HCUの概略的な構成の一例を示す図である。 エリア切替表示の一例を示す図である。 エリア切替表示の一例を示す図である。 HCUにて実行される表示制御方法の一例を示すフローチャートである。 第2実施形態におけるエリア切替表示の一例を示す図である。 第2実施形態におけるHCUにて実行される表示制御方法の一例を示すフローチャートである。 第3実施形態におけるエリア切替表示の一例を示す図である。 第4実施形態におけるエリア切替表示の一例を示す図である。 第5実施形態におけるエリア切替表示の一例を示す図である。 第5実施形態におけるHCUにて実行される表示制御方法の一例を示すフローチャートである。 第6実施形態におけるエリア切替表示の一例を示す図である。 第6実施形態におけるエリア切替表示の一例を示す図である。 第6実施形態におけるHCUにて実行される表示制御方法の一例を示すフローチャートである。 第7実施形態における信頼度表示の一例を示す図である。 第7実施形態におけるHCUにて実行される表示制御方法の一例を示すフローチャートである。 他の実施形態におけるエリア切替表示の一例を示す図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 本開示の第1実施形態による表示制御装置の機能は、図1~3に示すHCU(Human Machine Interface Control Unit)100によって実現されている。HCU100は、車両Aにおいて用いられるHMI(Human Machine Interface)システム10を、ヘッドアップディスプレイ(以下、「HUD」)20等とともに構成している。HMIシステム10には、操作デバイス26およびDSM(Driver Status Monitor)27等がさらに含まれている。HMIシステム10は、車両Aの乗員(例えばドライバ等)によるユーザ操作を受け付ける入力インターフェース機能と、ドライバへ向けて情報を提示する出力インターフェース機能とを備えている。
 HMIシステム10は、車両Aに搭載された車載ネットワークの通信バス99に通信可能に接続されている。HMIシステム10は、車載ネットワークに設けられた複数のノードのうちの1つである。車載ネットワークの通信バス99には、例えば周辺監視センサ30、ロケータ40、DCM49、運転支援ECU50、およびナビゲーション装置60等がそれぞれノードとして接続されている。通信バス99に接続されたこれらのノードは、相互に通信可能である。
 周辺監視センサ30は、車両Aの周辺環境を監視する自律センサである。周辺監視センサ30は、自車周囲の検出範囲から、歩行者、サイクリスト、人間以外の動物、および他車両B等の移動物体、さらに路上の落下物、ガードレール、縁石、道路標識、走行区画線等の路面表示、および道路脇の構造物等の静止物体、を検出可能である。周辺監視センサ30は、車両Aの周囲の物体を検出した検出情報を、通信バス99を通じて、運転支援ECU50等に提供する。
 周辺監視センサ30は、物体検出のための検出構成として、フロントカメラ31およびミリ波レーダ32を有している。フロントカメラ31は、車両Aの前方範囲を撮影した撮像データ、および撮像データの解析結果の少なくとも一方を、検出情報として出力する。ミリ波レーダ32は、例えば車両Aの前後の各バンパーに互いに間隔を開けて複数配置されている。ミリ波レーダ32は、ミリ波または準ミリ波を、車両Aの前方範囲、前側方範囲、後方範囲および後側方範囲等へ向けて照射する。ミリ波レーダ32は、移動物体および静止物体等で反射された反射波を受信する処理により、検出情報を生成する。ソナー33は、車両Aの前方範囲、前側方範囲、後方範囲および後側方範囲等へ向けて超音波を照射する。ソナー33は、照射方向に存在する移動物体および静止物体等で反射された超音波を受信する処理により、検出情報を取得する。なお、ライダ等の他の検出構成が、周辺監視センサ30に含まれていてもよい。
 ロケータ40は、複数の取得情報を組み合わせる複合測位により、車両Aの高精度な位置情報等を生成する。ロケータ40は、例えば複数車線のうちで、車両Aが走行する車線を特定可能である。ロケータ40は、GNSS(Global Navigation Satellite System)受信器41、慣性センサ42、高精度地図データベース(以下、「高精度地図DB」)43、およびロケータECU44を含む構成である。
 GNSS受信器41は、複数の人工衛星(測位衛星)から送信された測位信号を受信する。GNSS受信器41は、GPS、GLONASS、Galileo、IRNSS、QZSS、Beidou等の衛星測位システムのうちで、少なくとも1つの衛星測位システムの各測位衛星から、測位信号を受信可能である。慣性センサ42は、例えばジャイロセンサおよび加速度センサを有している。
 高精度地図DB43は、不揮発性メモリを主体に構成されており、高精度地図データ(高精度地図情報)を記憶している。高精度地図データは、後述のナビ地図データよりも高精度且つ高密度の情報を備えている。高精度地図データは、少なくとも高さ(z)方向の情報について、詳細な情報を保持している。高精度地図データには、高度運転支援および自動運転に利用可能な情報が含まれている。
 詳記すると、高精度地図データは、道路に関する情報、白線等の区画線および道路標示に関する情報、構造物に関する情報等を有している。道路に関する情報には、例えば地点別の位置情報、カーブ曲率や勾配、他の道路との接続関係といった形状情報、道路の種別情報、車線数や各車線に許容された進行方向といった車線情報等が含まれている。区画線や道路標示に関する情報には、例えば区画線および道路標示の種別情報、位置情報、および三次元形状情報が含まれている。構造物に関する情報には、例えば各構造物の種別情報、位置情報、および形状情報が含まれている。ここで構造物は、道路標識、信号機、街灯、トンネル、陸橋および道路に面する建物等である。
 高精度地図データは、上述の各種位置情報および形状情報を、三次元座標により表される特徴点の点群データやベクトルデータ等として有している。すなわち高精度地図データは、位置情報に関して経緯度に加えて高度を含んだ三次元地図であるということもできる。高精度地図データは、これらの位置情報を比較的小さい(例えばセンチメートルオーダーの)誤差で有している。高精度地図データは、高さ情報まで含んだ三次元座標による位置情報を有しているという点で精度の高い地図データである。また、その位置情報の誤差が比較的小さいという点で精度の高い地図データであるということもできる。
 高精度地図データは、実際の道路上を走行する計測車両の収集した情報に基づき作成されている。高精度地図データは、情報の収集されたエリアに関して作成され、情報の収集されていないエリアに関しては範囲外となっている。一般的に、高精度地図データは、現状で高速道路、自動車専用道路について比較的広いカバレッジで整備され、一般道路について比較的狭いカバレッジで整備されている。以下において、高精度地図データが整備されたエリア、すなわち高精度地図データが取得可能なエリアを、高精度地図エリアMhと表記する。
 ロケータECU44は、プロセッサ、RAM、記憶部、入出力インターフェース、およびこれらを接続するバス等を備えたマイクロコンピュータを主体として含む構成の制御部である。ロケータECU44は、GNSS受信器41で受信する測位信号、慣性センサ42の計測結果、および通信バス99に出力された車速情報等を組み合わせ、車両Aの自車位置および進行方向等を逐次測位する。ロケータECU44は、測位結果に基づく車両Aの位置情報および方角情報を、通信バス99を通じて、HCU100、および運転支援ECU50等に提供する。
 なお、車速情報は、車両Aの現在の走行速度を示す情報であり、車両Aの各輪のハブ部分に設けられた車輪速センサの検出信号に基づいて生成される。車速情報を生成し、通信バス99に出力するノード(ECU)は、適宜変更されてよい。例えば、各輪の制動力配分を制御するブレーキ制御ECU、またはHCU100等の車載ECUが、各輪の車輪速センサと電気的に接続されており、車速情報の生成および通信バス99への出力を継続的に実施する。
 ロケータECU44は、測位した自車位置等に基づき、車両Aの走行路について、高精度地図エリアMhに含まれる範囲を判別する。例えば、ロケータECU44は、後述の重畳範囲SAを少なくとも含む判別対象範囲内の走行路に関して、高精度地図エリアMhに含まれる範囲を判別する。ロケータECU44は、判別結果をHCU100に逐次提供する。ロケータECU44は、判別した走行路の少なくとも一部が高精度地図エリアMhに含まれる場合、該当する範囲の高精度地図データを高精度地図DB43から読み出し、HCU100に提供する。なお、ロケータECU44は、ナビECU62から提供される情報に基づいて、走行路について後述のナビ地図エリアMnに含まれる範囲をさらに判別してもよい。
 DCM(Data Communication Module)49は、車両Aに搭載される通信モジュールである。DCM49は、LTE(Long Term Evolution)および5G等の通信規格に沿った無線通信により、車両Aの周囲の基地局との間で電波を送受信する。DCM49の搭載により、車両Aは、インターネットに接続可能なコネクテッドカーとなる。DCM49は、クラウド上に設けられたプローブサーバから、最新の高精度地図データを取得可能である。DCM49は、ロケータECU44と連携して、高精度地図DB43に格納された高精度地図データを、最新の情報に更新する。
 運転支援ECU50は、処理部、RAM、記憶部、入出力インターフェース、およびこれらを接続するバス等を備えたコンピュータを主体として含む構成の制御部である。運転支援ECU50は、ドライバの運転操作を支援する運転支援機能を備えている。
 運転支援ECU50は、周辺監視センサ30から取得した車両Aの周辺範囲についての検出情報を解析し、車両Aの周囲の走行環境を認識する。具体的に、運転支援ECU50は、車両Aが現在走行する車線(以下、「自車車線Lns」 図4,5参照)の左右の区画線または道路端の相対位置を特定する。なお、左右の方向は、水平面上に静止した車両Aの幅方向と一致する方向であり、車両Aの進行方向を基準として設定される。運転支援ECU50は、検出情報の解析結果を、解析済みの検出情報としてHCU100等に逐次提供する。
 運転支援ECU50は、記憶部に記憶されたプログラムを処理部によって実行することにより、高度運転支援を実現する複数の機能を発揮可能である。複数の機能には、例えばACC(Adaptive Cruise Control)機能、LTC(Lane Trace Control)機能等を含んでいる。
 ナビゲーション装置60は、設定される目的地までの経路を探索し、探索した経路に沿った走行を案内する。ナビゲーション装置60は、ナビ地図データベース(以下、ナビ地図DB)61、およびナビECU62を備える。
 ナビ地図DB61は、不揮発性メモリであって、リンクデータ、ノードデータ、道路形状等のナビゲーション地図データ(以下、ナビ地図データ)を格納している。ナビ地図データは、高精度地図データよりも比較的広範囲のエリアにて整備されている。リンクデータは、リンクを特定するリンクID、リンクの長さを示すリンク長、リンク方位、リンク旅行時間、リンクの始端と終端とのノード座標、および道路属性等の各データから構成される。ノードデータは、地図上のノード毎に固有の番号を付したノードID、ノード座標、ノード名称、ノード種別、ノードに接続するリンクのリンクIDが記述される接続リンクID、交差点種別等の各データから構成される。
 ナビ地図データは、二次元の位置座標情報としてノード座標を有している。すなわちナビ地図データは、位置情報に関して経緯度を含んだ二次元地図であるということもできる。ナビ地図データは、位置情報に関して高さ情報を有していない点で高精度地図データよりも低い精度の地図データである。また、位置情報の誤差が比較的大きいという点でも低い精度の地図データであるということもできる。ナビ地図データは、低精度地図情報の一例である。
 一般的に、ナビ地図データは、高精度地図データに対して比較的広範囲に整備されている。すなわち、高精度地図データが取得不可能であり、ナビ地図データは取得可能であるエリアが存在し得る。以下において、このようなエリアをナビ地図エリアMnと表記する。ナビ地図エリアMnは、低精度地図エリアの一例である。
 ナビECU62は、プロセッサ、RAM、記憶部、入出力インターフェース、およびこれらを接続するバス等を備えたマイクロコンピュータを主体に構成されている。ナビECU62は、車両A(自車)の位置情報および方角情報を、通信バス99を通じてロケータECU44より取得する。ナビECU62は、通信バス99およびHCU100を通じて、操作デバイス26に入力された操作情報を取得し、ドライバ操作に基づく目的地を設定する。ナビECU62は、目的地までの複数経路を、例えば時間優先および距離優先等の条件を満たすように探索する。探索された複数経路のうちの1つが選択されると、ナビECU62は、当該設定経路に基づく経路情報を、関連するナビ地図データとともに、通信バス99を通じて、HCU100に提供する。
 加えてナビECU62は、設定経路に含まれた右左折を行う交差点および分岐ポイント等の案内地点に車両Aが接近すると、案内実施要求を、HCU100へ向けて順次出力する。案内地点は、一例として交差点区間および分岐可能区間の各中央付近に設定される。なお、案内地点は、交差点区間および分岐可能区間の各手前側または各奥側に設定されてもよい。
 案内実施要求は、案内地点を含む経路案内区間におけるドライバへの経路案内に用いられる案内情報である。具体的には、案内実施要求は、案内地点の位置情報と、案内地点にて車両Aが進むべき方向を示す情報とを含んでいる。案内実施要求は、車両Aから案内地点までの残距離が閾値(例えば300m程度)未満となったタイミングで出力される。HCU100は、ナビECU62からの案内実施要求の取得に基づき、経路案内に関連した情報提示を実施する。
 次に、HMIシステム10に含まれる操作デバイス26、DSM27、HUD20およびHCU100の各詳細を、図1および図2に基づき順に説明する。
 操作デバイス26は、ドライバ等によるユーザ操作を受け付ける入力部である。操作デバイス26には、例えばACC機能について、起動および停止の切り替え、および車間距離の設定等を行うユーザ操作が入力される。具体的には、ステアリングホイールのスポーク部に設けられたステアスイッチ、ステアリングコラム部8に設けられた操作レバー、およびドライバの発話を検出する音声入力装置等が、操作デバイス26に含まれる。
 DSM27は、近赤外光源および近赤外カメラと、これらを制御する制御ユニットとを含む構成である。DSM27は、運転席のヘッドレスト部に近赤外カメラを向けた姿勢にて、例えばステアリングコラム部8の上面またはインスツルメントパネル9の上面等に設置されている。DSM27は、近赤外光源によって近赤外光を照射されたドライバの頭部を、近赤外カメラによって撮影する。近赤外カメラによる撮像画像は、制御ユニットによって画像解析される。制御ユニットは、アイポイントEPの位置および視線方向等の情報を撮像画像から抽出し、抽出した状態情報をHCU100へ向けて逐次出力する。
 HUD20は、メータディスプレイおよびセンターインフォメーションディスプレイ等とともに、複数の車載表示デバイスの1つとして、車両Aに搭載されている。HUD20は、HCU100と電気的に接続されており、HCU100によって生成された映像データを逐次取得する。HUD20は、映像データに基づき、例えばルート情報、標識情報、および各車載機能の制御情報等、車両Aに関連する種々の情報を、虚像Viを用いてドライバに提示する。
 HUD20は、ウィンドシールドWSの下方にて、インスツルメントパネル9内の収容空間に収容されている。HUD20は、虚像Viとして結像される光を、ウィンドシールドWSの投影範囲PAへ向けて投影する。ウィンドシールドWSに投影された光は、投影範囲PAにおいて運転席側へ反射され、ドライバによって知覚される。ドライバは、投影範囲PAを通して見える前景に、虚像Viが重畳された表示を視認する。
 HUD20は、プロジェクタ21および拡大光学系22を備えている。プロジェクタ21は、LCD(Liquid Crystal Display)パネルおよびバックライトを有している。プロジェクタ21は、LCDパネルの表示面を拡大光学系22へ向けた姿勢にて、HUD20の筐体に固定されている。プロジェクタ21は、映像データの各フレーム画像をLCDパネルの表示面に表示し、当該表示面をバックライトによって透過照明することで、虚像Viとして結像される光を拡大光学系22へ向けて射出する。拡大光学系22は、合成樹脂またはガラス等からなる基材の表面にアルミニウム等の金属を蒸着させた凹面鏡を、少なくとも1つ含む構成である。拡大光学系22は、プロジェクタ21から射出された光を反射によって広げつつ、上方の投影範囲PAに投影する。
 以上のHUD20には、画角VAが設定される。HUD20にて虚像Viを結像可能な空間中の仮想範囲を結像面ISとすると、画角VAは、ドライバのアイポイントEPと結像面ISの外縁とを結ぶ仮想線に基づき規定される視野角である。画角VAは、アイポイントEPから見て、ドライバが虚像Viを視認できる角度範囲となる。HUD20では、垂直方向における垂直画角よりも、水平方向における水平画角の方が大きくされている。アイポイントEPから見たとき、結像面ISと重なる前方範囲が画角VA内の範囲となる。
 HUD20は、重畳コンテンツCTs(図4および図5参照)および非重畳コンテンツを、虚像Viとして表示する。重畳コンテンツCTsは、拡張現実(Augmented Reality,以下「AR」)表示に用いられるAR表示物である。重畳コンテンツCTsの表示位置は、例えば路面の特定位置、前方車両、歩行者および道路標識等、前景に存在する特定の重畳対象に関連付けられている。重畳コンテンツCTsは、前景中にある特定の重畳対象に重畳表示され、当該重畳対象に相対固定されているように、重畳対象を追って、ドライバの見た目上で移動可能である。即ち、ドライバのアイポイントEPと、前景中の重畳対象と、重畳コンテンツCTsとの相対的な位置関係は、継続的に維持される。そのため、重畳コンテンツCTsの形状は、重畳対象の相対位置および形状に合わせて、所定の周期で継続的に更新されてよい。重畳コンテンツCTsは、非重畳コンテンツよりも水平に近い姿勢で表示され、例えばドライバから見た奥行方向(進行方向)に延伸した表示形状とされる。
 非重畳コンテンツは、前景に重畳表示される表示物のうちで、重畳コンテンツCTsを除いた非AR表示物である。非重畳コンテンツは、重畳コンテンツCTsとは異なり、重畳対象を特定されないで、前景に重畳表示される。非重畳コンテンツは、投影範囲PA内の決まった位置に表示されることで、ウィンドシールドWS等の車両構成に相対固定されているように表示される。
 HCU100は、HMIシステム10において、HUD20を含む複数の車載表示デバイスによる表示を統合的に制御する電子制御装置である。HCU100は、処理部11、RAM12、記憶部13、入出力インターフェース14、およびこれらを接続するバス等を備えたコンピュータを主体として含む構成である。処理部11は、RAM12と結合された演算処理のためのハードウェアである。処理部11は、CPU(Central Processing Unit)等の演算コアを少なくとも1つ含む構成である。RAM12は、映像生成のためのビデオRAMを含む構成であってよい。処理部11は、RAM12へのアクセスにより、後述する各機能部の機能を実現するための種々の処理を実行する。記憶部13は、不揮発性の記憶媒体を含む構成である。記憶部13には、処理部11によって実行される種々のプログラム(表示制御プログラム等)が格納されている。
 図1~図3に示すHCU100は、記憶部13に記憶された表示制御プログラムを処理部11によって実行することで、HUD20によるコンテンツ表示を制御する制御部として機能するための複数の機能部を有する。具体的に、HCU100には、ドライバ情報取得部101、位置情報取得部102、地図情報取得部103、案内情報取得部104、外界情報取得部105、および表示生成部109等の機能部が構築される。
 ドライバ情報取得部101は、DSM27から取得する状態情報に基づき、運転席に着座しているドライバのアイポイントEPの位置および視線方向を特定し、ドライバ情報として取得する。ドライバ情報取得部101は、アイポイントEPの位置を示す三次元の座標(以下、「アイポイント座標」)を生成し、生成したアイポイント座標を、表示生成部109に逐次提供する。
 位置情報取得部102は、車両Aについての最新の位置情報および方角情報を、自車位置情報としてロケータECU44から取得する。位置情報取得部102は、取得した自車位置情報、判定結果、および高精度地図データを、表示生成部109に逐次提供する。
 地図情報取得部103は、車両Aの走行路に関する、高精度地図エリアMhに含まれる範囲の判別結果を、ロケータECU44から取得する。地図情報取得部103は、判別結果に基づき、判別対象範囲内の走行路の全域が高精度地図エリアMhに含まれる場合、走行路についての高精度地図データをロケータECU44から取得する。また、走行路が高精度地図エリアMhに含まれない場合、地図情報取得部103は、走行路についてのナビ地図データをナビECU62から取得する。
 加えて、地図情報取得部103は、走行路の一部のみが高精度地図エリアMhに含まれる場合には、当該領域についての高精度地図データをロケータECU44から取得し、残りの領域についてのナビ地図データをナビECU62から取得する。例えば、高精度地図エリアMhが走行路の途中で終了する場合、および高精度地図エリアMhが走行路の途中から開始される場合に、このような状況が発生し得る。地図情報取得部103は、取得した地図データを、表示生成部109へと逐次提供する。
 案内情報取得部104は、ナビゲーション装置60に目的地が設定されている場合に、目的地までのルート案内に用いられる経路情報を取得する。加えて案内情報取得部104は、案内地点への接近に伴い、ナビECU62から出力される案内実施要求を取得する。案内情報取得部104は、経路情報および案内実施要求を表示生成部109へと逐次提供する。
 外界情報取得部105は、運転支援ECU50から、車両Aの周辺範囲、特に、前方範囲について解析済みの検出情報を取得する。例えば、外界情報取得部105は、自車車線Lnsの左右の区画線または道路端の相対位置を示す検出情報を取得する。外界情報取得部105は、取得した検出情報を表示生成部109に逐次提供する。なお、外界情報取得部105は、運転支援ECU50から取得する解析結果としての検出情報に替えて、フロントカメラ31の撮像データを、検出情報として取得してもよい。
 表示生成部109は、取得した種々の情報に基づき、重畳コンテンツCTs(図4,5参照)の表示レイアウトをシミュレートする仮想レイアウト機能と、情報提示に用いるコンテンツを選定するコンテンツ選定機能とを備えている。加えて、表示生成部109は、仮想レイアウト機能およびコンテンツ選定機能から提供される情報に基づき、HUD20に逐次出力させる映像データを生成する生成機能を備えている。表示生成部109は、表示制御部の一例である。
 表示生成部109は、仮想レイアウト機能の実行により、自車位置情報、高精度地図データおよび検出情報等に基づいて車両Aの現在の走行環境を仮想空間中に再現する。詳記すると、図5に示すように、表示生成部109は、仮想の三次元空間の基準位置に自車オブジェクトAOを設定する。表示生成部109は、地図データの示す形状の道路モデルを、自車位置情報に基づき、自車オブジェクトAOに関連付けて、三次元空間にマッピングする。表示生成部109は、高精度地図データに基づいて、高精度地図エリアMhの道路モデルをマッピングし、ナビ地図データに基づいて、ナビ地図エリアMnの道路モデルをマッピングする。
 表示生成部109は、自車オブジェクトAOに関連付けて、仮想カメラ位置CPおよび重畳範囲SAを設定する。仮想カメラ位置CPは、ドライバのアイポイントEPに対応する仮想位置である。表示生成部109は、ドライバ情報取得部101にて取得される最新のアイポイント座標に基づき、自車オブジェクトAOに対する仮想カメラ位置CPを逐次補正する。重畳範囲SAは、虚像Viの重畳表示が可能となる範囲である。表示生成部109は、仮想カメラ位置CPと、記憶部13(図1参照)等に予め記憶された投影範囲PAの外縁位置(座標)情報とに基づき、仮想カメラ位置CPから前方を見たときに結像面ISの内側となる前方範囲を、重畳範囲SAとして設定する。重畳範囲SAは、HUD20の画角VAに対応している。
 表示生成部109は、仮想空間中に第1仮想オブジェクトVO1、第2仮想オブジェクトVO2、および第3仮想オブジェクトVO3を配置する。各仮想オブジェクトVO1,VO2は、三次元空間の道路モデルの路面上に配置された走行予定経路に重なるように配置される。第1仮想オブジェクトVO1は、後述する高精度経路コンテンツCTrhを虚像表示させる場合に、仮想空間中に設定される。第2仮想オブジェクトVO2は、後述する低精度経路コンテンツCTrnを虚像表示させる場合に、仮想空間中に設定される。各仮想オブジェクトVO1,VO2は、走行予定経路に沿って仮想路面に平面的に配置される帯状のオブジェクトとされる。
 第1仮想オブジェクトVO1は、重畳範囲SA内の路面が高精度地図エリアMhに含まれる場合に配置される。第1仮想オブジェクトVO1は、高精度地図データに基づいて、その位置を決定される。一方、第2仮想オブジェクトVO2は、重畳範囲SA内の路面がナビ地図エリアMnに含まれる場合に配置される。第2仮想オブジェクトVO2は、ナビ地図データに基づいて、その位置を決定される。各仮想オブジェクトVO1,VO2は、経路コンテンツCTrh,CTrnの位置および形状を規定する。すなわち、仮想カメラ位置CPから見た仮想オブジェクトVO1,VO2の形状が、アイポイントEPから視認される経路コンテンツCTrh,CTrnの虚像形状となる。
 第3仮想オブジェクトVO3は、後述する重畳範囲SA内の路面がナビ地図エリアMnと高精度地図エリアMhとで切り替わる場合に設定される。第3仮想オブジェクトVO3は、後述する遷移コンテンツCTaを重畳表示する場合に、仮想空間中に設定される。第3仮想オブジェクトVO3は、第1仮想オブジェクトVO1および第2仮想オブジェクトVO2の一方から他方へと形状を変形するアニメーションオブジェクトである。すなわち、地図エリアが高精度地図エリアMhからナビ地図エリアMnへと変化する場合、第3仮想オブジェクトVO3は、第1仮想オブジェクトVO1から第2仮想オブジェクトVO2へと変形する形状とされる。地図エリアがナビ地図エリアMnから高精度地図エリアMhへと変化する場合、第3仮想オブジェクトVO3は、第2仮想オブジェクトVO2から第1仮想オブジェクトVO1へと変形する形状とされる。
 表示生成部109は、コンテンツ選定機能の実行により、他車両情報および表示レイアウトのシミュレーション結果等に基づいて、映像データに描画するコンテンツを選択する。そして表示生成部109は、HUD20に逐次出力される映像データの生成機能の実行により、HUD20によるドライバへの情報提示を制御する。具体的には、表示生成部109は、コンテンツ選定機能による選定結果に基づき、映像データを構成する各フレーム画像に描画する元画像を決定する。表示生成部109は、重畳コンテンツCTs(図4および図5参照)の元画像をフレーム画像に描画する場合、アイポイントEPおよび重畳対象の各位置に応じて、フレーム画像における元画像の描画位置および描画形状を補正する。以上により、重畳コンテンツCTsは、アイポイントEPから見たとき、重畳対象に正しく重畳される位置および形状で表示されるようになる。
 表示生成部109は、上述のコンテンツ選定機能および映像データの生成機能により、車両Aの進行予定経路をドライバに提示する経路コンテンツを表示可能である。表示生成部109は、現在の走行路について取得可能な地図データに応じて、経路コンテンツの表示態様を変化させる。経路コンテンツの表示の詳細について、図4および図5を参照しつつ以下説明する。なお、図4は、車両Aが高精度地図エリアMhからナビ地図エリアMnへと移る場合の経路コンテンツの態様の変化を示している。一方、図5は、車両Aがナビ地図エリアMnから高精度地図エリアMhへと移る場合の経路コンテンツの態様の変化を示している。
 経路コンテンツは、走行予定経路の路面を重畳対象とする重畳コンテンツCTsである。経路コンテンツは、走行予定経路に沿った形状に描画され、車両Aの走行すべき車線や、右左折および車線変更の必要な地点等を示す。経路コンテンツは、走行予定経路の車線において、車両Aの進行方向に沿って帯状に延伸するシート形状の道路ペイントである。経路コンテンツは、車線が直線状の場合には直線状の態様となり、カーブ状の場合にはカーブに沿って湾曲した態様となる。また、経路コンテンツは、交差点内においては、走行予定経路上の進入車線と退出車線とを繋ぐ態様となる。経路コンテンツは、車両Aの走行に合わせて、アイポイントEPから見える路面形状に適合するように、所定の更新周期で描画形状を更新される。
 表示生成部109は、経路コンテンツとして、高精度経路コンテンツCTrhおよび低精度経路コンテンツCTrnのいずれか一方を表示させる。高精度経路コンテンツCTrhは、車両Aの走行路が高精度地図エリアMhである場合に表示される経路コンテンツである。具体的には、高精度経路コンテンツCTrhは、重畳範囲SA内の路面が高精度地図エリアMhに含まれる場合に表示される。
 高精度経路コンテンツCTrhは、表示シミュレーションにて配置される第1仮想オブジェクトVO1に基づいて描画位置、および描画形状を決定される。すなわち、高精度経路コンテンツCTrhは、高精度地図データに基づいて生成されるコンテンツである。これにより、高精度経路コンテンツCTrhは、低精度経路コンテンツCTrnと比較して高い精度で路面に重畳表示され得る。高精度経路コンテンツCTrhは、低精度経路コンテンツCTrnと異なる表示態様で表示される。例えば、高精度経路コンテンツCTrhは、後述の低精度経路コンテンツCTrnよりも幅の大きい帯状とされ、低精度経路コンテンツCTrnと異なる表示色(例えば青色)とされる。高精度経路コンテンツCTrhは、高精度コンテンツの一例である。
 低精度経路コンテンツCTrnは、車両Aの走行路がナビ地図エリアMnである場合、具体的には、重畳範囲SA内の路面がナビ地図エリアMnに含まれる場合に表示される。低精度経路コンテンツCTrnは、表示シミュレーションにて配置される第2仮想オブジェクトVO2に基づいて描画位置、および描画形状を決定される。すなわち、低精度経路コンテンツCTrnは、ナビ地図データに基づいて生成されるコンテンツである。これにより、低精度経路コンテンツCTrnは、高精度経路コンテンツCTrhと比較してより低い精度で路面に重畳表示され得る。低精度経路コンテンツCTrnは、例えば高精度経路コンテンツCTrhより幅の小さい帯状とされ、高精度経路コンテンツCTrhと異なる表示色(例えば赤色)とされる。低精度経路コンテンツCTrnは、低精度コンテンツの一例である。
 加えて、表示生成部109は、経路コンテンツの表示中に走行路の地図エリアが切り替わる場合に、遷移コンテンツCTaを表示する。遷移コンテンツCTaは、地図エリアの切り替わりをドライバに提示する切替コンテンツの一例である。遷移コンテンツCTaは、経路コンテンツと同様の重畳コンテンツCTsとされる。遷移コンテンツCTaは、切り替わり前の地図エリアに対応する経路コンテンツから、切り替わり後の地図エリアに対応する経路コンテンツへと遷移させるコンテンツである。例えば、遷移コンテンツCTaは、一方の経路コンテンツの表示態様から他方の経路コンテンツの表示態様へと見かけ上連続的に変化するアニメーションコンテンツとされる。すなわち、第1実施形態の経路コンテンツの場合、遷移コンテンツCTaは、経路コンテンツの幅および表示色が遷移するアニメーションとして表示される。なお、遷移コンテンツCTaは、一方の経路コンテンツから他方の経路コンテンツへの遷移を見かけ上段階的に示す複数または1つの静止画像であってもよい。
 地図エリアが高精度地図エリアMhからナビ地図エリアMnへと切り替わる場合、遷移コンテンツCTaは、重畳範囲SAがナビ地図エリアMnに進入する前に、高精度地図エリアMhの路面に重畳表示される。すなわち、遷移コンテンツCTaは、高精度地図データに基づいて生成される。遷移コンテンツCTaは、ナビ地図エリアMnに進入する前に遷移アニメーションが完了するように、ナビ地図エリアMn到達まで所定距離または所定時間手前の地点にて表示開始される。
 また、地図エリアがナビ地図エリアMnから高精度地図エリアMhへと切り替わる場合、遷移コンテンツCTaは、重畳範囲SAが高精度地図エリアMhへ進入後に、高精度地図エリアMhの路面に重畳表示される。これにより、上述と同様に、遷移コンテンツCTaは高精度地図データに基づいて生成される。
 次に、表示制御プログラムに基づく各コンテンツの表示制御方法の詳細を、図6に示すフローチャートに基づき、図4および図5を参照しつつ、以下説明する。図6に示す処理は、例えば車両電源のオン状態への切り替えにより、起動処理等を終えたHCU100により開始される。
 HCU100は、まずステップ(以下、「ステップ」を省略)S101で、取得した案内情報に基づき、経路案内区間か否かを判定する。経路案内区間である判定するとS102へと進み、現在の走行路に関する地図データを取得する。次にS103では現在の走行路が高精度地図エリアMhか否かを判定する。高精度地図エリアMhであると判定されると、S104へと進む。
 S104では、取得した高精度地図データに基づいて、表示生成部109にて高精度経路コンテンツCTrhの重畳表示を実行する。次に、S105では、重畳範囲SAがナビ地図エリアMnに接近しているか否かを判定する。ナビ地図エリアMnに接近していない場合、S101へと戻る。一方でナビ地図エリアMnに接近していると判定されると、S106へと進む。S106では、高精度地図データに基づき、高精度経路コンテンツCTrhから低精度経路コンテンツCTrnへの遷移を示す遷移コンテンツCTaを表示させる。
 S106にて遷移コンテンツCTaの表示を実行した場合、およびS103にて走行路が高精度地図エリアMhではないと判定した場合には、S107へと進む。S107では、ナビ地図データに基づき、低精度経路コンテンツCTrnの重畳表示を実行する。
 次に、S108では、重畳範囲SAが高精度地図エリアMhに進入したか否かを判定する。高精度地図エリアMhに進入したと判定すると、S109へと進み、高精度地図データに基づき、低精度経路コンテンツCTrnから高精度経路コンテンツCTrhへの遷移を示す遷移コンテンツCTaを表示させる。遷移コンテンツCTaの表示が完了すると、S104へと戻る。
 一方で、S109にて高精度地図エリアMhへと進入していないと判定した場合には、S101へと戻る。一連の処理は、S101にて経路案内区間ではないと判定されるまで継続され、経路案内区間ではないと判定されると、S110へと進み経路案内に関連するコンテンツの表示を終了した後、一連の処理を終了する。
 次に第1実施形態のHCU100がもたらす作用効果について説明する。
 HCU100は、高精度地図エリアMhとナビ地図エリアMnとが切り替わる場合に、地図エリアの切り替わりを示す切替コンテンツとして遷移コンテンツCTaを表示させる。これによれば、高精度地図エリアMhとナビ地図エリアMnとで地図エリアが切り替わる場合に、その切り替わりを示す切替コンテンツとして遷移コンテンツCTaが表示される。故に、遷移コンテンツCTaを視認した乗員としてのドライバは、地図エリアの切り替わりを容易に認識し得る。以上により、利用する地図データの切り替わりに伴うドライバの違和感を抑制可能である。
 また、ナビ地図エリアMnから高精度地図エリアMhへと切り替わる場合に、遷移コンテンツCTaは、低精度経路コンテンツCTrnを高精度経路コンテンツCTrhへと遷移させるコンテンツとして表示される。一方で、高精度地図エリアMhからナビ地図エリアMnへと切り替わる場合に、遷移コンテンツCTaは、高精度経路コンテンツCTrhを低精度経路コンテンツCTrnへと遷移させるコンテンツとして表示される。
 これによれば、各地図エリアに対応した経路コンテンツが地図エリアの切り替わりに伴って遷移することで、当該切り替わりがドライバに提示される。故に、地図エリアの切り替わりを違和感の比較的少ない状態でドライバに提示できる。特に、第1実施形態では、経路コンテンツの表示中において、当該経路コンテンツの遷移によって地図エリアの切り替わりを提示するので、切り替わりを示すコンテンツを追加で表示させる場合よりも、画角VA内が煩雑になることを抑制することができる。
 遷移コンテンツCTaは、高精度地図エリアMhの路面に重畳表示される。これによれば、遷移コンテンツCTaは、高精度地図データに基づいて表示され得る。故に、経路コンテンツの遷移するアニメーションが、路面に対してより正確に重畳表示される。したがって、経路コンテンツの遷移における表示の違和感が低減され得る。
 (第2実施形態)
 第2実施形態では、第1実施形態におけるHCU100の変形例について説明する。図7および図8において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
 第2実施形態において、表示生成部109は、仮想空間中に第4仮想オブジェクトVO4を表示する。第4仮想オブジェクトVO4は、走行予定経路上の仮想路面に配置される。第4仮想オブジェクトVO4は、後述の文字情報コンテンツCTtを虚像表示させる場合に、仮想空間中の高精度地図エリアMhに設定される。第4仮想オブジェクトVO4は、文字情報コンテンツCTtに対応するテキストを模った形状とされる。
 表示生成部109は、地図エリアの切り替わりを示すコンテンツとして、文字情報コンテンツCTtを表示可能である。文字情報コンテンツCTtは、路面を重畳対象とする重畳コンテンツCTsである。文字情報コンテンツCTtは、経路コンテンツ等の他のコンテンツの有無に関わらず表示される。文字情報コンテンツCTtは、地図エリアの切り替わりを文字情報によって示すコンテンツとされる。例えば、ナビ地図エリアMnから高精度地図エリアMhへと切り替わる場合は、「高精度地図スタート」等のテキストとして表示され、高精度地図エリアMhからナビ地図エリアMnへと切り替わる場合は、「ナビ地図スタート」等のテキストとして表示される。
 文字情報コンテンツCTtは、高精度地図データに基づいて、高精度地図エリアMhの路面の特定位置に留まっているように、重畳表示される。すなわち、ナビ地図エリアMnから高精度地図エリアMhへと切り替わる場合、重畳範囲SAの高精度地図エリアMhへの進入後に文字情報コンテンツCTtが視認可能となる。
 一方で、高精度地図エリアMhからナビ地図エリアMnへと切り替わる場合、重畳範囲SAがナビ地図エリアMnへ進入する前に文字情報コンテンツCTtが視認可能となる。この場合、文字情報コンテンツCTtは、ナビ地図エリアMn到達の所定距離または所定時間手前の地点にて表示開始され、ナビ地図エリアMnへ進入する直前に非表示とされる。なお、文字情報コンテンツCTtは、車両Aの進行に同期して移動し、所定時間後に非表示となるように表示されてもよい。
 次に、第2実施形態における表示制御方法の詳細を、図8に示すフローチャートに基づき、図7を参照しつつ、以下説明する。
 HCU100は、まずS201で、現在の走行路についての地図データを取得する。次に、S202では、現在の走行路が高精度地図エリアMhに含まれるか否かを判定する。高精度地図エリアMhであると判定されると、S203へと進み、ナビ地図エリアMnに接近しているか否かを判定する。ナビ地図エリアMnに接近していない場合には、接近していると判定されるまで待機する。一方でナビ地図エリアMnに接近していると判定されると、S205へと進み、文字情報コンテンツCTtを表示した後一連の処理を終了する。
 一方で、S202にて高精度地図エリアMhではないと判定されると、S204へと進む。S204では、ナビ地図エリアMnから高精度地図エリアMhへと進入したか否かを判定する。高精度地図エリアMhに進入していない場合には、進入したと判定されるまで待機する。一方で高精度地図エリアMhに進入したと判定されると、S205へと進み、文字情報コンテンツCTtを表示した後一連の処理を終了する。
 第2実施形態では、地図エリアの切り替わりが文字情報コンテンツCTtによって表示される。これによれば、ドライバは、地図エリアの切り替わりを文字情報によって認識し得る。したがって、より明確に地図エリアの切り替わりが認識され得る。特に第2実施形態の文字情報コンテンツCTtは、路面の特定位置に留まるように重畳表示されるので、路面の地図エリアの境界をドライバに惹起させ易い。
 (第3実施形態)
 第3実施形態では、第1実施形態におけるHCU100の変形例について説明する。図9において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
 第3実施形態において、表示生成部109は、切替コンテンツとして境界コンテンツCTbを表示する。境界コンテンツCTbは、表示シミュレーションにおいて仮想路面に配置される帯状の第5仮想オブジェクトVO5に基づいて、路面を重畳対象とする重畳コンテンツCTsとして表示される。境界コンテンツCTbは、各地図エリアに対応する異なる態様の画像を進行方向に沿って並べたコンテンツとされる。
 例えば、境界コンテンツCTbは、表示色の異なるシート状の画像が一続きに連なったコンテンツである。境界コンテンツCTbは、ナビ地図エリアMnに対応する画像を、低精度経路コンテンツCTrnと同じ表示色(例えば赤色)とし、高精度地図エリアMhに対応する画像を、高精度経路コンテンツCTrhと同じ表示色(例えば青色)とする。
 すなわち、地図エリアがナビ地図エリアMnから高精度地図エリアMhへと切り替わる場合、境界コンテンツCTbは、手前側が赤色、奥側が青色で表示されたコンテンツとされる。一方で、地図エリアが高精度地図エリアMhからナビ地図エリアMnへと切り替わる場合、境界コンテンツCTbは、手前側が青色、奥側が赤色で表示されたシート状のコンテンツとされる。
 以上の境界コンテンツCTbは、第2実施形態の文字情報コンテンツCTtと同様に、高精度地図エリアMhの路面に、高精度地図データに基づいて重畳される。境界コンテンツCTbは、路面の特定位置に留まるように表示される。または、境界コンテンツCTbは、車両Aの進行に同期して移動するコンテンツであってもよい。
 (第4実施形態)
 第4実施形態では、第1実施形態におけるHCU100の変形例について説明する。図10において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
 第4実施形態において、表示生成部109は、切替コンテンツとして境界コンテンツCTbを表示する。第4実施形態の境界コンテンツCTbは、表示シミュレーションにおいて仮想路面に配置される帯状の第6仮想オブジェクトVO6に基づいて、高精度地図エリアMhの路面を重畳対象とする重畳コンテンツCTsとして表示される。
 第4実施形態の境界コンテンツCTbは、高精度地図エリアMhの路面において、ナビ地図エリアMnの境界を始端として進行方向に延びるシート状のコンテンツとされる。例えば、境界コンテンツCTbは、高精度経路コンテンツCTrhおよび低精度経路コンテンツCTrnと異なる表示態様とされる。図10の例では、境界コンテンツCTbは、高精度経路コンテンツCTrhおよび低精度経路コンテンツCTrnと異なる表示色(例えば緑色)で表示されている。
 (第5実施形態)
 第5実施形態では、第1実施形態におけるHCU100の変形例について説明する。図11および図12において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
 第5実施形態において、表示生成部109は、経路案内中に地図エリアが切り替わる場合に、経路コンテンツを非表示とする。例えば、高精度地図エリアMhからナビ地図エリアMnへと切り替わる場合、表示生成部109は、ナビ地図エリアMnの開始地点または当該開始地点よりも手前側の地点に重畳範囲SAが到達した際に、高精度経路コンテンツCTrhを非表示とする。この場合、表示生成部109は、高精度経路コンテンツCTrhを非表示として所定期間経過したタイミングで、低精度経路コンテンツCTrnを表示させる。このとき、低精度経路コンテンツCTrnは、重畳範囲SAの路面の少なくとも一部が高精度地図エリアMhに含まれている場合であっても、高精度地図エリアMhにおけるナビ地図データを利用して表示される。
 一方で、ナビ地図エリアMnから高精度地図エリアMhへと切り替わる場合、表示生成部109は、例えば重畳範囲SAの高精度地図エリアMhへの進入開始以降に、低精度経路コンテンツCTrnを非表示とする。表示生成部109は、低精度経路コンテンツCTrnを非表示として所定期間経過したタイミングで、高精度経路コンテンツCTrhを表示させる。例えば、表示生成部109は、重畳範囲SAの全体が高精度地図エリアMhとなって以降に、高精度経路コンテンツCTrhの表示を開始させる。
 次に、第5実施形態における表示制御方法の詳細を、図12に示すフローチャートに基づき、図11を参照しつつ、以下説明する。なお、S301~S304およびS310の処理は、第1実施形態におけるS101~104およびS110の処理と同様であるため、説明を省略する。
 HCU100は、S302にて現在の走行路が高精度地図エリアMhに含まれないと判定した場合、S305にて低精度経路コンテンツCTrnを表示させる。S304またはS305の処理を実行した後、S306へと進む。
 S306では、現在の走行路の該当する地図エリアが切り替わるか否かを判定する。現在の地図エリアが切り替わらず継続すると判定された場合には、S301に戻る。一方で、地図エリアが切り替わると判定された場合には、S307へと進み、直前に表示していた経路コンテンツを非表示とする。S307における非表示期間が完了するとS303へと戻り、切り替わり後の地図エリアを判定して対応する経路コンテンツの表示を開始する。
 以上の第5実施形態では、地図エリアが切り替わる場合に、切り替わる前の経路コンテンツが所定期間非表示とされた後に、切り替わる後の経路コンテンツが表示される。故に、高精度経路コンテンツCTrhおよび低精度経路コンテンツCTrnの一方から他方へ表示が切り替わることを、コンテンツが非表示となることによって、ドライバが容易に認識し得る。以上により、利用する地図データの切り替わりに伴うドライバの違和感を抑制可能となる。
 (第6実施形態)
 第6実施形態では、第1実施形態におけるHCU100の変形例について説明する。図13~図15において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
 第3実施形態にて、表示生成部109は、経路案内中に地図エリアが切り替わる場合に、画角VA内に高精度経路コンテンツCTrhと低精度経路コンテンツCTrnとを共存させてそれぞれの地図エリアMh,Mnに重畳表示させる(図11、図12参照)。
 図13は、ナビ地図エリアMnから高精度地図エリアMhへと切り替わる場合の表示を示している。図13において、重畳範囲SAがナビ地図エリアMnに進入を開始すると、重畳範囲SA内の高精度地図エリアMhに第1仮想オブジェクトVO1が配置され、ナビ地図エリアMnに第2仮想オブジェクトVO2が配置される。
 結果として、画角VA内の路面のうち高精度地図エリアMhに含まれる手前側の部分に、高精度経路コンテンツCTrhが重畳表示される。そして、画角VA内の路面のうちナビ地図エリアMnに含まれる奥側の部分に、低精度経路コンテンツCTrnが重畳表示される。車両Aの進行に伴って、画角VA内の高精度経路コンテンツCTrhは、奥側から手前側へと連続的に消失し、低精度経路コンテンツCTrnは、奥側から手前側へと連続的に伸長する。
 図14は、高精度地図エリアMhからナビ地図エリアMnへと切り替わる場合の表示を示している。この場合にも、低精度経路コンテンツCTrnと高精度経路コンテンツCTrhの位置関係が逆になる以外は、図13と同様に経路コンテンツの表示態様が変更される。
 このような切り替わり時の表示において、表示生成部109は、2つの経路コンテンツのうち手前側の輝度を高くする。すなわち、図13においては、低精度経路コンテンツCTrnの輝度が、高精度経路コンテンツCTrhに対して高くなり、図14においては逆になる。結果として、手前側の路面に重畳されたコンテンツの視認性が、奥側の路面に重畳されたコンテンツよりも高まる。なお、表示生成部109は、奥側の経路コンテンツの透過率を高くすることで、手前側の経路コンテンツの視認性を向上させてもよい。
 また、表示生成部109は、低精度経路コンテンツCTrnが手前側に表示されている場合において、低精度経路コンテンツCTrnが画角VA外となるより前に、低精度経路コンテンツCTrnを非表示とする。
 加えて、表示生成部109は、高精度経路コンテンツCTrhと低精度経路コンテンツCTrnが画角VA内に共存して表示されている場合、隣接する高精度地図エリアMhの高精度地図データに基づき、低精度経路コンテンツCTrnの表示位置を補正する。表示生成部109は、例えば高精度地図エリアMhの道路形状からナビ地図エリアMnの道路形状を推定し、その推定情報を低精度経路コンテンツCTrnの表示位置の演算に利用する。また、表示生成部109は、低精度経路コンテンツCTrnの端部位置を高精度経路コンテンツCTrhの端部位置に合わせる等、高精度経路コンテンツCTrhの表示状態を利用してもよい。
 次に、第6実施形態における表示制御方法の詳細を、図15に示すフローチャートに基づき、図13,14を参照しつつ、以下説明する。なお、S401,S402,S410の処理は、それぞれ第1実施形態におけるS101,S102,S110の処理と同様であるため、説明を省略する。
 HCU100は、S403では、画角VA内に高精度地図エリアMhおよびナビ地図エリアMnの2つの地図エリアが含まれているか否かを判定する。2つの地図エリアが含まれていると判定した場合、S404にて画角VA内の地図エリアごとに、対応する経路コンテンツを重畳表示させる。S404の表示処理を実行すると、S401へと戻る。
 一方で、S403にて画角VA内に高精度地図エリアMhおよびナビ地図エリアMnのうち一方のみが含まれている場合には、S405へと進む。S405では、画角VA内の地図エリアに応じて、高精度経路コンテンツCTrhおよび低精度経路コンテンツCTrnのいずれかを路面に重畳表示させ、S401へと戻る。
 第6実施形態では、地図エリアが切り替わる場合に、画角VA内のうち高精度地図エリアMhに高精度経路コンテンツCTrhが重畳表示され、画角VA内のうちナビ地図エリアMnに低精度経路コンテンツCTrnが重畳表示される。故に、異なる各地図エリアに対応するコンテンツが画角VA内に共存して表示され、地図エリアの切り替わりをドライバが容易に認識し得る。以上により、利用する地図データの切り替わりに伴うドライバの違和感が抑制可能となる。
 また、第6実施形態では、地図エリアが切り替わる場合に、手前側の経路コンテンツの視認性が奥側の経路コンテンツに対して高められる。これによれば、より直近で必要とされる手前側の経路コンテンツを、ドライバが容易に認識し得る。したがって、ドライバにとってより利便性の高い表示が可能となる。
 さらに、第6実施形態では、手前側に低精度経路コンテンツCTrnが重畳され、奥側に高精度経路コンテンツCTrhが重畳されている場合には、ナビ地図エリアMnが画角VA外となるより前に、低精度経路コンテンツCTrnが非表示とされる。これによれば、比較的精度の低い低精度経路コンテンツCTrnが早めに非表示となるので、低精度経路コンテンツCTrnの表示位置のずれをより目立たなくすることが可能になる。
 また、第6実施形態では、隣接する高精度地図エリアMhの高精度地図データに基づいて低精度経路コンテンツCTrnの表示位置が補正されるので、低精度経路コンテンツCTrnの表示位置のずれが抑制され得る。
 (第7実施形態)
 第7実施形態では、第1実施形態におけるHCU100の変形例について説明する。図16および図17において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
 高精度経路コンテンツCTrhが基づく高精度地図データは、整備されてから時間が経過して鮮度が低下すると、実際の道路状態と異なるものとなり、信頼度が低下する場合がある。第7実施形態において、HCU100は、高精度経路コンテンツCTrhが基づく高精度地図データの信頼度をドライバに提示するために、高精度地図データの信頼度をドライバに提示する。
 詳記すると、表示生成部109は、地図情報取得部103にて取得した高精度地図データと、外界情報取得部105にて取得した検出情報とを比較して、そのずれ度合が許容範囲内か許容範囲から外れているかを判定する。例えば、表示生成部109は、高精度地図データに含まれている道路形状および構造物等の特徴点と、フロントカメラ31やライダ等にて検出された当該特徴点との位置座標のずれ量をずれ度合として算出する。表示生成部109は、算出したずれ量が所定の誤差範囲内であれば、高精度地図データと検出情報とが一致すると判定する。一方で、ずれ量が所定の誤差範囲を外れる場合には、高精度地図データと検出情報とが異なると判定する。換言すれば、表示生成部109は、高精度地図データと検出情報とのずれ度合が許容範囲内か許容範囲から外れているかを判定する。なお、表示生成部109は、高精度地図データと、一般車両の走行情報に基づいて生成されたプローブ地図データのずれ度合を算出してもよい。
 表示生成部109は、高精度地図データと検出情報とが一致した場合と、異なる場合とで、高精度経路コンテンツCTrhの表示色を変更する。これにより、高精度経路コンテンツCTrhは、高精度地図データと検出情報とが一致した場合と異なる場合とで、異なる表示態様にて表示される。結果として、高精度地図データの信頼度が、高精度経路コンテンツCTrhによってドライバに提示される。なお、表示生成部109は、表示色に代えて、輝度、透過率、および形状等を変更してもよい。
 次に、表示制御プログラムに基づく各コンテンツの表示制御方法の詳細を、図17に示すフローチャートに基づき説明する。図17に示す処理は、例えば車両電源のオン状態への切り替えにより、起動処理等を終えたHCU100により開始され、繰り返し実行される。
 S501では、地図データを取得する。S502では、取得した地図データに基づき、走行路が高精度地図エリアMhであるか否かを判定する。高精度地図エリアMhではないと判定すると一連の処理を終了する。一方で、高精度地図エリアMhであると判定するとS503へと進み、高精度地図データと検出情報とが一致するか否かを判定する。
 一致すると判定されるとS504へと進み、高精度経路コンテンツCTrhを高信頼度の表示態様とした後、一連の処理を終了する。一方で、高精度地図データと検出情報とが異なると判定された場合には、S505へと進む。S505では、高精度経路コンテンツCTrhを、S504とは異なる低信頼度の表示態様として、一連の処理を終了する。HCU100は、一連の処理を繰り返し実行することで、現在地点の高精度地図データの信頼度に応じて高精度経路コンテンツCTrhの表示態様を更新する。また、表示生成部109は、ずれ量に応じて連続的に表示態様を変更させてもよい。
 (他の実施形態)
 この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、請求の範囲の記載によって示され、さらに請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
 上述の実施形態において、地図情報取得部103は、計測車両の走行により予め生成された高精度地図データを取得するとした。これに代えて、地図情報取得部103は、複数の一般車両の走行情報に基づいて生成されたプローブ地図データを高精度地図データとして取得してもよい。プローブ地図データは、高さ方向の情報を含む地図データであり、ネットワーク上のセンタサーバ等からDCM49を介して取得される。この場合、プローブ地図データを取得可能なエリアが高精度地図エリアとなり、プローブ地図データを取得不可能でナビ地図データを取得可能なエリアが低精度地図エリアとなる。または、プローブ地図データと、ロケータ40に格納された地図データとで、より高精度な一方を取得可能なエリアが高精度地図エリアとされ、当該一方を取得不可能で他方を取得可能なエリアが低精度地図エリアとされてもよい。この場合には、誤差の大きさやデータの新しさ、特徴点の密度等に基づいて、より高精度な地図データが決定されればよい。
 上述の実施形態において、表示生成部109は、幅の異なるシート状のコンテンツとして各経路コンテンツを表示させるとしたが、各経路コンテンツの表示態様はこれに限定されない。例えば、表示生成部109は、図18に示すように、高精度経路コンテンツCTrhを自車車線Lnsの両脇に延びる一対の線状コンテンツとして表示させてもよい。また、表示生成部109は、低精度経路コンテンツCTrnを進行予定経路に沿って並ぶ複数の三角形状のコンテンツとしてもよい。図18の低精度経路コンテンツCTrnは、高精度経路コンテンツCTrhよりも自車車線Lnsの中央付近に重畳されることで、重畳位置のずれが目立たない態様として表示されている。
 上述の実施形態において、表示生成部109は、各地図データに基づくコンテンツとして案内情報に応じた経路コンテンツを表示させるとしたが、表示させるコンテンツはこれに限定されない。例えば、表示生成部109は、LTC機能による車両Aの進行予定軌跡を示すコンテンツを、各地図データに基づいて表示させてもよい。
 上述の実施形態において、表示生成部109は、切替コンテンツを重畳コンテンツCTsとして表示させるとしたが、非重畳コンテンツとして表示させてもよい。例えば、表示生成部109は、切替コンテンツを非重畳コンテンツとして表示させる場合、画角VA内路面がナビ地図エリアMnに含まれている間切替コンテンツを表示させ、高精度地図エリアMhに含まれている間は非表示とする。これによれば、表示生成部109は、画角VA内において高精度コンテンツを重畳可能な領域を有効に活用することができる。
 上述の第2実施形態乃至第4実施形態において、切替コンテンツは、経路コンテンツ等の他のコンテンツの有無に関わらず表示されるとした。切替コンテンツとしての文字情報コンテンツCTtは、例えば経路コンテンツとともに表示される場合、ドライバの見た目上で経路コンテンツの上方に重なって表示されればよい。また、切替コンテンツとしての境界コンテンツCTbは、経路コンテンツと一続きに連続するように表示されればよい。
 上述の第6実施形態において、表示生成部109は、低精度経路コンテンツCTrnの表示位置の補正を、各経路コンテンツが共存して表示されている場合に実行するとした。しかし、表示生成部109は、低精度経路コンテンツCTrnのみを表示している場合であっても、高精度地図データに基づく補正が可能であれば、これを実行する構成であってもよい。第1実施形態乃至第5実施形態の表示生成部109が、低精度経路コンテンツCTrnを表示している間に、高精度地図データに基づく表示位置の補正を実行してもよい。
 上述の実施形態の処理部およびプロセッサは、1つまたは複数のCPU(Central Processing Unit)を含む。こうした処理部およびプロセッサは、CPUに加えて、GPU(Graphics Processing Unit)およびDFP(Data Flow Processor)等を含む処理部であってよい。さらに処理部およびプロセッサは、FPGA(Field-Programmable Gate Array)、並びにAIの学習および推論等の特定処理に特化したIPコア等を含む処理部であってもよい。こうしたプロセッサの各演算回路部は、プリント基板に個別に実装された構成であってもよく、またはASIC(Application Specific Integrated Circuit)およびFPGA等に実装された構成であってもよい。
 制御プログラムを記憶するメモリ装置には、フラッシュメモリおよびハードディスク等の種々の非遷移的実体的記憶媒体(non-transitory tangible storage medium)が採用可能である。こうした記憶媒体の形態も、適宜変更されてよい。例えば記憶媒体は、メモリカード等の形態であり、車載ECUに設けられたスロット部に挿入されて、制御回路に電気的に接続される構成であってよい。
 本開示に記載の制御部およびその手法は、コンピュータプログラムにより具体化された1つ乃至は複数の機能を実行するようにプログラムされたプロセッサを構成する専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の装置およびその手法は、専用ハードウェア論理回路により、実現されてもよい。もしくは、本開示に記載の装置およびその手法は、コンピュータプログラムを実行するプロセッサと1つ以上のハードウェア論理回路との組み合わせにより構成された1つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 次に、上述の第7実施形態から把握できる技術的思想を以下に追記する。
 (付記1)
 車両(A)において用いられ、ヘッドアップディスプレイ(20)による表示を制御する表示制御装置であって、
 前記車両の走行路について、地点別の高さ情報を含む高精度地図情報を取得する地図情報取得部(103)と、
 前記走行路について、前記高精度地図情報とは異なる情報源からの走行路情報を取得する走行路情報取得部と、
 前記高精度地図情報に基づく高精度コンテンツ(CTrh)を表示する表示制御部(109)と、
 を備え、
 前記表示制御部は、
 前記高精度地図情報と、前記走行路情報とのずれ度合が許容範囲を外れる場合と、前記ずれ度合が許容範囲内の場合とで、前記高精度コンテンツの表示態様を変更する表示制御装置。
 (付記2)
 車両(A)において用いられ、ヘッドアップディスプレイ(20)による表示を制御する表示制御プログラムであって、
 少なくとも1つの処理部(11)に、
 前記車両の走行路について、地点別の高さ情報を含む高精度地図情報を取得し(S501)、
 前記走行路について、前記高精度地図情報とは異なる情報源からの走行路情報を取得し(S503)、
 前記高精度地図情報と、前記走行路情報とのずれ度合が許容範囲を外れる場合と、前記ずれ度合が許容範囲内の場合とで、前記高精度地図情報に基づく高精度コンテンツ(CTrh)の表示態様を変更する(S504、S505)
 ことを含む処理を実行させる表示制御プログラム。
 これらの態様によれば、高精度地図情報と走行路情報とのずれ度合が比較的大きい場合と小さい場合とで、高精度コンテンツの表示態様が異なって乗員に認識され得る。故に、乗員は、高精度地図情報と走行路情報とのずれ度合の変化、すなわち高精度地図情報の信頼度の変化を把握し得る。したがって、乗員に高精度地図情報の信頼度を表示可能な表示制御装置および表示制御プログラムを提供できる。

Claims (12)

  1.  車両(A)において用いられ、ヘッドアップディスプレイ(20)によるコンテンツの表示を制御する表示制御装置であって、
     前記車両の走行路について、高精度地図情報および前記高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得する地図情報取得部(103)と、
     前記高精度地図情報を取得可能な高精度地図エリアと、前記高精度地図情報を取得不可能であり前記低精度地図情報を取得可能な低精度地図エリアとで地図エリアが切り替わる場合に、前記地図エリアの切り替わりを示す切替コンテンツ(CTa,CTt,CTb)を表示させる表示制御部(109)と、
     を備える表示制御装置。
  2.  前記表示制御部は、
     前記高精度地図情報に基づく高精度コンテンツ(CTrh)および前記低精度地図情報に基づく低精度コンテンツ(CTrn)の一方を他方へと遷移させる遷移コンテンツ(CTa)を、前記切替コンテンツに含む請求項1に記載の表示制御装置。
  3.  前記表示制御部は、
     前記高精度地図エリアと前記低精度地図エリアとの切り替わりを文字情報にて示す文字情報コンテンツ(CTt)を前記切替コンテンツに含む請求項1または請求項2に記載の表示制御装置。
  4.  前記表示制御部は、
     前記高精度地図エリアの路面を重畳対象として前記切替コンテンツを重畳表示させる請求項1から請求項3のいずれか1項に記載の表示制御装置。
  5.  車両(A)において用いられ、ヘッドアップディスプレイ(20)によるコンテンツの表示を制御する表示制御装置であって、
     前記車両の走行路について、高精度地図情報および前記高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得する地図情報取得部(103)と、
     前記高精度地図情報を取得可能な高精度地図エリアでは前記高精度地図情報に基づく高精度コンテンツ(CTrh)を重畳表示させ、前記高精度地図情報を取得不可能であり前記低精度地図情報を取得可能な低精度地図エリアでは前記低精度地図情報に基づく低精度コンテンツ(CTrn)を重畳表示させる表示制御部(109)と、
     を備え、
     前記表示制御部は、
     前記高精度地図エリアと前記低精度地図エリアとが切り替わる場合に、前記高精度コンテンツおよび前記低精度コンテンツのうち切り替わる前の前記コンテンツを所定期間非表示とした後に、切り替わる後の前記コンテンツを表示する表示制御装置。
  6.  車両(A)において用いられ、ヘッドアップディスプレイ(20)によるコンテンツの表示を制御する表示制御装置であって、
     前記車両の走行路について、高精度地図情報および前記高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得する地図情報取得部(103)と、
     前記高精度地図情報を取得可能な高精度地図エリアでは前記高精度地図情報に基づく高精度コンテンツ(CTrh)を重畳表示させ、前記高精度地図情報を取得不可能であり前記低精度地図情報を取得可能な低精度地図エリアでは前記低精度地図情報に基づく低精度コンテンツ(CTrn)を重畳表示させる表示制御部(109)と、
     を備え、
     前記表示制御部は、
     前記高精度地図エリアと前記低精度地図エリアとが切り替わる場合、前記ヘッドアップディスプレイの画角(VA)のうち前記高精度地図エリアに前記高精度コンテンツを重畳表示させるとともに、前記画角内のうち前記低精度地図エリアに前記低精度コンテンツを重畳表示させる表示制御装置。
  7.  前記表示制御部は、前記高精度コンテンツおよび前記低精度コンテンツのうち、手前側に重畳した前記コンテンツの視認性を、奥側に重畳した前記コンテンツよりも向上させる請求項6に記載の表示制御装置。
  8.  前記表示制御部は、手前側に前記低精度コンテンツを重畳させ、奥側に前記高精度コンテンツを重畳させている場合には、前記低精度地図エリアが前記画角外となるより前に、前記低精度コンテンツを非表示とする請求項6または請求項7に記載の表示制御装置。
  9.  前記表示制御部は、前記低精度地図エリアに隣接する前記高精度地図エリアの前記高精度地図情報に基づいて、前記低精度コンテンツの表示位置を補正する請求項5から請求項8のいずれか1項に記載の表示制御装置。
  10.  車両(A)において用いられ、ヘッドアップディスプレイ(20)によるコンテンツの表示を制御する表示制御プログラムであって、
     少なくとも1つの処理部(11)に、
     前記車両の走行路について、高精度地図情報および前記高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得し(S102;S201)、
     前記高精度地図情報を取得可能な高精度地図エリアと、前記高精度地図情報を取得不可能であり前記低精度地図情報を取得可能な低精度地図エリアとで地図エリアが切り替わる場合に、前記地図エリアの切り替わりを示す切替コンテンツ(CTa,CTt,CTb)を表示させる(S106,S109;S205)、
     ことを含む処理を実行させる表示制御プログラム。
  11.  車両(A)において用いられ、ヘッドアップディスプレイ(20)によるコンテンツの表示を制御する表示制御プログラムであって、
     少なくとも1つの処理部(11)に、
     前記車両の走行路について、高精度地図情報および前記高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得し(S302)、
     前記高精度地図情報を取得可能な高精度地図エリアでは前記高精度地図情報に基づく高精度コンテンツ(CTrh)を重畳表示させ(S304)、
     前記高精度地図情報を取得不可能であり前記低精度地図情報を取得可能な低精度地図エリアでは前記低精度地図情報に基づく低精度コンテンツ(CTrn)を重畳表示させ(S305)、
     前記高精度地図エリアと前記低精度地図エリアとが切り替わる場合に、前記高精度コンテンツおよび前記低精度コンテンツのうち切り替わる前の前記コンテンツを所定期間非表示とした後に、切り替わる後の前記コンテンツを表示する(S307)、
     ことを含む処理を実行させる表示制御プログラム。
  12.  車両(A)において用いられ、ヘッドアップディスプレイ(20)によるコンテンツの表示を制御する表示制御プログラムであって、
     少なくとも1つの処理部(11)に、
     前記車両の走行路について、高精度地図情報および前記高精度地図情報よりも精度の低い低精度地図情報の少なくとも一方を取得し(S402)、
     前記高精度地図情報を取得可能な高精度地図エリアでは前記高精度地図情報に基づく高精度コンテンツ(CTrh)を重畳表示させ、
     前記高精度地図情報を取得不可能であり前記低精度地図情報を取得可能な低精度地図エリアでは前記低精度地図情報に基づく低精度コンテンツ(CTrn)を重畳表示させ(S405)、
     前記高精度地図エリアと前記低精度地図エリアとが切り替わる場合、前記ヘッドアップディスプレイの画角(VA)のうち前記高精度地図エリアに前記高精度コンテンツを重畳表示させるとともに、前記画角内のうち前記低精度地図エリアに前記低精度コンテンツを重畳表示させる(S404)、
     ことを含む処理を実行させる表示制御プログラム。
PCT/JP2020/030119 2019-09-10 2020-08-06 表示制御装置、および表示制御プログラム WO2021049215A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-164856 2019-09-10
JP2019164856A JP7088152B2 (ja) 2019-09-10 2019-09-10 表示制御装置、および表示制御プログラム

Publications (1)

Publication Number Publication Date
WO2021049215A1 true WO2021049215A1 (ja) 2021-03-18

Family

ID=74863510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030119 WO2021049215A1 (ja) 2019-09-10 2020-08-06 表示制御装置、および表示制御プログラム

Country Status (2)

Country Link
JP (2) JP7088152B2 (ja)
WO (1) WO2021049215A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210529A (ja) * 2008-03-06 2009-09-17 Denso Corp 地図表示装置
JP2019015647A (ja) * 2017-07-10 2019-01-31 三菱電機株式会社 走行支援装置及び走行支援方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012242292A (ja) * 2011-05-20 2012-12-10 Alpine Electronics Inc ナビゲーション装置、制御方法及びプログラム
JP6448318B2 (ja) * 2014-11-12 2019-01-09 アルパイン株式会社 ナビゲーションシステム及びコンピュータプログラム
JP6756327B2 (ja) * 2017-11-10 2020-09-16 株式会社Soken 姿勢検出装置、及び姿勢検出プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210529A (ja) * 2008-03-06 2009-09-17 Denso Corp 地図表示装置
JP2019015647A (ja) * 2017-07-10 2019-01-31 三菱電機株式会社 走行支援装置及び走行支援方法

Also Published As

Publication number Publication date
JP7088152B2 (ja) 2022-06-21
JP7420165B2 (ja) 2024-01-23
JP2022107796A (ja) 2022-07-22
JP2021041804A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
JP7052786B2 (ja) 表示制御装置および表示制御プログラム
WO2021006060A1 (ja) 表示制御装置および表示制御プログラム
WO2020261781A1 (ja) 表示制御装置、表示制御プログラム、および持続的有形コンピュータ読み取り媒体
JP7028228B2 (ja) 表示システム、表示制御装置及び表示制御プログラム
US12033548B2 (en) Display control device and display control program product
WO2020208989A1 (ja) 表示制御装置及び表示制御プログラム
WO2020246113A1 (ja) 表示制御装置および表示制御プログラム
JP7416114B2 (ja) 表示制御装置および表示制御プログラム
US20220058998A1 (en) Display control device and non-transitory computer-readable storage medium for display control on head-up display
US11850940B2 (en) Display control device and non-transitory computer-readable storage medium for display control on head-up display
WO2018173512A1 (ja) 車両用表示制御装置及び車両用表示ユニット
JP2021006805A (ja) 表示制御装置及び表示制御プログラム
JP7283448B2 (ja) 表示制御装置および表示制御プログラム
JP7243660B2 (ja) 表示制御装置及び表示制御プログラム
WO2020246114A1 (ja) 表示制御装置および表示制御プログラム
WO2021065735A1 (ja) 表示制御装置、および表示制御プログラム
JP7111121B2 (ja) 表示制御装置及び表示制御プログラム
JP7111137B2 (ja) 表示制御装置、および表示制御プログラム
JP7092158B2 (ja) 表示制御装置及び表示制御プログラム
WO2021049215A1 (ja) 表示制御装置、および表示制御プログラム
JP7255429B2 (ja) 表示制御装置および表示制御プログラム
WO2020149109A1 (ja) 表示システム、表示制御装置及び表示制御プログラム
JP2021094965A (ja) 表示制御装置、および表示制御プログラム
JP2021037895A (ja) 表示制御システム、表示制御装置、および表示制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864144

Country of ref document: EP

Kind code of ref document: A1