WO2021048923A1 - 電極の製造方法および光電変換素子の製造方法 - Google Patents
電極の製造方法および光電変換素子の製造方法 Download PDFInfo
- Publication number
- WO2021048923A1 WO2021048923A1 PCT/JP2019/035558 JP2019035558W WO2021048923A1 WO 2021048923 A1 WO2021048923 A1 WO 2021048923A1 JP 2019035558 W JP2019035558 W JP 2019035558W WO 2021048923 A1 WO2021048923 A1 WO 2021048923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- electrode
- carbon material
- base material
- photoelectric conversion
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 76
- 239000002086 nanomaterial Substances 0.000 claims abstract description 70
- 239000006185 dispersion Substances 0.000 claims abstract description 63
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 60
- 239000007788 liquid Substances 0.000 claims abstract description 45
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 92
- 229910052751 metal Inorganic materials 0.000 claims description 90
- 239000002184 metal Substances 0.000 claims description 90
- 229910021389 graphene Inorganic materials 0.000 claims description 74
- 238000000034 method Methods 0.000 claims description 64
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 50
- 239000002042 Silver nanowire Substances 0.000 claims description 32
- 239000000758 substrate Substances 0.000 claims description 19
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 16
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 16
- 238000002788 crimping Methods 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 11
- 229920002873 Polyethylenimine Polymers 0.000 claims description 9
- -1 polytetrafluoroethylene Polymers 0.000 claims description 8
- 229910002804 graphite Inorganic materials 0.000 claims description 7
- 239000010439 graphite Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 239000002082 metal nanoparticle Substances 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 230000003746 surface roughness Effects 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 abstract description 3
- 238000012805 post-processing Methods 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 245
- 239000010408 film Substances 0.000 description 33
- 229920006254 polymer film Polymers 0.000 description 24
- 239000002070 nanowire Substances 0.000 description 22
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 21
- 239000000872 buffer Substances 0.000 description 20
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 19
- 238000000576 coating method Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 15
- 229920000642 polymer Polymers 0.000 description 13
- 229920002799 BoPET Polymers 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 11
- 229910052709 silver Inorganic materials 0.000 description 11
- 239000004332 silver Substances 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 9
- 239000002612 dispersion medium Substances 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229920001600 hydrophobic polymer Polymers 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 6
- 239000011737 fluorine Substances 0.000 description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 6
- 229910001887 tin oxide Inorganic materials 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000002270 dispersing agent Substances 0.000 description 5
- 229910001316 Ag alloy Inorganic materials 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 229920005597 polymer membrane Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000005499 meniscus Effects 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 2
- 239000012964 benzotriazole Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 238000002338 electrophoretic light scattering Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- ZQBAKBUEJOMQEX-UHFFFAOYSA-N phenyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=CC=C1 ZQBAKBUEJOMQEX-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- AQSGIPQBQYCRLQ-UHFFFAOYSA-N (6,6-dihydroxy-4-methoxycyclohexa-2,4-dien-1-yl)-phenylmethanone Chemical compound C1=CC(OC)=CC(O)(O)C1C(=O)C1=CC=CC=C1 AQSGIPQBQYCRLQ-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- DUNYNUFVLYAWTI-UHFFFAOYSA-N 1-[(2-methylpropan-2-yl)oxy]ethanol Chemical compound CC(O)OC(C)(C)C DUNYNUFVLYAWTI-UHFFFAOYSA-N 0.000 description 1
- LHPPDQUVECZQSW-UHFFFAOYSA-N 2-(benzotriazol-2-yl)-4,6-ditert-butylphenol Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(N2N=C3C=CC=CC3=N2)=C1O LHPPDQUVECZQSW-UHFFFAOYSA-N 0.000 description 1
- GICQWELXXKHZIN-UHFFFAOYSA-N 2-[2-[(2-methylpropan-2-yl)oxy]ethoxy]ethanol Chemical compound CC(C)(C)OCCOCCO GICQWELXXKHZIN-UHFFFAOYSA-N 0.000 description 1
- XDXWNHPWWKGTKO-UHFFFAOYSA-N 207739-72-8 Chemical compound C1=CC(OC)=CC=C1N(C=1C=C2C3(C4=CC(=CC=C4C2=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC(=CC=C1C1=CC=C(C=C13)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)N(C=1C=CC(OC)=CC=1)C=1C=CC(OC)=CC=1)C1=CC=C(OC)C=C1 XDXWNHPWWKGTKO-UHFFFAOYSA-N 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- CTYFNFVTLJWRDC-UHFFFAOYSA-N 4-octyl-2-phenoxybenzoic acid Chemical compound CCCCCCCCC1=CC=C(C(O)=O)C(OC=2C=CC=CC=2)=C1 CTYFNFVTLJWRDC-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- FETUUKHOLDNMQO-UHFFFAOYSA-N 6-benzoyl-1-hydroxy-3-methoxycyclohexa-2,4-diene-1-carboxylic acid Chemical compound C1=CC(OC)=CC(O)(C(O)=O)C1C(=O)C1=CC=CC=C1 FETUUKHOLDNMQO-UHFFFAOYSA-N 0.000 description 1
- RXACYPFGPNTUNV-UHFFFAOYSA-N 9,9-dioctylfluorene Chemical compound C1=CC=C2C(CCCCCCCC)(CCCCCCCC)C3=CC=CC=C3C2=C1 RXACYPFGPNTUNV-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N Oxozirconium Chemical compound [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000008366 benzophenones Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- QUAMTGJKVDWJEQ-UHFFFAOYSA-N octabenzone Chemical compound OC1=CC(OCCCCCCCC)=CC=C1C(=O)C1=CC=CC=C1 QUAMTGJKVDWJEQ-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- DXGLGDHPHMLXJC-UHFFFAOYSA-N oxybenzone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1 DXGLGDHPHMLXJC-UHFFFAOYSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 229960000969 phenyl salicylate Drugs 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/02—Layer formed of wires, e.g. mesh
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/26—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
- H05B33/28—Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
- H10K30/81—Electrodes
- H10K30/82—Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/311—Flexible OLED
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/331—Nanoparticles used in non-emissive layers, e.g. in packaging layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/816—Multilayers, e.g. transparent multilayers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/828—Transparent cathodes, e.g. comprising thin metal layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- An embodiment of the present invention relates to a method for manufacturing an electrode and a method for manufacturing a photoelectric conversion element.
- Nanowire-shaped metal nanomaterials are characterized in that light transmission and electrical resistance can be controlled by the amount of coating.
- granular or plate-shaped metal nanomaterials are often used as opaque electrodes, and are particularly used when low resistance is required.
- a material containing silver is used as the metal nanomaterial, there may be problems such as diffusion of silver atoms and device deterioration due to the reaction of silver with oxygen, halogen, sulfur and the like.
- electrodes formed using carbon materials are characterized by very little deterioration due to diffusion of carbon atoms and reactions.
- electrodes formed using carbon materials generally tend to have high electrical resistance.
- An electrode formed of a carbon material can also be manufactured by applying a dispersion liquid of the carbon material to the base material.
- the base material and the element may be deteriorated due to the influence of the dispersant.
- a method is also known in which a transparent electrode film is manufactured by combining silver nanowires and a carbon material such as graphene or a polymer, and the transparent electrode film is laminated to manufacture an element. Processing may be difficult.
- a method of manufacturing an electrode by transferring a graphene film produced by a CVD method is also known, but in general, the number of steps is large and the cost tends to be high because it is necessary to form a copper foil sacrificial layer.
- the present embodiment is a method of manufacturing an electrode having low resistance and easy post-processing by a simple method with less deterioration of the element, and manufacturing of a photoelectric conversion element using the method. It is intended to provide a method.
- the method for manufacturing the electrode according to the embodiment is as follows.
- the method for manufacturing the photoelectric conversion element is as follows.
- FIG. 1 (A) to 1 (D) are conceptual diagrams for explaining a method of manufacturing an electrode according to an embodiment.
- FIG. 2 is a conceptual diagram showing a process of processing the transferred metal nanomaterial layer and carbon material layer according to the embodiment.
- FIG. 3 is a conceptual diagram showing the structure of the solar cell manufactured in the embodiment.
- FIG. 4 is a conceptual diagram showing the structure of the organic EL element manufactured in the embodiment.
- FIG. 5 is a conceptual diagram showing the structure of the solar cell manufactured in the third embodiment.
- FIG. 6 is a conceptual diagram showing the structure of the organic EL device manufactured in the fifth embodiment.
- FIG. 1 (A) to 1 (D) are conceptual diagrams for explaining a method of manufacturing the electrode 100 according to the present embodiment.
- the manufacturing method of this electrode is Step A (FIG. 1 (A)) in which the dispersion liquid 102 containing the metal nanomaterial is directly applied to the surface of the hydrophobic polymer film (hydrophobic base material) 101 to form the metal nanomaterial layer 103.
- a dispersion liquid 104 containing a carbon material is applied to the surface of the metal nanomaterial layer 103 formed on the surface of the polymer film 101 to form the carbon material layer 105, and the metal nanomaterial layer 103 and the carbon material layer 105 are formed.
- Step B for forming the including electrode layer 107 and Step C (FIG. 1 (C)) in which the hydrophilic base material 106 is directly pressure-bonded to the surface of the carbon material layer
- the step D (FIG. 1 (D)) is included in which the polymer film 101 and the electrode layer 107 are peeled off and the electrode layer 107 is transferred to the base material 106.
- a hydrophobic substrate is prepared.
- the hydrophobic base material does not have to be hydrophobic as a whole, and the surface on which the metal nanomaterial layer is provided may be hydrophobic. Therefore, a hydrophobic layer may be formed on the surface of the support.
- a polymer film 101 made of a hydrophobic polymer is used as the hydrophobic base material.
- the dispersion liquid 102 containing the metal nanomaterial is directly applied to the hydrophobic surface of the hydrophobic base material to form the metal nanomaterial layer 103.
- the dispersion liquid 102 is applied directly on the hydrophobic polymer film 101.
- the dispersion liquid is applied directly on the polymer film 101.
- a generally used release layer or the like is not required.
- the method for applying the dispersion liquid 102 is not particularly limited, but for example, as shown in FIG. 1 (A), the dispersion liquid is placed between the polymer film 101 and the coating bars 102d arranged in parallel with each other.
- a method of carrying the 102 and moving the bar or the polymer film can be mentioned.
- the distance between the polymer film and the bar can be adjusted according to the material of the polymer film, the material of the coating liquid, and the type of bar.
- the dispersion liquid can be supplied from, for example, the dispersion liquid tank 102a to the gap between the polymer film and the bar via the pipe 102b by the nozzle 102c.
- a supply amount control device 102e such as a pump can also be provided.
- the bar 102d may also have a nozzle function.
- the dispersion liquid 102 may be spray-coated on the polymer film 101.
- spraying may be performed from a plurality of fixed nozzles, or a single nozzle may be reciprocated.
- the layer After coating to form the metal nanomaterial layer 103, the layer can be dried if necessary. Specifically, a part or all of the dispersion medium can be distilled off by heat treatment or depressurization treatment.
- the polymer membrane 101 is hydrophobic.
- hydrophobic means, for example, that the contact angle of pure water at 30 ° C. is 80 degrees or more, preferably 90 degrees or more.
- a fluorine-containing polymer is preferable as a material for forming such a polymer film.
- a typical example of the fluorine-containing polymer is a fluorinated hydrocarbon in which a part or all of hydrogen contained in the hydrocarbon is replaced with fluorine.
- a polymer of tetrafluoroethylene is most preferable in terms of heat resistance, solvent resistance, and mold releasability.
- the polymer membrane composed of the polymer of tetrafluoroethylene is preferable because it is easy to clean and can be used repeatedly.
- fluorine-containing polymers include homopolymers and copolymers of fluorine-containing monomers such as vinylidene fluoride and perfluoroalkyl vinyl ether, and copolymers of fluorine-containing monomers and hydrocarbons such as ethylene and polypropylene. ..
- fluorine-containing monomers such as vinylidene fluoride and perfluoroalkyl vinyl ether
- hydrocarbons such as ethylene and polypropylene.
- hydrophobic polymer materials include silicone resins.
- the inside of the polymer film may contain a material for increasing mechanical strength such as glass fiber, carbon fiber, or other filler.
- the ease of charging can be estimated by measuring the zeta potential in water or an organic solvent, and the potential of the metal nanomaterial is preferably lower than the potential of the polymer film.
- the zeta potential at pH 6 is preferable from the atmospheric environment containing carbon dioxide.
- the zeta potential of the dispersion liquid containing the metal nanomaterial can be controlled by the dispersant contained in the dispersion liquid or the surface treatment agent of the metal nanomaterial, and it is preferable that the dispersion liquid is easily negatively charged.
- the zeta potential can be measured by a capillary cell using a Zetasizer Nano ZS manufactured by Malvern Co., Ltd. by an electrophoretic light scattering method.
- the pH in water is adjusted by adding dilute hydrochloric acid and dilute potassium hydroxide aqueous solution to pure water in which a small amount of dispersion is added dropwise.
- the zeta potential of the polymer film can be measured using polystyrene latex as tracer particles using a plate zeta potential measuring cell using a Zetasizer Nano ZS manufactured by Malvern Co., Ltd. by an electrophoretic light scattering method.
- the pH in water is adjusted by adding dilute hydrochloric acid or dilute potassium hydroxide aqueous solution to pure water.
- the shape of the metal nanomaterial can take various shapes such as granular, plate-like, wire-like, and rod-like.
- the wire-shaped metal nanomaterial is suitable because the electric resistance can be lowered even in a small amount, and the formed electrode can be a transparent electrode.
- granular or plate-shaped metal nanomaterials are easy to manufacture and therefore low in cost. Therefore, when transparency is not important, a large amount of granular or plate-shaped metal nanomaterials can be used to form an electrode having extremely low resistance.
- the type of metal contained in the metal nanomaterial is not particularly limited, but is composed of a metal selected from the group consisting of silver, silver alloy, copper, and copper alloy from the viewpoint of price, conductivity, and the like. Nanomaterials are preferred, and nanomaterials made of silver alloys are particularly preferred.
- Water, alcohols, or a mixture thereof is used as the dispersion medium contained in the dispersion liquid containing the metal nanomaterial. Of these, water is the most environmentally friendly and inexpensive. However, if the dispersion medium is only water, it is generally difficult to apply it on the hydrophobic polymer film. In order to facilitate coating, it is preferable to heat the hydrophobic polymer to a high temperature and then spray coating instead of nozzle coating.
- the surface tension of the dispersion is small, so it is easy to apply it on the hydrophobic polymer.
- alcohols those that evaporate at a relatively low temperature are more preferable, and methanol, ethanol, n-propanol, 2-propanol, n-butanol, or a mixed dispersion medium thereof is preferable.
- a mixed dispersion medium of water and these alcohols can also be used.
- a dispersant may be mixed in the dispersion medium.
- dispersant examples include high molecular weight compounds such as polyvinylpyrrolidone, polyvinyl alcohol and derivatives thereof, and low molecular weight compounds such as t-butoxyethanol and diethylene glycol monot-butyl ether.
- the metal nanomaterial When the metal nanomaterial is in the form of a wire, a plurality of nanowires partially contact or fuse with each other in the metal nanomaterial layer to form a network-like structure such as a network or a lattice. In this way, a plurality of conductive paths are formed, and a conductive cluster in which the whole is connected is formed (percolation conductivity theory).
- the nanowires In order for such conductive clusters to be formed, the nanowires need to have a certain number density. In general, it is the longer nanowires that are more likely to form conductive clusters, and the ones that are more conductive are the nanowires with larger diameters.
- the network-like structure is formed by using nanowires, the amount of metal is small, but the overall conductivity is high.
- the coating amount of nanowires in the embodiment is generally 0.05 to 50 g / m 2 , preferably 0.1 to 10 g / m 2 . More preferably, it is 0.15 to 1 g / m 2 . Even if the metal nanowires are applied at this density, the obtained nanowire layer has the advantage of being flexible.
- Metal nanowires are usually composed of metal nanowires having a diameter of 10 to 500 nm and a length of 0.1 to 50 ⁇ m.
- the diameter and length of the metal nanowires can be measured, for example, by analyzing an SEM image selected by a scanning electron microscope (SEM).
- the diameter of the nanowire is preferably 20 to 150 nm, more preferably 30 to 120 nm.
- the length of the nanowire is preferably 1 to 40 ⁇ m, more preferably 5 to 30 ⁇ m.
- Nanowires can be manufactured by any method.
- silver nanowires can be produced by reducing an aqueous solution of silver ions with various reducing agents.
- the shape and size of silver nanowires can be controlled by selecting the type of reducing agent used, the protective polymer or dispersant, and the coexisting ions.
- a polyhydric alcohol such as ethylene glycol as a reducing agent and polyvinylpyrrolidone as a protective polymer.
- nano-order so-called nanowires can be obtained.
- silver nanowires include nanowires made of silver alloy.
- metal nanoparticles in the dispersion liquid of metal nanowires.
- silver nanoparticles may be contained in the silver nanowire dispersion liquid. The silver nanowires and the silver nanoparticles are easily aggregated, and the silver nanoparticles act as an adhesive to satisfactorily bond the silver nanowires to each other. As a result, the electrical resistance of the conductive film can be reduced.
- Step B Next, the dispersion liquid 104 containing the carbon material is directly applied to the surface of the metal nanomaterial layer 103 formed in the step A to form the carbon material layer 105, and the metal nanomaterial layer and the carbon nanomaterial layer are formed. To obtain an electrode layer 107 in which is laminated.
- the carbon material a material selected from the group consisting of graphene, graphite, carbon nanotubes, carbon nanofibers, carbon nanohorns, and Ketjen black is preferable.
- graphene is particularly preferable because it prevents the permeation of substances generated from the photoelectric conversion layer and the like, and makes it difficult for the metal nanomaterial and the base material to deteriorate.
- graphene graphite exfoliated graphene and reduced graphene oxide are preferable.
- the film thickness of the multilayer graphene layer is preferably 5 to 1000 nm.
- reduced graphene oxide when producing an electrode having high transparency, it is preferable to use reduced graphene oxide. Reduced graphene oxide to which a polyethyleneimine chain is bound is more preferable because it has excellent dispersibility. After coating and forming a film of graphene oxide instead of reduced graphene oxide, it may be reduced with hydrated hydrazine vapor to convert it to reduced graphene oxide. Further, when producing an electrode having high transparency, carbon nanotubes can be used instead of graphene. Carbon nanotubes are preferable because they can realize electrodes having lower resistance than graphene. However, it is appropriate to use graphene in order to maintain high permeation shielding property of the substance.
- the carbon material layer has a structure in which a monolayer of graphene (hereinafter referred to as a monolayer graphene layer) is laminated on average in 1 to 4 layers. ..
- the graphene is preferably unsubstituted graphene, nitrogen-doped graphene in which the carbon atom of the graphene skeleton is partially substituted with a nitrogen atom, or boron-doped graphene in which the carbon atom of the graphene skeleton is partially substituted with a boron atom.
- the graphene skeleton is composed of a 6-membered carbon ring, but a part of the graphene skeleton may also have a 5-membered ring or a 7-membered ring.
- unsubstituted graphene and boron-doped graphene are preferable for the anode, and nitrogen-doped graphene is preferable for the cathode.
- the nitrogen doping amount (N / C atomic ratio) can be measured by XPS, and is preferably 0.1 to 30 atom%, more preferably 1 to 10 atom%. Since the nitrogen-doped graphene layer contains nitrogen atoms, it also has a high trapping ability for acids and metal ions, so that the shielding property is higher.
- the dispersion medium contained in the dispersion liquid 104 containing the carbon material a wide range of solvents such as water, alcohols, dimethylformamide, methylethylketone, chlorbenzene, or a mixture thereof are used.
- a wide range of solvents can be selected for application on the metal nanomaterial layer. Of these, water is the most environmentally friendly and inexpensive.
- the dispersion liquid 104 is carried between the bars 104d which are separated from the metal nanomaterial layer and arranged in parallel, and the bars or the polymer film is moved. There is a way to make it.
- the distance between the polymer film and the bar can be adjusted by the material of the polymer film, the material of the coating liquid, and the type of bar.
- the dispersion liquid can be supplied from, for example, the dispersion liquid tank 104a to the gap between the polymer film and the bar via the pipe 104b by the nozzle 104c.
- a supply amount control device 104e such as a pump can also be provided.
- the bar 104d may also have a nozzle function.
- the dispersion can be applied by supplying it to the gap between the polymer film and the bar with a nozzle, or by using a bar having the function of a nozzle. Even a dispersion that is difficult to apply directly on a hydrophobic substrate is often easy to apply on a metal nanomaterial layer.
- the layer After applying to form the carbon material layer 105, the layer can be dried if necessary. Specifically, a part or all of the dispersion medium can be distilled off by heat treatment or depressurization treatment.
- a film of a third substance may be further formed on the carbon material layer.
- the third substance includes a substance that enhances the adhesion to the hydrophilic substrate to be transferred, a substance having an electronic function, for example, an electron transporting substance, a hole transporting substance, and the like.
- Step C Next, the hydrophilic base material 106 is directly pressure-bonded to the surface of the carbon material layer 105 formed in step B. Crimping temporarily forms a stack of hydrophobic substrates, metal nanolayers, carbon layers, and hydrophilic substrates.
- the surface of the hydrophilic base material needs to be more hydrophilic than the polymer membrane which is the hydrophobic base material. Therefore, the expressions hydrophilic base material and hydrophobic base material are relative expressions, and a water-repellent base material such as PET film, which is generally considered to be a hydrophobic material, can also be used as the hydrophilic base material. There is something you can do.
- the electrode layer 107 including the metal nanomaterial layer 103 and the carbon material layer 105 performs transfer by utilizing the difference in hydrophilicity between the polymer film and the hydrophilic base material, so that the surface of the hydrophilic base material is subjected to transfer.
- the adhesive layer generally used in the transfer method is unnecessary.
- the pressure when crimping is not particularly limited. However, since the purpose of this crimping is to form a stack in which the metal nanomaterial layer and the conductive base material are in close contact with each other without gaps, excessive pressure is not required.
- an insulating base material containing various polymers, ceramics and the like can be used as the hydrophilic base material 106. Further, on an insulating base material, transparent conductive metal oxides such as indium-tin oxide (ITO), aluminum-doped zinc oxide (AZO), tin oxide, vanadium-doped titanium oxide, and conductive polymers such as PEDOT: PSS are used. A base material having a conductive film formed on the surface may be used.
- a flexible base material for example, a polymer film as the hydrophilic base material.
- the method of directly crimping to the base material can be performed by, for example, a flat plate press. Specifically, a hydrophobic base material on which a metal nanomaterial layer and a carbon material layer are formed is fixed to a porsta plate of a press machine, and a hydrophilic base material is fixed to a slide to make the carbon material layer hydrophilic.
- the base material can be crimped.
- Step D Next, the carbon material layer is peeled off from the polymer film and transferred to the substrate.
- this step is achieved by applying a force in the direction opposite to the pressure applied for crimping.
- the slide when crimping is performed with a press as described above, the slide may be moved in the direction of pulling away from the porsta plate. As a result, the electrode layer is transferred to the surface of a hydrophilic substrate having a relatively high hydrophilicity to produce an electrode.
- the carbon material layer is formed on the surface of the hydrophobic base material, it may be difficult to peel off, but it is often easy to peel off due to the presence of the metal nanomaterial layer.
- crimping and peeling on a flat plate are shown in FIGS. 1C and 1D, for example, a roll-to-roll method capable of continuously processing by sandwiching between two rolls and performing crimping and peeling is applied. You can also do it.
- auxiliary metal wiring is generally used for current collection in an element.
- the material used to form this auxiliary metal is preferably a material selected from the group consisting of silver, gold, copper, molybdenum, aluminum and alloys thereof. It is also possible that a part of the auxiliary metal wiring is in contact with the metal nanomaterial layer or the hydrophilic base material, and the bonding with the auxiliary metal wiring can be further strengthened.
- the shape of the auxiliary metal wiring layer can be linear, comb-like, mesh-like, or the like.
- the metal nanomaterial layer 103 and the carbon material layer 105 may be patterned. Mechanical scribes and laser scribes are suitable for such patterning. This makes it possible to manufacture electrodes that can be applied to various devices.
- a second embodiment relates to a method for manufacturing a photoelectric conversion element including a first electrode, a second electrode, and a photoelectric conversion layer sandwiched between them.
- the electrode layer is transferred to the hydrophilic substrate, but in the second embodiment, the electrode layer is transferred to the photoelectric conversion layer.
- the same method as in the first embodiment can be adopted except that the object to which the electrode layer is transferred is the photoelectric conversion layer.
- the second electrode can also be created by the method of the first embodiment.
- a support suitable for supporting the photoelectric conversion element include glass, a silicon substrate, and a polymer film.
- any electrode can be used as the second electrode.
- ITO indium-tin oxide
- AZO aluminum-doped zinc oxide
- tin oxide titanium oxide
- PEDOT vanadium-doped titanium oxide
- An organic conductive film such as a conductive polymer such as PSS can also be used.
- the photoelectric conversion layer may be one that absorbs light to generate electric power, or one that consumes electric power and emits light.
- the solar cell 300 is an element having a function as a solar cell that converts light energy such as sunlight L incident on the cell into electric power.
- the solar cell 300 has a transparent electrode 301, a counter electrode 302, and a photoelectric conversion layer 303.
- at least one of the transparent electrode and the counter electrode has a laminated structure of a metal nanomaterial layer and a carbon layer produced in the present embodiment.
- the counter electrode may be opaque or transparent.
- the photoelectric conversion layer 303 is a layer including a semiconductor that converts the light energy of incident light into electric power to generate an electric current.
- the photoelectric conversion layer 303 generally includes a p-type semiconductor layer and an n-type semiconductor layer.
- the photoelectric conversion layer is a laminate of a p-type polymer and an n-type material, a perovskite type represented by ABX 3 (where A is a monovalent cation, B is a divalent cation, and X is a halogen ion), and silicon.
- inorganic compound semiconductors such as InGaAs, GaAs, cadmium telluride, CdTe, InP, and SiGe, quantum dot-containing type, and dye-sensitized transparent semiconductors may be used. In either case, the efficiency is high and the deterioration of the output can be further reduced.
- a buffer layer or the like may be further inserted between the photoelectric conversion layer 303 and the electrode in order to promote or block charge injection.
- the buffer layer or the charge transport layer anode include vanadium oxide, PEDOT / PSS, p-type polymer, vanadium pentoxide (V 2 O 5), 2,2 ', 7,7'-Tetrakis [N, N- A layer composed of di (4-methoxyphenyl) amino] -9,9'-spirobifluorene (hereinafter referred to as Spiro-OMeTAD), nickel oxide (NiO), molybdenum trioxide (MoO 3 ) and the like can be used.
- Spiro-OMeTAD vanadium pentoxide
- NiO nickel oxide
- MoO 3 molybdenum trioxide
- ICBA cesium carbonate
- Cs 2 CO 3 cesium carbonate
- TiO2 titanium dioxide
- PFN Basocpulone
- ZrO zirconium oxide
- a layer composed of zinc (ZnO), tungsten trioxide (WO 3 ), polyetine imine and the like can be used.
- the photoelectric conversion element manufactured by the manufacturing method of this embodiment can be used not only as a photocell, a solar cell, etc., but also as an optical sensor.
- the light light having a wide wavelength from infrared rays to ultraviolet rays and ⁇ -rays can be selected.
- the method for manufacturing a photoelectric conversion element according to the embodiment may further include a step of forming an ultraviolet ray blocking layer or a gas barrier layer.
- the ultraviolet absorber contained in the ultraviolet blocking layer include 2-hydroxy-4-methoxybenzophenone, 2,2-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2-carboxybenzophenone, and 2-.
- Benzophenone compounds such as hydroxy-4-n-octoxybenzophenone; 2- (2-hydroxy-3,5-di-tertiary butylphenyl) benzotriazole, 2- (2-hydroxy-5-methylphenyl) benzotriazole, Examples thereof include benzotriazole-based compounds such as 2- (2-hydroxy-5th octylphenyl) benzotriazole; and salicylate-based compounds such as phenylsalicylate and p-octylphenylsalicylate. It is desirable that these block ultraviolet rays of 400 nm or less.
- the gas barrier layer a layer that blocks water vapor and oxygen is particularly preferable, and a layer that does not allow water vapor to pass through is particularly preferable.
- a layer made of inorganic substances such as SiN, SiO 2 , SiC, SiO x N y , TiO 2 and Al 2 O 3 , an ultrathin glass, and the like can be preferably used.
- the thickness of the gas barrier layer is not particularly limited, but is preferably in the range of 0.01 to 3000 ⁇ m, and more preferably in the range of 0.1 to 100 ⁇ m. If it is less than 0.01 ⁇ m, sufficient gas barrier properties tend not to be obtained, while if it exceeds 3000 ⁇ m, the thickness tends to increase and features such as flexibility tend to disappear.
- the water vapor permeation amount (moisture permeability) of the gas barrier layer is preferably 10 2 g / m 2 ⁇ d to 10-6 g / m 2 ⁇ d, and more preferably 10 g / m 2 ⁇ d to 10-5 g / m. It is 2 ⁇ d, more preferably 1 g / m 2 ⁇ d to 10 -4 g / m 2 ⁇ d.
- the moisture permeability can be measured based on JIS Z0208 or the like.
- the dry method is suitable for forming the gas barrier layer.
- a method for forming a gas barrier layer having a gas barrier property by a dry method resistance heating vapor deposition, electron beam deposition, induction heating vapor deposition, vacuum deposition methods such as assist method using plasma or ion beam, reactive sputtering method, and ion beam are used.
- a vacuum vapor deposition method in which a film is formed by a thin film deposition method under vacuum is preferable.
- the base material used for manufacturing the element according to the embodiment for example, as the transparent base material, an inorganic material such as glass and an organic material such as PET, PEN, polycarbonate, and PMMA are used. Further, aluminum foil, SUS foil, or the like can also be used as the base material. It is preferable to use a flexible material because the photoelectric conversion element according to the embodiment becomes highly flexible.
- the photoelectric conversion layer is formed on the carbon material layer, it can be transferred to the counter electrode side.
- the configuration of another photoelectric conversion element (organic EL element 400) manufactured by the manufacturing method according to the embodiment will be described with reference to FIG.
- the organic EL element 400 is an element having a function as a light emitting element that converts the electric energy input to the element into light L.
- the organic EL element 400 has a transparent electrode 401, a counter electrode 402, and a photoelectric conversion layer 403.
- at least one of the transparent electrode and the counter electrode has a laminated structure of a metal nanomaterial layer and a carbon layer produced in the present embodiment.
- the counter electrode may be opaque or transparent.
- the photoelectric conversion layer 403 is a semiconductor layer that converts electric power to generate light.
- the photoelectric conversion layer 403 generally includes a p-type semiconductor layer and an n-type semiconductor layer.
- An additional buffer layer may be inserted between the photoelectric conversion layer 403 and the electrode to promote or block charge injection.
- Example 1 An ITO layer is formed on the surface of a 10 cm square polyethylene terephthalate film (PET film) by a sputtering method to produce a conductive film (hydrophilic base material) having a surface resistance of 300 ⁇ / ⁇ .
- PET film polyethylene terephthalate film
- a silver nanowire with a diameter of 70 nm is dispersed in water to prepare a dispersion liquid of 0.3 wt%.
- a 10 cm square 100 ⁇ m thick polytetrafluoroethylene film (PTFE film, hydrophobic base material) is placed on a table at 120 ° C., and a silver nanowire aqueous dispersion is spray-coated to form a metal nanomaterial layer.
- the zeta potential in water at pH 6 is -17 mV for PTFE film and -30 mV for silver nanowires.
- An ethanol dispersion of reduced graphene oxide in which a polyethyleneimine chain is bonded is applied onto a silver nanowire layer by bar coating at room temperature to form a carbon material layer.
- the graphene layer and the ITO layer of the hydrophilic base material are opposed to each other on a table at 100 ° C., and a metal plate is placed on the stack and pressed for direct pressure bonding.
- the PET film is peeled off from the end, and the laminate of the silver nanowire layer and the graphene layer is transferred onto the ITO layer.
- the silver nanowire layer and graphene layer are almost completely transferred, resulting in a transparent electrode with a surface resistance of 10 ⁇ / ⁇ .
- Example 2 Silver nanowires having a diameter of 30 nm are dispersed in 2-propanol to produce a 1 wt% dispersion.
- a 10 cm square 100 ⁇ m thick PTFE film (hydrophobic substrate) is placed on a table at 60 ° C., and a silver nanowire dispersion is placed between a 5 mm diameter columnar bar and the PTFE film (gap: 500 ⁇ m). Have it. A meniscus is formed between the PTFE film and the bar. The bar is moved at a speed of 83 mm / s, and a silver nanowire dispersion liquid is applied to the surface of the PTFE film to form a silver nanowire layer (metal nanomaterial layer).
- a carbon material layer is formed by applying a 2-propanol dispersion of multi-layer graphene from which graphite has been peeled off on a silver nanowire layer at room temperature by bar coating.
- the graphene layer and a PET film having a thickness of 100 ⁇ m are stacked on a table at 120 ° C., and a metal roller is rolled from the end onto the stack and directly pressure-bonded, followed by peeling to form a silver nanowire layer on the PET film. Transfer the graphene layer.
- the silver nanowire layer and graphene layer are almost completely transferred, resulting in an electrode with a surface resistance of 0.3 ⁇ / ⁇ .
- Example 3 The translucent solar cell 500 shown in FIG. 5 is produced.
- the surface of the ITO layer 502 formed on the PET film 501 is patterned with an acid to produce a strip-shaped transparent electrode.
- An aqueous solution of graphene oxide is applied with a bar coater to form a graphene oxide layer, which is then dried at 90 ° C. for 20 minutes and then treated with hydrated hydrazine vapor at 110 ° C. for 1 hour to provide some of the carbon atoms of graphene oxide.
- aqueous solution of PEDOT / PSS is applied on the shielding layer 503 with a bar coater and dried at 100 ° C. for 30 minutes to form a buffer layer 504 (50 nm thick) containing PEDOT / PSS.
- a chlorbenzene solution containing poly (3-hexylthiophene-2,5-diyl) (P3HT) and C60-PCBM is applied onto the buffer layer 503 with a bar coater, and dried at 100 ° C. for 20 minutes to obtain a photoelectric conversion layer. 505 is manufactured.
- An ethanol dispersion of tin oxide nanoparticles is applied as a buffer layer on the photoelectric conversion layer 505 with a bar coater and dried to form a buffer layer 506.
- a silver nanowire with a diameter of 70 nm is dispersed in water to prepare a dispersion liquid of 0.3 wt%.
- a 10 cm square, 100 ⁇ m-thick PTFE film (hydrophobic substrate, not shown) is placed on a table at 120 ° C., and a silver nanowire aqueous dispersion is spray-coated to form a silver nanowire layer 507.
- An ethanol dispersion of reduced graphene oxide in which a polyethyleneimine chain is bonded is applied onto a silver nanowire layer by bar coating at room temperature and dried at 120 ° C. to form a graphene layer 508. As a result, the electrode layer 509 is formed.
- the whole is coated with a thermosetting silicone resin and then heated to produce an insulating layer (not shown) having a thickness of 40 ⁇ m.
- An ultraviolet cut ink is screen-printed on the insulating layer to produce an ultraviolet cut layer (not shown).
- a silica layer is formed on the ultraviolet cut layer by CVD to produce a gas barrier layer (not shown).
- the solar cell module is manufactured by sealing the surroundings.
- the obtained solar cell module is translucent and exhibits an energy conversion efficiency of 4% or more with respect to 1 SUN of pseudo-sunlight.
- the decrease in efficiency is within 2% when simulated sunlight is continuously irradiated at 60 ° C. for 1000 hours in the atmosphere.
- Example 4 Make a solar cell that is transparent on one side.
- the surface of ITO formed on the PET film is patterned with an acid to prepare a strip-shaped transparent electrode.
- An ethanol dispersion of reduced graphene oxide to which a polyethyleneimine chain is bound is applied with a bar coater, then an aqueous dispersion of graphene oxide is applied, and then dried at 120 ° C. for 10 minutes to prepare a shielding layer composed of a graphene layer. To do.
- An aqueous solution of PEDOT / PSS is applied on the shielded graphene layer with a bar coater and dried at 100 ° C. for 30 minutes to form a buffer layer (50 nm thick) containing PEDOT / PSS.
- a chlorbenzene solution containing P3HT and C60-PCBM is applied onto the buffer layer with a bar coater, and dried at 100 ° C. for 20 minutes to prepare a photoelectric conversion layer.
- An ethanol dispersion of tin oxide nanoparticles was applied as a buffer layer on the photoelectric conversion layer with a bar coater and dried to form a buffer layer.
- Silver nanowires with a diameter of 30 nm are dispersed in 2-propanol to produce a 1 wt% dispersion.
- a 10 cm square 100 ⁇ m thick PTFE film (hydrophobic substrate) is placed on a table at 60 ° C., and a silver nanowire dispersion liquid is carried between columnar bar PTFE films having a diameter of 5 mm (gap: 500 ⁇ m). Let me. A meniscus is formed between the PTFE film and the bar. The bar is moved at a speed of 83 mm / s to apply the silver nanowire dispersion.
- a 2-propanol dispersion of multi-layer graphene with graphite stripped on the silver nanowire layer is applied by bar coating at room temperature.
- Example 3 Perform the post-process in the same manner as in Example 3 to manufacture a solar cell module with one side transparent.
- the obtained solar cell module exhibits an energy conversion efficiency of 5% or more with respect to 1 SUN of pseudo-sunlight.
- the decrease in efficiency is within 1% when simulated sunlight is continuously irradiated at 60 ° C. for 1000 hours in the atmosphere.
- Example 5 The translucent organic EL element 600 shown in FIG. 6 is produced.
- An ethanol dispersion of reduced graphene oxide in which a polyethyleneimine chain is bonded is applied to the surface of an ITO / silver alloy / ITO laminated transparent electrode 602 formed on the PET film 601 with a bar coater, and then an aqueous dispersion of graphene oxide is applied. Then, it is dried at 120 ° C. for 10 minutes to prepare a shielding layer 603 composed of a graphene layer.
- aqueous solution of PEDOT / PSS is applied on the shielded graphene layer with a bar coater and dried at 100 ° C. for 30 minutes to form a buffer layer 604 (50 nm thick) containing PEDOT / PSS.
- N, N'-di-1-naphthyl-N, N'-diphenyl-1,1'-4,4'-diamine which is a p-type semiconductor, is deposited on the buffer layer to a thickness of 30 nm, and is deposited on the buffer layer.
- Tris (8-hydroxyquinoline) aluminum which functions as an n-type semiconductor and is also a light emitting material, is vapor-deposited to a thickness of 40 nm to prepare a photoelectric conversion layer 605.
- Silver nanowires with a diameter of 30 nm are dispersed in 2-propanol to produce a 0.3 wt% dispersion.
- a 10 cm square 100 ⁇ m thick PTFE film is placed on a table at 60 ° C., and a silver nanowire dispersion liquid is carried between a columnar bar having a diameter of 5 mm and the PTFE film (gap: 500 ⁇ m).
- a meniscus is formed between the PTFE film and the bar. The bar is moved at a speed of 8 mm / s to apply the silver nanowire dispersion.
- An ethanol dispersion of reduced graphene oxide in which a polyethyleneimine chain is bonded on a silver nanowire layer is formed by bar coating at room temperature and dried at 120 ° C. to form a graphene layer.
- the reduced graphene oxide layer to which the polyethyleneimine chain is bonded is placed on a table at 70 ° C. so that the reduced graphene oxide layer is on top, and the metal roller is rolled so as to be in contact with the photoelectric conversion layer 605, and the graphene layer 606 is pressure-bonded and peeled from the end.
- the silver nanowire layer 607 is transferred.
- metal auxiliary wiring layer (not shown).
- a post-process is performed in the same manner as in Example 3 to manufacture a translucent organic EL element that can be used for window lighting or the like.
- the obtained organic EL element is driven in the atmosphere at 60 ° C. for 1000 hours continuously, and the decrease in output is within 2%.
- Example 6 Silver particles having an average particle size of 800 nm and polyvinylpyrrolidone are dispersed in ethanol to produce a 1 wt% dispersion. A silver particle dispersion is applied by screen printing on a 10 cm square 100 ⁇ m thick PTFE film.
- a 2-propanol dispersion of multi-layer graphene with graphite stripped on the silver particle layer is formed by bar coating at room temperature.
- the graphene layer and a 100 ⁇ m-thick PET film are stacked on a table at 120 ° C., and a metal roller is rolled from the end and directly pressure-bonded onto the stack, followed by peeling to perform a silver particle layer and graphene on the PET. Transfer layers. The silver particle layer and the graphene layer are almost completely transferred, and an electrode having a surface resistance of 0.1 ⁇ / ⁇ is obtained.
- Electrode layer 300 ... Solar cell 301 ... Transparent electrode 302 ... Counter electrode 303 ... Layer 400 including photoelectric conversion layer 400 ... Organic EL element 401 ... Transparent electrode 402 ... Counter electrode 403 ... Photoelectric conversion layer 500 ... Solar cell 501 ... PET film 502 ... ITO layer 503 ... Shielding layer 504 ... Buffer layer 505 ... Photoelectric conversion Layer 506 ... Buffer layer 507 ... Silver nanowire layer 508 ...
- Electrode layer 509 Electrode layer 510 ... Metal wiring layer 600 ... Organic EL element 601 ... PET film 602 ... Laminated transparent electrode 603 ... Shielding layer 604 ... Buffer layer 605 . Photoelectric conversion layer 606 ... Graphene layer 607 ... Silver nanowire layer 608 ... Electrode layer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Photovoltaic Devices (AREA)
- Electroluminescent Light Sources (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
疎水性基材の表面に金属ナノ材分散液を直接塗布して、金属ナノ材層を形成させる工程と、
前記金属ナノ粒子層の表面にカーボン材分散液を塗布して、カーボン材層を形成させることにより、金属ナノ材層とカーボン材層との積層体を含む電極層を形成させる工程と、
前記カーボン材層の表面と、親水性基材とを直接圧着する工程と、
前記疎水性基材を剥離させ、前記電極層を、前記親水性基材の表面に転写させる工程と、
を含むことを特徴とするものである。
第1電極と、第2電極と、それらの間に挟持された光電変換層とを具備する光電変換素子の製造方法であって、
前記第2電極の表面に前記光電変換層が形成された複合体を準備する工程と、
疎水性基材の表面に金属ナノ材分散液を直接塗布して、金属ナノ材層を形成させる工程と、
前記金属ナノ粒子層の表面にカーボン材分散液を塗布して、カーボン材層を形成させることにより、金属ナノ材層とカーボン材層との積層体を含む電極層を形成させる工程と、
前記カーボン材層の表面と、前記光電変換層とを直接圧着する工程と、
前記疎水性基材を剥離させ、前記電極層を、前記光電変換層の表面に転写させて第1の電極を形成させる工程と、
を含むことを特徴とするものである。
まず、図1を用いて、第1の実施形態に係る透明電極の製造方法について説明する。図1(A)~(D)は、本実施形態に係る電極100の製造方法の説明するための概念図である。この電極の製造方法は、
疎水性のポリマー膜(疎水性基材)101の表面に金属ナノ材を含有する分散液102を直接塗布して金属ナノ材層103を形成させる工程A(図1(A))と、
上記ポリマー膜101の表面に形成された金属ナノ材層103の表面にカーボン材を含有する分散液104を塗布してカーボン材層105を形成させ、金属ナノ材層103とカーボン材層105とを含む電極層107を形成させる工程B(図1(B))と、
親水性基材106をカーボン材層の表面に直接圧着する工程C(図1(C))と、
ポリマー膜101と電極層107を剥離して、基材106に電極層107を転写する工程D(図1(D))を含む。
まず、疎水性基材を準備する。疎水性基材は、基材全体が疎水性を示す必要は無く、金属ナノ材層を設ける面が疎水性であればよい。したがって、支持体の表面に疎水性層が形成されたものであってもよい。図1(A)において、疎水性基材は疎水性ポリマーからなるポリマー膜101を用いている。この疎水性基材の疎水性表面に金属ナノ材を含有する分散液102を直接塗布して金属ナノ材層103を形成させる。
次に、工程Aで形成された金属ナノ材層103の表面に、カーボン材を含有する分散液104を直接塗布してカーボン材層105を形成させて、金属ナノ材層とカーボンナノ材層とが積層された電極層107を得る。
次に、工程Bで形成されたカーボン材層105の表面に、親水性基材106を直接圧着する。圧着によって、疎水性基材、金属ナノ材層、カーボン材層、および親水性基材のスタックが一時的に形成される。ここで、親水性基材の表面は、疎水性基材であるポリマー膜よりも親水性が高いことが必要である。そのため親水性基材および疎水性基材という表現は相対的な表現であり、一般的に疎水性材料と考えられているPETフィルムのような、撥水性基材も親水性基材として用いることができることがある。実施形態において、金属ナノ材層103およびカーボン材層105を含む電極層107は、ポリマー膜と親水性基材の親水性の差を利用して転写を行うため、親水性基材の表面には、転写方法において一般的に用いられる接着層は不要である。
次に、カーボン材層をポリマー膜から剥離させ、基材に転写させる。この工程は、図1(D)に示した方法では、圧着のために印加した圧力と逆方向の力を印加することで達成する。
その結果、電極層は相対的に親水性の高い親水性基材の表面に転写されて電極が製造される。疎水性基材の表面にカーボン材層のみが形成された場合、剥離しにくいこともあるが、金属ナノ材層が存在することで剥離しやすくなる場合が多い。
図1(C)および(D)では平板での圧着と剥離を示したが、例えば2つのロールで挟んで、圧着と剥離を行うと連続的に処理することができるロールツーロール方式を適用することもできる。
電極層を親水性基材に転写した後、転写された電極層の表面に補助金属配線を製造する工程をさらに組み合わせることもできる。補助金属配線は、一般に素子における集電に使用されるものである。この補助金属の形成に用いられる材料は、銀、金、銅、モリブデン、アルミニウムおよびこれらの合金からなる群から選択される材料であることが好ましい。補助金属配線の一部が金属ナノ材層や親水性基材と接していることも可能であり、補助金属配線との接合をより強固にすることができる。補助金属配線層の形状は、線状、くし状、網目状などの形状を取り得る。
第2の実施形態は、第1電極と、第2電極と、それらの間に挟持された光電変換層とを具備する光電変換素子の製造方法に関する。この方法では、
第2電極の表面に前記光電変換層が形成された複合体を準備する工程と、
疎水性基材の表面に金属ナノ材分散液を直接塗布して、金属ナノ材層を形成させる工程と、
前記金属ナノ粒子層の表面にカーボン材分散液を塗布して、カーボン材層を形成させることにより、金属ナノ材層とカーボン材層との積層体を含む電極層を形成させる工程と、
前記カーボン材層の表面と、前記光電変換層とを直接圧着する工程と、
前記疎水性基材を剥離させ、前記電極層を、前記光電変換層の表面に転写させて第1の電極を形成させる工程と、
を含んでいる。
図3を用いて、実施形態の一つに係る製造方法によって製造される光電変換素子である太陽電池300の構成概略について説明する。太陽電池セル300は、このセルに入射してきた太陽光L等の光エネルギーを電力に変換する太陽電池としての機能を有する素子である。太陽電池セル300は、透明電極301と対極302と光電変換層303を有する。ここで透明電極もしくは対極の少なくとも一方は本実施形態で製造される金属ナノ材層とカーボン層の積層構造を有する。対極は不透明であってもよいし透明であってもよい。
図4を用いて、実施形態に係る製造方法により製造される別の光電変換素子(有機EL素子400)の構成について説明する。有機EL素子400は、この素子に入力された電気エネルギーを光Lに変換する発光素子としての機能を有する素子である。
10cm角のポリエチレンテレフタレートフィルム(PETフィルム)の表面にスパッタ法によりITO層を形成させて、表面抵抗が300Ω/□の導電フィルム(親水性基材)を製造する。
銀ナノワイヤ層およびグラフェン層はほぼ完全に転写され、表面抵抗が10Ω/□の透明電極が得られる。
直径30nmの銀ナノワイヤを2-プロパノールに分散させ1wt%の分散液を製造する。10cm角の厚さ100μmのPTFEフィルム(疎水性基材)を60℃の台の上に設置し、直径5mmの円柱状のバーとPTFEフィルムの間(ギャップ:500μm)に銀ナノワイヤ分散液を坦持させる。PTFEフィルムとバーの間にはメニスカスが形成する。バーを83mm/sの速度で移動させ、PTFEフィルムの表面に銀ナノワイヤ分散液を塗布して、銀ナノワイヤ層(金属ナノ材層)を形成させる。
銀ナノワイヤ層およびグラフェン層はほぼ完全に転写され、表面抵抗が0.3Ω/□の電極が得られる。
図5に示す半透明な太陽電池500を作成する。
得られる太陽電池モジュールは半透明であり、1SUNの擬似太陽光に対して4%以上のエネルギー変換効率を示す。また大気中、60℃、連続1000時間の擬似太陽光照射で効率の低下は2%以内である。
片側が透明な太陽電池を作製する。
PETフィルム上に形成されたITOの表面を、酸でパターニングして短冊状の透明電極を作製する。ポリエチレンイミン鎖が結合した還元型酸化グラフェンのエタノール分散液をバーコーターで塗布した後、酸化グラフェンの水分散液を塗布し、次いで、120℃で10分乾燥し、グラフェン層からなる遮蔽層を作製する。
図6に示す半透明な有機EL素子600を作成する。
平均粒径が800nmの銀粒子とポリビニルピロリドンをエタノールに分散させ1wt%の分散液を製造する。10cm角の厚さ100μmのPTFEフィルム上にスクリーン印刷で銀粒子分散液を塗布させる。
銀粒子層およびグラフェン層はほぼ完全に転写され、表面抵抗が0.1Ω/□の電極が得られる。
102…金属ナノ材を含有する分散液
103…金属ナノ材層
104…カーボン材を含有する分散液
105…カーボン材層
106…親水性基材
107…電極層
300…太陽電池
301…透明電極
302…対極
303…光電変換層を含む層
400…有機EL素子
401…透明電極
402…対極
403…光電変換層
500…太陽電池
501…PETフィルム
502…ITO層
503…遮蔽層
504…バッファ層
505…光電変換層
506…バッファ層
507…銀ナノワイヤ層
508…グラフェン層
509…電極層
510…金属配線層
600…有機EL素子
601…PETフィルム
602…積層透明電極
603…遮蔽層
604…バッファ層
605…光電変換層
606…グラフェン層
607…銀ナノワイヤ層
608…電極層
Claims (20)
- 疎水性基材の表面に金属ナノ材分散液を直接塗布して、金属ナノ材層を形成させる工程と、
前記金属ナノ粒子層の表面にカーボン材分散液を塗布して、カーボン材層を形成させることにより、金属ナノ材層とカーボン材層との積層体を含む電極層を形成させる工程と、
前記カーボン材層の表面と、親水性基材とを直接圧着する工程と、
前記疎水性基材を剥離させ、前記電極層を、前記親水性基材の表面に転写させる工程と、
を含む電極の製造方法。 - 前記親水性基材が柔軟性基材である、請求項1に記載の方法。
- 前記金属ナノ材のゼータ電位が前記疎水性基材より低い、請求項1または2に記載の方法。
- 前記金属ナノ材が銀ナノワイヤである、請求項1~3のいずれか1項に記載の方法。
- 疎水性基材の表面粗さが0.2μm以下である、請求項1~4のいずれか1項に記載の方法。
- 前記カーボン材がグラフェンである、請求項1~5のいずれか1項に記載の方法。
- 前記カーボン材がポリエチレンイミン鎖が結合したグラフェンである、請求項1~6のいずれか1項に記載の方法。
- 前記カーボン材がグラファイト剥離グラフェンである、請求項1~6のいずれか1項に記載の方法。
- 前記疎水性基材が、ポリテトラフルオロエチレンを含む、請求項1~8のいずれか1項に記載の方法。
- カーボン材層の表面に、第3の物質を含む層をさらに形成させる、請求項1~9のいずれか1項に記載の方法。
- 前記電極層をさらに加工する工程を含む、請求項1~10のいずれか1項に記載の方法。
- 第1電極と、第2電極と、それらの間に挟持された光電変換層とを具備する光電変換素子の製造方法であって、
前記第2電極の表面に前記光電変換層が形成された複合体を準備する工程と、
疎水性基材の表面に金属ナノ材分散液を直接塗布して、金属ナノ材層を形成させる工程と、
前記金属ナノ粒子層の表面にカーボン材分散液を塗布して、カーボン材層を形成させることにより、金属ナノ材層とカーボン材層との積層体を含む電極層を形成させる工程と、
前記カーボン材層の表面と、前記光電変換層とを直接圧着する工程と、
前記疎水性基材を剥離させ、前記電極層を、前記光電変換層の表面に転写させて第1の電極を形成させる工程と、
を含む方法。 - 前記複合体が柔軟である、請求項12に記載の方法。
- 金属ナノ材のゼータ電位が前記疎水性基材より低い、請求項12または13に記載の方法。
- 金属ナノ材が銀ナノワイヤである請求項12~14のいずれか1項に記載の方法。
- 前記カーボン材がグラフェンである、請求項12~15のいずれか1項に記載の方法。
- カーボン材層の表面に、第3の物質を含む層をさらに形成させる、請求項12~16のいずれか1項に記載の方法。
- 前記第1電極をさらに加工する工程を含む、請求項12~17のいずれか1項に記載の方法。
- 光電変換素子が有機ELである、請求項12~18のいずれか1項に記載の方法。
- 光電変換素子が太陽電池である、請求項12~18のいずれか1項に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19941777.5A EP4030496A4 (en) | 2019-09-10 | 2019-09-10 | METHOD FOR PRODUCING ELECTRODE AND METHOD FOR PRODUCING PHOTOELECTRIC CONVERSION ELEMENT |
JP2021510482A JP7204890B2 (ja) | 2019-09-10 | 2019-09-10 | 電極の製造方法および光電変換素子の製造方法 |
CN201980056531.3A CN112789744B (zh) | 2019-09-10 | 2019-09-10 | 电极的制造方法和光电转换元件的制造方法 |
PCT/JP2019/035558 WO2021048923A1 (ja) | 2019-09-10 | 2019-09-10 | 電極の製造方法および光電変換素子の製造方法 |
US17/186,847 US11563129B2 (en) | 2019-09-10 | 2021-02-26 | Process for producing electrode and process for producing photoelectric conversion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/035558 WO2021048923A1 (ja) | 2019-09-10 | 2019-09-10 | 電極の製造方法および光電変換素子の製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/186,847 Continuation US11563129B2 (en) | 2019-09-10 | 2021-02-26 | Process for producing electrode and process for producing photoelectric conversion device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021048923A1 true WO2021048923A1 (ja) | 2021-03-18 |
Family
ID=74866293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/035558 WO2021048923A1 (ja) | 2019-09-10 | 2019-09-10 | 電極の製造方法および光電変換素子の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11563129B2 (ja) |
EP (1) | EP4030496A4 (ja) |
JP (1) | JP7204890B2 (ja) |
CN (1) | CN112789744B (ja) |
WO (1) | WO2021048923A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7293500B2 (ja) * | 2020-09-09 | 2023-06-19 | 株式会社東芝 | 透明電極、透明電極の製造方法、および電子デバイス |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011029035A (ja) * | 2009-07-27 | 2011-02-10 | Panasonic Electric Works Co Ltd | 透明導電膜付き基材及び透明導電膜付き基材の製造方法 |
JP2012523359A (ja) * | 2009-04-08 | 2012-10-04 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | ポリマー官能基化カーボンナノチューブ、その製造方法および使用 |
US20140272172A1 (en) * | 2013-03-14 | 2014-09-18 | Aruna Zhamu | Method for producing conducting and transparent films from combined graphene and conductive nano filaments |
JP2015173260A (ja) * | 2014-02-20 | 2015-10-01 | 大日本印刷株式会社 | 機能性部材の製造方法、および機能性部材製造装置 |
JP2016524517A (ja) * | 2013-03-14 | 2016-08-18 | ナノテク インスツルメンツ インク | 結合グラフェン及び導電性ナノフィラメントによる導電性透明フィルムの超音波スプレイコーティング |
JP6093710B2 (ja) | 2011-11-18 | 2017-03-08 | 日油株式会社 | 細胞内動態を改善したカチオン性脂質 |
JP2017091875A (ja) * | 2015-11-12 | 2017-05-25 | 大倉工業株式会社 | 透明電極、透明電極用積層体及びそれらの製造方法 |
JP2019050106A (ja) * | 2017-09-08 | 2019-03-28 | 株式会社東芝 | 透明電極、それを用いた素子、および素子の製造方法 |
WO2019176078A1 (ja) * | 2018-03-16 | 2019-09-19 | 株式会社 東芝 | 透明電極の製造方法および製造装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5599980B2 (ja) | 2009-03-11 | 2014-10-01 | コニカミノルタ株式会社 | 導電膜とその製造方法、並びに有機エレクトロルミネッセンス素子 |
WO2010106899A1 (ja) * | 2009-03-17 | 2010-09-23 | コニカミノルタホールディングス株式会社 | 透明導電膜及び透明導電膜の製造方法 |
JP2011035073A (ja) * | 2009-07-30 | 2011-02-17 | Osaka Univ | 半導体記憶素子の製造方法 |
WO2011065358A1 (ja) * | 2009-11-27 | 2011-06-03 | 国立大学法人大阪大学 | 有機電界発光素子、および有機電界発光素子の製造方法 |
WO2011106438A1 (en) * | 2010-02-24 | 2011-09-01 | Cambrios Technologies Corporation | Nanowire-based transparent conductors and methods of patterning same |
JP2013077435A (ja) | 2011-09-30 | 2013-04-25 | Oji Holdings Corp | 導電性転写シートおよび導電性積層体 |
JP6147542B2 (ja) | 2013-04-01 | 2017-06-14 | 株式会社東芝 | 透明導電フィルムおよび電気素子 |
-
2019
- 2019-09-10 CN CN201980056531.3A patent/CN112789744B/zh active Active
- 2019-09-10 JP JP2021510482A patent/JP7204890B2/ja active Active
- 2019-09-10 EP EP19941777.5A patent/EP4030496A4/en active Pending
- 2019-09-10 WO PCT/JP2019/035558 patent/WO2021048923A1/ja unknown
-
2021
- 2021-02-26 US US17/186,847 patent/US11563129B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012523359A (ja) * | 2009-04-08 | 2012-10-04 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | ポリマー官能基化カーボンナノチューブ、その製造方法および使用 |
JP2011029035A (ja) * | 2009-07-27 | 2011-02-10 | Panasonic Electric Works Co Ltd | 透明導電膜付き基材及び透明導電膜付き基材の製造方法 |
JP6093710B2 (ja) | 2011-11-18 | 2017-03-08 | 日油株式会社 | 細胞内動態を改善したカチオン性脂質 |
US20140272172A1 (en) * | 2013-03-14 | 2014-09-18 | Aruna Zhamu | Method for producing conducting and transparent films from combined graphene and conductive nano filaments |
JP2016524517A (ja) * | 2013-03-14 | 2016-08-18 | ナノテク インスツルメンツ インク | 結合グラフェン及び導電性ナノフィラメントによる導電性透明フィルムの超音波スプレイコーティング |
JP2015173260A (ja) * | 2014-02-20 | 2015-10-01 | 大日本印刷株式会社 | 機能性部材の製造方法、および機能性部材製造装置 |
JP2017091875A (ja) * | 2015-11-12 | 2017-05-25 | 大倉工業株式会社 | 透明電極、透明電極用積層体及びそれらの製造方法 |
JP2019050106A (ja) * | 2017-09-08 | 2019-03-28 | 株式会社東芝 | 透明電極、それを用いた素子、および素子の製造方法 |
WO2019176078A1 (ja) * | 2018-03-16 | 2019-09-19 | 株式会社 東芝 | 透明電極の製造方法および製造装置 |
Non-Patent Citations (2)
Title |
---|
S. BAE: "Roll-to-roll production of 30-inch graphene films for transparent electrodes", NATURE NANOTECHNOLOGY, vol. 5, no. 8, 2010, pages 574 - 578, XP055274368, DOI: 10.1038/nnano.2010.132 |
See also references of EP4030496A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4030496A4 (en) | 2023-05-31 |
EP4030496A1 (en) | 2022-07-20 |
US11563129B2 (en) | 2023-01-24 |
JP7204890B2 (ja) | 2023-01-16 |
US20210184127A1 (en) | 2021-06-17 |
CN112789744B (zh) | 2024-07-02 |
CN112789744A (zh) | 2021-05-11 |
JPWO2021048923A1 (ja) | 2021-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Azani et al. | Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in indium tin oxide (ITO)‐free flexible solar cells | |
KR101342778B1 (ko) | 광전 변환 소자 및 그의 제조 방법 | |
JP5821637B2 (ja) | ガスバリアフィルム、ガスバリアフィルムの製造方法及び有機光電変換素子 | |
US11387375B2 (en) | Graphene-containing membrane, process for producing the same, graphene-containing membrane laminate and photoelectric conversion device | |
WO2022054150A1 (ja) | 透明電極、透明電極の製造方法、および電子デバイス | |
US11532787B2 (en) | Process and apparatus for producing transparent electrode | |
US11710797B2 (en) | Transparent electrode, device employing the same, and manufacturing method of the device | |
Kim et al. | Ag-nanowires-doped graphene/Si Schottky-junction solar cells encapsulated with another graphene layer | |
US20220209151A1 (en) | Transparent electrode, process for producing transparent electrode, and photoelectric conversion device comprising transparent electrode | |
JP7204890B2 (ja) | 電極の製造方法および光電変換素子の製造方法 | |
US20220416100A1 (en) | Transparent electrode, method for producing the same, and electronic device using transparent electrode | |
JP7406597B2 (ja) | 透明電極およびその作製方法、ならびに透明電極を用いた電子デバイス | |
US20240222535A1 (en) | Transparent electrode, producing method thereof, and electronic device using transparent electrode | |
KR20230072873A (ko) | 계면 현상이 향상된 태양전지 및 이의 제조방법 | |
Nivetha et al. | Oxide and Metallic Materials for Photovoltaic Applications: A Review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021510482 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019941777 Country of ref document: EP Effective date: 20210226 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19941777 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019941777 Country of ref document: EP Effective date: 20220411 |