WO2021047394A1 - 一种分子网络化分析地骨皮化合物结构的方法 - Google Patents

一种分子网络化分析地骨皮化合物结构的方法 Download PDF

Info

Publication number
WO2021047394A1
WO2021047394A1 PCT/CN2020/111606 CN2020111606W WO2021047394A1 WO 2021047394 A1 WO2021047394 A1 WO 2021047394A1 CN 2020111606 W CN2020111606 W CN 2020111606W WO 2021047394 A1 WO2021047394 A1 WO 2021047394A1
Authority
WO
WIPO (PCT)
Prior art keywords
hplc
compounds
compound
mass spectrometry
molecular
Prior art date
Application number
PCT/CN2020/111606
Other languages
English (en)
French (fr)
Inventor
江志波
陈永欣
陈靖枝
项文娟
郭鑫
马秉振
李舂龙
房嬛
唐勇红
马晓莉
Original Assignee
北方民族大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北方民族大学 filed Critical 北方民族大学
Publication of WO2021047394A1 publication Critical patent/WO2021047394A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/884Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds

Definitions

  • the invention belongs to the field of chemical engineering, and in particular relates to a method for molecular network analysis of the structure of the scleroderma compound.
  • Digupi is an important herbal medicine in traditional Chinese medicine. It tastes bitter and cold. It is used in clinical Chinese medicine to treat fatigue, hot flashes, night sweats, lung heat, cough and asthma, vomiting, bleeding, bloody, diminishing thirst, carbuncle, and nausea. Diseases such as sores.
  • the purpose of the present invention is to propose a method using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), especially high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF MS/MS)
  • HPLC-MS/MS high-performance liquid chromatography-tandem mass spectrometry
  • HPLC-Q-TOF MS/MS high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry
  • the present invention proposes a method for molecular network analysis of the structure of Digupi compound, which includes the following steps:
  • step (i) The supernatant obtained in step (i) is used in a high performance liquid mass spectrometry-tandem mass spectrometry (HPLC-MS/MS) detection system for detection to obtain an HPLC-MS/MS data set;
  • HPLC-MS/MS high performance liquid mass spectrometry-tandem mass spectrometry
  • the HPLC-MS/MS data set obtained in step (ii) is analyzed by molecular network method.
  • the present invention facilitates the discovery of new structural analogues in Digupi, analysis of new structures, discovery of trace components in traditional Chinese medicine, understanding the mechanism of traditional Chinese medicine at the molecular level, and speeding up the development of Chinese medicine modernization.
  • Figure 1 shows the GNPS network analysis of the complex chemical components in the skin of the earth bones
  • FIG. 1-5 shows the chemical structure of the new compound (1-5).
  • FIG. 3 shows the structure of the known compounds in Digupi
  • Figure 4 is an ion diagram of known compounds extracted
  • Figure 5 is the MS spectrum of m/z 300.1 (KN1, A1) and 312.1 (KN2, B1) and the fragmentation method in negative ion mode;
  • Figure 6 shows the MS/MS spectra of m/z 634.2 (KN5, A1) and 641.3 (KN7, B1) and their fragmentation laws in negative ion mode;
  • Figure 7 shows the secondary mass spectrum of cyclic peptide compounds and their cleavage law
  • Figure 8 shows the extraction of ionic fragments to discover structural analogs of phenolamides and cyclic peptides
  • Figure 9 shows the secondary mass spectra of new compounds 1 and 2 and their fragmentation laws in negative ion mode
  • Figure 10 shows the position of known compounds on the network diagram (A) and the enlarged network diagram of the compounds involved in this patent (B);
  • Figure 11 shows the secondary mass spectrum of the new compound 3 and its fragmentation method
  • Figure 12 shows the secondary spectrum of the new compound 4 and its cleavage law in negative ion mode
  • Figure 13 shows the secondary mass spectrum of the new compound 5 and its fragmentation law.
  • GNPS Global Natural Products Social Molecular Networking
  • molecular networking is a method of networked processing of tandem mass spectrometry data.
  • the term "manual discovery” is a method of manually screening structural analogues in a tandem mass spectrometry database based on standard compound cleavage mechanisms.
  • automated discovery of molecular network methods is a method for automatically screening structural analogs based on the results of molecular network.
  • the present invention provides a method for molecular network analysis of the structure of Digupi compound, which is characterized in that it comprises the following steps:
  • step (i) The supernatant obtained in step (i) is used in a high performance liquid mass spectrometry-tandem mass spectrometry (HPLC-MS/MS) detection system for detection to obtain an HPLC-MS/MS data set;
  • HPLC-MS/MS high performance liquid mass spectrometry-tandem mass spectrometry
  • the HPLC-MS/MS data set obtained in step (ii) is analyzed by molecular network method.
  • step (i) includes the following steps:
  • the HPLC-MS/MS in step (ii) is high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS).
  • the supernatant obtained in step (i) is used for two Phase gradient elution and detection according to the following liquid chromatography conditions:
  • Phase A is chromatographic grade methanol
  • phase B is 0.1% aqueous ammonium acetate solution
  • the gradient is increased from 10% of phase A to 90% within 70 minutes, the flow rate is 0.8ml/min, and the effluent is obtained.
  • the effluent is equally distributed to the diode array detector (DAD) and the quadrupole time-of-flight mass spectrometry (Q-TOF) detection system through a three-way device; the DAD is set to 254nm , The column temperature is set to 25 °C, each injection of 20 microliters, and the detection according to the following mass spectrometry conditions:
  • the ion source used in the mass spectrometer is an electrospray ion source
  • the capillary voltage is 4kV
  • the capillary outlet voltage is 135V
  • the cone voltage is 65V
  • the solvent removal temperature is 350°C
  • the drying air velocity is 10L/min
  • the atomizer pressure is 40psi
  • collision The energy is 8 ⁇ 45V
  • the scanning molecular weight range is m/z 100 ⁇ 2000
  • the detection mode is negative ion mode.
  • the HPLC-MS/MS data set obtained in step (ii) is converted into mzXML format by related software, and then uploaded to massive.ucsd.edu for data processing and integration.
  • the GNPS parameter design molecular weight Range, tolerance 60%, analog search, GNPS data graphically with cytoscape software.
  • the method further includes step (iv) extracting molecular ion peaks of known compounds; preferably, the known compounds include phenolamide compounds and cyclic peptide compounds;
  • the method further includes step (v) analyzing the cleavage law of phenolamide and cyclic peptide compounds
  • the method further includes step (vi) manually discovering new structural components
  • the method further includes the step (vii) molecular network method to automatically discover new structural compounds.
  • the method includes the following steps:
  • Chromatographic methanol was purchased from Shanghai Titan Reagent Co., Ltd.; Watsons purified water was used in HPLC; acetic acid and ammonia water were both analytically pure, purchased from Beijing Chemical Reagent Factory;
  • the solid-phase extraction column the model is Sep-Pack C18; the chromatographic column model is CAPCELL PAK C18 AQ; the LC/MS instrument is Agilent 1100-Agilent 6510 Q-TOF mass spectrometer;
  • step (3) The supernatant obtained in step (3) is used in a high performance liquid mass spectrometry-tandem mass spectrometry (HPLC-MS/MS) detection system for detection to obtain an HPLC-MS/MS data set, where
  • step (a) The supernatant obtained in step (i) is eluted with a two-phase gradient and tested according to the following liquid chromatography conditions:
  • phase A is chromatographic grade methanol
  • phase B is 0.1% ammonium acetate aqueous solution
  • the gradient is increased from 10% of phase A to 90% within 70 minutes, and the flow rate is 0.8ml/min , To obtain the effluent;
  • step (b) The effluent obtained in step (a) is equally distributed to DAD and Q-TOF detection systems through a three-way device; DAD is set to 254nm, column temperature is set to 25°C, and each injection is 20 micrometers. Liters, and detect in accordance with the following mass spectrometry conditions:
  • the ion source used in the mass spectrometer is an electrospray ion source, the capillary voltage is 4kV, the capillary outlet voltage is 135V, the cone voltage is 65V, the solvent removal temperature is 350°C, the drying air velocity is 10L/min, the atomizer pressure is 40psi, collision Energy is 8 ⁇ 45V, scanning molecular weight range is m/z 100 ⁇ 2000, detection mode is negative ion mode;
  • the HPLC-MS/MS data set is converted into mzXML format by related software, it is uploaded to massive.ucsd.edu for data processing and integration.
  • the molecular weight range of GNPS parameters is designed with a tolerance of 60%.
  • the analogue search is performed.
  • the GNPS data uses cytoscape software. Graphical.
  • the method further includes step (6) extracting molecular ion peaks of known compounds
  • the known compounds include phenolamide compounds, cyclic peptide compounds and dipeptide compounds;
  • the phenol amide is selected from compounds KN1, KN2, KN3, KN4, KN5, KN6, KN7, KN8 and KN9;
  • the cyclic peptide compound is selected from compounds KN10, KN11, KN12 and KN13;
  • the dipeptide compound is KN14;
  • the method further includes step (7) analyzing the cleavage law of phenolamide and cyclic peptide compounds; preferably, analyzing the cleavage law of compounds KN1 and KN2; preferably, analyzing the compounds KN5 and KN7 The cleavage law; preferably, analyze the cleavage law of cyclic peptide compounds;
  • the method further includes step (vi) manually discovering a new compound; preferably, the new compound is compound 1 or compound 2;
  • the method further includes the step (vii) molecular network method to automatically discover new compounds; preferably, the first fun is compound 1, compound 2, compound 3, compound 4, or compound 5, wherein the compound The structure of 1-5 is as follows:
  • a molecular network method for analyzing the structure of Digupi compound includes the following steps:
  • Chromatographic methanol was purchased from Shanghai Titan Reagent Co., Ltd.; Watsons purified water was used in HPLC; acetic acid and ammonia water were both analytically pure, purchased from Beijing Chemical Reagent Factory;
  • the solid-phase extraction column the model is Sep-Pack C18; the chromatographic column model is CAPCELL PAK C18 AQ; the LC/MS instrument is Agilent 1100-Agilent 6510 Q-TOF mass spectrometer;
  • phase A is chromatographic grade methanol
  • phase B is 0.1% ammonium acetate aqueous solution
  • the gradient is increased from 10% of phase A to 90% within 70 minutes, and the flow rate is 0.8ml/min
  • the effluent is equally distributed to the DAD and Q-TOF detection systems through a three-way device; DAD is set to 254nm, the column temperature is set to 25°C, and each injection is 20 microliters;
  • the ion source used in the mass spectrometer is an electrospray ion source
  • the capillary voltage is 4kV
  • the capillary outlet voltage is 135V
  • the cone voltage is 65V
  • the solvent removal temperature is 350°C
  • the drying air velocity is 10L/min
  • the atomizer pressure is 40psi
  • collision The energy is 8 ⁇ 45V
  • the scanning molecular weight range is m/z 100 ⁇ 2000
  • the detection mode is negative ion mode.
  • GNPS parameter design molecular weight range ( ⁇ 1m/z), tolerance 60%, search for analogs.
  • GNPS data is graphically displayed with cytoscape software.
  • Figure 4 is the extracted ion diagram of known compounds.
  • the molecular weights of known compounds include: m/z 300.1(KN1), 312.1(KN2), 634.2(KN5), 618.2(KN6), 641.2(KN7), 609.2(KN8) ), 476.1 (KN9) (A) and cyclic peptide compounds: 874.3 (KN10), 895.3 (KN11), 898.3 (KN12), 962.3 (KN13), 443.2 (KN14) (B).
  • the negative ion extraction diagram ( Figure 4) shows that except for KN3 and KN4, almost all ions can be extracted, and the abundance is higher than 105.
  • Figure 4A extracts ion peaks belonging to phenolamide compounds. Among them, the ion abundances of KN1 and KN9 are significantly higher than those of other phenolamide compounds (KN2, KN5, KN6, KN7, and KN8).
  • Figure 4B extracts the ion peaks belonging to four cyclic peptide compounds.
  • the ion peaks of different abundance indicate that the content of lyciumin A (KN10) is much higher than that of the other three compounds.
  • the extraction peak of the compound dipeptide lyciumamide (KN14) shows that the content of this dipeptide in the sample is extremely small.
  • a product ion m/z 197.1 obtained from the loss of CH 3 + fragments indicates that place
  • the generated negative charge center is still an important factor that induces internal breakage of molecules and loss of neutral fragments.
  • the product ions m/z 190.1 and 135.1 can be inferred from the loss of the neutral fragments 3-methoxy-4-hydroxyphenyl and 3-methoxy-4-hydroxy-phenylacetyl ( Figure 5-B2), respectively.
  • the fragment ions m/z 178.1 and 148.1 may be induced by the 4-hydroxyphenyl negative electron center.
  • KN5 and KN7 The secondary mass spectra of compounds KN5 and KN7 are shown in Figure 6-A1 and B1, and their fragmentation rules are shown in Figure 6-A2 and B2.
  • KN5 contains an acetaminophen fragment, which may reduce the probability of fragmentation at the end, resulting in low abundances of m/z 427, 442, 455 and 471.
  • the fragment ions m/z 478, 463 and 299 are the common ions of KN5 and KN7, indicating that these ions may be used as characteristic ions for judging the stilbene structure in the analogs of phenolamide compounds.
  • the loss of a formaldehyde molecule derived from the threonine residue on the cyclic peptide backbone is the main neutral loss of this type of compound.
  • Neutral loss of 208Da such as M-664 in KN10, M-687 in KN11, and M-754 in KN13, can be used as important evidence for whether the branch contains a proline dipeptide.
  • the ions m/z 591 and 574 in compound KN13 and the ions m/z 501 and 484 in KN10/KN11 are different by 90 Da, which may be caused by the difference in amino acid residues on the cyclic peptide backbone.
  • KN13 Phenylalanine is replaced by glycine in KN10 and KN11.
  • a 23Da molecular weight difference is derived from branched chain residues, such as 371Da (M-501) in KN10 and 394Da (M-501) in KN11, which is exactly the difference between the molecular weights of two amino acid residues on the two branches.
  • the values match.
  • the compound KN10 is tryptophan (Try, 204 Da) and the compound KN11 is tyrosine (Tyr, 181 Da).
  • the characteristic ions m/z 478.1, 463.2 and 299.1 were used to discover new structure phenolamide analogues from the samples Figure 8-A.
  • the ions with retention times of 23.5 and 29.9 minutes correspond to compounds KN1 and KN7, respectively.
  • the three new peaks at 22.5, 26.0 and 30.0 correspond to ion peaks at m/z 472.1, 314.1 and 445.2 showing secondary fragments similar to known phenolamides. Further detailed analysis of the three secondary fragments, especially their neutral loss and characteristic ions, found that only the parent ion with a molecular weight of m/z 314.1 can be resolved.
  • the structure is shown in Figure 9-A (Compound 1). There is no way to get the structure of the other two ions.
  • fragment ions such as m/z 501.2, 484.2, 471.2 and 454.2 also appeared, indicating that the compound also contains a cyclic tetrapeptide skeleton Figure 9-B (Compound 2).
  • the fragment ion m/z 371.1 corresponds to a branch that is 16 Da less than the same position in KN10, indicating that the compound lacks an oxygen atom on the branch.
  • the same neutral loss of 208Da suggests that the new compound also contains a proline dipeptide structure. Therefore, the new compound should be a compound in which phenylalanine replaces the tyrosine in KN10.
  • the HPLC-MS/MS data was reanalyzed on the GNPS platform, and the results are shown in Figure 1.
  • a total of 527 nodes are divided into 33 groups of molecular network subsets.
  • the molecular ions KN1-KN5, KN7, KN10, KN11, KN13 and KN14 appear in several different subsets.
  • the composite ions KN10-Cl-(m/z 908.4), KN11-Cl-(m/z 931.4) and KN13-Cl-(m/z 998.4) were also detected.
  • compound 1 is related to KN1
  • compound 2 is related to the cyclic peptide in the figure.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

一种分子网络化分析地骨皮化合物结构的方法,包括化学试剂和材料的选择,药材的选择,样品前处理和HPLC-MS/MS网络化分析等步骤。还包括借助于液质联用方法发现地骨皮中五个新化合物结构及其质谱裂解规律。分子网络化分析地骨皮化合物结构的方法便于发掘地骨皮中的新结构类似物,解析新结构,发掘传统中药中微量成分,从分子水平理解中药药效机制,并加快中药现代化的发展。

Description

一种分子网络化分析地骨皮化合物结构的方法 技术领域
本发明属于化工领域,具体涉及一种分子网络化分析地骨皮化合物结构的方法。
背景技术
《中国药典》2015版,将来源于宁夏枸杞(Lycium barbarum L.)或L.Chinense Mill.(Solanaceae)的根皮均称为地骨皮。地骨皮是传统中药中重要的草药,味苦、寒,在中医临床中被用于治虚劳潮热盗汗,肺热咳喘,吐血,衄血,血淋,消渴,痈肿,恶疮等疾病。前期植物化学研究已经从地骨皮中发现了七十余种化合物包括生物碱,酚酰胺,环肽类,二肽,环二萜和五环三萜等。地骨皮的提取物和单体化合物在抗氧化、抗肿瘤、抗细菌和真菌、抗病毒、抗糖尿病和降血压等模型上具有多方面的活性。
为了更加深入从分子水平理解中药药效机制,并加快中药现代化的发展,对传统中药的化学成分的研究再次成为热门的学科方向之一。早期的研究表明,环肽类化合物lyciumins A和B具有抗血管紧张素转换酶的活性,被认为可能用于临床降血压。该类环肽类物质具有独特的化学骨架,结构中含有一个由色氨酸吲哚N 1和甘氨酸C α关环结构,一直吸引着化学家和药理学家的关注。
天然产物由于它们复杂的化学结构和多样性生物活性一直是临床药物开发的重要资源。从自然界发现新的化学结构不仅能丰富天然产物结构库,同时也将为化学合成设计新结构药物提供基本骨架。在过去的几十年里,随着质谱的快速发展,特别是串联质谱的快速发展和应用,大量新化学结构被发现。在我们早期的研究工作中,我们利用分子网络化方法对菌株Streptomyces sp.SS的发酵上清液的LC-MS/MS进行重分析,发现了20个新结构三三霉素(Sansanmycin)类似物。
发明内容
本发明的目的是提出一种利用高效液相质谱-串联质谱法(HPLC-MS/MS),特别是高效液相色谱-四级杆飞行时间质谱法(HPLC-Q-TOF MS/MS)对地骨皮50%乙醇水提取物进行分析,发掘新结构类似物,解析新结构,发掘传统中药中微量成分,从分子水平理解中药药效机制,并加快中药现代化的发展。
为了达到上述目的,本发明提出一种分子网络化分析地骨皮化合物结构的方法,包括以 下步骤:
(i)样品前处理:
处理样品,获得样品上清液;
(ii)HPLC-MS/MS分析:
将步骤(i)获得的上清液用于高效液相质谱-串联质谱法(HPLC-MS/MS)检测系统进行检测,获得HPLC-MS/MS数据集;
(iii)分子网络化方法:
将步骤(ii)获得的HPLC-MS/MS数据集用分子网络化方法分析。
与现有技术相比,本发明便于发掘地骨皮中的新结构类似物,解析新结构,发掘传统中药中微量成分,从分子水平理解中药药效机制,并加快中药现代化的发展。
附图说明
图1为GNPS网络化分析地骨皮中复杂化学成分;
图2为新化合物(1-5)化学结构;
图3为地骨皮中已知化合物结构;
图4为已知化合物提取离子图;
图5为m/z 300.1(KN1,A1)和312.1(KN2,B1)的二级质谱图及其在负离子模式下裂解方式;
图6为m/z 634.2(KN5,A1)和641.3(KN7,B1)的MS/MS图谱及其在负离子模式下的裂解规律;
图7为环肽类化合物二级质谱图及其裂解规律;
图8为提取离子片段发掘酚酰胺和环肽类结构类似物;
图9为新化合物1和2的二级质谱图及其在负离子模式下裂解规律;
图10为已知化合物在网络化图上的位置(A)以及本专利涉及化合物的网络化放大图(B);
图11为新化合物3的二级质谱及其裂解方法;
图12为新化合物4的二级图谱及其负离子模式下裂解规律;
图13为新化合物5的二级质谱图及其裂解规律。
具体实施方式
在本公开中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。并且,本文中所用的相关术语和实验室操作步骤均为相应领域内广泛使用的术语和常规步骤。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
如本文所用,术语“GNPS”为Global Natural Products Social Molecular Networking的简称。
如本文所用,术语“分子网络化”是一种网络化处理串联质谱数据的方法。
如本文所用,术语“手动发掘”是一种根据标准化合物裂解机制,在串联质谱数据库手动筛选结构类似物的方法。
如本文所要,术语“分子网络化方法自动发掘”是一种基于分子网络化的结果,自动筛选结构类似物的方法。
在一方面,本发明提供了一种分子网络化分析地骨皮化合物结构的方法,其特征在于,包括以下步骤:
(i)样品前处理:
处理样品,获得样品上清液;
(ii)HPLC-MS/MS分析:
将步骤(i)获得的上清液用于高效液相质谱-串联质谱法(HPLC-MS/MS)检测系统进行检测,获得HPLC-MS/MS数据集;
(iii)分子网络化方法:
将步骤(ii)获得的HPLC-MS/MS数据集用分子网络化方法分析。
在本发明的一个具体实施方案中,步骤(i)所述的样品前处理包括以下步骤:
干燥地骨皮100g使用100ml 50%乙醇在室温下超声提取3遍,每次2小时;乙醇提取液减压条件下蒸馏回收,得到2.0ml水溶液;残留液上样至Sep-Pack C18固相萃取柱,后依次使用纯水、50%甲醇和HPLC级别甲醇得到样品1-3,所有样品在12000转下离心10分钟,获得上清液。
在本发明的一个具体实施方案中,步骤(ii)中所述HPLC-MS/MS为高效液相色谱-四级杆飞行时间质谱法(HPLC-Q-TOF-MS/MS)。
在本发明的一个具体实施方案中,在高效液相色谱-四级杆飞行时间质谱法(HPLC-Q-TOF-MS/MS)检测系统中,将步骤(i)获得的上清液用两相梯度洗脱,并按照下述液相色谱条件进行检测:
A相为色谱级甲醇,B相为0.1%醋酸氨水溶液;70分钟内从A相10%梯度增加到90%,流速为0.8ml/min,获得流出液。
在本发明的一个具体实施方案中,将所述流出液通过一个三通装置等量分配至二极管阵列检测器(DAD)和四级杆飞行时间质谱(Q-TOF)检测系统;DAD设置为254nm,柱温设定为25℃,每次进样20微升,并按照下述质谱条件进行检测:
质谱使用的离子源为电喷雾离子源,毛细管电压为4kV,毛细管出口电压为135V,锥孔 电压为65V,脱溶剂温度为350℃,干燥气流速度为10L/min,雾化器压力40psi,碰撞能量为8~45V,扫描分子量区间为m/z 100~2000,检测模式为负离子模式。
在本发明的一个具体实施方案中,将步骤(ii)获得的HPLC-MS/MS数据集经相关软件转换成mzXML格式后,上传至massive.ucsd.edu进行数据处理和整合,GNPS参数设计分子量范围,容忍度60%,进行类似物搜索,GNPS数据以cytoscape软件图形化。
在本发明的一个具体实施方案中,所述方法还包括步骤(iv)提取已知化合物分子离子峰;优选地,所述已知化合物包括酚酰胺类化合物和环肽类化合物;
优选地,所述方法还包括步骤(v)分析酚酰胺和环肽类化合物裂解规律;
优选地,所述方法还包括步骤(vi)手动发掘新结构成分;
优选地,所述方法还包括步骤(vii)分子网络化方法自动发掘新结构化合物。
在本发明的一个具体实施方案中,所述方法包括以下步骤:
(1)化学试剂和材料
色谱甲醇购自上海泰坦试剂有限公司;屈臣氏纯净水被用于HPLC;乙酸和氨水均为分析纯,购自北京化学试剂厂;
固相萃取柱,型号为Sep-Pack C18;色谱柱型号CAPCELL PAK C18 AQ;液质联用仪器为Agilent 1100-Agilent 6510 Q-TOF质谱;
(2)药材
实验用地骨皮,购于北京同仁堂;
(3)样品前处理
干燥地骨皮100g使用100ml 50%乙醇在室温下超声提取3遍,每次2小时;乙醇提取液减压条件下蒸馏回收,得到2.0ml水溶液;残留液上样至Sep-Pack C18固相萃取柱,后依次使用纯水、50%甲醇和HPLC级别甲醇得到样品1-3,所有样品在12000转下离心10分钟,获得上清液;
(4)HPLC-MS/MS分析
将步骤(3)获得的上清液用于高效液相质谱-串联质谱法(HPLC-MS/MS)检测系统进行检测,获得HPLC-MS/MS数据集,其中,
(a)将步骤(i)获得的上清液用两相梯度洗脱,并按照下述液相色谱条件进行检测:
两项梯度洗脱用于HPLC-Q-TOF系统,A相为色谱级甲醇,B相为0.1%醋酸氨水溶液;70分钟内从A相10%梯度增加到90%,流速为0.8ml/min,获得流出液;
(b)将步骤(a)获得的所述流出液通过一个三通装置等量分配至DAD和Q-TOF检测系 统;DAD设置为254nm,柱温设定为25℃,每次进样20微升,并按照下述质谱条件进行检测:
质谱使用的离子源为电喷雾离子源,毛细管电压为4kV,毛细管出口电压为135V,锥孔电压为65V,脱溶剂温度为350℃,干燥气流速度为10L/min,雾化器压力40psi,碰撞能量为8~45V,扫描分子量区间为m/z 100~2000,检测模式为负离子模式;
(5)分子网络化方法
HPLC-MS/MS数据集经相关软件转换成mzXML格式后,上传至massive.ucsd.edu进行数据处理和整合,GNPS参数设计分子量范围,容忍度60%,进行类似物搜索,GNPS数据以cytoscape软件图形化。
在本发明的一个具体实施方案中,所述方法还包括步骤(6)提取已知化合物分子离子峰;
优选地,所述已知化合物包括酚酰胺类化合物、环肽类化合物和二肽类化合物;
更优选地,所述酚酰胺选自化合物KN1、KN2、KN3、KN4、KN5、KN6、KN7、KN8和KN9;
更优选地,所述环肽类化合物选自化合物KN10、KN11、KN12和KN13;
更优选地,所述二肽类化合物为KN14;
其中,所述化合物KN1-KN14的结构如下:
Figure PCTCN2020111606-appb-000001
Figure PCTCN2020111606-appb-000002
在本发明的一个具体实施方案中,所述方法还包括步骤(7)分析酚酰胺和环肽类化合物裂解规律;优选地,分析化合物KN1和KN2的裂解规律;优选地,分析化合物KN5和KN7的裂解规律;优选地,分析环肽类化合物裂解规律;
优选地,所述方法还包括步骤(vi)手动发掘新化合物;优选地,所述新化合物为化合物1或化合物2;
优选地,所述方法还包括步骤(vii)分子网络化方法自动发掘新化合物;优选地,所述先好好玩为化合物1、化合物2、化合物3、化合物4或化合物5,其中,所述化合物1-5的结构如下:
Figure PCTCN2020111606-appb-000003
Figure PCTCN2020111606-appb-000004
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。以下给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
实施例1
一种分子网络化分析地骨皮化合物结构的方法,包括以下步骤:
(1)化学试剂和材料
色谱甲醇购自上海泰坦试剂有限公司;屈臣氏纯净水被用于HPLC;乙酸和氨水均为分析纯,购自北京化学试剂厂;
固相萃取柱,型号为Sep-Pack C18;色谱柱型号CAPCELL PAK C18 AQ;液质联用仪器为Agilent 1100-Agilent 6510 Q-TOF质谱;
(2)药材
实验用地骨皮,购于北京同仁堂;
(3)样品前处理
干燥地骨皮100g使用100ml 50%乙醇在室温下超声提取3遍,每次2小时;乙醇提取液减压条件下蒸馏回收,得到2.0ml水溶液;残留液上样至Sep-Pack C18固相萃取柱,后依次使用纯水、50%甲醇和HPLC级别甲醇得到样品1-3(Sample 1-3),所有样品在12000转下离心10分钟,上清液用于HPLC-Q-TOF测试;
(4)HPLC-MS/MS分析
两项梯度洗脱用于HPLC-Q-TOF系统,A相为色谱级甲醇,B相为0.1%醋酸氨水溶液;70分钟内从A相10%梯度增加到90%,流速为0.8ml/min,流出液通过一个三通装置等量分配至DAD和Q-TOF检测系统;DAD设置为254nm,柱温设定为25℃,每次进样20微升;
质谱使用的离子源为电喷雾离子源,毛细管电压为4kV,毛细管出口电压为135V,锥孔电压为65V,脱溶剂温度为350℃,干燥气流速度为10L/min,雾化器压力40psi,碰撞能量为8~45V,扫描分子量区间为m/z 100~2000,检测模式为负离子模式。
(5)分子网络化方法
HPLC-MS/MS数据集经相关软件转换成mzXML格式后,上传至massive.ucsd.edu进行数据处理和整合。GNPS参数设计分子量范围(~1m/z),容忍度60%,进行类似物搜索。GNPS数据以cytoscape软件图形化。
(6)提取已知化合物分子离子峰
为了手动分析新结构类似物,以往文献报道的化合物包括酚酰胺(KN1-KN9,图3)和环肽类化合物(KN10-KN13,图3)在样品1-3的负离子总离子图中得到了提取。
图4是已知化合物提取离子图,已知化合物分子量包括:酚酰胺:m/z 300.1(KN1),312.1(KN2),634.2(KN5),618.2(KN6),641.2(KN7),609.2(KN8),476.1(KN9)(A)和环肽类化合物:874.3(KN10),895.3(KN11),898.3(KN12),962.3(KN13),443.2(KN14)(B)。负离子提取图(图4)表明除了KN3和KN4之外,几乎所有的离子都能被提取出来,且丰度高于105。
图4A提取了属于酚酰胺化合物的离子峰,其中,KN1和KN9的离子丰度明显高于其他酚酰胺化合物(KN2、KN5、KN6、KN7和KN8)的离子丰度。
图4B提取了属于四个环肽类化合物的离子峰,不同丰度的离子峰表明lyciumin A(KN10)的含量远高于其它三个化合物。另外,化合物二肽lyciumamide(KN14)的提取峰显示该二肽类物质在样品中含量极其微小。
图4A(<3.0×10 6)和图4B(<1.0×10 6)纵坐标的差别提示环肽类物质的含量要低于酚酰胺类,表明酚酰胺类化合物是浸膏中主要物质。
(7)酚酰胺和环肽类化合物裂解规律
酚酰胺和环肽类化合物在正离子模式下的裂解规律在文献(Zhang JX,Guan SH,Yang M,et al.Simultaneous determination of 24constituents in Cortex Lycii using high-performance liquid chromatography–triple quadrupole mass spectrometry.J.Pharmaceut.Biomed.,2013,77:63-70)中早有报道,裂解位点主要集中在酰胺键附近。在该文献中报到了两类化合物在负离子模式下的裂解规律,特别是基于化合物KN1,KN2,KN7,KN9,和KN10的二级质谱。
(8)化合物KN1和KN2的裂解行为
化合物KN1和KN2的化学结构非常相似,除了一个甲氧基和一对与酰胺相连接的双键(图3)。母离子m/z 300.1(KN1)和312.1(KN2)的二级质谱被分别提取(图5-A1和B1),并且根据合理的中性丢失确定了两个化合物裂解规律(图5-A2和B2)。对于KN1丰度较高的子离子m/z 178.1和121.1表明在负离子模式下丢失主要由3,4-二羟基苯基负电荷中心诱导而成。而对于KN2中3-甲氧基-4-羟基由于分子间氢键降低了该位置的负电荷中心,即便如此,一个由失去CH 3 +碎片而得到了的子离子m/z 197.1提示该处产生的负电荷中心仍然是一个诱发分子内部断裂失去中性片段的重要因素。而且子离子m/z 190.1和135.1能够从分别丢失中性碎片3-甲氧基-4-羟基苯基和3-甲氧基-4-羟基-苯乙酰基(图5-B2)推测出来。而碎片离子m/z178.1和148.1可能由4-羟基苯基负电中心诱导而来。
(9)化合物KN5和KN7的裂解行为
化合物KN5和KN7的二级质谱图见图6-A1和B1,而它们的裂解规律见图6-A2和B2。KN5含有一个乙酰丁氨片段,可能会降低在末端的断裂概率,从而产生m/z 427,442,455和471的丰度均较低。碎片离子m/z 478,463和299为KN5和KN7的共同离子,表明这些离子可能作为判断酚酰胺类化合物类似物中带有二苯乙烯结构的特征离子。
(10)环肽类化合物裂解规律
在负离子模式下,地骨皮中的环肽类结构之前从未被讨论过,本实施例对KN10,KN11和KN13的准分子离子峰m/z 872.4,895.4和962.4,分别进行了提取(见图7-A1,B1和C1)。由于KN12(<10 -4)丰度很低,该离子的二级质谱在仪器中未被检测到。基于合理的丢失,化合物KN10,KN11和KN13的裂解规律见图7-A2(KN10),B2(KN10)和C2(KN13)。一个来源于环肽骨架上的苏氨酸残基的甲醛分子的丢失是该类化合物主要中性丢失。中性丢失208Da,如KN10中的M-664,KN11中的M-687和KN13中的M-754能够作为支链中是否含有脯氨酸二肽的重要证据。化合物KN13中的离子m/z 591和574,与KN10/KN11中的离子m/z 501和484,分别差90Da,可能是由环肽骨架上的氨基酸残基差别引起的,在KN13中有一个苯丙氨酸,被KN10和KN11中的甘氨酸所取代。同样,一个23Da分子量差别来源于支链残基,如KN10中的371Da(M-501)和KN11中的394Da(M-501),恰好与两个支链上的两个氨基酸残基的分子量差值相吻合。化合物KN10中为色氨酸(Try,204Da)而在化合物KN11中为酪氨酸(Tyr,181Da)。
(11)手动发掘新结构成分
特征离子m/z 478.1,463.2和299.1被用于从样品中发掘新结构酚酰胺类似物图8-A。而保留时间23.5和29.9分钟的离子分别为化合物KN1和KN7相对应。而三个新峰位于22.5,26.0 和30.0对应离子峰为m/z 472.1,314.1和445.2显示出与已知酚酰胺类似的二级碎片。进一步详细分析三者的二级碎片,特别是他们的中性丢失和和特征离子,发现只有母离子分子量为m/z 314.1的离子可以解析,结构如图9-A(化合物1)。而其它两个离子没有办法得到结构。
特征离子m/z 501.2,471.2,387.1和410.1被用于作为共同离子来手动寻找环肽类化合物的新结构(图8-B)。化合物KN10,KN11和KN13对应的分子离子峰分别出现在22.5,24.1和27.3min。另外,一个新的离子m/z 856.2对应于25.5的峰(P4用*表示)显示出与环肽类(图7)已知化合物相同的裂解碎片离子。尤其是也出现了m/z 501.2,484.2,471.2和454.2等碎片离子,表明该化合物也含有一个环四肽骨架图9-B(化合物2)。但是碎片离子m/z 371.1对应于支链比KN10的相同位置少16Da,表明该化合物在支链上缺少一个氧原子。相同的中性丢失208Da(M-648)提示新化合物同样也含有一个脯氨酸二肽结构,因此,新化合物应该为一个苯丙氨酸取代了KN10中的酪氨酸的化合物。
(12)分子网络化方法自动发掘新结构化合物
HPLC-MS/MS数据在GNPS平台上进行了重分析,结果如图1。总共527个节点分成33组分子网络子集。在这个网络化图上,分子离子KN1-KN5,KN7,KN10,KN11,KN13和KN14出现在几个不同的子集中。而且,复合离子KN10-Cl-(m/z 908.4),KN11-Cl-(m/z 931.4)和KN13-Cl-(m/z 998.4)同样也被检测到。而且化合物1与KN1有关联,而化合物2在图中与环肽有关联。除此之外,还有其它三个母离子m/z 604.3(化合物3),597.3(化合物4)和611.3(化合物5)在以往的工作中从未报道过的,也显示出与化合物KN5和KN7有相关(图10)。新化合物3-5的结构分别通过它们的二级质谱与已知化合物的二级质谱比较得以解析,解析过程如图11-图13。
以上所述实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形、改进及替代,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种分子网络化分析地骨皮化合物结构的方法,其特征在于,包括以下步骤:
    (i)样品前处理:
    处理样品,获得样品上清液;
    (ii)HPLC-MS/MS分析:
    将步骤(i)获得的上清液用于高效液相质谱-串联质谱法(HPLC-MS/MS)检测系统进行检测,获得HPLC-MS/MS数据集;
    (iii)分子网络化方法:
    将步骤(ii)获得的HPLC-MS/MS数据集用分子网络化方法分析。
  2. 根据权利要求1所述的方法,其中,步骤(i)所述的样品前处理包括以下步骤:
    干燥地骨皮100g使用100ml 50%乙醇在室温下超声提取3遍,每次2小时;乙醇提取液减压条件下蒸馏回收,得到2.0ml水溶液;残留液上样至Sep-Pack C18固相萃取柱,后依次使用纯水、50%甲醇和HPLC级别甲醇得到样品1-3,所有样品在12000转下离心10分钟,获得上清液。
  3. 根据权利要求1或2所述的方法,其中,步骤(ii)中所述HPLC-MS/MS为高效液相色谱-四级杆飞行时间质谱法(HPLC-Q-TOF-MS/MS)。
  4. 根据权利要求3所述的方法,其中,在高效液相色谱-四级杆飞行时间质谱法(HPLC-Q-TOF-MS/MS)检测系统中,将步骤(i)获得的上清液用两相梯度洗脱,并按照下述液相色谱条件进行检测:
    A相为色谱级甲醇,B相为0.1%醋酸氨水溶液;70分钟内从A相10%梯度增加到90%,流速为0.8ml/min,获得流出液。
  5. 根据权利要4所述的方法,其中,将所述流出液通过一个三通装置等量分配至二极管阵列检测器(DAD)和四级杆飞行时间质谱(Q-TOF)检测系统;DAD设置为254nm,柱温设定为25℃,每次进样20微升,并按照下述质谱条件进行检测:
    质谱使用的离子源为电喷雾离子源,毛细管电压为4kV,毛细管出口电压为135V,锥孔电压为65V,脱溶剂温度为350℃,干燥气流速度为10L/min,雾化器压力40psi,碰撞能量为8~45V,扫描分子量区间为m/z 100~2000,检测模式为负离子模式。
  6. 根据权利要求1-5中任一项所述的方法,其中,将步骤(ii)获得的HPLC-MS/MS数据集经相关软件转换成mzXML格式后,上传至massive.ucsd.edu进行数据处理和整合,GNPS参数设计分子量范围,容忍度60%,进行类似物搜索,GNPS数据以cytoscape软件图形化。
  7. 根据权利要求1-6中任一项所述的方法,所述方法还包括步骤(iv)提取已知化合物 分子离子峰;优选地,所述已知化合物包括酚酰胺类化合物和环肽类化合物;
    优选地,所述方法还包括步骤(v)分析酚酰胺和环肽类化合物裂解规律;
    优选地,所述方法还包括步骤(vi)手动发掘新结构成分;
    优选地,所述方法还包括步骤(vii)分子网络化方法自动发掘新结构化合物。
  8. 根据权利要求1-7中任一项所述的方法,所述方法包括以下步骤:
    (1)化学试剂和材料
    色谱甲醇购自上海泰坦试剂有限公司;屈臣氏纯净水被用于HPLC;乙酸和氨水均为分析纯,购自北京化学试剂厂;
    固相萃取柱,型号为Sep-Pack C18;色谱柱型号CAPCELL PAK C18 AQ;液质联用仪器为Agilent 1100-Agilent 6510 Q-TOF质谱;
    (2)药材
    实验用地骨皮,购于北京同仁堂;
    (3)样品前处理
    干燥地骨皮100g使用100ml 50%乙醇在室温下超声提取3遍,每次2小时;乙醇提取液减压条件下蒸馏回收,得到2.0ml水溶液;残留液上样至Sep-Pack C18固相萃取柱,后依次使用纯水、50%甲醇和HPLC级别甲醇得到样品1-3,所有样品在12000转下离心10分钟,获得上清液;
    (4)HPLC-MS/MS分析
    将步骤(3)获得的上清液用于高效液相质谱-串联质谱法(HPLC-MS/MS)检测系统进行检测,获得HPLC-MS/MS数据集,其中,
    (a)将步骤(i)获得的上清液用两相梯度洗脱,并按照下述液相色谱条件进行检测:
    两项梯度洗脱用于HPLC-Q-TOF系统,A相为色谱级甲醇,B相为0.1%醋酸氨水溶液;70分钟内从A相10%梯度增加到90%,流速为0.8ml/min,获得流出液;
    (b)将步骤(a)获得的所述流出液通过一个三通装置等量分配至DAD和Q-TOF检测系统;DAD设置为254nm,柱温设定为25℃,每次进样20微升,并按照下述质谱条件进行检测:
    质谱使用的离子源为电喷雾离子源,毛细管电压为4kV,毛细管出口电压为135V,锥孔电压为65V,脱溶剂温度为350℃,干燥气流速度为10L/min,雾化器压力40psi,碰撞能量为8~45V,扫描分子量区间为m/z 100~2000,检测模式为负离子模式;
    (5)分子网络化方法
    HPLC-MS/MS数据集经相关软件转换成mzXML格式后,上传至massive.ucsd.edu进行数据处 理和整合,GNPS参数设计分子量范围,容忍度60%,进行类似物搜索,GNPS数据以cytoscape软件图形化。
  9. 根据权利要求1-8任一项所述的方法,其中,所述方法还包括步骤(6)提取已知化合物分子离子峰;
    优选地,所述已知化合物包括酚酰胺类化合物、环肽类化合物和二肽类化合物;
    更优选地,所述酚酰胺选自化合物KN1、KN2、KN3、KN4、KN5、KN6、KN7、KN8和KN9;
    更优选地,所述环肽类化合物选自化合物KN10、KN11、KN12和KN13;
    更优选地,所述二肽类化合物为KN14;
    其中,所述化合物KN1-KN14的结构如下:
    Figure PCTCN2020111606-appb-100001
    Figure PCTCN2020111606-appb-100002
  10. 根据权利要求1-9任一项所述的方法,其中,所述方法还包括步骤(7)分析酚酰胺和环肽类化合物裂解规律;优选地,分析化合物KN1和KN2的裂解规律;优选地,分析化合物KN5和KN7的裂解规律;优选地,分析环肽类化合物裂解规律;
    优选地,所述方法还包括步骤(vi)手动发掘新化合物;优选地,所述新化合物为化合物1或化合物2;
    优选地,所述方法还包括步骤(vii)分子网络化方法自动发掘新化合物;优选地,所述先好好玩为化合物1、化合物2、化合物3、化合物4或化合物5,其中,所述化合物1-5的结构如下:
    Figure PCTCN2020111606-appb-100003
PCT/CN2020/111606 2019-09-12 2020-08-27 一种分子网络化分析地骨皮化合物结构的方法 WO2021047394A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910862837.X 2019-09-12
CN201910862837.XA CN110531017A (zh) 2019-09-12 2019-09-12 一种分子网络化分析地骨皮化合物结构的方法

Publications (1)

Publication Number Publication Date
WO2021047394A1 true WO2021047394A1 (zh) 2021-03-18

Family

ID=68668449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111606 WO2021047394A1 (zh) 2019-09-12 2020-08-27 一种分子网络化分析地骨皮化合物结构的方法

Country Status (2)

Country Link
CN (1) CN110531017A (zh)
WO (1) WO2021047394A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531017A (zh) * 2019-09-12 2019-12-03 北方民族大学 一种分子网络化分析地骨皮化合物结构的方法
CN111413423B (zh) * 2020-03-19 2022-07-12 广东一方制药有限公司 地骨皮uplc特征图谱的构建方法及地骨皮的检测方法
CN111707741A (zh) * 2020-06-02 2020-09-25 南京大学 环境介质中微量有机污染物转化产物的非靶向识别方法
CN114878724B (zh) * 2022-07-12 2022-10-14 中国农业科学院蜜蜂研究所 一种区分不同品种中蜂蜂蜜的方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294014A (ja) * 2005-03-16 2006-10-26 Kumamoto Technology & Industry Foundation 解析プログラム、プロテインチップ、プロテインチップの製造方法、および、抗体カクテル
CN102749299A (zh) * 2012-07-13 2012-10-24 山东阿如拉药物研究开发有限公司 一种中药组合物枸杞消渴制剂的质量检测方法
CN105758977A (zh) * 2016-03-09 2016-07-13 西华大学 一种检测黑枸杞果或黑枸杞果提取物品质的方法
CN108484428A (zh) * 2018-04-16 2018-09-04 中国科学院兰州化学物理研究所 一种枸杞中的酰胺类化合物及酰胺类化合物组分及其制备方法
CN109439705A (zh) * 2018-12-05 2019-03-08 广州中医药大学(广州中医药研究院) 一种柳珊瑚酸的微生物制备方法
CN109932446A (zh) * 2019-03-21 2019-06-25 苏州大学 一种枸杞多糖提取物的检测方法
CN110157724A (zh) * 2019-05-31 2019-08-23 中国医学科学院医药生物技术研究所 Herbicidin生物合成基因簇及其应用
CN110531017A (zh) * 2019-09-12 2019-12-03 北方民族大学 一种分子网络化分析地骨皮化合物结构的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012560B (zh) * 2012-12-24 2014-08-06 中南林业科技大学 一种地骨皮中环肽类化合物的制备方法
CN104418761A (zh) * 2013-09-03 2015-03-18 香港城市大学 苦可胺的分离方法
CN103735728B (zh) * 2013-10-28 2016-08-31 赵庆春 地骨皮醇提物、地骨皮甲素及乙素在制备具有神经保护作用的药物中的用途
CN105963419A (zh) * 2016-05-11 2016-09-28 天津大学 一种桃仁减毒的药物组合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294014A (ja) * 2005-03-16 2006-10-26 Kumamoto Technology & Industry Foundation 解析プログラム、プロテインチップ、プロテインチップの製造方法、および、抗体カクテル
CN102749299A (zh) * 2012-07-13 2012-10-24 山东阿如拉药物研究开发有限公司 一种中药组合物枸杞消渴制剂的质量检测方法
CN105758977A (zh) * 2016-03-09 2016-07-13 西华大学 一种检测黑枸杞果或黑枸杞果提取物品质的方法
CN108484428A (zh) * 2018-04-16 2018-09-04 中国科学院兰州化学物理研究所 一种枸杞中的酰胺类化合物及酰胺类化合物组分及其制备方法
CN109439705A (zh) * 2018-12-05 2019-03-08 广州中医药大学(广州中医药研究院) 一种柳珊瑚酸的微生物制备方法
CN109932446A (zh) * 2019-03-21 2019-06-25 苏州大学 一种枸杞多糖提取物的检测方法
CN110157724A (zh) * 2019-05-31 2019-08-23 中国医学科学院医药生物技术研究所 Herbicidin生物合成基因簇及其应用
CN110531017A (zh) * 2019-09-12 2019-12-03 北方民族大学 一种分子网络化分析地骨皮化合物结构的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRATTAIN LAURA J.; TELFER BRIAN A.; DHYANI MANISH; GRAJO JOSEPH R.; SAMIR ANTHONY E.: "Machine learning for medical ultrasound: status, methods, and future opportunities", ABDOMINAL RADIOLOGY, SPRINGER US, NEW YORK, vol. 43, no. 4, 28 February 2018 (2018-02-28), New York, pages 786 - 799, XP036472474, ISSN: 2366-004X, DOI: 10.1007/s00261-018-1517-0 *

Also Published As

Publication number Publication date
CN110531017A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021047394A1 (zh) 一种分子网络化分析地骨皮化合物结构的方法
Cai et al. A capsule review of recent studies on the application of mass spectrometry in the analysis of Chinese medicinal herbs
Chen et al. Comprehensive two-dimensional HepG2/cell membrane chromatography/monolithic column/time-of-flight mass spectrometry system for screening anti-tumor components from herbal medicines
Wang et al. Simultaneous determination of ginsenosides in Panax ginseng with different growth ages using high‐performance liquid chromatography–mass spectrometry
Zhao et al. Quality assessment and traceability study of Angelicae Sinensis Radix via binary chromatography, triple quadrupole tandem mass spectrometry, and multivariate statistical analysis
CN110297060B (zh) 一种山苦荬药材指纹图谱检测方法及其指纹图谱
Huang et al. Characterization and identification of saikosaponins in crude extracts from three Bupleurum species using LC‐ESI‐MS
Ma et al. Identification of major xanthones and steroidal saponins in rat urine by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry technology following oral administration of Rhizoma Anemarrhenae decoction
Li et al. Fingerprint analysis of Ophiopogonis Radix by HPLC-UV-ELSD coupled with chemometrics methods
Qian et al. Discovery and molecular elucidation of the anti-influenza material basis of Banlangen granules based on biological activities and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometry
CN112444592A (zh) 一种uplc-q-tof-ms快速筛查甘草中活性成分的方法
CN107519223B (zh) 含内源性多肽的人参提取物及其制备和测定、含人参提取物的药物或药物组合物及其应用
Hui et al. A novel approach to characterize chemical consistency of traditional Chinese medicine Fuzi Lizhong pills by GC-MS and RRLC-Q-TOFMS
CA2307047A1 (en) Pharmaceutical grade ginseng
CN105259262B (zh) 一种快速发现天然产物中低含量活性成分的新方法
Jiang et al. Spatial metabolomics reveals potential biomarkers for red secretory cavities in Atractylodes lancea natural accessions
Zhao et al. Identification of a Panax ginseng fruit fingerprint by HPLC-ESI-MS
Zhang et al. Characterisation and identification of chemical constituents in aqueous extract of Fomes officinalis Ames based on ultrahigh‐performance liquid chromatography tandem quadrupole‐Orbitrap high‐resolution mass spectrometry
CN110927292A (zh) 一种基于猪牙皂提取物的特征图谱及其构建方法和应用
Shen et al. Matlab Language assisted data acquisition and processing in liquid chromatography orbitrap mass spectrometry: application to the identification and differentiation of Radix Bupleuri from its adulterants
CN114689750B (zh) 蒙古扁桃及其近缘种正丁醇部位hplc指纹图谱的构建方法
AU2021101284A4 (en) Metabolome-based method for selecting optimal harvest period of Eleutherococcus senticosus
CN110672749B (zh) 一种检测铁皮石斛中挥发性萜类的方法
CN111024881B (zh) 一种百蕊草药材、颗粒及标煎液干粉的快速双信息薄层鉴别方法
CN114894952B (zh) 一种当归建中汤全方六药味的薄层鉴别方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862364

Country of ref document: EP

Kind code of ref document: A1