WO2021047288A1 - 自动导向叉车 - Google Patents

自动导向叉车 Download PDF

Info

Publication number
WO2021047288A1
WO2021047288A1 PCT/CN2020/102779 CN2020102779W WO2021047288A1 WO 2021047288 A1 WO2021047288 A1 WO 2021047288A1 CN 2020102779 W CN2020102779 W CN 2020102779W WO 2021047288 A1 WO2021047288 A1 WO 2021047288A1
Authority
WO
WIPO (PCT)
Prior art keywords
forklift
processing unit
automatic
cargo
module
Prior art date
Application number
PCT/CN2020/102779
Other languages
English (en)
French (fr)
Inventor
韩亮
徐国栋
Original Assignee
灵动科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 灵动科技(北京)有限公司 filed Critical 灵动科技(北京)有限公司
Priority to US17/629,583 priority Critical patent/US20220267128A1/en
Priority to EP20863828.8A priority patent/EP3988496A4/en
Priority to JP2022500640A priority patent/JP7373148B2/ja
Publication of WO2021047288A1 publication Critical patent/WO2021047288A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/003Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/0755Position control; Position detectors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device

Definitions

  • the invention relates to an automatic guided transportation tool, in particular to an automatic guided forklift.
  • Forklifts are industrial vehicles used for loading, unloading and moving goods, and are widely used for loading, unloading and moving goods in warehouses.
  • the control center of the storage system can specify the automatic guided forklifts and the goods to be transported (hereinafter referred to as target goods).
  • the initial position and the destination position enable the designated automatic guided forklift to automatically go to the initial position under unmanned operation, and carry the target goods placed in the initial position to the destination position to complete the handling task.
  • the aforementioned initial position and destination position can only be specified with precise positions.
  • the user can specify a fixed point on the warehouse map of the control center through the user interface, or manually enter the coordinates of the fixed point.
  • the automatic guided forklift could not find the target goods and could not complete the handling task.
  • the destination location can only be a fixed point, it is easy to happen that other goods are already placed at the destination location and cannot be unloaded, or multiple automatic guided forklifts need to queue for unloading.
  • the initial position and the target position can only be fixed points, when the target goods are stored in different positions, the user needs to manually specify the automatic guided forklift, the initial position and the target position through the user interface multiple times to complete all the target goods. Transportation is very inconvenient in use.
  • an automatic guided forklift which includes a forklift and an automatic guide device.
  • the automatic guiding device is installed on the forklift.
  • the automatic guiding device includes a camera module and a processing unit.
  • the camera module is used to capture images of the surrounding environment of the forklift.
  • the processing unit is electrically connected to the forklift and the camera module, and the processing unit is used to perform the following steps: receiving command information, which includes the target area, target cargo, and delivery destination; controlling the forklift to enter the target area according to the command information; judging whether the image includes Goods; when the image includes goods, the processing unit determines whether the goods are target goods; and when the goods are target goods, the processing unit controls the forklift to move the goods to the destination.
  • the target area of the present invention is an area instead of a fixed point, which can prevent the target goods from deviating from the correct position and cause the failure of the handling task, and is beneficial for the user to apply a single instruction to all the target goods in the target area.
  • the delivery destination of the present invention can also be an area instead of a fixed point, which can avoid the situation that the fixed point has already placed the goods and cannot be unloaded, or the situation that multiple automatic guided forklifts need to queue for unloading. Therefore, the automatic guided forklift of the present invention is beneficial to improve the success rate of the handling task, the handling efficiency and the convenience of the user.
  • Fig. 1 is a perspective view of an automatic guided forklift according to an embodiment of the present invention.
  • Fig. 2 is another perspective view of the automatic guided forklift in Fig. 1.
  • Figure 3 is an exploded view of the automatic guided forklift in Figure 2.
  • Fig. 4 is a functional block diagram of the automatic guided forklift in Fig. 1.
  • Fig. 5 is an exploded view of the collision sensor module in Fig. 2.
  • FIG. 6 is a schematic diagram of the collision sensor module in FIG. 2 in a state.
  • FIG. 7 is a schematic diagram of the collision sensor module in FIG. 2 in another state.
  • Fig. 8 is a schematic cross-sectional view of the prongs and the wire protection structure in Fig. 2 along the cutting plane line A-A.
  • Fig. 9 is a flow chart of the steps used by the processing unit to perform automatic cargo handling.
  • Fig. 10 is a schematic diagram of a user interface according to an embodiment of the present invention.
  • electrical connection means that electrical energy or data such as electrical signals, magnetic signals, and command signals can be directly, indirectly, wired or wirelessly transmitted between components.
  • the automatic guided forklift 20 includes a forklift 100 and an automatic guide device 200, and the automatic guide device 200 is disposed on the forklift 100.
  • the forklift 100 includes a manual operating rod 110, a holding module 120, a driving module 130 and a forklift power supply module 140.
  • the manual operating lever 110 is used for the user to manually operate the forklift 100.
  • the manual operating lever 110 can control the driving module 130 to move the forklift 100, or the manual operating lever 110 can control the holding module 120 to lift the holding module 120.
  • the holding module 120 is arranged on the rear side of the forklift 100.
  • the holding module 120 includes two fork teeth 120a, which can be operated to rise or fall, and can be operated to extend into the bottom of the cargo to load the cargo or to be operated away from the bottom of the cargo to unload the cargo.
  • the driving module 130 may include a motor (not shown) and a plurality of wheels 131, 132, 133.
  • the motor is disposed in the forklift 100 and is electrically connected to one or more wheels 131, 132, 133 to drive the wheels.
  • the forklift power supply module 140 is mainly used to provide the power required by the forklift 100.
  • the forklift power supply module 140 can be electrically connected to the manual operating rod 110, the holding module 120, and the driving module 130 to provide the manual operating rod 110, the holding module 120, and the driving module.
  • Module 130 power.
  • the forklift power supply module 140 may be a plug or a battery.
  • the forklift 100 may be a commercially available product, so other details about the forklift 100 will not be repeated here.
  • the automatic guiding device 200 includes a camera module 215 and a processing unit 205, wherein the processing unit 205 is electrically connected to the forklift 100 and the camera module 215.
  • the camera module 215 is used to capture images of the surrounding environment of the forklift 100 to obtain environmental information of the workplace where the automatically guided forklift 20 is located.
  • the camera module 215 may be a two-dimensional camera module or a three-dimensional camera module.
  • the two-dimensional camera module may be a camera, and the three-dimensional camera module may be, but not limited to, a combination of two cameras or a combination of one camera and one projector.
  • the automatic guiding device 200 may preferably include a first distance sensor 220.
  • the first distance sensor 220 is electrically connected to the processing unit 205.
  • the first distance sensor 220 is used for sensing the forklift 100 and the processing unit 205.
  • the distance of surrounding objects When the camera module 215 is a three-dimensional camera module, the distance between the forklift 100 and surrounding objects can be directly calculated from the images obtained by the three-dimensional camera module.
  • the processing unit 205 has computing capabilities, and the processing unit 205 may be, but is not limited to, a central processing unit (CPU) or a graphics processing unit (GPU).
  • the automatic guiding device 200 may preferably include a forklift communication module 250.
  • the forklift communication module 250 is electrically connected to the processing unit 205 and the forklift 100, whereby the processing unit 205 can control the forklift 100 through the forklift communication module 250.
  • the forklift communication module 250 may Electrically connected to the holding module 120 and the driving module 130, the processing unit 205 can control the lifting and lowering of the holding module 120 and the movement of the forklift 100 through the forklift communication module 250.
  • the forklift communication module 250 may be, but not limited to, a Bluetooth module.
  • the automatic guiding device 200 may preferably include a collision sensor module 270.
  • the collision sensor module 270 is arranged on the rear side of the forklift 100 and is electrically connected to the processing unit 205. In this embodiment, the collision sensor module 270 communicates with the forklift.
  • the module 250 is electrically connected to the processing unit 205.
  • the collision sensor module 270 senses that it is pushed by the goods, the automatically guided forklift 20 stops moving in the direction of the goods.
  • the processing unit 205 controls the holding module 120 to carry goods, it first controls the holding module 120 to extend under the goods, and then controls the forklift 100 to move in the direction of the goods.
  • the collision sensor module 270 detects that the goods are pushed against , It means that the holding module 120 has fully extended under the goods and is suitable for transportation. At this time, the collision sensor module 270 transmits information to the processing unit 205, and the processing unit 205 controls the forklift 100 to stop moving in the direction of the goods.
  • the collision sensor module 270 can sense whether the position of the cargo on the holding module 120 is suitable for transportation, and can prevent the holding module 120 from not fully extending under the cargo and causing the cargo to fall during the transportation.
  • the collision sensor module 270 includes a bottom plate 271, an elastic piece 272, an outer cover 273 and a movable piece 274.
  • the bottom plate 271 includes a groove 271a, and one end 272a of the elastic piece 272 is fixed on the bottom plate. 271.
  • the outer cover 273 is pivotally connected to the bottom plate 271 and is pushed by the other end 272b of the elastic piece 272.
  • the movable piece 274 is arranged between the bottom plate 271 and the outer cover 273 in a movable manner relative to the bottom plate 271.
  • the movable piece 274 includes a connecting end 274a and the movable end 274b.
  • the connecting end 274a is connected to the outer cover 273, for example, by spot welding or screw locking.
  • the movable end 274b is movably arranged in the groove 271a. 6 and 7 in conjunction, the outer cover 273 is omitted in FIGS. 6 and 7.
  • the elastic piece 272 pushes against the outer cover 273 to the first position (not shown), so that the movable end 274b of the movable piece 274 touches the concave The wall surface 271b of the groove 271a.
  • a space 271c is formed between the movable end 274b of the movable piece 274 and the wall surface 271b of the groove 271a.
  • the circuit By switching between the first position and the second position of the outer cover 273, the circuit (not shown) can be switched between the path and the open circuit, and the information can be sent to the processing unit 205 so that the processing unit 205 can sense that the goods are in the holding Whether the position on the module 120 is suitable for transportation.
  • the collision sensor module 270 may further include a sensor element 275, which is electrically connected to the processing unit 205.
  • the sensor element 275 can be connected to the sensor element 275.
  • the circuit is switched between on and off, and the sensor element 275 is triggered to transmit information to the processing unit 205.
  • the automatic guiding device 200 may preferably include a bearing structure 280, and the bearing structure 280 includes a carrier 281, a mounting member 282 and a grip member 283.
  • the carrier 281 can be used to carry other components of the automatic guide device 200.
  • the camera module 215 is disposed under the carrier 281
  • the processing unit 205 is disposed inside the carrier 281
  • the mounting member 282 is connected to the carrier 281 and is detachable.
  • the automatic guide device 200 is installed on the forklift 100 in a detachable manner, which is beneficial for the industry to install the automatic guide device 200 on the existing forklift 100 without purchasing the entire automatic guided forklift 20 , Which can greatly reduce costs.
  • the mounting member 282 may include a first straight portion 282a, a curved portion 282b, and a second straight portion 282c.
  • the first straight portion 282a and the second straight portion 282c are connected by the curved portion 282b, and the position of the curved portion 282b corresponds to
  • the manual operation lever 110 prevents the mounting member 282 from interfering with the manual operation lever 110, and does not affect the degree of freedom of operation of the manual operation lever 110.
  • the handle 283 protrudes outward from the carrier 281, whereby the user can hold the handle 283 when installing or disassembling the carrying structure 280, which can greatly improve the convenience of operation.
  • the automatic guiding device 200 may preferably include a display 225, which is disposed on the carrier 281 and electrically connected to the processing unit 205, and the display 225 may include a display interface or a user interface (refer to the related description of FIG. 10).
  • the display interface is used to display the current working status of the automatic guided forklift 20 so that users around the automatic guided forklift 20 can know the current working status of the automatic guided forklift 20.
  • the user interface can be used to provide user input information and transmit it to the processing unit 205. In this way, the user can control the automatic guided forklift 20 through the display 225.
  • the automatic guiding device 200 may preferably include an indicator light 230.
  • the indicator light 230 is arranged on the carrier 281 and is electrically connected to the processing unit 205.
  • the indicator light 230 can emit light information so that users around the automatically guided forklift 20 can know the automatic guidance The current working state of the forklift 20. For example, when the automatic guided forklift 20 is running normally, the indicator light 230 can light up in green, and when the automatic guided forklift 20 reaches the delivery destination, the indicator light 230 can light up in blue. When an obstacle is reached and temporarily stopped, the indicator light 230 may light up in red, and when the automatically guided forklift 20 is switched to the manual mode, the indicator light 230 may light up and flash in yellow light.
  • the automatic guide device 200 may preferably include an emergency stop button 235.
  • the emergency stop button 235 is provided on the carrier 281 and is electrically connected to the processing unit 205.
  • the processing unit 205 can control the automatic guide forklift 20 to stop operation
  • the processing unit 205 can control the driving module 130 to stop the forklift 100 from moving, and can control the holding module 120 to stop the lifting module 120 from lifting.
  • the operation of the automatic guided forklift 20 can be stopped immediately when an emergency situation occurs, and the occurrence of danger can be avoided.
  • the automatic guiding device 200 may preferably include a device storage module 210, which is disposed inside the carrier 281 and is electrically connected to the processing unit 205.
  • the device storage module 210 may be used to store data, including the positioning information of the automatic guiding forklift 20, Navigation information of the automated guided forklift 20, map information of the workplace of the automated guided forklift 20, target cargo information, delivery destination information, and so on.
  • the device storage module 210 may be, but is not limited to, a read-only memory, a random access memory, or a combination thereof.
  • the automatic guide device 200 may preferably include an anti-collision member 284, which is provided on the front side of the forklift 100 and can be used to buffer the impact caused by the collision of the forklift 100 with other objects.
  • the anti-collision member 284 may be made of materials with impact resistance and high strength, for example, may be made of fiberglass reinforced plastics (FRP).
  • the automatic guiding device 200 may preferably include two first distance sensors 220.
  • One of the first distance sensors 220 is disposed above the carrier 281 and is electrically connected to the processing unit 205 for sensing the distance between the automatic guiding forklift 20 and surrounding objects.
  • another first distance sensor 220 is arranged on the anti-collision piece 284 and is electrically connected to the processing unit 205.
  • the first distance sensor 220 is arranged on the anti-collision piece 284.
  • the distance sensor 220 is electrically connected to the processing unit 205 through the forklift communication module 250, and is used to sense the distance between the automatically guided forklift 20 and the surrounding objects, especially the distance between the objects on the front side of the automatic guided forklift 20 and the position is deviated downward. Therefore, it is beneficial to improve the obstacle avoidance function of the automatically guided forklift 20 in front.
  • the first distance sensor 220 may be, but is not limited to, LiDAR.
  • the automatic guiding device 200 may preferably include a second distance sensor 260 arranged on the fork 120a and electrically connected to the processing unit 205, and used for sensing the distance between the automatic guiding forklift 20 and the rear object.
  • the second distance sensor 260 is electrically connected to the processing unit 205 through the forklift communication module 250, and the number of the second distance sensor 260 is two and they are respectively arranged at the ends of the two fork teeth 120a, thereby, It is beneficial to determine the position of the bottom of the cargo, so that the fork teeth 120a can accurately extend into the bottom of the cargo, and it is beneficial to improve the obstacle avoidance function behind the automatic guided forklift 20.
  • the second distance sensor 260 may be, but is not limited to, a photoelectric sensor (Photoelectric Sensor).
  • the automatic guide device 200 may preferably include a wire protection structure 285, the wire protection structure 285 covers the tines 120a, and a space 286 is formed between the wire protection structure 285 and the tines 120a to accommodate the wires (Not shown in the figure), in this embodiment, the second distance sensor 260 is electrically connected to the forklift power supply module 140 through the wire to obtain power.
  • the automatic guiding device 200 may preferably include a device communication module 245, which is electrically connected to the processing unit 205 and the remote control center 300.
  • the remote control center 300 may include a management unit 310 and a user interface 320, and may preferably include a central communication module 330 and a central storage module 340, wherein the management unit 310 and the user interface 320, the central communication module 330 and the central storage module 340 are electrically connected Connected, the management unit 310 is electrically connected to the processing unit 205 through the central communication module 330 and the device communication module 245, and the user interface 320 is electrically connected to the management unit 310.
  • the user interface 320 allows the user to input information and send it to the management unit 310 before sending To the processing unit 205. In this way, the user can control the automatic guided forklift 20 through the remote control center 300.
  • the central storage module 340 may be used to store data, such as map information of a workplace (such as a warehouse) of the automated guided forklift 20, cargo storage information, and so on.
  • the device communication module 245 and the central communication module 330 can be Wi-Fi wireless transmission modules
  • the remote control center 300 can be a server
  • the management unit 310 can be a Warehouse Management System (WMS)
  • WMS Warehouse Management System
  • the central storage module 340 It can be a read-only memory, a random access memory, or a combination thereof.
  • WMS Warehouse Management System
  • the automatic guiding device 200 may preferably include a device power supply module 240, which is arranged inside the carrier 281.
  • the device power supply module 240 is mainly used to provide the power required by the automatic guiding device 200.
  • the device power supply module 240 can be combined with the processing unit 205 and the device.
  • the storage module 210, the first distance sensor 220 arranged on the carrier 281, the display 225, the indicator light 230, the emergency stop button 235, the forklift communication module 250, and the device communication module 245 are electrically connected to provide the power required by the aforementioned components.
  • the device power supply module 240 may be a plug or a battery.
  • the forklift power supply module 140 provides power.
  • the power of all components of the automatic steering device 200 may be provided by the device power supply module 240, or the automatic steering
  • the forklift 20 can only be provided with the device power supply module 240 without the forklift power supply module 140.
  • the device power supply module 240 provides the power required by all the components in the automatic guided forklift 20.
  • the automatic guided forklift 20 can only be provided with the forklift power supply module 140.
  • the device power supply module 240 is not provided, and the forklift power supply module 140 provides the power required for all the components in the automatically guided forklift 20.
  • the arrangement of the components in the automatic guiding device 200 described above is only an example, and can be flexibly adjusted according to actual needs without affecting the function of each component.
  • the camera module 215 can also be arranged above the carrier 281, and when the camera module 215 It is arranged above the carrier 281 and can also realize the function of capturing images of the surrounding environment of the forklift 100.
  • Figure 9 is a flow chart of the steps used by the processing unit 205 to perform automatic cargo handling. As shown in Figure 9, the processing unit 205 is used to perform steps 510 to 550. Therefore, the execution subject of steps 510 to 550 As the processing unit 205.
  • Step 510 is to receive order information.
  • the order information includes the target area, the target cargo, and the delivery destination.
  • the command information can be sent by the user through the remote control center 300 and then sent to the processing unit 205, or the command information can be input by the user through the display 225 and sent to the processing unit 205.
  • Step 520 is to control the forklift 100 to enter the target area according to the command information.
  • Step 530 is to determine whether the image includes goods.
  • the processing unit 205 determines whether the goods are target goods.
  • Step 550 is when the cargo is the target cargo, the processing unit 205 controls the forklift 100 to transport the cargo to the destination.
  • step 510 to step 550 will be described in detail in conjunction with FIG. 10.
  • the user interface 600a may be an illustration of the user interface 320 of the remote control center 300, or may be an example of the user interface of the display 225.
  • the user interface 600a is used as the user interface 320 of the remote control center 300 for illustration.
  • the user interface 600a includes a map 610a and an input interface 620a.
  • the map 610a includes a shelf pattern 611a and a cargo pattern 612a.
  • the map 610a can be a map of the workplace of the automated guided forklift 20. The goods are placed in the pallet.
  • the position of the shelf pattern 611a on the map 610a corresponds to the position of the shelf in the warehouse.
  • the position of the goods pattern 612a on the map 610a corresponds in principle to the position of the goods in the warehouse. Or, due to the collision, the goods deviate from the expected position, which may cause the position of the goods pattern 612a on the map 610a to be inconsistent with the actual position of the goods in the warehouse.
  • the user selects the target area 630a on the map 610a.
  • the user selects the target area 630a on the map 610a with the mouse.
  • the management unit 310 records the coordinates of the four points of the target area 630a.
  • the formed area the user selects the target cargo on the input interface 620a, where the user selects the loading tray and restricts the cargo to cargo AAA, where AAA can be the number or product name of the cargo, and the user can further select the delivery destination on the map 610a (Not shown), the delivery destination can be an area or a fixed point.
  • the selection method of the delivery destination can be the same as the target area 630a.
  • the user can use the mouse to directly click on the map 610a Click on the desired fixed point as the delivery destination, and the management unit 310 will record the coordinates of the four dots of the delivery destination and the area formed by them or the coordinates of the fixed point.
  • the management unit 310 transmits the command information including the target area 630a, the target cargo, and the related information of the delivery destination to the processing unit 205.
  • the processing unit 205 receives the command information (step 510) and controls the forklift 100 to enter the target area 630a according to the command information. (Step 520), the processing unit 205 controls the forklift 100 to move in the target area 630a while capturing images through the camera module 215, and continuously determines in real time whether the images include goods. Since all goods in the warehouse are placed on pallets, the processing unit 205 may first determine whether there is a pallet in the image (step 530).
  • the processing unit 205 may calculate the difference between the pallet and the forklift 100 from the image alone or in conjunction with the image and the data collected by the first distance sensor 220. Distance, and control the forklift 100 to move to the front of the pallet, and determine whether the pallet is the target cargo (in this case, determine whether the pallet contains cargo AAA, step 540).
  • the processing unit 205 determines that the pallet is the target cargo
  • the processing unit 205 controls the forklift 100 turns and uses the holding module 120 to extend into the bottom of the pallet.
  • the second distance sensor 260 can be used to improve the efficiency and accuracy of the holding module 120 extending to the bottom of the pallet.
  • the processing unit 205 continuously controls the forklift 100 to continuously move toward the pallet.
  • the collision sensor module 270 can be used to sense whether the position of the pallet on the holding module 120 is suitable for transportation.
  • the processing unit 205 controls the forklift 100 to stop moving in the direction of the pallet. , And control the holding module 120 to lift up to lift the pallet, and the processing unit 205 then controls the forklift 100 to go to the delivery destination.
  • the aforementioned processing unit 205 can determine whether there is a pallet in the image or whether the goods are target goods.
  • the command information can further include pallet image information, and the processing unit 205 can compare the image captured by the camera module 215 with the pallet.
  • the image information is compared, or the tray image information can be stored in the device storage module 210 in advance, and the processing unit 205 can directly retrieve the tray image from the device storage module 210, and then compare the image captured by the camera module 215 with the tray image information. Correct.
  • the command information may include the barcode information of the goods AAA (such as a two-dimensional barcode), the pallets in the warehouse are provided with barcode information for storing their internal goods, and the processing unit 205 may capture the barcode information of the pallet by the camera module 215 The information image is compared with the barcode information of the cargo AAA.
  • the processing unit 205 determines that the image includes goods, the processing unit 205 will further determine whether the goods are in the target area 630a, thereby improving the accuracy of the processing unit 205 in performing the transportation task.
  • the target area of the present invention is an area instead of a fixed point, which can prevent the target goods from deviating from the correct position and cause the failure of the handling task, and is beneficial for the user to apply a single instruction to all the target goods in the target area.
  • the delivery destination of the present invention can also be an area instead of a fixed point, which can avoid the situation that the fixed point has already placed the goods and cannot be unloaded, or the situation that multiple automatic guided forklifts need to queue for unloading. Therefore, the automatic guided forklift of the present invention is beneficial to improve the success rate of the handling task, the handling efficiency and the convenience of the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

本发明公开了一种自动导向叉车。自动导向叉车包括叉车以及自动导向装置。自动导向装置设置于叉车且包括摄像模块以及处理单元,摄像模块用于撷取叉车周围环境的影像,处理单元与叉车及摄像模块电性连接,处理单元用于执行以下步骤:接收命令信息,命令信息包括目标区域、目标货物以及运送目的地;依据命令信息控制叉车进入目标区域内;判断影像是否包括货物;当影像包括货物时,处理单元判断货物是否为目标货物;以及当货物为目标货物时,处理单元控制叉车搬运货物至运送目的地。

Description

自动导向叉车 技术领域
本发明涉及一种自动导向运输工具,特别是有关一种自动导向叉车。
背景技术
叉车是一种用于装卸及搬运货物的工业车辆,被广泛用于装卸及搬运仓库中的货物。为了节省人力成本及提高管理效率,现今仓储系统已朝自动化发展,连带带动了自动导向叉车的兴起,仓储系统的控制中心可指定自动导向叉车以及所欲搬运的货物(以下称为目标货物)的初始位置及目的位置,使受指定的自动导向叉车在无人操作的情况下,自动前往初始位置,并将放置于初始位置的目标货物搬运至目的位置,而完成搬运任务。
碍于现今自动导向叉车的配置,前述初始位置以及目的位置均只能指定精确位置,例如用户可通过用户界面于控制中心的仓库地图中指定一个固定点,或者手动输入固定点的坐标,然而,倘若仓储人员在归位时不小心把目标货物放歪,或者不小心碰撞到目标货物,而使目标货物偏离正确的位置,将导致自动导向叉车找不到目标货物而无法完成搬运任务。当目的位置只能是固定点,则容易发生目的位置已放置其他货物而无法卸货,或者多辆自动导向叉车需排队等待卸货。此外,由于初始位置以及目的位置均只能为固定点,当目标货物存放在不同位置时,用户需通过用户界面多次手动指定自动导向叉车、初始位置及目的位置,方能完成所有目标货物的搬运,在使用非常不便利。
发明内容
依据本发明的一实施方式是提供一种自动导向叉车,包括叉车以及自动导向装置。自动导向装置设置于叉车。自动导向装置包括摄像模块以及处理单元。摄像模块用于撷取叉车周围环境的影像。处理单元与叉车及摄像模块电性连接,处理单元用于执行以下步骤:接收命令信息,命令信息包括目标 区域、目标货物以及运送目的地;依据命令信息控制叉车进入目标区域内;判断影像是否包括货物;当影像包括货物时,处理单元判断货物是否为目标货物;以及当货物为目标货物时,处理单元控制叉车搬运货物至运送目的地。
相较于现有技术,本发明的目标区域为区域而非固定点,可避免目标货物偏离正确位置而导致搬运任务失败,并有利于用户将单一次的指令套用于目标区域内所有的目标货物,而不需针对目标区域内不同放置点的目标货物一一下达指令。本发明的运送目的地也可为区域而非固定点,可避免固定点已放置货物而无法卸货或者多辆自动导向叉车需排队等待卸货的情形。因此,本发明的自动导向叉车有利于提升搬运任务的成功率、搬运效率及用户的使用便利性。
附图说明
图1是依据本发明一实施方式的自动导向叉车的立体图。
图2是图1中自动导向叉车的另一立体图。
图3是图2中自动导向叉车的爆炸图。
图4是图1中自动导向叉车的功能方块示意图。
图5是图2中碰撞传感模块的爆炸图。
图6是图2中碰撞传感模块处于一状态的示意图。
图7是图2中碰撞传感模块处于另一状态的示意图。
图8是图2中叉齿与电线保护结构沿割面线A-A的剖视示意图。
图9是处理单元用于执行自动搬运货物的步骤流程图。
图10是依据本发明一实施方式的用户界面示意图。
其中,附图标记说明如下:
20:自动导向叉车
100:叉车
110:手动操作杆
120:持物模块
120a:叉齿
130:驱动模块
131、132、133:轮子
140:叉车供电模块
200:自动导向装置
205:处理单元
210:装置存储模块
215:摄像模块
220:第一距离传感器
225:显示器
230:指示灯
235:紧急停止按钮
240:装置供电模块
245:装置通讯模块
250:叉车通讯模块
260:第二距离传感器
270:碰撞传感模块
271:底板
271a:凹槽
271b:壁面
271c:空间
272:弹性片
272a、272b:端
273:外盖
274:活动片
274a:连接端
274b:活动端
275:传感元件
280:承载结构
281:载体
282:安装件
282a:第一直线部
282b:弯曲部
282c:第二直线部
283:握把件
284:防撞件
285:电线保护结构
286:空间
300:远端控制中心
310:管理单元
320:用户界面
330:中心通讯模块
340:中心存储模块
510、520、530、540、550:步骤
600a:用户界面
610a:地图
611a:货架图案
612a:货物图案
620a:输入界面
630a:目标区域
具体实施方式
有关本发明的前述及其它技术内容、特点与功效,在以下配合例图的较佳实施方式的详细说明中,将可清楚地呈现。值得一提的是,以下实施方式所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考例图的方向。因此,使用的方向用语是用于说明,而非对本发明加以限制。此外,在下列各实施方式中,相同或相似的元件将采用相同或相似的标号。
本发明中电性连接是指元件间可以直接、间接、有线或无线方式传递电信号、磁信号以及命令信号等电性能量或数据。
请参照图1至图4,自动导向叉车20包括叉车100及自动导向装置200,自动导向装置200设置于叉车100。叉车100包括手动操作杆110、持物模块120、驱动模块130及叉车供电模块140。手动操作杆110用于供用户手动操作叉车100,例如,可通过手动操作杆110控制驱动模块130使叉车100移动,或者可通过手动操作杆110控制持物模块120使持物模块120升降。持物模块120设置于叉车100后侧,持物模块120包括二个叉齿120a,可受操作而上升或下降、可受操作伸入货物底部以装载货物或可受操作远离货物底部以卸下货物。驱动模块130可包括电机(图未示)及多个轮子131、132、133,电机设置叉车100内且与一个或多个轮子131、132、133电性连接以驱动所述轮子。叉车供电模块140主要用于提供叉车100所需的电力,例如,叉车供电模块140可与手动操作杆110、持物模块120、驱动模块130电性连接以提供手动操作杆110、持物模块120、驱动模块130电力。叉车供电模块140可为插头或电池。叉车100可为市售产品,因此关于叉车100的其他细节在此不予赘述。
自动导向装置200包括摄像模块215及处理单元205,其中处理单元205与叉车100及摄像模块215电性连接。摄像模块215用于撷取叉车100周围环境的影像,藉以获得自动导向叉车20所处工作场所的环境信息。摄像模块215可为二维摄像模块或三维摄像模块。二维摄像模块可为相机,三维摄像模块可为但不限于两个相机的组合或一个相机与一个投影机的组合。当摄像模块215为二维摄像模块时,自动导向装置200可优选地包括第一距离传感器220,第一距离传感器220与处理单元205电性连接,第一距离传感器220用于感测叉车100与周围物体的距离。当摄像模块215为三维摄像模块时,可由三维摄像模块获得的影像直接计算出叉车100与周围物体的距离。处理 单元205具有计算能力,处理单元205可为但不限于中央处理单元(Central Processing Unit,CPU)或图形处理单元(Graphics Processing Unit,GPU)。自动导向装置200可优选地包括叉车通讯模块250,叉车通讯模块250电性连接处理单元205与叉车100,借此,处理单元205可通过叉车通讯模块250控制叉车100,例如,叉车通讯模块250可与持物模块120及驱动模块130电性连接,处理单元205可通过叉车通讯模块250控制持物模块120升降以及控制叉车100移动,叉车通讯模块250可为但不限于蓝牙(Bluetooth)模块。通过前述配置,自动导向叉车20可自动前往目标区域,并将目标区域内的目标货物搬运至运送目的地,细节请参见图9的相关说明。
自动导向装置200可优选地包括碰撞传感模块270,碰撞传感模块270设置于叉车100的后侧且电性连接于处理单元205,在本实施方式中,碰撞传感模块270是通过叉车通讯模块250与处理单元205电性连接。当碰撞传感模块270感测到被货物推抵时,自动导向叉车20停止往货物的方向继续前进。详细来说,当处理单元205控制持物模块120搬运货物时,先控制持物模块120伸入货物下方,再控制叉车100往货物的方向前进,当碰撞传感模块270感测到被货物推抵时,表示持物模块120已充分伸入货物的下方而适于搬运,此时碰撞传感模块270传送信息至处理单元205,处理单元205控制叉车100停止往货物的方向继续前进。通过碰撞传感模块270,可感测货物在持物模块120上的位置是否适于搬运,而可避免持物模块120未充分伸入货物下方而导致货物在搬运过程中掉落。
请同时参照图5,在本实施方式中,碰撞传感模块270包括底板271、弹性片272、外盖273以及活动片274,底板271包括凹槽271a,弹性片272的一端272a固设于底板271,外盖273枢接于底板271且受弹性片272的另一端272b推抵,活动片274以可相对底板271活动的方式设置在底板271与外盖273之间,活动片274包括连接端274a及活动端274b,连接端274a连接于外盖273,例如可通过点焊或螺锁的方式连接,活动端274b活动地设置于凹槽271a。配合参照图6及图7,图6、图7中省略外盖273。如图6所示,当货物(图未示)未推抵外盖273时,弹性片272推抵外盖273至第一位置(图未示),使活动片274的活动端274b碰触凹槽271a的壁面271b。如图7所示,当货物推抵外盖273至第二位置时,活动片274的活动端274b与凹槽271a 的壁面271b之间形成空间271c。藉由外盖273在第一位置与第二位置间切换,可使电路(图未示)在通路与断路中切换,进而可提供信息传送至处理单元205,使处理单元205可感知货物于持物模块120上的位置是否适于搬运。例如,碰撞传感模块270可更包括传感元件275,传感元件275与处理单元205电性连接,当外盖273在第一位置与第二位置间切换,可使连接传感元件275的电路在通路与断路中切换,而触发传感元件275传送信息至处理单元205。
配合参照图1至图4,自动导向装置200可优选地包括承载结构280,承载结构280包括载体281、安装件282以及握把件283。载体281可用于承载自动导向装置200的其他元件,在本实施方式中,摄像模块215设置于载体281的下方,处理单元205设置于载体281的内部,安装件282与载体281连接并以可拆卸的方式安装于叉车100,借此,自动导向装置200以可拆卸的方式安装于叉车100,有利于业者将自动导向装置200安装在现有的叉车100,而不需购买整台自动导向叉车20,可大幅降低成本。优选地,安装件282可包括第一直线部282a、弯曲部282b以及第二直线部282c,第一直线部282a与第二直线部282c通过弯曲部282b连接,弯曲部282b设置的位置对应手动操作杆110,使安装件282与手动操作杆110不产生干涉,而不影响手动操作杆110的操作自由度。握把件283由载体281往外突伸,借此,用户于安装或拆卸承载结构280时可握持握把件283,可大幅提升操作便利性。
自动导向装置200可优选地包括显示器225,显示器225设置于载体281且电性连接于处理单元205,显示器225可包括显示界面或用户界面(可参考图10的相关说明)。显示界面用于显示自动导向叉车20当前的工作状态,以使自动导向叉车20周围的用户,可知晓自动导向叉车20当前的工作状态。用户界面可用于提供用户输入信息并传送至处理单元205。借此,用户可通过显示器225控制自动导向叉车20。
自动导向装置200可优选地包括指示灯230,指示灯230设置于载体281且电性连接于处理单元205,指示灯230可发出灯光信息,借以使自动导向叉车20周围的用户,可知晓自动导向叉车20当前的工作状态,例如,当自动导向叉车20正常行走时,指示灯230可亮绿灯,当自动导向叉车20到达运送目的地时,指示灯230可亮蓝灯,当自动导向叉车20遇到障碍物而临时停车时,指示灯230可亮红灯,当自动导向叉车20切换至手动模式时,指示 灯230可亮闪烁黄灯。
自动导向装置200可优选地包括紧急停止按钮235,紧急停止按钮235设置于载体281且电性连接于处理单元205,当用户按下紧急停止按钮235,处理单元205可控制自动导向叉车20停止运作,例如,处理单元205可控制驱动模块130使叉车100停止移动,并可控制持物模块120使持物模块120停止升降。借此,可于紧急状况发生时立即停止自动导向叉车20的运作,而可避免危险发生。
自动导向装置200可优选地包括装置存储模块210,装置存储模块210设置于载体281的内部且电性连接于处理单元205,装置存储模块210可用于存储数据,包括自动导向叉车20的定位信息、自动导向叉车20的导航信息、自动导向叉车20工作场所的地图信息、目标货物信息、运送目的地信息等等。装置存储模块210可为但不限于只读存储器、随机存储器或其组合。
自动导向装置200可优选地包括防撞件284,防撞件284设置于叉车100的前侧,可用于缓冲叉车100与其他物体碰撞所产生的冲击。防撞件284可采用具有耐冲击及高强度特性的材料制作而成,例如可采用玻璃纤维强化塑料(Fiberglass Reinforced Plastics,FRP)制作而成。
自动导向装置200可优选地包括两个第一距离传感器220,其中一个第一距离传感器220设置于载体281上方且电性连接于处理单元205,用于感测自动导向叉车20与周围物体的距离,特别是位置偏向上方的物体的距离,另一个第一距离传感器220设置于防撞件284上且电性连接于处理单元205,在本实施方式中,设置于防撞件284上的第一距离传感器220是通过叉车通讯模块250与处理单元205电性连接,且用于感测自动导向叉车20与周围物体的距离,特别是位在自动导向叉车20前侧且位置偏向下方的物体的距离,借此,有利于提升自动导向叉车20前方的避障功能。第一距离传感器220可为但不限于激光雷达(LiDAR)。
自动导向装置200可优选地包括第二距离传感器260,设置于叉齿120a上且电性连接于处理单元205,且用于感测自动导向叉车20与后侧物体的距离。在本实施方式中,第二距离传感器260是通过叉车通讯模块250与处理单元205电性连接,第二距离传感器260的数量为两个且分别设置于两个叉 齿120a的末端,借此,有利于判断货物底部的位置,使叉齿120a可准确地伸入货物底部,并有利于提升自动导向叉车20后方的避障功能。第二距离传感器260可为但不限于光电传感器(Photoelectric Sensor)。
配合参照图2、图3及图8,自动导向装置200可优选地包括电线保护结构285,电线保护结构285覆盖叉齿120a,电线保护结构285与叉齿120a之间形成空间286以容置电线(图未示),在本实施方式中,第二距离传感器260是通过所述电线与叉车供电模块140电性连接而获得电力。
配合参照图4,自动导向装置200可优选地包括装置通讯模块245,装置通讯模块245电性连接处理单元205与远端控制中心300。远端控制中心300可包括管理单元310及用户界面320,且可优选地包括中心通讯模块330及中心存储模块340,其中管理单元310与用户界面320、中心通讯模块330及中心存储模块340电性连接,管理单元310通过中心通讯模块330及装置通讯模块245与处理单元205电性连接,用户界面320与管理单元310电性连接,用户界面320可供用户输入信息并传送至管理单元310再传送至处理单元205。借此,用户可通过远端控制中心300控制自动导向叉车20。中心存储模块340可用于存储数据,例如自动导向叉车20的工作场所(例如仓库)的地图信息、货物存放信息等等。装置通讯模块245及中心通讯模块330可为Wi-Fi无线传输模块,远端控制中心300可为服务器(Server),管理单元310可为仓库管理系统(Warehouse Management System,WMS),中心存储模块340可为只读存储器、随机存储器或其组合。关于用户界面320可参见图10的相关说明。
自动导向装置200可优选地包括装置供电模块240,设置于载体281的内部,装置供电模块240主要用于提供自动导向装置200所需的电力,例如,装置供电模块240可与处理单元205、装置存储模块210、设置于载体281上的第一距离传感器220、显示器225、指示灯230、紧急停止按钮235、叉车通讯模块250及装置通讯模块245电性连接以提供前述元件所需的电力。装置供电模块240可为插头或电池。在本实施方式中,自动导向装置200的其他元件,如设置于防撞杆284的第一距离传感器220、第二距离传感器260及碰撞传感模块270,由于与载体281的距离较远,在本实施方式中是由叉车供电模块140提供电力,然而,本发明不以此为限,在其他实施方式中, 自动导向装置200所有元件的电力可均由装置供电模块240提供,或者,自动导向叉车20可仅设置装置供电模块240而不设置叉车供电模块140,由装置供电模块240提供自动导向叉车20中所有元件所需的电力,相似地,自动导向叉车20可仅设置叉车供电模块140而不设置装置供电模块240,由叉车供电模块140提供自动导向叉车20中所有元件所需的电力。
上述自动导向装置200中各元件的配置方式仅为例示,在不影响各元件功能的前提下,可依实际需求弹性调整,例如,摄像模块215也可设置于载体281的上方,当摄像模块215设置于载体281的上方,也可实现撷取叉车100周围环境的影像的功能。
配合参照图9,图9是处理单元205用于执行自动搬运货物的步骤流程图,如图9所示,处理单元205用于执行步骤510至步骤550,因此,步骤510至步骤550的执行主体为处理单元205。
步骤510是接收命令信息,命令信息包括目标区域、目标货物以及运送目的地。命令信息可由用户通过远端控制中心300发出再传送至处理单元205,或者,命令信息可由用户通过显示器225输入并传送至处理单元205。步骤520是依据命令信息控制叉车100进入目标区域内。步骤530是判断影像是否包括货物。步骤540是当影像包括货物时,处理单元205判断货物是否为目标货物。步骤550是当货物为目标货物时,处理单元205控制叉车100搬运货物至运送目的地。以下配合图10,详细说明步骤510至步骤550。
图10中,用户界面600a可为远端控制中心300的用户界面320的例示,也可为显示器225的用户界面的例示,在此以用户界面600a为远端控制中心300的用户界面320进行说明。用户界面600a包括地图610a及输入界面620a,地图610a包括货架图案611a及货物图案612a,地图610a可为自动导向叉车20工作场所的地图,在此以工作场所为仓库作为例子,并且仓库中的所有货物均放置在托盘内,货架图案611a于地图610a中的位置对应货架于仓库中的位置,货物图案612a于地图610a中的位置原则上对应货物于仓库中的位置,然而,由于仓储人员误放或者因碰撞导致货物偏离应有位置,可能导致货物图案612a于地图610a中的位置与货物于仓库中的实际位置有所不符。
图10中,用户于地图610a选取目标区域630a,在此,用户是通过鼠标 于地图610a选取目标区域630a,当用户选取完目标区域630a,管理单元310会纪录目标区域630a四个点顶的坐标及形成的区域,用户并于输入界面620a选择目标货物,在此用户选择载物托盘,并限定货物为货物AAA,其中AAA可为货物的编号或品名,用户可进一步于地图610a选择运送目的地(图未示),运送目的地可为区域或定点,当运送目的地为区域,运送目的地的选取方式可与目标区域630a相同,当运送目的地为定点,用户可使用鼠标直接在地图610a上点选所欲的定点作为运送目的地,管理单元310会纪录运送目的地的四个点顶的坐标及其所形成的区域或者所述定点的坐标。
接着,管理单元310将包括目标区域630a、目标货物及运送目的地相关信息的命令信息传送至处理单元205,处理单元205接收命令信息(步骤510)并依据命令信息控制叉车100进入目标区域630a内(步骤520),处理单元205于目标区域630a内边控制叉车100移动边通过摄像模块215撷取影像,并持续实时判断影像中是否包括货物,由于仓库中的所有货物均放置在托盘,处理单元205可先判断影像中是否有托盘(步骤530),当处理单元205判断影像中有托盘,处理单元205可单独由影像或者配合影像与第一距离传感器220所收集数据计算出托盘与叉车100的距离,而控制叉车100移动到托盘前方,并判断托盘是否为目标货物(在此为判断托盘内是否装有货物AAA,步骤540),当处理单元205判断托盘为目标货物,处理单元205控制叉车100转向并以持物模块120伸进托盘底部,此时可借助第二距离传感器260来提升持物模块120伸到托盘底部的效率及准确度,处理单元205持续控制叉车100持续往托盘的方向移动,此时可借助碰撞传感模块270感测托盘于持物模块120的位置是否适于搬运,当碰撞传感模块270感测到被托盘推抵,处理单元205控制叉车100停止往托盘的方向继续前进,并控制持物模块120升起以将托盘托起,处理单元205再控制叉车100前往运送目的地。
前述处理单元205判断影像中是否有托盘或者货物是否为目标货物可采取影像比对的方式,例如,命令信息中可更包括托盘影像信息,处理单元205可将摄像模块215撷取的影像与托盘影像信息进行比对,或者,托盘影像信息可预先存储于装置存储模块210,处理单元205可直接从装置存储模块210调阅托盘影像,再将摄像模块215撷取的影像与托盘影像信息进行比对。
又例如,命令信息中可包括货物AAA的条形码信息(例如二维条形码), 仓库内的托盘上设置有存放其内部货物的条形码信息,处理单元205可将摄像模块215所撷取有关托盘的条形码信息影像与货物AAA的条形码信息进行比对。在其他实施方式中,当处理单元205判断影像包括货物时,处理单元205会进一步判断货物是否处于目标区域630a内,借此,可提升处理单元205执行搬运任务的准确性。
相较于现有技术,本发明的目标区域为区域而非固定点,可避免目标货物偏离正确位置而导致搬运任务失败,并有利于用户将单一次的指令套用于目标区域内所有的目标货物,而不需针对目标区域内不同放置点的目标货物一一下达指令。本发明的运送目的地也可为区域而非固定点,可避免固定点已放置货物而无法卸货或者多辆自动导向叉车需排队等待卸货的情形。因此,本发明的自动导向叉车有利于提升搬运任务的成功率、搬运效率及用户的使用便利性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种自动导向叉车,其特征在于,包括:
    叉车;以及
    自动导向装置,设置于所述叉车,所述自动导向装置包括:
    摄像模块,用于撷取所述叉车周围环境的影像;以及
    处理单元,与所述叉车及所述摄像模块电性连接,所述处理单元用于执行以下步骤:
    接收命令信息,所述命令信息包括目标区域、目标货物以及运送目的地;
    依据所述命令信息控制所述叉车进入所述目标区域内;
    判断所述影像是否包括货物;
    当所述影像包括所述货物时,所述处理单元判断所述货物是否为所述目标货物;以及
    当所述货物为所述目标货物时,所述处理单元控制所述叉车搬运所述货物至所述运送目的地。
  2. 如权利要求1所述的自动导向叉车,其特征在于,所述自动导向装置还包括碰撞传感模块,所述碰撞传感模块设置于所述叉车的后侧且电性连接于所述处理单元,所述碰撞传感模块包括:
    底板,包括凹槽;
    弹性片,一端固设于所述底板;
    外盖,枢接于所述底板且受所述弹性片的另一端推抵;以及
    活动片,以可相对所述底板活动的方式设置在所述底板与所述外盖之间,所述活动片包括连接端及活动端,所述连接端连接于所述外盖,所述活动端活动地设置于所述凹槽;
    其中当所述货物未推抵所述外盖时,所述弹性片推抵所述外盖至第一位置,使所述活动片的所述活动端碰触所述凹槽的所述壁面;
    其中当所述货物推抵所述外盖至第二位置时,所述活动端与所述凹槽的 壁面之间形成空间。
  3. 如权利要求1所述的自动导向叉车,其特征在于,所述自动导向装置还包括碰撞传感模块,所述碰撞传感模块设置于所述叉车的后侧且电性连接于所述处理单元,当所述碰撞传感模块感测到被所述货物推抵时,所述自动导向叉车停止往所述货物的方向继续前进。
  4. 如权利要求1所述的自动导向叉车,其特征在于,所述自动导向装置还包括承载结构,所述承载结构包括:
    载体,所述摄像模块及所述处理单元设置于所述载体;
    安装件,与所述载体连接,所述安装件以可拆卸的方式安装于所述叉车;以及
    握把件,由所述载体往外突伸。
  5. 如权利要求1所述的自动导向叉车,其特征在于,所述自动导向装置还包括承载结构,所述承载结构包括:
    载体,所述摄像模块及所述处理单元设置于所述载体;以及
    安装件,与所述载体连接,所述安装件以可拆卸的方式安装于所述叉车,所述安装件包括第一直线部、弯曲部以及第二直线部,所述第一直线部与所述第二直线部通过所述弯曲部连接。
  6. 如权利要求5所述的自动导向叉车,其特征在于,所述自动导向装置还包括:
    显示器,设置于所述载体且电性连接于所述处理单元;以及
    指示灯,设置于所述载体且电性连接于所述处理单元。
  7. 如权利要求5所述的自动导向叉车,其特征在于,所述自动导向装置还 包括紧急停止按钮,所述紧急停止按钮设置于所述载体且电性连接于所述处理单元。
  8. 如权利要求1所述的自动导向叉车,其特征在于,所述自动导向装置还包括:
    防撞件,设置于所述叉车的前侧;以及
    第一距离传感器,设置于所述防撞件上且电性连接于所述处理单元。
  9. 如权利要求1所述的自动导向叉车,其特征在于,所述叉车包括叉齿,所述自动导向装置还包括:
    第二距离传感器,设置于所述叉齿且电性连接于所述处理单元;以及
    电线保护结构,覆盖所述叉齿,所述电线保护结构与所述叉齿之间形成空间以容置电线。
  10. 如权利要求1所述的自动导向叉车,其特征在于,所述自动导向装置还包括装置通讯模块,所述装置通讯模块电性连接所述处理单元与远端控制中心,所述远端控制中心包括用户界面,所述用户界面包括地图,用户于所述地图选取所述目标区域,所述远端控制中心发出所述命令信息并通过所述装置通讯模块传送至所述处理单元。
PCT/CN2020/102779 2019-09-10 2020-07-17 自动导向叉车 WO2021047288A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/629,583 US20220267128A1 (en) 2019-09-10 2020-07-17 Automated guided forklift
EP20863828.8A EP3988496A4 (en) 2019-09-10 2020-07-17 AUTOMATIC FORKLIFT
JP2022500640A JP7373148B2 (ja) 2019-09-10 2020-07-17 自動ガイドフォークリフト

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910855117.0 2019-09-10
CN201910855117.0A CN110550579B (zh) 2019-09-10 2019-09-10 自动导向叉车

Publications (1)

Publication Number Publication Date
WO2021047288A1 true WO2021047288A1 (zh) 2021-03-18

Family

ID=68739813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102779 WO2021047288A1 (zh) 2019-09-10 2020-07-17 自动导向叉车

Country Status (5)

Country Link
US (1) US20220267128A1 (zh)
EP (1) EP3988496A4 (zh)
JP (1) JP7373148B2 (zh)
CN (1) CN110550579B (zh)
WO (1) WO2021047288A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110550579B (zh) * 2019-09-10 2021-05-04 灵动科技(北京)有限公司 自动导向叉车
US11790656B2 (en) * 2019-12-16 2023-10-17 Cognex Corporation Machine vision system and method with steerable mirror
US10812727B1 (en) 2019-12-16 2020-10-20 Cognex Corporation Machine vision system and method with steerable mirror
JP7371577B2 (ja) * 2020-06-09 2023-10-31 トヨタ自動車株式会社 移動ロボット、サーバ装置、及び運搬方法
USD1004245S1 (en) * 2020-08-07 2023-11-07 Hangzhou Hikrobot Co., Ltd. Forklift
JP7086148B2 (ja) * 2020-08-31 2022-06-17 三菱ロジスネクスト株式会社 パレット検知装置、フォークリフト、パレット検知方法、及びプログラム
AU2021358709A1 (en) * 2020-10-05 2023-06-08 Crown Equipment Corporation Systems and methods for relative pose sensing and field enforcement of materials handling vehicles using ultra-wideband radio technology
CN113336145A (zh) * 2021-02-21 2021-09-03 安徽永捷力智能装备有限公司 一种窄通道agv堆垛车
CN113003491B (zh) * 2021-03-10 2024-03-08 广州蓝胖子移动科技有限公司 一种用于货物运输的全自动电动叉车及移送方法
CN115454043A (zh) * 2021-06-08 2022-12-09 灵动科技(北京)有限公司 自主移动设备
USD1021316S1 (en) * 2021-10-18 2024-04-02 Robopac S.P.A. Lift truck
USD1021317S1 (en) * 2022-05-03 2024-04-02 Robopac S.P.A. Lift truck

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321423A1 (en) * 2011-05-19 2012-12-20 Crossing Automation, Inc. Dynamic Storage and Transfer System Integrated with Autonomous Guided/Roving Vehicle
CN105353759A (zh) * 2015-11-13 2016-02-24 上海诺力智能科技有限公司 一种agv拣选车和自动导引分拣系统
CN107289904A (zh) * 2017-06-20 2017-10-24 杭州国辰牵星科技有限公司 一种具有末端避障功能的叉架
CN107422735A (zh) * 2017-07-29 2017-12-01 深圳力子机器人有限公司 一种无轨导航agv激光与视觉特征混合导航方法
CN108675226A (zh) * 2018-07-19 2018-10-19 苏州海豚之星智能科技有限公司 一种模块化agv移动装置
CN110058591A (zh) * 2019-04-24 2019-07-26 合肥柯金自动化科技股份有限公司 一种基于激光雷达与深度摄像机混合导航的agv系统
CN110550579A (zh) * 2019-09-10 2019-12-10 灵动科技(北京)有限公司 自动导向叉车

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878336A (en) * 1958-04-21 1959-03-17 Charles N Ehrlich Electric switch
JP2001010796A (ja) * 1999-06-29 2001-01-16 Nippon Yusoki Co Ltd フォークリフト
US6697681B1 (en) * 2000-03-22 2004-02-24 Trellis Software & Controls, Inc. Shared operating unit for a network of programmable equipment
EP2363774B1 (en) * 2000-05-01 2017-06-21 iRobot Corporation Method and system for remote control of mobile robot
US8413752B2 (en) * 2006-10-06 2013-04-09 Irobot Corporation Robotic vehicle
ITVI20070143A1 (it) * 2007-05-21 2008-11-22 Euroimpianti S P A Metodo e apparecchiatura per la movimentazione automatica dei carichi.
CA2771687C (en) 2011-03-18 2019-06-04 The Raymond Corporation Mast and integral display mount for a material handling vehicle
US8965561B2 (en) * 2013-03-15 2015-02-24 Cybernet Systems Corporation Automated warehousing using robotic forklifts
DE102013021879B4 (de) * 2013-12-21 2017-10-19 Diehl Ako Stiftung & Co. Kg Berührungs- und/oder annäherungsempfindliche Eingabevorrichtung
US9561941B1 (en) * 2015-03-30 2017-02-07 X Development Llc Autonomous approach and object pickup
CN105366593A (zh) * 2015-11-20 2016-03-02 安徽依诺玛智能科技有限公司 一种智能型激光导向avg叉车
US10346797B2 (en) * 2016-09-26 2019-07-09 Cybernet Systems, Inc. Path and load localization and operations supporting automated warehousing using robotic forklifts or other material handling vehicles
JP6546952B2 (ja) 2017-03-24 2019-07-17 ソフトバンク株式会社 搬送装置、プログラム及び搬送システム
CN109189056A (zh) * 2017-06-29 2019-01-11 沈阳新松机器人自动化股份有限公司 一种idc机房运维机器人管理系统
WO2019002918A1 (en) * 2017-06-29 2019-01-03 Simec S.R.L. METHOD AND SYSTEM FOR CONTROLLING AND DISPLACING AN AUTOMATIC GUIDED VEHICLE (VGA)
WO2019026504A1 (ja) * 2017-08-03 2019-02-07 株式会社東海理化電機製作所 操作検出装置
JP6930360B2 (ja) * 2017-10-19 2021-09-01 株式会社豊田自動織機 産業車両
CN107748269B (zh) * 2017-11-06 2020-04-10 泰州泽成生物技术有限公司 一种新型加样针撞击后自动报警和恢复装置
CN108046172A (zh) * 2017-12-04 2018-05-18 深圳市今天国际物流技术股份有限公司 叉车机器人
CN108845574B (zh) * 2018-06-26 2021-01-12 北京旷视机器人技术有限公司 目标识别与追踪方法、装置、设备及介质
JP6741731B2 (ja) * 2018-08-28 2020-08-19 株式会社メディカロイド ロボット手術器具およびその組み立て方法
CN209161405U (zh) * 2018-10-23 2019-07-26 安徽合派电动科技有限公司 一种slam导航agv叉车
US11142413B2 (en) * 2019-01-28 2021-10-12 Assa Abloy Entrance Systems Ab Systems and methods for automated loading and unloading at a dock station
CN110182718A (zh) * 2019-04-25 2019-08-30 上海快仓智能科技有限公司 搬运机器人的控制方法及货物搬运系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321423A1 (en) * 2011-05-19 2012-12-20 Crossing Automation, Inc. Dynamic Storage and Transfer System Integrated with Autonomous Guided/Roving Vehicle
CN105353759A (zh) * 2015-11-13 2016-02-24 上海诺力智能科技有限公司 一种agv拣选车和自动导引分拣系统
CN107289904A (zh) * 2017-06-20 2017-10-24 杭州国辰牵星科技有限公司 一种具有末端避障功能的叉架
CN107422735A (zh) * 2017-07-29 2017-12-01 深圳力子机器人有限公司 一种无轨导航agv激光与视觉特征混合导航方法
CN108675226A (zh) * 2018-07-19 2018-10-19 苏州海豚之星智能科技有限公司 一种模块化agv移动装置
CN110058591A (zh) * 2019-04-24 2019-07-26 合肥柯金自动化科技股份有限公司 一种基于激光雷达与深度摄像机混合导航的agv系统
CN110550579A (zh) * 2019-09-10 2019-12-10 灵动科技(北京)有限公司 自动导向叉车

Also Published As

Publication number Publication date
EP3988496A4 (en) 2023-07-19
CN110550579B (zh) 2021-05-04
EP3988496A1 (en) 2022-04-27
JP7373148B2 (ja) 2023-11-02
CN110550579A (zh) 2019-12-10
JP2022540107A (ja) 2022-09-14
US20220267128A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
WO2021047288A1 (zh) 自动导向叉车
EP2542496B1 (en) Method and system for sensing object load engagement and disengagement by automated vehicles
WO2021047289A1 (zh) 自动搬运系统
US9828223B2 (en) Fork-lift truck and method for operating a fork-lift truck
US20200103882A1 (en) Collaborative automation logistics facility
EP3000771B1 (en) Fork-lift truck
CN110182718A (zh) 搬运机器人的控制方法及货物搬运系统
AU2011331900A1 (en) Method and apparatus for virtualizing industrial vehicles to automate task execution in a physical environment
KR20160057668A (ko) 지능형 무인 이/적재 시스템 및 이를 이용한 이/적재 방법
JP2020196623A (ja) ロボットシステムの制御装置及び制御方法
CN110428209B (zh) 一种盘点设备、盘点管理系统及盘点方法
US11958687B2 (en) High-position robot, method for calibrating return of storage container, and storage medium
US20240166456A1 (en) Containerized robotic system
US20220288787A1 (en) Multi-pallet mixed-case robotic palletizer
CN115818515A (zh) 货物搬运方法及系统、设备、存储介质
JP2006264830A (ja) 位置検出設備
CN220564222U (zh) 一种料笼存储系统
WO2024047724A1 (ja) フォークリフト、および自動倉庫システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500640

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020863828

Country of ref document: EP

Effective date: 20220119

NENP Non-entry into the national phase

Ref country code: DE