WO2021047053A1 - 一种强化二甲苯氧化生产苯二甲酸的系统及工艺 - Google Patents

一种强化二甲苯氧化生产苯二甲酸的系统及工艺 Download PDF

Info

Publication number
WO2021047053A1
WO2021047053A1 PCT/CN2019/120192 CN2019120192W WO2021047053A1 WO 2021047053 A1 WO2021047053 A1 WO 2021047053A1 CN 2019120192 W CN2019120192 W CN 2019120192W WO 2021047053 A1 WO2021047053 A1 WO 2021047053A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
interface generator
bed reactor
slurry
xylene
Prior art date
Application number
PCT/CN2019/120192
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
李磊
张锋
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021047053A1 publication Critical patent/WO2021047053A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/001Controlling catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/082Controlling processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/241,3 - Benzenedicarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature

Definitions

  • the invention relates to the preparation of phthalic acid, in particular to a system and process for intensified oxidation of xylene to produce phthalic acid.
  • Xylene is a colorless and transparent liquid; it is a product in which two hydrogens on the benzene ring are replaced by methyl groups. There are three isomers of ortho, meta, and para. In industry, xylene refers to a mixture of the above isomers; Oxygen oxidation can produce phthalic acid, terephthalic acid, isophthalic acid and other substances.
  • Phthalic acid is a colorless crystal or crystalline powder. Two carboxyl groups are connected to two adjacent carbon atoms in the benzene ring to form a binary aromatic carboxyl group. In applications, phthalic anhydride can be used instead of phthalic acid. Dicarboxylic acid. Phthalic acid is a raw material for synthetic resins, fibers, medicines, etc. Isophthalic acid (IPA for short) is the raw material of polyester resin, mainly used in the preparation of polyester bottle flakes, fibers, unsaturated resins, and low-melting polyester products.
  • IPA isophthalic acid
  • CIA crude isophthalic acid
  • PX paraxylene
  • reaction pressure in the preparation process of phthalic acid is relatively large, thereby increasing the risk of the reaction device. At the same time, excessively high reaction pressure will cause more energy loss and further increase the reaction cost.
  • the present invention provides a system and process for enhancing the oxidation of xylene to produce phthalic acid to at least partially solve the above-mentioned problems.
  • the present invention provides a system for intensified oxidation of xylene to produce phthalic acid, which includes:
  • the slurry bed reactor is used as a reaction site for xylene oxidation, the interior of the slurry bed reactor is filled with acetic acid solvent, the upper part of the slurry bed reactor is connected with the condensing unit and the lower part is connected with the crystallization The filter is connected;
  • a first micro-interface generator which is arranged on a fixed plate in the slurry bed reactor;
  • a second micro-interface generator which is arranged inside the slurry-bed reactor and located below the first micro-interface generator;
  • a circulation pipeline is used to pump the liquid phase material at the bottom of the slurry bed reactor into the second micro-interface generator, and the liquid inlet of the circulation pipeline is arranged in the slurry bed reactor, and Located below the second interface generator, the liquid outlet of the circulation pipe is in communication with the liquid phase material inlet of the first micro-interface generator;
  • Gas inlet pipes, the gas inlet pipes are respectively connected to the gas-phase material inlets of the first interface generator and the second micro-interface generator;
  • the feed inlet of the separation unit is connected to the condensation unit, and the liquid phase material outlet of the separation unit is connected to the liquid phase material inlet of the first micro-interface generator.
  • the solvent in the slurry-bed reactor accounts for 3/5-4/5 of the volume of the slurry-bed reactor.
  • the distance from the fixed plate to the bottom of the slurry-bed reactor is greater than 2/3 of the total height of the slurry-bed reactor.
  • it also includes a heat exchanger, which is arranged on the circulation pipe.
  • the solvent inlet of the slurry bed reactor is located below the first micro-interface generator and above the second micro-interface generator.
  • the feed pipe of the slurry bed reactor is located below the first micro-interface generator and located above the second micro-interface generator.
  • the catalyst addition pipeline of the slurry bed reactor is located below the first micro-interface generator and above the second micro-interface generator.
  • the first micro-interface generator is a hydraulic micro-interface generator.
  • the second micro-interface generator is a pneumatic micro-interface generator.
  • the present invention also provides a process for intensified oxidation of xylene to produce phthalic acid, including:
  • the turbulent flow is formed in the first micro-interface generator to entrain the hydrogen from the inlet pipe to form a gas-liquid emulsion, and the second micro-interface generator breaks the hydrogen into micron-level bubbles to increase Atmospheric liquid phase boundary area, where the bubbles dissolve in the liquid phase around the second micro-interface generator to form a gas-liquid emulsion;
  • the catalyst is always suspended in the first micro-interface generator and the first micro-interface generator under the upward thrust of the bubbles discharged from the second micro-interface generator.
  • the catalyst catalyzes the gas-liquid emulsion located in the middle area;
  • the gas phase product in the slurry bed reactor enters the condensing unit and the separation unit sequentially, and the liquid phase product in the separation unit returns to the first micro-interface generator.
  • the present invention has the beneficial effects of improving the mass transfer efficiency of the gas-liquid two-phase, reducing the reaction time, and reducing the material consumption and energy consumption;
  • a first micro-interface generator and a second micro-interface generator are arranged in the slurry bed reactor, which break the gas into micron-sized bubbles, improve the mass transfer efficiency of gas and liquid, and reduce the reaction. pressure;
  • the oxygen gas is broken by the micro-interface generator after entering the reactor, which makes the gas stay in the reactor longer and improves the utilization rate of oxygen;
  • a catalyst dosing pipe is arranged between the first micro-interface generator and the second micro-interface generator, and the catalyst entering the slurry-bed reactor will be affected by the buoyancy force of the bubbles broken by the second micro-interface generator below It has been suspended in the reactor to improve the catalytic efficiency;
  • a circulation pipeline is arranged outside the slurry-bed reactor, which pumps the liquid phase material at the bottom of the reactor into the first interface generator above the reactor, so that the liquid phase material in the reactor is always in a flowing state,
  • the temperature control unit also controls the temperature in the reactor by controlling the temperature of the liquid phase material flowing through, so as to ensure the reaction efficiency.
  • Fig. 1 is a schematic structural diagram of an embodiment of the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • FIG. 1 is a schematic structural diagram of an enhanced xylene oxidation to produce phthalic acid according to the present invention.
  • This system includes: a slurry bed reactor 1, a first micro-interface generator 2, a solvent inlet 3, and a feed Pipe 4, catalyst dosing pipe 5, second micro-interface generator 6, condensation unit 7, tail gas discharge port 8, separation unit 9, circulation pipe 10, gas inlet pipe 11, crystallization filter 12, solid product outlet 13.
  • the gas inlet pipe 11 is connected with the inlet of the first interface generator 2 and the second micro-interface generator 6; the first interface generator 2 is arranged on the fixed plate 21 located inside the slurry bed reactor 1.
  • the micro-interface generator 6 is set in the slurry bed reactor 1, below the first interface generator 2; the circulation pipe 10 is set outside the slurry bed reactor 1, and is used to remove the liquid phase at the bottom of the slurry bed. The material is pumped into the first micro-interface generator 2 to form a cycle.
  • the gas phase outlet of the slurry bed reactor 1 is connected to the condensing unit 7, the condensing unit 7 is connected to the separation unit 9, and the liquid product outlet of the separation unit 9 is connected to the liquid inlet of the slurry bed reactor 1;
  • the liquid phase outlet of 1 is connected to the crystallization filter 12, and the filtered crystalline material is discharged through the solid product outlet 13.
  • the pipes connecting the above-mentioned devices can be equipped with devices such as valves or pump bodies to control the flow of liquid-phase materials in the pipes.
  • the present invention also provides a process method for intensified oxidation of xylene to produce phthalic acid, which includes:
  • the turbulent flow is formed in the first micro-interface generator to entrain the hydrogen from the inlet pipe to form a gas-liquid emulsion, and the second micro-interface generator breaks the hydrogen into micron-level bubbles to increase Atmospheric liquid phase boundary area, where the bubbles dissolve in the liquid phase around the second micro-interface generator to form a gas-liquid emulsion;
  • the catalyst is always suspended in the first micro-interface generator and the first micro-interface generator under the upward thrust of the bubbles discharged from the second micro-interface generator.
  • the catalyst catalyzes the gas-liquid emulsion located in the middle area;
  • the gas phase product in the slurry bed reactor enters the condensing unit and the separation unit sequentially, and the liquid phase product in the separation unit returns to the first micro-interface generator.
  • Ortho-xylene with a purity of 98% is used as raw material to oxidize phthalic acid.
  • valve 14 and valve 15 are closed first, and the acetic acid solvent and o-xylene enter the slurry-bed reactor to form a mixed solution.
  • the reactor is suspended in the slurry-bed reactor by the upward floating action of micron-sized bubbles broken by the second micro-interface generator; after 47 minutes of reaction, valve 14 and valve 15 are opened, and the temperature-controlled circulation unit starts to work.
  • the liquid phase material at the bottom of the slurry bed reactor is pumped out, cooled by the heat exchanger, and then sent to the liquid phase inlet of the first micro-interface generator together with the liquid phase material separated from the separation unit.
  • the liquid phase material forms a turbulent flow in the first micro-interface generator, entrains the incoming oxygen to form a gas-liquid emulsion, thereby accelerating the reaction rate and reducing the reaction pressure.
  • the technical effect of this embodiment is: the reaction pressure always does not exceed 2MPa, the reaction temperature is maintained at 120°C-150°C under the condition of maintaining the pressure at 1.5-2MPa, the o-xylene conversion rate is 97%, and the phthalic acid yield is Is 95%.
  • the m-xylene with a purity of 99.5% is used as raw material to oxidize isophthalic acid.
  • the reaction pressure is 1.5MPa.
  • the weight ratio of solvent to m-xylene in the slurry-bed reactor is 4:1.
  • the catalyst enters the slurry-bed reactor from the catalyst dosing pipeline above the second micro-interface generator, and is suspended in the slurry by the upward floating of micron-sized bubbles broken by the second micro-interface generator In the bed reactor; after 47 minutes of reaction, valve 14 and valve 15 are opened, and the temperature-controlled circulation unit starts to work. It extracts the liquid phase material at the bottom of the slurry-bed reactor, and separates it from the separation unit after cooling by the heat exchanger The liquid phase material is fed into the liquid phase inlet of the first micro-interface generator at the same time, and oxygen enters the gas phase inlet of the first interface generator. The liquid phase material forms a turbulent flow in the first micro-interface generator and entrains the entering Oxygen forms a gas-liquid emulsion, which speeds up the reaction rate and reduces the reaction pressure.
  • the technical effect of this embodiment is: the reaction pressure does not always exceed 1.8MPa, the reaction temperature is maintained at 150°C-170°C under the condition of maintaining the pressure of 1.5-1.8MPa, the m-xylene conversion rate is 98%, and the isophthalic acid The yield was 95%.
  • reaction pressure is 1.45MPa.
  • mass ratio of p-xylene, acetic acid solvent and catalyst is 1:3:0.001; when the reaction starts, acetic acid solvent and p-xylene enter A mixed solution is formed in the slurry-bed reactor.
  • the liquid phase material at the bottom is drawn out, heated by a heat exchanger or cooled to 150°C, and then sent to the liquid phase inlet of the first micro-interface generator together with the liquid phase material separated from the separation unit, while oxygen enters the first interface
  • the liquid phase material forms a turbulent flow in the first micro-interface generator, entrains the incoming oxygen to form a gas-liquid emulsion, thereby accelerating the reaction rate and reducing the reaction pressure.
  • the technical effect of this embodiment is: the conversion rate of p-xylene is 97%-99%, and the yield of terephthalic acid is 98%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种强化二甲苯氧化生产苯二甲酸的系统及工艺,其包括:浆态床反应器(1)、微界面发生器(2,6)、循环管道(10)、气体进气管道(11)和分离单元(9);其中,所述浆态床反应器(1)上方与冷凝单元(7)连通且下方与结晶过滤器(12)连通;微界面发生器(2,6)设置在浆态床反应器(1)内部,用以将气体打碎成微米级别的微小气泡,提高了气液的传质效率,降低了反应压力;循环管道(10)用于将所述浆态床反应器(1)底部的液相物料抽到所述第一微界面发生器(2)中;所述分离单元(9)的进料口与所述冷凝单元(7)相连,所述分离单元(9)的液相物料出口与所述第一微界面发生器(2)的液相物料进口连通。

Description

一种强化二甲苯氧化生产苯二甲酸的系统及工艺 技术领域
本发明涉及苯二甲酸的制备,具体涉及一种强化二甲苯氧化生产苯二甲酸的系统及工艺。
背景技术
二甲苯为无色透明液体;是苯环上两个氢被甲基取代的产物,存在邻、间、对三种异构体,在工业上,二甲苯即指上述异构体的混合物;其通过氧气氧化可分别产生邻苯二甲酸、对苯二甲酸、间苯二甲酸等物质。
邻苯二甲酸为无色结晶或结晶性粉末,两个羧基分别与苯环中相邻的两个碳原子相连而成的二元芳香羧,在应用中,可用邻苯二甲酸酐代替邻苯二甲酸。邻苯二甲酸是合成树脂、纤维、药物等的原料。间苯二甲酸(简称IPA)是聚酯树脂的原料,主要用于聚酯瓶片、纤维、不饱和树脂、低熔点聚酯产品的制备。IPA的生产方法是以间二甲苯(MX)为原料,通过液相氧化获得粗间苯二甲酸(CIA),后者再通过加氢精制除去产品的中的微量杂质,获得聚合级IPA。对苯二甲酸是重要的大宗化学品,是由对二甲苯(简称PX)经过空气氧化生产得到。
现有技术中,苯二甲酸的制备工艺方法中的反应压力较大,从而增加了反应装置的危险性,同时,过高的反应压力会造成更多的能量损耗,进一步提高了反应成本。
发明内容
本发明提供了一种强化二甲苯氧化生产苯二甲酸的系统及工艺,用以至少部分地解决地上述问题,
一方面,本发明提供了一种强化二甲苯氧化生产苯二甲酸的系统,其包括:
浆态床反应器,所述浆态床反应器作为二甲苯氧化的反应场所,所述浆态床反应器内部充有醋酸溶剂,所述浆态床反应器上方与冷凝单元连通且下方与结晶过滤器连通;
第一微界面发生器,其设置在所述浆态床反应器内的固定板上;
第二微界面发生器,其设置在所述浆态床反应器内部,且位于所述第一微界面发生器下方;
循环管道,用于将所述浆态床反应器底部的液相物料抽到所述第二微界面发生器中,所述循环管道的进液口设置在所述浆态床反应器内,且位于所述第二位界面发生器下方,所述循环管道的出液口与所述第一微界面发生器的液相物料进口连通;
气体进气管道,所述气体进气管道分别与所述第一位界面发生器和所述第二微界面发生器的气相物料进口相连;
分离单元,所述分离单元的进料口与所述冷凝单元相连,所述分离单元的液相物料出口与所述第一微界面发生器的液相物料进口连通。
进一步地,在所述浆态床反应器中的溶剂占所述浆态床反应器容积的3/5-4/5。
进一步地,所述固定板到所述浆态床反应器底部的距离大于所述浆态床反应器总高度的2/3。
进一步地,还包括换热器,所述换热器设置在所述循环管道上。
进一步地,所述浆态床反应器的溶剂进口位于所述第一微界面发生器下方,且位于所述第二微界面发生器上方。
进一步地,所述浆态床反应器的进料管道位于所述第一微界面发生器下方,且位于所述第二微界面发生器上方。
进一步地,所述浆态床反应器的催化剂加剂管道位于所述第一微界面发生器下方,且位于所述第二微界面发生器上方。
进一步地,所述第一微界面发生器为液动式微界面发生器。
进一步地,所述第二微界面发生器为气动式微界面发生器。
另一方面,本发明还提供了一种强化二甲苯氧化生产苯二甲酸的工艺,包括;
氧气由进气管道进入第一微界面发生器和第二微界面发生器,浆态床反应器底部的液相物料由循环管道进入所述第一微界面发生器中,所述液相物料在所述第一微界面发生器中形成湍流,卷吸来自所述进气管道的氢气,从而形成气液乳化物,所述第二微界面发生器将氢气打碎成微米级别的气泡,以增大气液相界面积,所述气泡溶于所述第二微界面发生器周围的液相从而形成气液乳化物;
同时,催化剂进入所述浆态床反应器后,在所述第二微界面发生器排出的所述气泡的上浮推力作用下,所述催化剂始终悬浮在所述第一微界面发生器和所述第二微界面发生器的中间区域内,所述催化剂对位于所述中间区域的所述气液乳化物进行催化反应;
所述浆态床反应器中的气相产物依次进入冷凝单元和分离单元,所述分离单元中的液相产物返回所述第一微界面发生器。
与现有技术相比,本发明的有益效果在于,提高了气液两相的传质效率,减少了反应时间,降低了物耗能耗;
进一步地,在浆态床反应器中设置了第一微界面发生器和第二微界面发生器,它们将气体打碎成微米级别的微小气泡,提高了气液的传质效率,降低了反应压力;
尤其,氧气进入反应器后被微界面发生器打碎,使得气体在反应器中停留时间更长,提高了氧气的利用率;
进一步地,在第一微界面发生器和第二微界面发生器中间设置催化剂加剂管道,催化剂进入浆态床反应器中会受到下方第二微界面发生器打碎的气泡的上浮作用力影响而一直悬浮在反应器中,提高了催化效率;
进一步地,在浆态床反应器外部设置循环管道,其将反应器底部的液相物 料抽到反应器上方的第一位界面发生器中,使得反应器内的液相物料始终处于流动状态,避免了反应产物一直堆积在催化剂表面的情况,温度控制单元还通过控制流过的液相物料的温度来控制反应器内的温度,从而保证反应效率。
附图说明
图1为本发明实施例的结构示意图。
具体实施方式
为了使发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
参阅图1所示,为本发明提供的一种强化二甲苯氧化生产苯二甲酸的结构示意图,此系统包括:浆态床反应器1、第一微界面发生器2、溶剂进口3、进 料管道4、催化剂加剂管道5、第二微界面发生器6、冷凝单元7、尾气排放口8、分离单元9、循环管道10、气体进气管道11、结晶过滤器12、固态产物出口13。
其中,气体进气管道11与第一位界面发生器2的进气口和第二微界面发生器6相连;第一位界面发生器2设置在位于浆态床反应器1内部的固定板21上,微界面发生器6设置在浆态床反应器1内,位于第一位界面发生器2下方;循环管道10设置在浆态床反应器1外部,用于将浆态床底部的液相物料抽到第一微界面发生器2中行成循环。浆态床反应器1的气相出口与冷凝单元7相连,冷凝单元7与分离单元9相连,分离单元9的液相产物出口与浆态床反应器1的进液口相连;浆态床反应器1的液相出口与结晶过滤器12相连,过滤出的结晶物质通过固态产物出口13排出。本领域技术人员可以理解的是,在本发明所述的系统中,连接上述各装置的管道上均可设有阀门或泵体等装置,用以控制管道中的液相物料进行流动。
本发明还提供了一种强化二甲苯氧化生产苯二甲酸的工艺方法,其包括:
氧气由进气管道进入第一微界面发生器和第二微界面发生器,浆态床反应器底部的液相物料由循环管道进入所述第一微界面发生器中,所述液相物料在所述第一微界面发生器中形成湍流,卷吸来自所述进气管道的氢气,从而形成气液乳化物,所述第二微界面发生器将氢气打碎成微米级别的气泡,以增大气液相界面积,所述气泡溶于所述第二微界面发生器周围的液相从而形成气液乳化物;
同时,催化剂进入所述浆态床反应器后,在所述第二微界面发生器排出的所述气泡的上浮推力作用下,所述催化剂始终悬浮在所述第一微界面发生器和所述第二微界面发生器的中间区域内,所述催化剂对位于所述中间区域的所述气液乳化物进行催化反应;
所述浆态床反应器中的气相产物依次进入冷凝单元和分离单元,所述分离单元中的液相产物返回所述第一微界面发生器。
本领域技术人员可以理解的是,本工艺中对于催化剂的使用种类并未做任何限制,只要满足反应所需条件即可。
实施例1
采用纯度为98%的邻二甲苯为原料氧化制取邻苯二甲酸,开始反应时,阀门14和阀门15先处于关闭状态,醋酸溶剂和邻二甲苯进入浆态床反应器中形成混合溶液,氧气进入第二微界面发生器中被打碎成微米级别的气泡,与周围的混合溶液形成气液乳化物;同时,催化剂由第二微界面发生器上方的催化剂加剂管道进入浆态床反应器,并受到被第二微界面发生器打碎的微米级气泡向上浮动的作用悬浮在浆态床反应器中;反应经过47分钟后开启阀门14和阀门15,温控循环单元开始工作,其将浆态床反应器底部的液相物料抽出,经过换热器降温后与来自分离单元分离出的液相物料一并送入第一微界面发生器液相进口中,同时氧气进入第一位界面发生器的气相进口,液相物料在第一微界面发生器中形成湍流,卷吸进入的氧气,形成气液乳化物,从而加快反应速率,降低反应压强。
本实施例的技术效果为:反应压力始终不超过2MPa,反应温度在保持压力为1.5-2MPa的条件下保持在120℃-150℃,邻二甲苯转化率为97%,邻苯二甲酸收率为95%。
实施例2
采用纯度为99.5%的间二甲苯为原料氧化制取间苯二甲酸,反应压力为1.5MPa,浆态床反应器中溶剂与间二甲苯的重量比例为4:1,开始反应时,阀门14和阀门15先处于关闭状态,醋酸溶剂和间二甲苯进入浆态床反应器中形成混合溶液,氧气进入第二微界面发生器中被打碎成微米级别的气泡,与周围的混合溶液形成气液乳化物;同时,催化剂由第二微界面发生器上方的催化剂加剂管道进入浆态床反应器,并受到被第二微界面发生器打碎的微米级气泡向上浮动的作用悬浮在浆态床反应器中;反应经过47分钟后开启阀门14和阀门 15,温控循环单元开始工作,其将浆态床反应器底部的液相物料抽出,经过换热器降温后与来自分离单元分离出的液相物料一并送入第一微界面发生器液相进口中,同时氧气进入第一位界面发生器的气相进口,液相物料在第一微界面发生器中形成湍流,卷吸进入的氧气,形成气液乳化物,从而加快反应速率,降低反应压强。
本实施例的技术效果为:反应压力始终不超过1.8MPa,反应温度在保持压力为1.5-1.8MPa的条件下保持在150℃-170℃,间二甲苯转化率为98%,间苯二甲酸收率为95%。
实施例3
采用对二甲苯为原料氧化制取对苯二甲酸,反应压力为1.45MPa,对二甲苯、醋酸溶剂和催化剂按质量比为=1:3:0.001;开始反应时,醋酸溶剂和对二甲苯进入浆态床反应器中形成混合溶液,氧气进入第二微界面发生器中被打碎成微米级别的气泡,与周围的混合溶液形成气液乳化物;同时,催化剂由第二微界面发生器上方的催化剂加剂管道进入浆态床反应器,并受到被第二微界面发生器打碎的微米级气泡向上浮动的作用悬浮在浆态床反应器中;温控循环单元将浆态床反应器底部的液相物料抽出,经过换热器加热或降温到150℃后与来自分离单元分离出的液相物料一并送入第一微界面发生器液相进口中,同时氧气进入第一位界面发生器的气相进口,液相物料在第一微界面发生器中形成湍流,卷吸进入的氧气,形成气液乳化物,从而加快反应速率,降低反应压强。
本实施例的技术效果为:对二甲苯转化率为97%-99%,对苯二甲酸收率为98%。

Claims (10)

  1. 一种强化二甲苯氧化生产苯二甲酸的系统,其特征在于,包括:
    浆态床反应器,所述浆态床反应器作为二甲苯氧化的反应场所,所述浆态床反应器内部充有醋酸溶剂,所述浆态床反应器上方与冷凝单元连通且下方与结晶过滤器连通;
    第一微界面发生器,其设置在所述浆态床反应器内的固定板上;
    第二微界面发生器,其设置在所述浆态床反应器内部,且位于所述第一微界面发生器下方;
    循环管道,用于将所述浆态床反应器底部的液相物料抽到所述第二微界面发生器中,所述循环管道的进液口设置在所述浆态床反应器内,且位于所述第二位界面发生器下方,所述循环管道的出液口与所述第一微界面发生器的液相物料进口连通;
    气体进气管道,所述气体进气管道分别与所述第一位界面发生器和所述第二微界面发生器的气相物料进口相连;
    分离单元,所述分离单元的进料口与所述冷凝单元相连,所述分离单元的液相物料出口与所述第一微界面发生器的液相物料进口连通。
  2. 根据权利要求1所述的强化二甲苯氧化生产苯二甲酸的系统,其特征在于,在所述浆态床反应器中的溶剂占所述浆态床反应器容积的3/5-4/5。
  3. 根据权利要求1所述的强化二甲苯氧化生产苯二甲酸的系统,其特征在于,所述固定板到所述浆态床反应器底部的距离大于所述浆态床反应器总高度的2/3。
  4. 根据权利要求1所述的强化二甲苯氧化生产苯二甲酸的系统,其特征在于,还包括换热器,所述换热器设置在所述循环管道上。
  5. 根据权利要求1所述的强化二甲苯氧化生产苯二甲酸的系统,其特征在于,所述浆态床反应器的溶剂进口位于所述第一微界面发生器下方,且位于 所述第二微界面发生器上方。
  6. 根据权利要求1所述的强化二甲苯氧化生产苯二甲酸的系统,其特征在于,所述浆态床反应器的进料管道位于所述第一微界面发生器下方,且位于所述第二微界面发生器上方。
  7. 根据权利要求1所述的强化二甲苯氧化生产苯二甲酸的系统,其特征在于,所述浆态床反应器的催化剂加剂管道位于所述第一微界面发生器下方,且位于所述第二微界面发生器上方。
  8. 根据权利要求1-7任一项所述的强化二甲苯氧化生产苯二甲酸的系统,其特征在于,所述第一微界面发生器为液动式微界面发生器。
  9. 根据权利要求1-7任一项所述的强化二甲苯氧化生产苯二甲酸的系统,其特征在于,所述第二微界面发生器为气动式微界面发生器。
  10. 一种强化二甲苯氧化生产苯二甲酸的工艺,其特征在于,包括;
    氧气由进气管道进入第一微界面发生器和第二微界面发生器,浆态床反应器底部的液相物料由循环管道进入所述第一微界面发生器中,所述液相物料在所述第一微界面发生器中形成湍流,卷吸来自所述进气管道的氢气,从而形成气液乳化物,所述第二微界面发生器将氢气打碎成微米级别的气泡,以增大气液相界面积,所述气泡溶于所述第二微界面发生器周围的液相从而形成气液乳化物;
    同时,催化剂进入所述浆态床反应器后,在所述第二微界面发生器排出的所述气泡的上浮推力作用下,所述催化剂始终悬浮在所述第一微界面发生器和所述第二微界面发生器的中间区域内,所述催化剂对位于所述中间区域的所述气液乳化物进行催化反应;
    所述浆态床反应器中的气相产物依次进入冷凝单元和分离单元,所述分离单元中的液相产物返回所述第一微界面发生器。
PCT/CN2019/120192 2019-09-10 2019-11-22 一种强化二甲苯氧化生产苯二甲酸的系统及工艺 WO2021047053A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910851918.X 2019-09-10
CN201910851918.XA CN112546973B (zh) 2019-09-10 2019-09-10 一种强化二甲苯氧化生产苯二甲酸的系统及工艺

Publications (1)

Publication Number Publication Date
WO2021047053A1 true WO2021047053A1 (zh) 2021-03-18

Family

ID=74865639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120192 WO2021047053A1 (zh) 2019-09-10 2019-11-22 一种强化二甲苯氧化生产苯二甲酸的系统及工艺

Country Status (2)

Country Link
CN (1) CN112546973B (zh)
WO (1) WO2021047053A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113512483A (zh) * 2021-07-14 2021-10-19 南京延长反应技术研究院有限公司 一种超高效低压气源微界面强化生物发酵的装置及方法
CN113546583A (zh) * 2021-07-16 2021-10-26 南京延长反应技术研究院有限公司 一种dmc的微界面制备系统及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293734A (en) * 1976-01-30 1977-08-06 Kuraray Yuka Kk Continuous preparation of hig-purity terephthalic acid
CN2652929Y (zh) * 2003-08-08 2004-11-03 中国纺织工业设计院 用于生产对苯二甲酸的气升式外循环鼓泡塔氧化装置
CN100999458A (zh) * 2007-01-05 2007-07-18 扬子石油化工股份有限公司 生产对苯二甲酸的氧化反应器
CN106349048A (zh) * 2016-08-26 2017-01-25 浙江大学 一种间二甲苯氧化生产间苯二甲酸的方法及装置
CN107561938A (zh) * 2017-08-30 2018-01-09 南京大学 微界面强化反应器反应速率构效调控模型建模方法
EP3326993A1 (en) * 2015-07-22 2018-05-30 Mitsubishi Gas Chemical Company, Inc. Method for producing high-purity terephthalic acid

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486374B1 (en) * 1998-02-26 2002-11-26 Uop Llc Method and apparatus for alkylation using solid catalyst particles in a transport reactor
JP2001340746A (ja) * 2000-06-01 2001-12-11 Nkk Corp スラリー床反応器
US8354080B2 (en) * 2009-04-10 2013-01-15 Canon U.S. Life Sciences, Inc. Fluid interface cartridge for a microfluidic chip
CN101704741B (zh) * 2009-11-06 2013-01-30 华东理工大学 一种生产间苯二甲酸的工艺
CN201632250U (zh) * 2010-03-17 2010-11-17 中国石油化工集团公司 一种浆态床反应器
CN104549066B (zh) * 2013-10-28 2017-05-24 中国石油化工股份有限公司 一种浆态床内环流反应装置及应用和生产过氧化氢的方法
CN107497372A (zh) * 2016-06-14 2017-12-22 中国石油天然气集团公司 加氢反应器
CN106187660B (zh) * 2016-09-08 2018-11-20 南京大学 苯加氢生产环己烷的装置和工艺
CN107790078B (zh) * 2017-12-08 2024-03-19 南京大学 一种生产对乙酰氨基酚的装置及工艺
CN110075764A (zh) * 2019-05-05 2019-08-02 江苏东普新材料科技有限公司 一种异体式喷射膜反应器及采用该反应器制备脂肪醇的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293734A (en) * 1976-01-30 1977-08-06 Kuraray Yuka Kk Continuous preparation of hig-purity terephthalic acid
CN2652929Y (zh) * 2003-08-08 2004-11-03 中国纺织工业设计院 用于生产对苯二甲酸的气升式外循环鼓泡塔氧化装置
CN100999458A (zh) * 2007-01-05 2007-07-18 扬子石油化工股份有限公司 生产对苯二甲酸的氧化反应器
EP3326993A1 (en) * 2015-07-22 2018-05-30 Mitsubishi Gas Chemical Company, Inc. Method for producing high-purity terephthalic acid
CN106349048A (zh) * 2016-08-26 2017-01-25 浙江大学 一种间二甲苯氧化生产间苯二甲酸的方法及装置
CN107561938A (zh) * 2017-08-30 2018-01-09 南京大学 微界面强化反应器反应速率构效调控模型建模方法

Also Published As

Publication number Publication date
CN112546973B (zh) 2024-01-12
CN112546973A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US3534090A (en) Hydrocarbon oxidation
WO2021047053A1 (zh) 一种强化二甲苯氧化生产苯二甲酸的系统及工艺
TWI723950B (zh) 經加壓粗製芳香族羧酸進料混合技術
CN108794321B (zh) 连续流微通道反应器中合成芳香羧酸类化合物的方法
KR20030019595A (ko) 방향족 카르복실산의 제법
RU2678993C2 (ru) Рецикл конденсата высокого давления при производстве очищенных ароматических карбоновых кислот
CN108610314B (zh) 连续流微通道反应器中合成联苯二酐的方法
US9260370B2 (en) Process for using dehydration tower condensate as a purification makeup solvent
CN101990531A (zh) 用于制造粗对苯二甲酸的氧化反应器
CN213506668U (zh) 一种强化二甲苯氧化生产苯二甲酸的系统
WO2020155506A1 (zh) 下置式气液强化乳化固定床反应装置及方法
CN110681319A (zh) 引射循环甲醇芳烃甲基化反应生产均四甲苯的系统及工艺
CN107531602B (zh) 基于泡罩塔反应器的浸煮器及其使用方法
CN101244996A (zh) 一种合成萘二甲酸用的立式鼓泡氧化反应装置
CN213506665U (zh) 一种强化甲苯氧化的系统
CN203429083U (zh) 一种氯二甲苯酚的高效多相反应装置
WO2021047052A1 (zh) 一种强化甲苯氧化的系统及工艺
CN114634417B (zh) 一种硝基邻苯二甲酸的制备方法
CN105749577B (zh) 生产车用尿素的盘管结晶设备
WO2021196383A1 (zh) Px生产pta的外置微界面机组强化反应系统及工艺
CN201006863Y (zh) 一种合成萘二甲酸用的立式鼓泡氧化反应装置
WO2021047036A1 (zh) 一种苯加氢制备环己烯强化系统及工艺
EP1542958B1 (en) Process for producing aromatic dicarboxylic acids under supercritical conditions
CN114656325A (zh) 一种2-甲基萘的纯化精制系统及方法
CN114621051A (zh) 工业化制备环己醇的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944744

Country of ref document: EP

Kind code of ref document: A1