WO2021047019A1 - 一种肠癌生物标志物组合物及其应用 - Google Patents

一种肠癌生物标志物组合物及其应用 Download PDF

Info

Publication number
WO2021047019A1
WO2021047019A1 PCT/CN2019/117622 CN2019117622W WO2021047019A1 WO 2021047019 A1 WO2021047019 A1 WO 2021047019A1 CN 2019117622 W CN2019117622 W CN 2019117622W WO 2021047019 A1 WO2021047019 A1 WO 2021047019A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
biomarker composition
biomarker
seq
colorectal cancer
Prior art date
Application number
PCT/CN2019/117622
Other languages
English (en)
French (fr)
Inventor
朱永亮
穆延召
陆敏
张水龙
Original Assignee
苏州普瑞森基因科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州普瑞森基因科技有限公司 filed Critical 苏州普瑞森基因科技有限公司
Publication of WO2021047019A1 publication Critical patent/WO2021047019A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • This application belongs to the field of microbiology technology, and relates to a colorectal cancer biomarker composition and its application, and in particular to a biomarker composition and its application in the diagnosis of colorectal cancer and the early screening of colorectal cancer.
  • Colorectal cancer is one of the most common malignant tumors of the digestive tract. Epidemiological data show that colorectal cancer has become the third most common cancer in the world, and the mortality rate ranks fourth. Change, the incidence of colorectal cancer is also increasing year by year. Colorectal cancer is also one of the most preventable tumors. The medical profession believes that colorectal cancer is the easiest cancer to be cured if detected early. Colorectal adenomas are common benign tumors of the intestine, which originate from the glandular epithelium of the colorectal mucosa, including colon adenomas and rectal adenomas. Colorectal adenomas are closely related to colorectal cancer.
  • the traditional screening methods for colorectal cancer are mainly colonoscopy, as well as biopsy and exfoliative cytology. These inspection methods are all invasive, especially exfoliative cytology is cumbersome and difficult to obtain satisfactory specimens. , Less clinical application. In the absence of relevant symptoms, many people avoid early screening for colorectal cancer. The process is painful and the patient experience is poor.
  • the primer composition is a specific primer designed for 16S rRNA of intestinal bacteria, and the specific primer includes random bases, The number of the random bases is 3-5; the intestinal bacteria include any one of the genus Clostridium symbiotic, Bifidobacterium adolescentis, Clostridium nucleatum, anaerobic peptostreptococcus or Klebsiella Or a combination of at least two; the kit developed based on the primer composition has a specificity of 92.5% and a sensitivity of 80.43% for detecting intestinal microecological imbalance, but the accuracy of early screening for colorectal cancer is relatively high. weak.
  • CN 109680086 A discloses a primer set for detecting Micromonas parvum and its detection system and application.
  • a specific primer set is obtained through design and verification, and the detection system is verified based on the primer set exploration.
  • Each step and each condition cooperate with each other and cooperate with each other.
  • the increase in holdings makes the detection results stable and accurate, the detection steps are simple and efficient, and it has broad application prospects and huge market value.
  • the present application provides a colorectal cancer biomarker composition and its application.
  • the biomarker composition is intestinal microbes in feces and used to assess the risk of colorectal cancer in an individual. It provides a highly sensitive non-invasive way for the early diagnosis of colorectal cancer.
  • the present application provides a colorectal cancer biomarker composition, which includes Clostridiales Family XI, Porphyromonas, Peptostreptococcus ( Peptostreptococcus), Fusobacterium nucleatum and Parvimonas.
  • the Porphyromonas includes Porphyromonas asaccharolytica.
  • the genus Peptostreptococcus includes Peptostreptococcus russellii and/or Peptostreptococcus stomatis.
  • the Parvimonas includes Parvimonas micra.
  • the biomarker composition further includes Enterobacteriaceae, Klebsiella, Desulfovibrio, Pseudobutyrivibrio, Actinobacillus Actinobacillus, Anaerostipes, Erysipelatoclostridium, Intestinimonas, Anaerotruncus, Streptococcus salivarius, Fusicatenibacter saccharivorans, Haemophilophilus ), any one or a combination of at least two of Bacteroides fragilis, Blautia massiliensis or Dialister pneumosintes.
  • the Enterobacteriaceae includes Enterobacter.
  • the Actinobacillus includes Actinobacillus porcinus.
  • the Anaerostipes includes butyric acid-producing bacteria (Anaerostipes hadrus).
  • the genus Erysipelatoclostridium includes Erysipelatoclostridium ramosum.
  • the anaerobic bacteria includes Anaerotruncus colihominis.
  • the biomarker composition further includes any of Bifidobacterium, Roseburia spp, Collinsella aerofaciens, Dorea longicatena, or Lactonifactor longoviformis One or a combination of at least two.
  • the Bifidobacterium includes Bifidobacterium pseudocatenulatum.
  • the applicant collects a large number of stool samples from patients with colorectal cancer and precancerous lesions (colorectal adenomas and colorectal neoplastic polyps) and healthy individuals, using high-throughput sequencing, real-time fluorescent quantitative PCR, and high-resolution melting Methods such as curve method or biochip, through comparative analysis and verification of the difference in the abundance and relative content of microorganisms in stool samples, determine the microbial marker composition related to colorectal cancer and precancerous lesions; use the above-mentioned differences in microorganisms
  • the combination is used as a biomarker composition for early diagnosis and prognostic monitoring of colorectal cancer and precancerous lesions, with high accuracy, good specificity and strong sensitivity.
  • the present application provides a primer set for detecting the biomarker composition as described in the first aspect.
  • the Roseburia (Roseburia spp) primers are shown in SEQ ID NOs: 1 to 6, including 3 primer sets in total;
  • SEQ ID NO:1 (first upstream primer): GCGGTRCGGCAAGTCTGA;
  • SEQ ID NO: 2 (first downstream primer): CCTCCGACACTCTAGTMCGAC;
  • SEQ ID NO: 3 (second upstream primer): TGCGGCAAGTCTGATGTGAA;
  • SEQ ID NO: 4 (second downstream primer): GTTTACGGCGTGGACTACCA;
  • SEQ ID NO: 5 (third upstream primer): AGGCGGTACGGCAAGTCT;
  • SEQ ID NO: 6 (third downstream primer): AGTTTYATTCTTGCGAACG.
  • the primers of Bacteroides fragilis are shown in SEQ ID NOs: 7 to 12, including 3 pairs of primer sets in total;
  • SEQ ID NO: 7 (first upstream primer): CACTTGACTGTTGTAGATAAAGC;
  • SEQ ID NO: 8 (first downstream primer): CATCTTCATTGCAGCATTATCC;
  • SEQ ID NO: 9 (second upstream primer): GCCGGTCAGAATGGGAGTAGGAGACC;
  • SEQ ID NO: 10 (second downstream primer): CCCGACGAGCCGGACCTTGCAACAGA;
  • SEQ ID NO: 11 (third upstream primer): TTGTGAAAGTTTGCGGCTC;
  • SEQ ID NO: 12 (third downstream primer): GGACTACCAGGGTATCTAATCCTGTT.
  • the primers of Fusobacterium nucleatum are shown in SEQ ID NOs: 13-18, including 3 pairs of primer sets;
  • SEQ ID NO: 13 (first upstream primer): CCTCTTAGGAATGAGACAGAGATG;
  • SEQ ID NO: 14 (first downstream primer): ATTGATGGTAACATACGAAAGGGCC;
  • SEQ ID NO: 15 (second upstream primer): TTCACTTAGGAATGAGACAGAGATG;
  • SEQ ID NO: 16 (second downstream primer): TGATGGTAACATACGAAAGGCATG;
  • SEQ ID NO: 17 (third upstream primer): TGGACTTAGGAATGAGACAGAGATG;
  • SEQ ID NO: 18 (third downstream primer): ACCTGATGGTAACATACGAAAGGT.
  • Klebsiella (Klebsiella) primers are shown in SEQ ID NOs: 19 to 26, and include 4 pairs of primer sets;
  • SEQ ID NO: 19 (first upstream primer): CCGATTACGACCAGGGCTACAC;
  • SEQ ID NO: 20 (first downstream primer): GGGAACGTATTCACCGTACCTA;
  • SEQ ID NO: 21 (second upstream primer): GCATTACGACCAGGGCTACACT;
  • SEQ ID NO: 22 (second downstream primer): ACTGGGAACGTATTCACCGTAG;
  • SEQ ID NO: 23 (third upstream primer): TTGCTTACGACCAGGGCTACAC;
  • SEQ ID NO: 24 (third downstream primer): AGTGGGAACGTATTCACCGTA;
  • SEQ ID NO: 25 (fourth upstream primer): CTGATTACGACCAGGGCTACAC;
  • SEQ ID NO: 26 (fourth downstream primer): AACGGGAACGTATTCACCGTAT.
  • the present application provides a detection method of the biomarker composition as described in the first aspect, the method comprising the following steps:
  • step (3) Use the primers described in step (2) to detect the abundance of the biomarker composition in the sample.
  • the sample in step (1) is derived from any one or a combination of at least two of feces, soil, urine or saliva, preferably from feces.
  • the primers described in step (2) are designed for 16S rRNA of the biomarker composition.
  • the primer described in step (2) includes the sequence shown in SEQ ID NO: 1 to 26.
  • the detection method described in step (3) includes any one or a combination of at least two of high-throughput sequencing, real-time fluorescent quantitative PCR, high-resolution melting curve method, or biochip, preferably high-throughput sequencing Or real-time fluorescent quantitative PCR.
  • the detection method of high-throughput sequencing includes the following steps:
  • the primer in real-time fluorescent quantitative PCR, includes random bases, and the number of random bases is 3 to 5, for example, 3, 4, or 5.
  • the number of random bases is regulated, which is beneficial to improve the detection specificity.
  • the length of the primer is 18-25 bp, for example, it can be 18 bp, 19 bp, 20 bp, 21 bp, 22 bp, 23 bp, 24 bp or 25 bp.
  • the GC content of the primer is 50-60%, for example, it may be 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59% or 60% .
  • the Tm value of the primer is 60-65°C, for example, it may be 60°C, 61°C, 62°C, 63°C, 64°C, or 65°C.
  • the present application provides an application of the biomarker composition according to the first aspect and/or the primer set according to the second aspect in the preparation of diagnostic reagents and/or therapeutic drugs for colorectal cancer.
  • the present application provides an application of the biomarker composition according to the first aspect and/or the primer set according to the second aspect in the preparation of diagnostic reagents and/or therapeutic drugs for colorectal adenoma .
  • This application collects a large number of stool samples from patients with colorectal cancer and precancerous lesions and healthy individuals, and compares and verifies the differences in the abundance and relative content of microorganisms in the stool samples.
  • Disease-related microbial marker composition
  • Example 1 High-throughput sequencing to detect the abundance of the biomarker composition in the sample
  • a disposable sample collector (Presen) is used to collect stool samples, and DNA extraction kits are used to extract sample DNA, and 16S universal primers are used to perform PCR amplification and sequencing on the V3 and V4 variable regions.
  • DNA extraction kits are used to extract sample DNA
  • 16S universal primers are used to perform PCR amplification and sequencing on the V3 and V4 variable regions. The specific steps are as follows:
  • Primer Primer 5 to design biomarker primers (such as SEQ ID NO: 1 to 26) and total bacterial primers SEQ ID NO: 27 to 32.
  • the primer design requirements are: primer length is 18 to 25 bp, avoiding secondary Structure, GC content is 50-60%, T m value is 60-65°C, product length is 100-250bp; the designed specific primer includes random bases, the number of random bases is 3 to 5;
  • SEQ ID NO: 27 (first upstream primer): TCCGTGSTGCAYGGYTGTCGTCAG;
  • SEQ ID NO: 28 (first downstream primer): AGGTACGTCRTCCMCACCTTCCTC;
  • SEQ ID NO: 29 (second upstream primer): CCTTGTGSTGCAYGGYTGTCGTCA;
  • SEQ ID NO: 30 (second downstream primer): ATCCACGTCRTCCMCACCTTCCTC;
  • SEQ ID NO: 31 (third upstream primer): GTGSTGCAYGGYTGTCGTCATGGAC;
  • SEQ ID NO: 32 (third downstream primer): CTGGACGTCRTCCMCACCTTCCTCT.
  • the genome was amplified and fluorescently detected on a fluorescent quantitative PCR instrument (Xi'an Tianlong) with a SYBRGreen detection channel, and the fluorescence collection temperature was 60°C;
  • the biomarker composition for the detection of colorectal cancer is shown in Table 1-1
  • the biomarker composition for the detection of precancerous lesions is as follows: As shown in Table 1-2, the test results are shown in 1-3.
  • Example 3 Collect 45 stool samples, use the detection and comparison method in Example 3 to detect colorectal cancer.
  • the biomarker composition used is Clostridiales Family XI, Porphyromonas, Digestion Streptococcus (Peptostreptococcus), Fusobacterium nucleatum (Fusobacterium nucleatum) and Parvimonas (Parvimonas micra), other methods are the same as in Example 3.
  • the biomarker composition used is Clostridiales Family XI, Porphyromonas, Peptostreptococcus, Fusobacterium nucleatum , Parvimonas micra, Streptococcus salivarius and Pseudobutyrivibrio, other methods are the same as in Example 3.
  • the accuracy rate of predicting the occurrence of colorectal cancer reaches 88.52%.
  • the biomarker composition used is Clostridiales Family XI, Porphyromonas, Peptostreptococcus, Fusobacterium nucleatum , Parvimonas micra, Streptococcus salivarius, Pseudobutyrivibrio, and Actinobacillus. Other methods are the same as in Example 3.
  • the accuracy rate of predicting the occurrence of colorectal cancer reaches 90.13%.
  • the biomarker composition used is Clostridiales Family XI, Enterobacteriaceae, Porphyromonas, Parvimonas, Anaerostipes, Anaerostipes hadrus, Klebsiella, Pseudobutyrivibrio, Erysipelatoclostridium, Enterobacter ), Actinobacillus, Actinobacillus porcinus, Intestinimonas, Streptococcus salivarius, Peptostreptococcus stomatis, Dialister pneumosinttum, Fusobacterium And Anaerotruncus colihominis, other methods are the same as in Example 3.
  • the accuracy rate of predicting the occurrence of colorectal cancer reaches 94.89%.
  • the biomarker composition used is Clostridiales Family XI, Enterobacteriaceae, Porphyromonas, Parvimonas, Klebsiella, Enterobacter, Intestinimonas, Peptostreptococcus stomatis, Dialister pneumosintes, Fusobacterium nucleatum and Anaerotruncus colihominis, other methods and examples 3 the same.
  • the accuracy rate of predicting the occurrence of colorectal cancer reaches 92.64%.
  • the biomarker composition used is Clostridiales Family XI, Porphyromonas, Parvimonas, Peptostreptococcus stomatis), Dialister pneumosintes and Fusobacterium nucleatum (Fusobacterium nucleatum), other methods are the same as in Example 3.
  • the accuracy rate of predicting the occurrence of colorectal cancer reaches 87.24%.
  • Example 3 103 stool samples were collected, and the detection and comparison methods of Example 3 were used to detect colorectal precancerous lesions.
  • the biomarker compositions used were Bifidobacterium pseudocatenulatum and Streptococcus salivarius. , Collinsella aerofaciens, Dorea longicatena and Pseudobutyrivibrio, other methods are the same as in Example 3.
  • the biomarker composition used is Bifidobacterium pseudocatenulatum, Streptococcus salivarius, Collinsella aerofaciens, Dorea longicatena, and pseudobutyric acid vibrio. Pseudobutyrivibrio and Pseudobutyrivibrio spp.
  • the other methods are the same as in Example 3.
  • the accuracy rate of predicting the occurrence of colorectal adenoma reaches 92.17%.
  • this application collects a large number of stool samples from patients with colorectal cancer and precancerous lesions and healthy individuals, and compares and verifies the differences in the abundance and relative content of microorganisms in the stool samples.
  • Microbial marker compositions related to precancerous lesions using different combinations of microorganisms of the present application as biomarker compositions for the detection of colorectal cancer and precancerous lesions, the accuracy can reach 100% and 96%, respectively, It is of great significance in the early diagnosis and prognostic monitoring of colorectal cancer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本申请提供了一种肠癌生物标志物组合物及其应用,所述生物标志物组合物包括梭菌科(Clostridiales Family XI)、卟啉单胞菌属(Porphyromonas)、消化链球菌属(Peptostreptococcus)、具核梭杆菌(Fusobacterium nucleatum)和微单胞菌属(Parvimonas)。

Description

一种肠癌生物标志物组合物及其应用 技术领域
本申请属于微生物技术领域,涉及一种肠癌生物标志物组合物及其应用,尤其涉及一种生物标志物组合物及其在结直肠癌诊断和结直肠癌早期筛查中的应用。
背景技术
结直肠癌是消化道最常见的恶性肿瘤之一,流行病学资料显示,结直肠癌已经成为全球第三大常见癌症,致死率排名第四,在中国,随着人们生活方式和饮食习惯的改变,结直肠癌的发生率也在逐年攀升。结直肠癌也是最可预防的肿瘤之一,医学界认为,如果及早发现,结直肠癌是最容易治愈的癌症。结直肠腺瘤是常见的肠道良性肿瘤,起源于结直肠黏膜腺上皮,包括结肠腺瘤和直肠腺瘤。结直肠腺瘤与结直肠癌关系密切,研究认为,至少80%的结直肠癌由结直肠腺瘤演变而来,历时5年以上,平均10~15年。积极诊治结直肠腺瘤是控制和减少结直肠癌的重要途径。报道指出,早期发现和治疗可使结直肠癌的5年生存率提高到90%,病变非局限时期的5年生存率为58%,而晚期的5年生存率只有5%。在我国,超过80%的患者确诊时已发展到中晚期,早期诊断率只有10%。因此,重视结直肠腺瘤的筛查对于结直肠癌早期诊断和结直肠癌预后改善具有重要意义。
传统的结直肠癌筛选方法主要为结肠镜检查,另外还有活体组织检查和脱落细胞学检查,这几种检查方法都是侵入式的,尤其是脱落细胞学检查取材繁琐,不易获得满意的标本,临床应用少。在没有相关症状的情况下,很多人避免进行结直肠癌的早期筛查,其过程痛苦,患者体验差。
CN 109576386 A公开了一种鉴定肠道微生态状态的引物组合物及其应用, 所述引物组合物为针对肠道细菌的16S rRNA设计的特异性引物,所述特异性引物包括随机碱基,所述随机碱基的个数为3-5个;所述肠道细菌包括共生梭菌、青春双歧杆菌、具核梭杆菌、厌氧消化链球菌或克雷伯氏菌属中的任意一种或至少两种的组合;基于所述引物组合物研发的试剂盒,检测肠道微生态失衡的特异性高达92.5%,灵敏度高达80.43%,但是对结直肠癌的早期筛查的准确性较弱。
CN 109680086 A公开了一种检测微小微单胞菌的引物组及其检测体系和应用,通过设计并验证得到特异性的引物组,基于引物组摸索验证检测体系,各步骤各条件相互配合,协同增持,使其检测结果稳定准确,检测步骤简洁高效,具有广阔的应用前景和巨大的市场价值,但是同样存在对结直肠癌的早期筛查的准确性较弱的问题。
因此,亟需一种非侵入式检测方法,能够高效准确地评估罹患结直肠癌的风险。
发明内容
针对现有技术的不足,本申请提供了一种肠癌生物标志物组合物及其应用,所述生物标志物组合物为粪便中的肠道微生物,用于评估个体罹患结直肠癌的风险,为结直肠癌的早期诊断提供了一种高灵敏度的非入侵方式。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供了一种肠癌生物标志物组合物,所述生物标志物组合物包括梭菌科(Clostridiales Family XI)、卟啉单胞菌属(Porphyromonas)、消化链球菌属(Peptostreptococcus)、具核梭杆菌(Fusobacterium nucleatum)和微单胞菌属(Parvimonas)。
优选地,所述卟啉单胞菌属(Porphyromonas)包括不解糖卟啉单胞菌 (Porphyromonas asaccharolytica)。
优选地,所述消化链球菌属(Peptostreptococcus)包括俄罗斯消化链球菌(Peptostreptococcus russellii)和/或口炎消化链球菌(Peptostreptococcus stomatis)。
优选地,所述微单胞菌属(Parvimonas)包括微小微单胞菌(Parvimonas micra)。
优选地,所述生物标志物组合物还包括肠杆菌科(Enterobacteriaceae)、克雷伯氏菌属(Klebsiella)、脱硫弧菌属(Desulfovibrio)、假丁酸弧菌属(Pseudobutyrivibrio)、放线杆菌属(Actinobacillus)、丁酸弧菌属(Anaerostipes)、丹毒杆菌属(Erysipelatoclostridium)、Intestinimonas、厌氧菌属(Anaerotruncus)、唾液链球菌(Streptococcus salivarius)、Fusicatenibacter saccharivorans、副流感嗜血杆菌(Haemophilus parainfluenzae)、脆弱拟杆菌(Bacteroides fragilis)、马赛布劳特氏菌(Blautia massiliensis)或Dialister pneumosintes中的任意一种或至少两种的组合。
优选地,所述肠杆菌科(Enterobacteriaceae)包括肠杆菌属(Enterobacter)。
优选地,所述放线杆菌属(Actinobacillus)包括猪放线杆菌(Actinobacillus porcinus)。
优选地,所述丁酸弧菌属(Anaerostipes)包括丁酸产生菌(Anaerostipes hadrus)。
优选地,所述丹毒杆菌属(Erysipelatoclostridium)包括多枝丹毒杆菌(Erysipelatoclostridium ramosum)。
优选地,所述厌氧菌属(Anaerotruncus)包括Anaerotruncus colihominis。
优选地,所述生物标志物组合物还包括双歧杆菌属(Bifidobacterium)、蔷 薇属(Roseburia spp)、产气柯林斯菌(Collinsella aerofaciens)、Dorea longicatena或乳杆菌长病毒(Lactonifactor longoviformis)中的任意一种或至少两种的组合。
优选地,所述双歧杆菌属(Bifidobacterium)包括假小链双歧杆菌(Bifidobacterium pseudocatenulatum)。
本申请中,申请人采集大量结直肠癌和癌前病变(结直肠腺瘤和结直肠肿瘤性息肉)患者和健康个体的粪便样本,利用高通量测序、实时荧光定量PCR、高分辨率熔解曲线法或生物芯片等方法,通过对粪便样本中微生物的丰度和相对含量差异进行对比分析和验证,确定了与结直肠癌和癌前病变相关的微生物标志物组合物;采用上述微生物的不同组合作为生物标志物组合物,用于结直肠癌和癌前病变的早期诊断和预后监测,准确性高,特异性好,灵敏度强。
第二方面,本申请提供了一种用于检测如第一方面所述的生物标志物组合物的引物组。
在一个具体的实施方案中,所述蔷薇属(Roseburia spp)的引物如SEQ ID NO:1~6所示,共包括3对引物组;
SEQ ID NO:1(第一上游引物):GCGGTRCGGCAAGTCTGA;
SEQ ID NO:2(第一下游引物):CCTCCGACACTCTAGTMCGAC;
SEQ ID NO:3(第二上游引物):TGCGGCAAGTCTGATGTGAA;
SEQ ID NO:4(第二下游引物):GTTTACGGCGTGGACTACCA;
SEQ ID NO:5(第三上游引物):AGGCGGTACGGCAAGTCT;
SEQ ID NO:6(第三下游引物):AGTTTYATTCTTGCGAACG。
在一个具体的实施方案中,所述脆弱拟杆菌(Bacteroides fragilis)的引物如SEQ ID NO:7~12所示,共包括3对引物组;
SEQ ID NO:7(第一上游引物):CACTTGACTGTTGTAGATAAAGC;
SEQ ID NO:8(第一下游引物):CATCTTCATTGCAGCATTATCC;
SEQ ID NO:9(第二上游引物):GCCGGTCAGAATGGGAGTAGGAGACC;
SEQ ID NO:10(第二下游引物):CCCGACGAGCCGGACCTTGCAACAGA;
SEQ ID NO:11(第三上游引物):TTGTGAAAGTTTGCGGCTC;
SEQ ID NO:12(第三下游引物):GGACTACCAGGGTATCTAATCCTGTT。
在一个具体的实施方案中,所述具核梭杆菌(Fusobacterium nucleatum)的引物如SEQ ID NO:13~18所示,共包括3对引物组;
SEQ ID NO:13(第一上游引物):CCTCTTAGGAATGAGACAGAGATG;
SEQ ID NO:14(第一下游引物):ATTGATGGTAACATACGAAAGGGCC;
SEQ ID NO:15(第二上游引物):TTCACTTAGGAATGAGACAGAGATG;
SEQ ID NO:16(第二下游引物):TGATGGTAACATACGAAAGGCATG;
SEQ ID NO:17(第三上游引物):TGGACTTAGGAATGAGACAGAGATG;
SEQ ID NO:18(第三下游引物):ACCTGATGGTAACATACGAAAGGT。
在一个具体的实施方案中,所述克雷伯氏菌属(Klebsiella)的引物如SEQ ID NO:19~26所示,共包括4对引物组;
SEQ ID NO:19(第一上游引物):CCGATTACGACCAGGGCTACAC;
SEQ ID NO:20(第一下游引物):GGGAACGTATTCACCGTACCTA;
SEQ ID NO:21(第二上游引物):GCATTACGACCAGGGCTACACT;
SEQ ID NO:22(第二下游引物):ACTGGGAACGTATTCACCGTAG;
SEQ ID NO:23(第三上游引物):TTGCTTACGACCAGGGCTACAC;
SEQ ID NO:24(第三下游引物):AGTGGGAACGTATTCACCGTA;
SEQ ID NO:25(第四上游引物):CTGATTACGACCAGGGCTACAC;
SEQ ID NO:26(第四下游引物):AACGGGAACGTATTCACCGTAT。
第三方面,本申请提供了一种如第一方面所述的生物标志物组合物的检测方法,所述方法包括以下步骤:
(1)提取样本DNA;
(2)设计生物标志物组合物的引物;
(3)利用步骤(2)所述的引物检测生物标志物组合物在样本中的丰度。
优选地,步骤(1)所述样本来源于粪便、土壤、尿液或唾液中的任意一种或至少两种的组合,优选来源于粪便。
优选地,步骤(2)所述的引物针对生物标志物组合物的16S rRNA进行设计。
优选地,步骤(2)所述的引物包括如SEQ ID NO:1~26所示的序列。
优选地,步骤(3)所述的检测方法包括高通量测序、实时荧光定量PCR、高分辨率熔解曲线法或生物芯片中的任意一种或至少两种的组合,优选为高通量测序或实时荧光定量PCR。
优选地,所述高通量测序的检测方法包括以下步骤:
(1’)利用设计的引物对样本DNA进行建库测序,对测序结果进行组装;
(2’)将组装片段与生物标志物的参考序列进行比对,组装片段与生物标志物的参考序列的同一性不小于90%,确定组装片段来源于生物标志物,获得组装片段丰度;
(3’)根据组装片段丰度的平均值,确定样本中生物标志物组合物的丰度。
优选地,在实时荧光定量PCR中,所述引物包括随机碱基,所述随机碱基的数量为3~5个,例如可以是3个、4个或5个。
本申请中,通过向引物中加入随机碱基,调控随机碱基的数量,有利于提 高检测特异性。
优选地,所述引物的长度为18~25bp,例如可以是18bp、19bp、20bp、21bp、22bp、23bp、24bp或25bp。
优选地,所述引物的GC含量为50~60%,例如可以是50%、51%、52%、53%、54%、55%、56%、57%、58%、59%或60%。
优选地,所述引物的Tm值为60~65℃,例如可以是60℃、61℃、62℃、63℃、64℃或65℃。
第四方面,本申请提供了一种如第一方面所述的生物标志物组合物和/或如第二方面所述的引物组在制备结直肠癌诊断试剂和/或治疗药物中的应用。
第五方面,本申请提供了一种如第一方面所述的生物标志物组合物和/或如第二方面所述的引物组在制备结直肠腺瘤诊断试剂和/或治疗药物中的应用。
与现有技术相比,本申请具有如下有益效果:
(1)本申请通过采集大量结直肠癌和癌前病变患者和健康个体的粪便样本,对粪便样本中微生物的丰度和相对含量差异进行对比分析和验证,确定了与结直肠癌和癌前病变相关的微生物标志物组合物;
(2)采用本申请的微生物的不同组合作为生物标志物组合物,用于结直肠癌和癌前病变的检测,准确性分别最高可达100%和96%,在结直肠癌早期诊断和预后监测中具有重要意义。
具体实施方式
为进一步阐述本申请所采取的技术手段及其效果,以下结合实施例对本申请作进一步地说明。可以理解的是,此处所描述的具体实施方式仅仅用于解释本申请,而非对本申请的限定。
实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或 条件,或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可通过正规渠道商购获得的常规产品。
实施例1 高通量测序检测生物标志物组合物在样本中的丰度
本实施例使用一次性样本采集器(普瑞森)采集粪便样本后,使用DNA提取试剂盒提取样本DNA,利用16S通用引物对V3、V4可变区进行PCR扩增和测序,具体步骤如下:
(1)将提取的样本DNA进行建库测序,获得下机数据;
(2)利用SOAPdenovo软件对读段进行组装,获得组装片段;
(3)将组装片段与生物标志物的参考序列进行比对,组装片段与生物标志物的参考序列的同一性不小于90%,确定组装片段来源于生物标志物,获得组装片段丰度;
(4)根据组装片段丰度的平均值,确定样本中生物标志物的丰度。
实施例2 实时荧光定量PCR检测生物标志物组合物在样本中的丰度
利用引物设计软件Primer Primer 5设计生物标志物的引物(例如SEQ ID NO:1~26)和总菌引物SEQ ID NO:27~32,引物设计要求为:引物长度为18~25bp,避免二级结构,GC含量为50~60%,T m值为60~65℃,产物长度为100~250bp;设计的特异性引物包括随机碱基,随机碱基的个数为3~5个;
SEQ ID NO:27(第一上游引物):TCCGTGSTGCAYGGYTGTCGTCAG;
SEQ ID NO:28(第一下游引物):AGGTACGTCRTCCMCACCTTCCTC;
SEQ ID NO:29(第二上游引物):CCTTGTGSTGCAYGGYTGTCGTCA;
SEQ ID NO:30(第二下游引物):ATCCACGTCRTCCMCACCTTCCTC;
SEQ ID NO:31(第三上游引物):GTGSTGCAYGGYTGTCGTCATGGAC;
SEQ ID NO:32(第三下游引物):CTGGACGTCRTCCMCACCTTCCTCT.
利用设计的引物,在具有SYBRGreen检测通道的荧光定量PCR仪(西安天隆)上,对基因组进行扩增和荧光检测,荧光采集温度为60℃;
获取生物标志物的Ct值,通过2 -△Ct法(△Ct=Ct细菌-Ct总菌),得到样本中生物标志物在总菌中的相对含量。
实施例3 结直肠癌、结直肠腺瘤和结直肠肿瘤性息肉检测
通过问卷调查,收集60名结直肠癌高风险的志愿者的粪便样本,通过高通量测序方法检测粪便样本中生物标志物的丰度,预测患者罹患结直肠癌和结直肠腺瘤/肿瘤性息肉的可能性,同时推荐志愿者进行肠镜检查,对比肠镜结果,分析生物标志物组合物的准确率。
本实施例中,用于检测结直肠癌的生物标志物组合物如表1-1所示,用于检测癌前病变(结直肠腺瘤和结直肠肿瘤性息肉)的生物标志物组合物如表1-2所示,检测结果见1-3。
表1-1 用于检测结直肠癌的生物标志物组合物
序号 细菌
1 梭菌科(Clostridiales Family XI)
2 肠杆菌科(Enterobacteriaceae)
3 肠杆菌属(Enterobacter)
4 卟啉单胞菌属(Porphyromonas)
5 不解糖卟啉单胞菌(Porphyromonas asaccharolytica)
6 消化链球菌属(Peptostreptococcus)
7 俄罗斯消化链球菌(Peptostreptococcus russellii)
8 口炎消化链球菌(Peptostreptococcus stomatis)
9 具核梭杆菌(Fusobacterium nucleatum)
10 微单胞菌属(Parvimonas)
11 微小微单胞菌(Parvimonas micra)
12 克雷伯氏菌属(Klebsiella)
13 脱硫弧菌属(Desulfovibrio)
14 假丁酸弧菌属(Pseudobutyrivibrio)
15 放线杆菌属(Actinobacillus)
16 猪放线杆菌(Actinobacillus porcinus)
17 丁酸弧菌属(Anaerostipes)
18 丁酸产生菌(Anaerostipes hadrus)
19 丹毒杆菌属(Erysipelatoclostridium)
20 多枝丹毒杆菌(Erysipelatoclostridium ramosum)
21 Intestinimonas
22 Anaerotruncus colihominis
23 唾液链球菌(Streptococcus salivarius)
24 Fusicatenibacter saccharivorans
25 副流感嗜血杆菌(Haemophilus parainfluenzae)
26 脆弱拟杆菌(Bacteroides fragilis)
27 马赛布劳特氏菌(Blautia massiliensis)
28 Dialister pneumosintes
表1-2 用于检测结直肠癌前病变的生物标志物组合物
序号 细菌
1 克雷伯氏菌属(Klebsiella)
2 假丁酸弧菌属(Pseudobutyrivibrio)
3 假丁酸弧菌(Pseudobutyrivibrio spp)
4 厌氧菌属(Anaerotruncus spp)
5 双歧杆菌属(Bifidobacterium)
6 假小链双歧杆菌(Bifidobacterium pseudocatenulatum)
7 放线杆菌属(Actinobacillus)
8 蔷薇属(Roseburia spp)
9 唾液链球菌(Streptococcus salivarius)
10 产气柯林斯菌(Collinsella aerofaciens)
11 Dorea longicatena
12 乳杆菌长病毒(Lactonifactor longoviformis)
表1-3 检测结果
Figure PCTCN2019117622-appb-000001
可以看出,利用粪便样本中生物标志物组合物预测结直肠癌发生的准确率达到100%,结直肠腺瘤的准确率达96%。
实施例4 结直肠癌检测
收集45例粪便样本,采用实施例3的检测和对比方法,进行结直肠癌检测,采用的生物标志物组合物为梭菌科(Clostridiales Family XI)、卟啉单胞菌属(Porphyromonas)、消化链球菌属(Peptostreptococcus)、具核梭杆菌 (Fusobacterium nucleatum)和微小微单胞菌(Parvimonas micra),其他方法与实施例3相同。
结果如表2所示,预测结直肠癌发生的准确率达到85.71%。
表2 结直肠癌检测结果
Figure PCTCN2019117622-appb-000002
实施例5 结直肠癌检测
与实施例3相比,采用的生物标志物组合物为梭菌科(Clostridiales Family XI)、卟啉单胞菌属(Porphyromonas)、消化链球菌属(Peptostreptococcus)、具核梭杆菌(Fusobacterium nucleatum)、微小微单胞菌(Parvimonas micra)、唾液链球菌(Streptococcus salivarius)和假丁酸弧菌属(Pseudobutyrivibrio),其他方法与实施例3相同。
采用本实施例的生物标志物组合物,预测结直肠癌发生的准确率达到88.52%。
实施例6 结直肠癌检测
与实施例3相比,采用的生物标志物组合物为梭菌科(Clostridiales Family XI)、卟啉单胞菌属(Porphyromonas)、消化链球菌属(Peptostreptococcus)、具核梭杆菌(Fusobacterium nucleatum)、微小微单胞菌(Parvimonas micra)、唾液链球菌(Streptococcus salivarius)、假丁酸弧菌属(Pseudobutyrivibrio)和放线杆菌属(Actinobacillus),其他方法与实施例3相同。
采用本实施例的生物标志物组合物,预测结直肠癌发生的准确率达到90.13%。
实施例7 结直肠癌检测
与实施例3相比,采用的生物标志物组合物为梭菌科(Clostridiales Family XI)、肠杆菌科(Enterobacteriaceae)、卟啉单胞菌属(Porphyromonas)、微单胞菌属(Parvimonas)、丁酸弧菌属(Anaerostipes)、丁酸产生菌(Anaerostipes hadrus)、克雷伯氏菌属(Klebsiella)、假丁酸弧菌属(Pseudobutyrivibrio)、丹毒杆菌属(Erysipelatoclostridium)、肠杆菌属(Enterobacter)、放线杆菌属(Actinobacillus)、猪放线杆菌(Actinobacillus porcinus)、Intestinimonas、唾液链球菌(Streptococcus salivarius)、口炎消化链球菌(Peptostreptococcus stomatis)、Dialister pneumosintes、具核梭杆菌(Fusobacterium nucleatum)和Anaerotruncus colihominis,其他方法与实施例3相同。
采用本实施例的生物标志物组合物,预测结直肠癌发生的准确率达到94.89%。
实施例8 结直肠癌检测
与实施例3相比,采用的生物标志物组合物为梭菌科(Clostridiales Family XI)、肠杆菌科(Enterobacteriaceae)、卟啉单胞菌属(Porphyromonas)、微单胞菌属(Parvimonas)、克雷伯氏菌属(Klebsiella)、肠杆菌属(Enterobacter)、Intestinimonas、口炎消化链球菌(Peptostreptococcus stomatis)、Dialister pneumosintes、具核梭杆菌(Fusobacterium nucleatum)和Anaerotruncus colihominis,其他方法与实施例3相同。
采用本实施例的生物标志物组合物,预测结直肠癌发生的准确率达到92.64%。
实施例9 结直肠癌检测
与实施例3相比,采用的生物标志物组合物为梭菌科(Clostridiales Family  XI)、卟啉单胞菌属(Porphyromonas)、微单胞菌属(Parvimonas)、口炎消化链球菌(Peptostreptococcus stomatis)、Dialister pneumosintes和具核梭杆菌(Fusobacterium nucleatum),其他方法与实施例3相同。
采用本实施例的生物标志物组合物,预测结直肠癌发生的准确率达到87.24%。
实施例10 结直肠腺瘤检测
收集103例粪便样本,采用实施例3的检测和对比方法,进行结直肠癌前病变检测,采用的生物标志物组合物为假小链双歧杆菌(Bifidobacterium pseudocatenulatum)、唾液链球菌(Streptococcus salivarius)、产气柯林斯菌(Collinsella aerofaciens)、Dorea longicatena和假丁酸弧菌属(Pseudobutyrivibrio),其他方法与实施例3相同。
结果如表3所示,预测结直肠癌发生的准确率达到90.24%。
表3 结直肠癌前病变检测结果
Figure PCTCN2019117622-appb-000003
实施例11 结直肠腺瘤检测
与实施例3相比,采用的生物标志物组合物为假小链双歧杆菌(Bifidobacterium pseudocatenulatum)、唾液链球菌(Streptococcus salivarius)、产气柯林斯菌(Collinsella aerofaciens)、Dorea longicatena、假丁酸弧菌属(Pseudobutyrivibrio)和假丁酸弧菌(Pseudobutyrivibrio spp),其他方法与实施例3相同。
采用本实施例的生物标志物组合物,预测结直肠腺瘤发生的准确率达到 92.17%。
综上所述,本申请通过采集大量结直肠癌和癌前病变患者和健康个体的粪便样本,对粪便样本中微生物的丰度和相对含量差异进行对比分析和验证,确定了与结直肠癌和癌前病变相关的微生物标志物组合物;采用本申请的微生物的不同组合作为生物标志物组合物,用于结直肠癌和癌前病变的检测,准确性分别最高可达100%和96%,在结直肠癌早期诊断和预后监测中具有重要意义。申请人声明,本申请通过上述实施例来说明本申请的详细方法,但本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种肠癌生物标志物组合物,其包括梭菌科(Clostridiales Family XI)、卟啉单胞菌属(Porphyromonas)、消化链球菌属(Peptostreptococcus)、具核梭杆菌(Fusobacterium nucleatum)和微单胞菌属(Parvimonas)。
  2. 根据权利要求1所述的生物标志物组合物,其中,所述卟啉单胞菌属(Porphyromonas)包括不解糖卟啉单胞菌(Porphyromonas asaccharolytica);
    所述消化链球菌属(Peptostreptococcus)包括俄罗斯消化链球菌(Peptostreptococcus russellii)和/或口炎消化链球菌(Peptostreptococcus stomatis);并且
    所述微单胞菌属(Parvimonas)包括微小微单胞菌(Parvimonas micra)。
  3. 根据权利要求1或2所述的生物标志物组合物,其中,所述生物标志物组合物还包括肠杆菌科(Enterobacteriaceae)、克雷伯氏菌属(Klebsiella)、脱硫弧菌属(Desulfovibrio)、假丁酸弧菌属(Pseudobutyrivibrio)、放线杆菌属(Actinobacillus)、丁酸弧菌属(Anaerostipes)、丹毒杆菌属(Erysipelatoclostridium)、Intestinimonas、厌氧菌属(Anaerotruncus)、唾液链球菌(Streptococcus salivarius)、Fusicatenibacter saccharivorans、副流感嗜血杆菌(Haemophilus parainfluenzae)、脆弱拟杆菌(Bacteroides fragilis)、马赛布劳特氏菌(Blautia massiliensis)、Dialister pneumosintes、双歧杆菌属(Bifidobacterium)、蔷薇属(Roseburia spp)、产气柯林斯菌(Collinsella aerofaciens)、Dorea longicatena和乳杆菌长病毒(Lactonifactor longoviformis)中的任意一种或至少两种的组合。
  4. 根据权利要求3所述的生物标志物组合物,其中,所述肠杆菌科(Enterobacteriaceae)包括肠杆菌属(Enterobacter);
    所述放线杆菌属(Actinobacillus)包括猪放线杆菌(Actinobacillus porcinus);
    所述丁酸弧菌属(Anaerostipes)包括丁酸产生菌(Anaerostipes hadrus);
    所述丹毒杆菌属(Erysipelatoclostridium)包括多枝丹毒杆菌(Erysipelatoclostridium ramosum);并且
    所述厌氧菌属(Anaerotruncus)包括Anaerotruncus colihominis。
  5. 根据权利要求3所述的生物标志物组合物,其中,所述双歧杆菌属(Bifidobacterium)包括假小链双歧杆菌(Bifidobacterium pseudocatenulatum)。
  6. 用于检测权利要求1所述的生物标志物组合物的引物组。
  7. 根据权利要求6所述的引物组,其中,所述引物组还包括用于检测肠杆菌科(Enterobacteriaceae)、克雷伯氏菌属(Klebsiella)、脱硫弧菌属(Desulfovibrio)、假丁酸弧菌属(Pseudobutyrivibrio)、放线杆菌属(Actinobacillus)、丁酸弧菌属(Anaerostipes)、丹毒杆菌属(Erysipelatoclostridium)、Intestinimonas、厌氧菌属(Anaerotruncus)、唾液链球菌(Streptococcus salivarius)、Fusicatenibacter saccharivorans、副流感嗜血杆菌(Haemophilus parainfluenzae)、脆弱拟杆菌(Bacteroides fragilis)、马赛布劳特氏菌(Blautia massiliensis)、Dialister pneumosintes、双歧杆菌属(Bifidobacterium)、蔷薇属(Roseburia spp)、产气柯林斯菌(Collinsella aerofaciens)、Dorea longicatena和乳杆菌长病毒(Lactonifactor longoviformis)中的任意一种或至少两种的组合的引物。
  8. 根据权利要求7所述的引物组,其中,所述蔷薇属(Roseburia spp)的引物如SEQ ID NO:1~6所示;
    所述脆弱拟杆菌(Bacteroides fragilis)的引物如SEQ ID NO:7~12所示;
    所述具核梭杆菌(Fusobacterium nucleatum)的引物如SEQ ID NO:13~18所示;并且
    所述克雷伯氏菌属(Klebsiella)的引物如SEQ ID NO:19~26所示。
  9. 使用如权利要求1-5中任一项所述的生物标志物组合物检测结直肠癌和/或结直肠腺瘤的方法,其包括以下步骤:
    (1)提取样本DNA;
    (2)设计生物标志物组合物的引物;以及
    (3)利用步骤(2)所述的引物检测生物标志物组合物在样本中的丰度。
  10. 根据权利要求9所述的方法,其中,步骤(1)所述样本来源于粪便、土壤、尿液或唾液中的任意一种或至少两种的组合,优选来源于粪便。
  11. 根据权利要求9所述的方法,其中,步骤(2)所述的引物针对所述生物标志物组合物的16S rRNA进行设计。
  12. 根据权利要求9所述的方法,其中,步骤(2)所述的引物包括如SEQ ID NO:1~26所示的序列。
  13. 根据权利要求9所述的方法,其中,步骤(3)所述的检测方法包括高通量测序、实时荧光定量PCR、高分辨率熔解曲线法或生物芯片中的任意一种或至少两种的组合,优选为高通量测序或实时荧光定量PCR。
  14. 根据权利要求13所述的方法,其中,所述高通量测序的检测方法包括以下步骤:
    (1’)利用设计的引物对样本DNA进行建库测序,对测序结果进行组装;
    (2’)将组装片段与生物标志物的参考序列进行比对,组装片段与生物标志物的参考序列的同一性不小于90%,确定组装片段来源于生物标志物,获得组装片段丰度;
    (3’)根据组装片段丰度的平均值,确定样本中生物标志物组合物的丰度;
    优选地,在实时荧光定量PCR中,所述引物包括随机碱基,所述随机碱基 的数量为3~5个;
    优选地,所述引物的长度为18~25bp;
    优选地,所述引物的GC含量为50~60%;
    优选地,所述引物的Tm值为60~65℃。
  15. 一种如权利要求1-5中任一项所述的生物标志物组合物或如权利要求6-8中任一项所述的引物组在制备结直肠癌和/或结直肠腺瘤的诊断试剂和/或治疗药物中的应用。
PCT/CN2019/117622 2019-09-11 2019-11-12 一种肠癌生物标志物组合物及其应用 WO2021047019A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910859346.XA CN110512015A (zh) 2019-09-11 2019-09-11 一种肠癌生物标志物组合物及其应用
CN201910859346.X 2019-09-11

Publications (1)

Publication Number Publication Date
WO2021047019A1 true WO2021047019A1 (zh) 2021-03-18

Family

ID=68630685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117622 WO2021047019A1 (zh) 2019-09-11 2019-11-12 一种肠癌生物标志物组合物及其应用

Country Status (2)

Country Link
CN (1) CN110512015A (zh)
WO (1) WO2021047019A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110982902A (zh) * 2019-12-30 2020-04-10 江西普瑞森基因科技有限公司 一种肠癌生物标志物及其应用
CN111334590A (zh) * 2020-02-20 2020-06-26 南京派森诺基因科技有限公司 一种鉴别结直肠癌的试剂盒及其应用
CN111269956B (zh) * 2020-02-25 2023-04-18 福建医科大学 检测菌群的试剂在制备食管鳞癌患者预后预测标志物的试剂或试剂盒中的应用
CN113106163B (zh) 2020-05-27 2024-06-04 微度(苏州)生物科技有限公司 一种用于结直肠癌早期诊断的生物标志物组合物及应用
CN111778332A (zh) * 2020-06-30 2020-10-16 中山大学 一种用于腺瘤及结直肠癌早期诊断的标志物组合及试剂盒
CN112501322A (zh) * 2020-11-23 2021-03-16 山西医科大学 一种唾液微生物标记物及其在毒品检测中的应用
CN113724862B (zh) * 2021-09-07 2023-11-07 广西爱生生命科技有限公司 一种结直肠癌生物标志物及其筛选方法和应用
CN114369673B (zh) * 2022-01-06 2023-07-14 同济大学 结直肠腺瘤生物标志物、试剂盒及生物标志物的筛选方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107541544A (zh) * 2016-06-27 2018-01-05 卡尤迪生物科技(北京)有限公司 用于确定微生物分布谱的方法、系统、试剂盒、用途和组合物
WO2018109219A1 (en) * 2016-12-15 2018-06-21 University College Cork - National University Of Ireland, Cork Methods of determining colorectal cancer status in an individual
WO2018170396A1 (en) * 2017-03-17 2018-09-20 Second Genome, Inc. Leveraging sequence-based fecal microbial community survey data to identify a composite biomarker for colorectal cancer
CN109576386A (zh) * 2019-01-29 2019-04-05 苏州普瑞森基因科技有限公司 一种鉴定肠道微生态状态的引物组合物及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473738B (zh) * 2013-08-06 2018-09-21 深圳华大基因科技有限公司 结直肠癌生物标志物
CN107904286A (zh) * 2017-12-27 2018-04-13 苏州普瑞森基因科技有限公司 一种结直肠癌微生物标志物及其应用
CN109852714B (zh) * 2019-03-07 2020-06-16 南京世和基因生物技术有限公司 一种肠癌早期诊断和腺瘤诊断标志物及用途
CN109943636B (zh) * 2019-04-11 2020-01-24 上海宝藤生物医药科技股份有限公司 一种结直肠癌微生物标志物及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107541544A (zh) * 2016-06-27 2018-01-05 卡尤迪生物科技(北京)有限公司 用于确定微生物分布谱的方法、系统、试剂盒、用途和组合物
WO2018109219A1 (en) * 2016-12-15 2018-06-21 University College Cork - National University Of Ireland, Cork Methods of determining colorectal cancer status in an individual
WO2018170396A1 (en) * 2017-03-17 2018-09-20 Second Genome, Inc. Leveraging sequence-based fecal microbial community survey data to identify a composite biomarker for colorectal cancer
CN109576386A (zh) * 2019-01-29 2019-04-05 苏州普瑞森基因科技有限公司 一种鉴定肠道微生态状态的引物组合物及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAMA REZASOLTANIA, HAMID ASADZADEH AGHDAEIB, HOSSEIN DABIRI , ABBAS AKHAVAN SEPAHI , MOHAMMAD HOSSEIN MODARRESSI , EHSAN NAZEMALHO: "The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer", MICROBIAL PATHOGENESIS, vol. 124, pages 244 - 249, XP055791034 *
WANG, TINGTING: "The Interactions between Structural Shifts of Gut Microbiota and Development of Colorectal Cancer", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 July 2012 (2012-07-15), pages 1 - 205, XP055791069 *
WANGCHUN, SAIER: "The Mechanism of Inhibition Effect of Probiotics on Ulcerative Colitis Carcinogenesis and the Analysis of Differences in Intestinal Microbiota", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 November 2017 (2017-11-15), pages 1 - 159, XP055791041, [retrieved on 20210329] *

Also Published As

Publication number Publication date
CN110512015A (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2021047019A1 (zh) 一种肠癌生物标志物组合物及其应用
Iebba et al. Profiling of oral microbiota and cytokines in COVID-19 patients
Huybrechts et al. The human microbiome in relation to cancer risk: a systematic review of epidemiologic studies
Zhong et al. Candida albicans disorder is associated with gastric carcinogenesis
CN109439749B (zh) 用于结直肠癌诊断的外泌体miRNA标志物及诊断试剂盒
CN107075563B (zh) 用于冠状动脉疾病的生物标记物
WO2019233102A1 (zh) 用于结直肠癌诊断、检测或筛查的引物和探针组
EP3245298B1 (en) Biomarkers for colorectal cancer related diseases
CN105473739B (zh) 结直肠癌生物标志物
CN111500705B (zh) IgAN肠道菌群标志物、IgAN代谢物标志物及其应用
WO2017202185A1 (zh) 甄别肺部微小结节良恶性的外周血基因标志物及其用途
CN110541026A (zh) 一种检测溃疡性结肠炎的生物标志物及应用
CN111424093B (zh) 用于肺癌诊断的试剂盒、装置及方法
CN110982915A (zh) 一种检测唾液中具核梭杆菌的引物探针组、试剂盒和检测方法
CN109161590B (zh) 整合素β4基因DNA甲基化位点在制备哮喘和或COPD早期诊断的生物标志物的应用
Fan et al. Mucosal microbiome dysbiosis associated with duodenum bulb inflammation
WO2017167034A1 (zh) 膀胱癌检测方法及套组
CN114107514A (zh) 一种用于结直肠癌诊断的miRNA分子标志物及其试剂盒
CN109609639B (zh) 结直肠癌检测方法及系统
EP1934367A4 (en) MOLECULAR METHOD FOR THE DIAGNOSIS OF PROSTATE CANCER
CN109762900B (zh) 结直肠癌标志物及其应用
CN114941030B (zh) 一种用于胃癌辅助诊断的snp标志物及其应用
Zhang et al. Alterations of lower respiratory tract microbiome and short-chain fatty acids in different segments in lung cancer: A multiomics analysis
US11807908B2 (en) Genetic markers used for identifying benign and malignant pulmonary micro-nodules and the application thereof
CN109182520B (zh) 一种宫颈癌及其癌前病变检测试剂盒及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945243

Country of ref document: EP

Kind code of ref document: A1