WO2021046948A1 - 一种参考信号处理方法、装置及系统 - Google Patents

一种参考信号处理方法、装置及系统 Download PDF

Info

Publication number
WO2021046948A1
WO2021046948A1 PCT/CN2019/109696 CN2019109696W WO2021046948A1 WO 2021046948 A1 WO2021046948 A1 WO 2021046948A1 CN 2019109696 W CN2019109696 W CN 2019109696W WO 2021046948 A1 WO2021046948 A1 WO 2021046948A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
value
index
symbol
random
Prior art date
Application number
PCT/CN2019/109696
Other languages
English (en)
French (fr)
Inventor
于莹洁
史桢宇
黄甦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202311704772.9A priority Critical patent/CN117834364A/zh
Priority to CN201980099651.1A priority patent/CN114287123B/zh
Publication of WO2021046948A1 publication Critical patent/WO2021046948A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • This application relates to the field of communication technologies, and in particular to a method, device, and system for processing reference signals.
  • 3GPP TR 38.855 clearly defines the positioning technologies supported by the New Radio (NR), such as downlink positioning technology, uplink positioning technology, and uplink and downlink positioning technology.
  • NR New Radio
  • the uplink positioning and uplink and downlink positioning technologies require the base station to measure the sounding reference signal (SRS) sent by the terminal.
  • SRS sounding reference signal
  • the number of consecutive symbols in a time slot that supports SRS is 1, 2, 4, 8, 12, the port number is 1, 2, 4, the comb value is 2, 4, 8, and the comb value N represents that the SRS is transmitted at the granularity of every N subcarriers, and the SRS transmitted by N terminals can be divided into frequency.
  • the SRS transmitted by N terminals can be divided into frequency.
  • these ports use the same resource element (RE) and sequence. At this time, a cyclic shift is needed to distinguish different ports.
  • RE resource element
  • the number of symbols Is the number of consecutive symbols in a time slot, Is a low peak-to-average ratio sequence, Is the base sequence of the low peak-to-average ratio sequence;
  • the phase ⁇ i of the cyclic shift is related to the maximum number of cyclic shifts, the total number of antenna ports, the current port number, and the cyclic shift.
  • the expression of the phase ⁇ i of the cyclic shift is as follows:
  • the SRS of different symbols on the same port has the same cyclic shift, which causes the SRS autocorrelation sent by the terminal to be too close to the SRS cross-correlation peaks sent by other terminals, and there is interference between the terminals, which affects the delay estimation accuracy.
  • embodiments of the present application provide a reference signal processing method, device and system , So that the cyclic shifts of the SRS of different symbols on the same port are different, reduce interference between terminals, and improve the accuracy of time delay estimation.
  • an embodiment of the present application provides a reference signal processing method, including: generating a sequence of a reference signal, wherein the phase ⁇ i, i of the cyclic shift of the sequence is related to a random phase factor, where i represents The i-th port is used to transmit the reference signal, where l represents the number of symbols or the symbol index or the symbol number of the sequence mapping, or the sequence in question is related to a random phase factor, where the random phase factor represents the sequence mapping Different symbols have different cyclic shift values; the sequence is mapped to one or more symbols and sent.
  • the technical solution provided by the embodiments of this application introduces a random phase factor, so that the sequence mapping has a different cyclic shift on each symbol, so that the autocorrelation of the reference signal sent by the terminal is staggered with the peak value of the cross-correlation of the reference signal sent by other terminals. Effectively reduce the interference between terminals, improve the accuracy of positioning parameter estimation, and thereby improve positioning accuracy.
  • the random phase factor is specifically related to any one of the following parameters: the symbol index corresponding to the symbol mapped by the sequence; or, the symbol index corresponding to the symbol mapped by the sequence, and The time slot index corresponding to the mapped time slot; or, a low peak-to-average ratio sequence.
  • the random phase factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • N CS is an integer greater than or equal to 2, or, and the same;
  • n rand is used to determine the random phase rotation on different symbols
  • n rand satisfies the following formula:
  • n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the random phase factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • N CS is an integer greater than or equal to 2, or, and the same;
  • n rand is used to determine the random phase rotation on different symbols
  • n rand satisfies the following formula:
  • n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the random phase factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • N CS is an integer greater than or equal to 2, or, and the same;
  • n rand is used to determine the random phase rotation on different symbols
  • n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • c(i) is the pseudo-random sequence
  • the initial value c init is Indicates sequence index or resource index
  • the value of K is an integer greater than or equal to 0;
  • n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the random phase factor is
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • N CS is an integer greater than or equal to 2, or, and the same;
  • n rand is used to determine the random phase rotation on different symbols
  • n rand satisfies the following formula:
  • n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the sequence is a pseudo-random sequence.
  • the random phase factor is: or
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • u is a preset value, or the value of u is related to the slot index and symbol index; Is a low peak-to-average ratio sequence base sequence;
  • the technical solution provided by the embodiments of this application introduces a random phase factor, so that the sequence mapping has a different cyclic shift on each symbol, so that the autocorrelation of the reference signal sent by the terminal is staggered with the peak value of the cross-correlation of the reference signal sent by other terminals. Effectively reduce the interference between terminals, improve the accuracy of positioning parameter estimation, and thereby improve positioning accuracy.
  • an embodiment of the present application also provides a reference signal processing method, the method includes: receiving one or more symbols from a terminal; obtaining a reference signal, wherein the cyclic shift phase of the sequence of the reference signal ⁇ i ,l is related to a random phase factor, where i represents that the reference signal is sent through the i-th port, and l represents the number of symbols or symbol indexes or symbol numbers of the sequence mapping, or the sequence and the random phase factor Correlation, wherein the random phase factor indicates that the sequence mapping has different cyclic shift values when different symbols are used; and the reference signal is measured.
  • the random phase factor is specifically related to any one of the following parameters:
  • the random factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • n rand is used to represent random phase rotation on different symbols, where n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • c(i) is the pseudo-random sequence
  • the initial value c init is Indicates sequence index or resource index
  • the value of K is an integer greater than or equal to 0;
  • n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the random phase factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • n rand represents random phase rotation on different symbols, where n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer ⁇ 0;
  • n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the sequence is a pseudo-random sequence.
  • the random phase factor is or,
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • u is a preset value, or the value of u is related to the time slot index and the symbol index; Is a low peak-to-average ratio sequence base sequence;
  • an embodiment of the present application further provides an apparatus for reference signal processing, including: a processing unit, configured to generate a sequence of a reference signal, wherein the cyclic shift phase of the sequence ⁇ i,l and the random Phase factor correlation, where i represents the i-th port is used to transmit the reference signal, l represents the symbol number or symbol index or symbol number of the sequence mapping, or the sequence is correlated with a random phase factor, wherein the The random phase factor means that the sequence mapping has different cyclic shift values when different symbols; the processing unit is also used to map the sequence to one or more symbols; the sending unit is used to send the one or more symbols symbol.
  • the random phase factor is specifically related to any one of the following parameters:
  • the symbol index corresponding to the symbol mapped by the sequence or the symbol index corresponding to the symbol mapped by the sequence and the slot index corresponding to the mapped slot; or the low peak-to-average ratio sequence.
  • the random phase factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • N CS is an integer greater than or equal to 2, or, and the same;
  • n rand is used to determine the random phase rotation on different symbols
  • n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • c(i) is the pseudo-random sequence
  • the initial value c init is Indicates sequence index or resource index
  • the value of K is an integer greater than or equal to 0; or, n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the random phase factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • N CS is an integer greater than or equal to 2, or, and the same;
  • n rand is used to determine the random phase rotation on different symbols
  • n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the sequence is a pseudo-random sequence.
  • the random phase factor is: or,
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • u is a preset value, or the value of u is related to the slot index and symbol index; Is a low peak-to-average ratio sequence base sequence; when the sequence length is M ZC ⁇ ⁇ 6,12,18,24 ⁇ , the sequence expression is:
  • a reference signal processing device includes: a receiving unit, configured to receive one or more symbols from a terminal, and a processing unit, configured to obtain a reference signal, wherein the cyclic shift phase of the sequence of the reference signal ⁇ i,l is related to a random phase factor, where i indicates that the reference signal is sent through the i-th port, and l indicates the number of symbols or the symbol index or the symbol number of the sequence mapping, or the sequence and random Phase factor correlation, where the random phase factor indicates that the sequence mapping has different cyclic shift values when different symbols are used; the processing unit is also used to measure the reference signal.
  • the random phase factor is specifically related to any one of the following parameters:
  • the symbol index corresponding to the symbol mapped by the sequence or the symbol index corresponding to the symbol mapped by the sequence and the slot index corresponding to the mapped slot; or the low peak-to-average ratio sequence.
  • the random factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • n rand is used to represent random phase rotation on different symbols, where n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the random phase factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • n rand represents random phase rotation on different symbols, where n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer ⁇ 0;
  • n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the sequence is a pseudo-random sequence.
  • the random phase factor is or,
  • the phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • u is a preset value, or the value of u is related to the slot index and symbol index; Is a low peak-to-average ratio sequence base sequence; when the sequence length is M ZC ⁇ ⁇ 6,12,18,24 ⁇ , the sequence expression is:
  • the random phase factor is:
  • the SRS sequence satisfies the following formula:
  • p i represents the current port number
  • l′ represents the number of symbols or symbol index or symbol number Is the number of consecutive symbols of the SRS resource in a slot
  • K TC is the comb value, Is the number of resource blocks in a subcarrier , and the value of m SRS, b is related to the frequency hopping parameter;
  • Is the total number of ports; p i represents the current port number;
  • n rand is used to determine the random phase rotation on different symbols
  • n rand can be any rational number
  • n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is a pseudo-random sequence
  • the initial value c init is Indicates sequence index or resource index
  • the value of K is an integer greater than or equal to 0;
  • n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the random phase factor is:
  • the SRS sequence satisfies the following formula:
  • p i represents the current port number
  • l′ represents the number of symbols or symbol index or symbol number Is the number of consecutive symbols in a time slot
  • K TC is the comb value, Is the number of resource blocks in a subcarrier , and the value of m SRS, b is related to the frequency hopping parameter;
  • Is the total number of ports; p i represents the current port number;
  • u is a preset value, or the value of u is related to the slot index and symbol index; Is a low peak-to-average ratio sequence base sequence;
  • the embodiments of the present application also provide a computer-readable storage medium, the storage medium stores instructions, and when the instructions are executed on a computer, the computer executes the steps described in the first aspect or the first aspect.
  • the method described in any possible implementation manner, or the computer is caused to execute the method described in the second aspect or any one of the possible implementation manners of the second aspect.
  • an embodiment of the present application also provides a device, including a processor and a memory, the memory stores instructions, and when the instructions are executed, the processor is used to execute the first aspect or the first aspect.
  • a device including a processor and a memory
  • the memory stores instructions, and when the instructions are executed, the processor is used to execute the first aspect or the first aspect.
  • the method described in any possible implementation manner, or the computer is caused to execute the method described in the second aspect or any one of the possible implementation manners of the second aspect.
  • an embodiment of the present application further provides a communication system, including a network device and a terminal device, where the terminal device includes the device as described in the third aspect or any one of the possible implementation manners of the third aspect, and, The network equipment includes the device described in the fourth aspect or any one of the possible implementation manners of the fourth aspect.
  • an embodiment of the present application also provides a reference signal processing method, including: generating a sequence of a reference signal; mapping the sequence to one or more symbols, wherein the sequences on different symbols have different cyclic shifts. Bit; sending the mapped sequence of one or more symbols to the network device.
  • an embodiment of the present application further provides an apparatus for reference signal processing, including: a processing unit, configured to generate a sequence of a reference signal; and map the sequence to one or more symbols, where different symbols The sequences on the above have different cyclic shifts; the sending unit is used to send the one or more symbols of the mapped sequence to the network device.
  • an embodiment of the present application also provides a reference signal processing method, including: receiving one or more symbols on which a reference signal is mapped; wherein, reference signal sequences on different symbols have different cycles Shift; measure the reference signal.
  • an embodiment of the present application also provides an apparatus for reference signal processing, including: a receiving unit, configured to receive one or more symbols, the symbols are mapped with reference signals, where different symbols are The reference signal sequence of has different cyclic shifts; and a processing unit for measuring the reference signal.
  • the reference signal is an SRS, and its sequence satisfies the following formula:
  • p i represents the current port number
  • l′ represents the symbol number or symbol index or symbol number
  • K TC is the comb value, Is the number of resource blocks in a subcarrier , and the value of m SRS, b is related to the frequency hopping parameter;
  • Is the total number of ports; p i represents the current port number;
  • n rand is used to determine the random phase rotation on different symbols
  • n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is a pseudo-random sequence
  • the initial value c init is Indicates sequence index or resource index
  • the value of K is an integer greater than or equal to 0.
  • n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the reference signal is an SRS, and its sequence satisfies the following formula:
  • p i represents the current port number
  • l′ represents the symbol number or symbol index or symbol number
  • K TC is the comb value, Is the number of resource blocks in a subcarrier , and the value of m SRS, b is related to the frequency hopping parameters b and c.
  • the sequence length M ZC is received from a network device.
  • the technical solution provided by the embodiments of this application introduces a random phase factor to make the sequence mapping on each symbol have a different cyclic shift, so that the autocorrelation of the reference signal sent by the terminal is staggered with the peak value of the cross-correlation of the reference signal sent by other terminals. It can effectively reduce the interference between terminals, improve the accuracy of positioning parameter estimation, and thereby improve the positioning accuracy.
  • Figure 1 is a schematic diagram of SRS frequency division multiplexing when the comb value in a time slot is 2;
  • FIG. 2 is a schematic diagram of a network structure provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of another network structure provided by an embodiment of the present application.
  • FIG. 4A is a schematic diagram of a reference signal processing method provided by an embodiment of the present application.
  • 4B is a schematic diagram of another reference signal processing method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a device provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of another device provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a network device provided by an embodiment of the present application.
  • the naming or numbering of steps appearing in this application does not mean that the steps in the method flow must be executed in the time/logical order indicated by the naming or numbering.
  • the named or numbered process steps can be implemented according to the The technical purpose changes the execution order, as long as the same or similar technical effects can be achieved.
  • the division of modules presented in this application is a logical division. In actual applications, there may be other divisions. For example, multiple modules can be combined or integrated in another system, or some features can be ignored
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or other similar forms. There are no restrictions in the application.
  • modules or sub-modules described as separate components may or may not be physically separated, may or may not be physical modules, or may be distributed to multiple circuit modules, and some or all of them may be selected according to actual needs. Module to achieve the purpose of this application program.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • New Radio New Radio
  • FIG. 2 shows a schematic diagram of an architecture 200 applicable to an embodiment of the present application.
  • the network architecture may specifically include the following network elements:
  • Terminal equipment can be user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote terminal, mobile equipment, user terminal, user agent or user device.
  • the terminal devices involved in the embodiments of the present application may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem.
  • Fig. 2 and Fig. 3 both take the terminal device as the UE as an example.
  • Network equipment It can be equipment used to communicate with terminal equipment.
  • the network equipment can be an evolved NodeB (eNB or eNodeB) in the LTE system, or it can be a global system for mobile communications,
  • BTS base station
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • NB base station
  • it can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario
  • the network device can be a relay station, an access point, a vehicle-mounted device, a wearable device, and a 5G network Network equipment or network equipment in the future evolved PLMN network, etc., are not limited in the embodiment of the present application.
  • Mobility management entity can be used to manage the location information, security, and business continuity of terminal equipment.
  • LMU network element it can be integrated in a network device, such as a base station, or it can be separated from the base station. Responsible for receiving uplink signals sent by terminal equipment. In the embodiment of this application, it is assumed that the LMU has the ability to send downlink signals.
  • Evolved serving mobile location center can be used for positioning, for example, called a positioning service center or a positioning center or a positioning management device.
  • the MME and LMUs are all called positioning management devices. It is used to collect the measurement information and location information reported by the base station and terminal equipment. It is also responsible for calculating the position of the measurement volume of the base station or terminal equipment to determine the location of the terminal equipment.
  • the terminal device can be connected to the radio access network via the eNodeB through the LTE-Uu interface.
  • the E-SMLC and the LMU are connected through the SLm interface, and the E-SMLC and the MME are connected through the SLs interface.
  • FIG. 3 shows another schematic diagram of an architecture 300 applicable to an embodiment of the present application.
  • the architecture 300 may specifically include the following network elements:
  • Location management function (LMF) network element can be used for positioning, for example, it is called a location service center or a location center or a location management device. In the embodiments of the present application, they are all called a location management device. It is used to collect the measurement information and location information reported by the base station and the terminal equipment, and it is also responsible for calculating the position of the measurement volume of the base station or the terminal equipment, and determining the location of the terminal equipment.
  • the LMF may be a device or component deployed in the core network to provide a positioning function for terminal equipment.
  • Access and mobility management function (AMF) entities mainly used for mobility management and access management, etc., and can be used to implement mobility management entity (mobility management entity, MME) functions in addition to sessions Functions other than management, such as lawful interception, or access authorization (or authentication) functions. In the embodiment of the present application, it can be used to realize the functions of access and mobility management of network elements.
  • mobility management entity mobility management entity, MME
  • functions other than management such as lawful interception, or access authorization (or authentication) functions.
  • it can be used to realize the functions of access and mobility management of network elements.
  • the UE is connected to the radio access network (NG-RAN) via the next-generation eNodeB (ng-eNB) and gNB through the LTE-Uu and/or NR-Uu interface, respectively; Connect to the core network via AMF through the NG-C interface.
  • the next-generation radio access network (NG-RAN) includes one or more ng-eNBs; NG-RAN may also include one or more gNBs; NG-RAN may also include one or more Ng-eNB and gNB.
  • the ng-eNB is an LTE base station that accesses the 5G core network, and the gNB is a 5G base station that accesses the 5G core network.
  • the core network includes functions such as AMF and LMF. The AMF and LMF are connected through the NLs interface.
  • the ng-eNB in Figures 2 and 3 above can also be replaced with a transmission point (TP) or a transmission and reception point (TRP).
  • TP transmission point
  • TRP transmission and reception point
  • the positioning management device refers to a network element that can manage the serving cell and neighboring cells.
  • the location management device can be a part of the core network or integrated into the access network device.
  • the location management device may be the LMF in the core network shown in FIG. 3, or may be the MME and LMU shown in the figure.
  • the positioning management device may also be referred to as a positioning center. This application does not limit the name of the location management device. In the future evolution of the technology, the location management device may be given other names.
  • the above-mentioned network architecture applied to the embodiments of the present application is only an example, and the network architecture applicable to the embodiments of the present application is not limited to this. Any network architecture that can realize the functions of the above-mentioned various network elements is applicable to the implementation of this application. example.
  • the embodiments of this application can be applied to other positioning systems.
  • network element may also be referred to as an entity, equipment, device, or module, etc., which is not specifically limited in this application.
  • description of "network element” is omitted in part of the description.
  • LMF network element is referred to as LMF.
  • LMF should be understood as LMF network element.
  • LMF entity hereinafter, the description of the same or similar situations will be omitted.
  • the name of the interface between the various network elements described above is only an example, and the name of the interface in a specific implementation may be other names, which is not specifically limited in this application.
  • the name of the message (or signaling) transmitted between the above-mentioned various network elements is only an example, and does not constitute any limitation on the function of the message itself.
  • an embodiment of the present application provides a reference signal processing method, including:
  • Step 410 The terminal device generates a sequence of a reference signal, the phase ⁇ i,l of the cyclic shift of the sequence is related to a random phase factor, where i represents the i-th port is used to transmit the reference signal, and l represents the sequence The number of mapped symbols or the symbol index or the symbol number, wherein the random phase factor indicates that the sequence mapping has different cyclic shift values when different symbols are mapped;
  • Step 420 Map the sequence to one or more symbols
  • Step 430 Send the one or more symbols.
  • Step 440 The network device receives one or more symbols to obtain the reference signal, where the phase ⁇ i,l of the cyclic shift of the sequence of the reference signal is related to a random phase factor, where i represents the reference signal Is sent through the i-th port, and l represents the number of symbols or symbol index or symbol number of the sequence mapping;
  • Step 450 Measure the reference signal to obtain a measurement result.
  • an embodiment of the present application also provides a method for information configuration, including:
  • the positioning device sends a location information request (LOCATION INFORMATION REQUEST) to the serving base station;
  • the serving base station sends SRS configuration information to the terminal, where the SRS configuration information includes one or more of the following information: random phase rotation type, including:
  • Random phase rotation value group (or called random phase rotation value set), the length is the same as the number of consecutive symbols in a time slot, each value in the random phase rotation value group is the number of symbol or symbol index (Within a time slot) correspond in sequence.
  • the random phase rotation value group can be multiple groups, and the number of groups corresponds to the number of ports in sequence; when it is a group, each value in the random phase rotation value group corresponds to the number of symbols in turn, and the same symbol is different
  • the ports correspond to the same random phase rotation value.
  • the consecutive symbols mapped to the reference signal in a time slot are 4, the number of ports is 2, and the random phase rotation value group is two groups, and each value in each group can be a rational number.
  • the random phase rotation value group does not require network device configuration, and can also be obtained from a formula stored in the terminal, such as the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is a pseudo-random sequence
  • the initial value c init is Indicates sequence index or resource index
  • the value of K is an integer greater than or equal to 0;
  • l represents the symbol index in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • Random phase rotation granularity N CS and binary number K This item is optional.
  • the random phase rotation granularity N CS and the number of binary digits K can be configured to Dany by the network device.
  • the terminal generates a random phase rotation value through the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is a pseudo-random sequence
  • the initial value c init is Indicates sequence index or resource index
  • the value of K is an integer greater than or equal to 0;
  • l represents the symbol index in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • Low peak-to-average ratio sequence length used to indicate the selected low peak-to-average ratio sequence length.
  • the length of the low peak-to-average ratio sequence can be configured by the network device. For example, the sequence length M ZC mentioned in the example below.
  • the length of the low peak-to-average ratio sequence should be longer than the number of consecutive symbols in a time slot. For example, the number of consecutive symbols in a time slot is 4, and the length of the low peak-to-average ratio sequence is 6, and the value on the sequence starts from the starting point and the symbol index or symbol The numbers (within a time slot) correspond in sequence.
  • Low peak-to-average ratio sequence group number deviation used to indicate the offset value of the selected low peak-to-average ratio sequence group number and group number 0. For example, when the number of antenna ports is 2, the number of consecutive symbols in a time slot is 4, the length of the low peak-to-average ratio sequence is 6, and the offset of the number of low peak-to-average ratio sequences is 1, the number of selected groups starts from the number of groups 1.
  • the value corresponding to group number 1 is [-3, 3, -1, -1, 3, -3] and the value corresponding to group number 2 Respectively [-3, -3, -3, 3, 1, -3], then the first symbol in a time slot of port 2 corresponds to -3, the second symbol corresponds to -3, and the third symbol corresponds to- 3. The fourth symbol corresponds to 3. This item is optional. When there is no configuration, the default is 0.
  • the serving base station sends a location information response (LOCATION INFORMATION RESPONSE) to the positioning device; optionally, the location information response carries SRS configuration information of the terminal, and the SRS configuration information includes one or more of the following information:
  • Random phase rotation value group (or called random phase rotation value set)
  • S404 The terminal sends an SRS to the serving base station and/or the neighboring base station.
  • the positioning device sends a location measurement request to the serving base station and the neighboring base station.
  • the location measurement request sent to the neighboring base station includes one or more of the SRS configuration information:
  • Random phase rotation value group (or called random phase rotation value set)
  • S406 The serving base station and the neighboring base station measure the SRS, and report the measurement result to the positioning device.
  • the random phase factor is related to any one or more of the following multiple parameters:
  • the symbol index corresponding to the symbol mapped by the sequence or, the symbol index corresponding to the symbol mapped by the sequence and the slot index of the mapped slot; or, through a low peak-to-average ratio sequence.
  • the random phase factor is:
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • N CS can be an integer greater than or equal to 2, or it can be the same.
  • n rand is used to determine the random phase rotation on different symbols.
  • n rand is related to the time slot index and the symbol index, and the expression is:
  • l represents the number of symbols or symbol index or symbol number in the time slot
  • c(i) is a pseudo-random sequence
  • the initial value It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • n rand is only related to the symbol index, and the expression is:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • a random phase factor is added after the cyclic shift formula
  • the cyclic shifts of the SRS of different symbols on the same port are different, which reduces the interference between terminals and improves the accuracy of time delay estimation.
  • the random phase factor is
  • phase ⁇ i,l of the cyclic shift satisfies the following formula:
  • i the i-th port
  • l the number of symbols
  • Is the total number of ports; p i represents the current port number;
  • N CS can be an integer greater than or equal to 2, or it can be the same.
  • n rand is used to determine the random phase rotation on different symbols.
  • n rand is related to the time slot index and the symbol index, and the expression is:
  • l represents the number of symbols or symbol index or symbol number in the time slot
  • c(i) is a pseudo-random sequence
  • the initial value It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • n rand is only related to the symbol index, and the expression is:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • a random phase rotation is added to each symbol, and the random phase factor is: or
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • sequence length M ZC ⁇ ⁇ 6,12,18,24 ⁇
  • sequence expression is:
  • u ⁇ 0,1,...,29 ⁇ Indicates that u corresponds to a sequence length Values, as shown in Table 1 to Table 4.
  • the value of can also refer to 3GPP TS38.211.
  • sequence length can be configured by the network device for the terminal, for example, the SRS configuration information is carried in the SRS and sent to the terminal.
  • the selection sequence needs to meet: the sequence length is greater than or equal to the number of symbols of the reference signal (within a slot). For example, when the number of SRS symbols is 12, sequences with lengths of 12, 18, 24, and 30 can be selected.
  • u can be a preset value or obtained by network device configuration or pre-stored tables, such as:
  • the first type the value of u and The value is related.
  • the value of u is the same as Same value: when When the value is 1, the value of u is 1; when When the value is 2, the value of u is 2; When the value is 3, the value of u is 3.
  • the terminal can pre-store a table, and the table records u and Corresponding information through Get the value of u. Or, network device instructions According to u and The terminal obtains the value of u.
  • the second type, the value of u is the same as The value is related to the current port number.
  • the above is only an example, and the corresponding manner is not limited to this.
  • the third type, the value of u and Related to the value of s, s represents the deviation of the number of low peak averages from the sequence group number.
  • the value of u is equal to Add the value to the s value: when s is 1, when When the value is 1, the value of u is 2; when When the value is 2, the value of u is 3; When the value is 3, the value of u is 4.
  • Add the value to the s value when s is 1, when When the value is 1, the value of u is 2; when When the value is 2, the value of u is 3; When the value is 3, the value of u is 4.
  • the fourth type the value of u is related to the current port number and the value of s, and s represents the deviation of the low peak-to-average ratio sequence group number.
  • s represents the deviation of the low peak-to-average ratio sequence group number.
  • a random phase rotation is added to each symbol, and the random phase factor is: among them, or,
  • u 0 ⁇ n ⁇ M ZC -1; where u ⁇ 0,1,...,29 ⁇ , Indicates that u corresponds to a sequence length Values, as shown in Table 1 to Table 4.
  • the value of can also refer to 3GPP TS38.211.
  • the sequence length is greater than or equal to the number of symbols of the reference signal (within a slot). For example, when the number of SRS symbols is 12, sequences with lengths of 12, 18, 24, and 30 can be selected.
  • u can be a preset value or configured by a network device or a way of pre-storing a table in the terminal, for example, in the following way:
  • the first type the value of u and The value is related.
  • the value of u is the same as Same value: when When the value is 1, the value of u is 1; when When the value is 2, the value of u is 2; When the value is 3, the value of u is 3.
  • the terminal can pre-store a table, and the table records u and Corresponding information through Get the value of u. Or, network device instructions According to u and The terminal obtains the value of u.
  • the second type, the value of u is the same as The value is related to the current port number.
  • the above is only an example, and the corresponding manner is not limited to this.
  • the third type, the value of u and Related to the value of s, s represents the deviation of the number of low peak averages from the sequence group number.
  • the value of u is equal to Add the value to the s value: when s is 1, when When the value is 1, the value of u is 2; when When the value is 2, the value of u is 3; When the value is 3, the value of u is 4.
  • Add the value to the s value when s is 1, when When the value is 1, the value of u is 2; when When the value is 2, the value of u is 3; When the value is 3, the value of u is 4.
  • the fourth type the value of u is related to the current port number and the value of s, and s represents the deviation of the low peak-to-average ratio sequence group number.
  • s represents the deviation of the low peak-to-average ratio sequence group number.
  • p i represents the current port number
  • l′ represents the symbol number or symbol index or symbol number
  • It is the number of consecutive symbols in a time slot.
  • K TC is the comb value, It is the number of resource blocks in a subcarrier.
  • Is the total number of ports; p i represents the current port number;
  • a random phase rotation is added to each symbol, and the random phase factor is:
  • the SRS sequence satisfies the following formula:
  • p i represents the current port number
  • l′ represents the number of symbols or symbol index or symbol number Is the number of consecutive symbols in a time slot
  • Is the total number of ports; p i represents the current port number;
  • n rann is used to determine the random phase rotation on different symbols, that is, the random phase rotation value group mentioned above.
  • n rand can be configured by the network device, for example, configured as any rational number
  • n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is a pseudo-random sequence
  • the initial value c init is Indicates sequence index or resource index
  • the value of K is an integer greater than or equal to 0;
  • n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the execution subject of processing the reference signal may be either a terminal device or a component (for example, a chip or a circuit) that can be used in a terminal device.
  • FIG. 5 shows a schematic block diagram of a reference signal processing apparatus 500 according to an embodiment of the present application.
  • the device 500 includes the following units.
  • the generating unit 510 is configured to generate a reference signal sequence, where the sequence mapping has different cyclic shift values for different symbols;
  • the generating unit 510 is configured to map the sequence to one or more symbols
  • the sending unit 520 is configured to send the one or more symbols.
  • an embodiment of the present application also provides a schematic diagram of a reference signal processing apparatus 600, and the apparatus 600 includes the following units.
  • the receiving unit 610 is configured to receive the one or more symbols
  • the processing unit 620 is configured to obtain the reference signal, and the sequence mapping of the reference signal has different cyclic shift values in different symbols;
  • the processing unit 620 is also used to measure the reference signal to obtain a measurement result.
  • the random phase factor is specifically related to any one of the following parameters: the symbol index corresponding to the symbol mapped by the sequence; or, the symbol index corresponding to the symbol mapped by the sequence and the mapped slot corresponding Time slot index; or, low peak-to-average ratio sequence.
  • the apparatus 500 further includes a receiving unit 530, configured to receive reference signal configuration information from a network device, where the reference signal configuration information includes one or more of the following information:
  • Random phase rotation type random phase rotation value group n rand , random phase rotation granularity N CS and binary digit K, low peak-to-average ratio sequence length M ZC , low peak-to-average ratio sequence group number deviation.
  • the device 600 further includes a sending unit 630, configured to send reference signal configuration information to the terminal, where the reference signal configuration information includes one or more of the following information:
  • Random phase rotation type random phase rotation value group n rand , random phase rotation granularity N CS and binary digit K, low peak-to-average ratio sequence length M ZC , low peak-to-average ratio sequence group number deviation.
  • the receiving unit 610 is further configured to receive a location information request from the positioning device, where the location information request carries one or more of the following information:
  • Random phase rotation type random phase rotation value group n rand , random phase rotation granularity N CS and binary digit K, low peak-to-average ratio sequence length M ZC , low peak-to-average ratio sequence group number deviation.
  • the sending unit 630 is further configured to send a location information response to the positioning device.
  • the receiving unit 610 is further configured to receive a position measurement request from the positioning device.
  • the sending unit 630 is further configured to report the measurement result to the positioning device.
  • the random phase factor is:
  • i represents the i-th port
  • l represents the symbol number or symbol index or symbol number
  • Is the total number of ports; p i represents the current port number;
  • N CS can be an integer greater than or equal to 2, or it can be the same.
  • n rand is used to determine the random phase rotation on different symbols.
  • n rand is related to the time slot index and the symbol index, and the expression is:
  • l represents the number of symbols or symbol index or symbol number in the time slot
  • c(i) is a pseudo-random sequence
  • the initial value It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • n rand is only related to the symbol index, and the expression is:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • a random phase factor is added after the cyclic shift formula
  • the cyclic shifts of the SRS of different symbols on the same port are different, which reduces the interference between terminals and improves the accuracy of time delay estimation.
  • the random phase factor is:
  • phase ⁇ i of the cyclic shift of the sequence satisfies the following formula:
  • i the i-th port
  • l the number of symbols
  • Is the total number of ports; p i represents the current port number;
  • N CS can be an integer greater than or equal to 2, or it can be the same.
  • n rand is used to determine the random phase rotation on different symbols.
  • n rand is related to the time slot index and the symbol index, and the expression is:
  • l represents the number of symbols or symbol index or symbol number in the time slot
  • c(i) is a pseudo-random sequence
  • the initial value It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • n rand is only related to the symbol index, and the expression is:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • i the i-th port
  • l the number of symbols
  • Is the total number of ports; p i represents the current port number;
  • sequence length M ZC ⁇ ⁇ 6,12,18,24 ⁇
  • sequence expression is:
  • u ⁇ 0,1,...,29 ⁇ Indicates that u corresponds to a sequence length Values, as shown in Table 1 to Table 4.
  • the value of can also refer to 3GPP TS38.211.
  • u can be a preset value or configured by a network device, for example, in the following way:
  • the first type the value of u and The value is related.
  • the value of u is the same as Same value: when When the value is 1, the value of u is 1; when When the value is 2, the value of u is 2; When the value is 3, the value of u is 3.
  • the corresponding method is not limited to this.
  • the second type, the value of u is the same as The value is related to the current port number.
  • the above is only an example, and the corresponding manner is not limited to this.
  • the third type, the value of u and Related to the value of s, s represents the deviation of the number of low peak averages from the sequence group number.
  • the value of u is equal to Add the value to the s value: when s is 1, when When the value is 1, the value of u is 2; when When the value is 2, the value of u is 3; When the value is 3, the value of u is 4.
  • Add the value to the s value when s is 1, when When the value is 1, the value of u is 2; when When the value is 2, the value of u is 3; When the value is 3, the value of u is 4.
  • the fourth type the value of u is related to the current port number and the value of s, and s represents the deviation of the low peak-to-average ratio sequence group number.
  • s represents the deviation of the low peak-to-average ratio sequence group number.
  • p i represents the current port number
  • l′ represents the symbol number or symbol index or symbol number
  • the random phase factor is:
  • the SRS sequence satisfies the following formula:
  • p i represents the current port number
  • K TC is the comb value, It is the number of resource blocks in a subcarrier , and the value of m SRS, b is related to the frequency hopping parameter; for the description of the frequency hopping parameter, please refer to the method embodiment.
  • Is the total number of ports; p i represents the current port number;
  • n rand is used to determine the random phase rotation on different symbols
  • n rand can be configured by the network device, for example, configured as any rational number
  • n rand satisfies the following formula:
  • l represents the number of symbols or symbol index or symbol number in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is a pseudo-random sequence
  • the initial value c init is Indicates sequence index or resource index
  • the value of K is an integer greater than or equal to 0;
  • n rand satisfies the following formula:
  • l represents the symbol index in the slot
  • the value of N CS is an integer greater than or equal to 2
  • the value of N CS is the same as Same
  • c(i) is the initial value of the pseudo-random sequence It can be a sequence index or a resource index
  • the value of K can be an integer greater than or equal to 0.
  • the random phase factor is:
  • the SRS sequence satisfies the following formula:
  • Is a low peak-to-average ratio sequence Is the base sequence of the low peak-to-average ratio sequence
  • p i represents the current port number
  • K TC is the comb value, It is the number of resource blocks in a subcarrier , and the value of m SRS, b is related to the frequency hopping parameter; for the description of the frequency hopping parameter, please refer to the description of the above method embodiment, which will not be repeated here.
  • Is the total number of ports; p i represents the current port number;
  • u is a preset value, or the value of u is related to the slot index and symbol index; It is the base sequence of the low peak-to-average ratio sequence; u can be a preset value or configured by a network device, for example, in the following manner:
  • the first type the value of u and The value is related.
  • the value of u is the same as Same value: when When the value is 1, the value of u is 1; when When the value is 2, the value of u is 2; When the value is 3, the value of u is 3.
  • the corresponding method is not limited to this.
  • the second type, the value of u is the same as The value is related to the current port number.
  • the above is only an example, and the corresponding manner is not limited to this.
  • the third type, the value of u and Related to the value of s, s represents the deviation of the number of low peak averages from the sequence group number.
  • the value of u is equal to Add the value to the s value: when s is 1, when When the value is 1, the value of u is 2; when When the value is 2, the value of u is 3; When the value is 3, the value of u is 4.
  • Add the value to the s value when s is 1, when When the value is 1, the value of u is 2; when When the value is 2, the value of u is 3; When the value is 3, the value of u is 4.
  • the fourth type the value of u is related to the current port number and the value of s, and s represents the deviation of the low peak-to-average ratio sequence group number.
  • s represents the deviation of the low peak-to-average ratio sequence group number.
  • p i represents the current port number
  • l′ represents the symbol number or symbol index or symbol number
  • the embodiment of the present application introduces a random phase factor to make the cyclic shift on each symbol different, which can effectively reduce interference between terminals, improve the accuracy of positioning parameter estimation, and thereby improve positioning accuracy.
  • the embodiment of the present application also provides a communication device 700.
  • the communication device 700 may be a terminal device or a chip.
  • the communication device 700 may be used to execute the foregoing method embodiments.
  • FIG. 7 shows a simplified schematic diagram of the structure of the terminal device. It is easy to understand and easy to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal equipment includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7. In an actual terminal device product, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device, and the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiving unit 710 and a processing unit 720.
  • the transceiving unit 710 may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit 720 may also be referred to as a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiving unit 710 can be regarded as the receiving unit
  • the device for implementing the sending function in the transceiving unit 710 can be regarded as the sending unit, that is, the transceiving unit 710 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 720 is configured to execute the foregoing method embodiment.
  • the transceiving unit 710 is used for related transceiving operations in the foregoing method embodiments.
  • the transceiver unit 710 is used to send one or more symbols.
  • FIG. 7 is only an example and not a limitation, and the foregoing terminal device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 7.
  • the chip When the communication device 700 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiment of the present application also provides a communication device 800, and the communication device 800 may be a network device or a chip.
  • the communication device 800 may be used to execute the foregoing method embodiments.
  • FIG. 8 shows a simplified schematic diagram of the base station structure.
  • the base station includes part 810 and part 820.
  • the 810 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals; the 820 part is mainly used for baseband processing and control of base stations.
  • the 810 part can generally be called a transceiver unit, transceiver, transceiver circuit, or transceiver.
  • the 820 part is usually the control center of the base station, and may generally be referred to as a processing unit, which is used to control the base station to perform the processing operations on the network device side in the foregoing method embodiments.
  • the transceiver unit of part 810 may also be called a transceiver or a transceiver, etc., which includes an antenna and a radio frequency unit, and the radio frequency unit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 810 can be regarded as the receiving unit, and the device for implementing the sending function as the sending unit, that is, the part 810 includes the receiving unit and the sending unit.
  • the receiving unit may also be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the 820 part may include one or more single boards, and each single board may include one or more processors and one or more memories.
  • the processor is used to read and execute programs in the memory to implement baseband processing functions and control the base station. If there are multiple boards, each board can be interconnected to enhance processing capabilities. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processing at the same time. Device.
  • part 820 is used to execute the foregoing method embodiment.
  • the 810 part is used for the related transceiving operations in the above method embodiment.
  • part 810 is used to receive one or more symbols.
  • FIG. 8 is only an example and not a limitation, and the foregoing network device including a transceiver unit and a processing unit may not rely on the structure shown in FIG. 8.
  • the chip When the communication device 800 is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the computer realizes the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product containing instructions, which when executed by a computer causes the computer to implement the foregoing method embodiments.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the present application, as long as the program that records the code of the method provided in the embodiments of the present application can be provided according to the embodiments of the present application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or the network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • processors mentioned in the embodiment of this application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • DSPs Digital Signal Processors
  • CPU Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参考信号的处理方法、装置及系统。其中,所述方法包括生成参考信号的序列,其中所述参考信号的序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示所述参考信号是通过第i个端口发送的,l表示所述序列映射的符号数或符号索引或符号编号;将所述序列映射到一个或多个符号,并发送。该方法在生成参考信号的序列时,增加了符号级的相位旋转,使得同一个端口上不同符号的参考信号的循环位移不同,可以降低终端之间的干扰,提升时延估计的精度。

Description

一种参考信号处理方法、装置及系统 技术领域
本申请涉及通信技术领域,具体涉及一种参考信号处理的方法、装置及系统。
背景技术
3GPP TR 38.855中明确定义了新空口(New Radio,NR)中支持的定位技术,例如,下行定位技术、上行定位技术、上下行定位技术。其中,上行定位和上下行定位技术需要基站对终端发送的探测参考信号(sounding reference signal,SRS)进行测量。
现有标准中支持SRS的一个时隙中连续符号个数为1,2,4,8,12,端口号为1,2,4,梳齿(comb)值为2,4,8,comb值为N表示SRS在每N个子载波的粒度上传输,可以使N个终端发送的SRS频分。例如,如图1所示,以comb值为2,连续符号数为2为例。当发送端口大于1时,这些端口采用相同的资源粒子(resource element,RE)和序列,此时就需要使用循环移位来对不同端口进行区分。
现有NR系统SRS序列表达式为:
Figure PCTCN2019109696-appb-000001
其中,符号数
Figure PCTCN2019109696-appb-000002
为一个时隙内的连续符号数,
Figure PCTCN2019109696-appb-000003
为低峰均比序列,
Figure PCTCN2019109696-appb-000004
为低峰均比序列基序列;p i表示当前端口号,δ=log 2(K TC),
Figure PCTCN2019109696-appb-000005
K TC为comb值,
Figure PCTCN2019109696-appb-000006
为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关。循环移位的相位α i与最大循环位移数、天线端口总数、当前端口号、循环移位四项有关,循环移位的相位α i表达式如下:
Figure PCTCN2019109696-appb-000007
其中,
Figure PCTCN2019109696-appb-000008
Figure PCTCN2019109696-appb-000009
表示第i个端口上的循环移位,
Figure PCTCN2019109696-appb-000010
为SRS的最大循环位移值,当comb值为2时,
Figure PCTCN2019109696-appb-000011
取值为8;当comb值为4时,
Figure PCTCN2019109696-appb-000012
取值为12。
Figure PCTCN2019109696-appb-000013
表示循环移位,取值范围为
Figure PCTCN2019109696-appb-000014
为总端口数,p i表示当前端口号。
现有技术中对同一个端口上不同符号的SRS拥有相同的循环位移,导致终端发送SRS自相关与其他终端发送的SRS互相关峰值过于接近,存在终端间的干扰,影响时延估计精度。
发明内容
为解决现有技术中对于同一个端口上不同符号的SRS拥有相同的循环位移,导致终端间干扰严重,影响时延估计精度的问题,本申请实施例提供一种参考信号处理方法、装置及系统,使得同一端口上不同符号的SRS的循环位移不同,降低终端之间的干扰,提升时延估计精度。
第一方面,本申请实施例提供一种参考信号处理的方法,包括:生成参考信号的序列,其中,所述序列的循环移位的相位α i,i与随机相位因子相关,其中,i表示采用第i个端口发送所述参考信号,l表示所述序列映射的符号数或符号索引或符号编号,或者,所诉序列与随机相位因子相关,其中,所述随机相位因子表示所述序列映射在不同的符号时具有不同的循环位移值;将所述序列映射到一个或多个符号,并发送。本申请实施例提供的技术方案,通过引入随机相位因子,使得序列映射在每个符号上循环移位不同,这样终端在发送参考信号的自相关与其他终端发送参考信号互相关的峰值错开,可以有效地降低终端之间的干扰,提高定位参数估计的准确性,进而提高定位精度。
一种可能的实现方式中,所述随机相位因子具体与以下参数中的任一项相关:所述序列所映射的符号对应的符号索引;或者,所述序列所映射的符号对应的符号索引以及所映射的时隙对应的时隙索引;或者,低峰均比序列。
另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000015
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000016
或者,
Figure PCTCN2019109696-appb-000017
其中,
Figure PCTCN2019109696-appb-000018
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000019
表示最大循环位移值;
Figure PCTCN2019109696-appb-000020
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000021
Figure PCTCN2019109696-appb-000022
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000023
表示随机相位旋转的粒度;
N CS取值是大于等于2的整数,或,与
Figure PCTCN2019109696-appb-000024
相同;
n rand用于确定不同符号上的随机相位旋转;
其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000025
其中,
Figure PCTCN2019109696-appb-000026
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000027
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000028
其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000029
Figure PCTCN2019109696-appb-000030
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000031
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000032
或者,
Figure PCTCN2019109696-appb-000033
其中,
Figure PCTCN2019109696-appb-000034
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000035
表示最大循环位移值;
Figure PCTCN2019109696-appb-000036
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000037
Figure PCTCN2019109696-appb-000038
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000039
表示随机相位旋转的粒度;
N CS取值是大于等于2的整数,或,与
Figure PCTCN2019109696-appb-000040
相同;
n rand用于确定不同符号上的随机相位旋转;
其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000041
其中,
Figure PCTCN2019109696-appb-000042
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号 索引或符号编号,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000043
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000044
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000045
Figure PCTCN2019109696-appb-000046
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000047
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000048
或者,
Figure PCTCN2019109696-appb-000049
其中,
Figure PCTCN2019109696-appb-000050
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000051
表示最大循环位移值;
Figure PCTCN2019109696-appb-000052
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000053
Figure PCTCN2019109696-appb-000054
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000055
表示随机相位旋转的粒度;
N CS取值是大于等于2的整数,或,与
Figure PCTCN2019109696-appb-000056
相同;
n rand用于确定不同符号上的随机相位旋转;
其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000057
其中,
Figure PCTCN2019109696-appb-000058
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号索引,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000059
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000060
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000061
Figure PCTCN2019109696-appb-000062
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述随机相位因子为
Figure PCTCN2019109696-appb-000063
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000064
或者,
Figure PCTCN2019109696-appb-000065
其中,
Figure PCTCN2019109696-appb-000066
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000067
表示最大循环位移值;
Figure PCTCN2019109696-appb-000068
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000069
Figure PCTCN2019109696-appb-000070
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000071
表示随机相位旋转的粒度;
N CS取值是大于等于2的整数,或,与
Figure PCTCN2019109696-appb-000072
相同;
n rand用于确定不同符号上的随机相位旋转;
其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000073
其中,
Figure PCTCN2019109696-appb-000074
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000075
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000076
其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000077
Figure PCTCN2019109696-appb-000078
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述序列为伪随机序列。
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000079
或者
Figure PCTCN2019109696-appb-000080
所述循环移位相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000081
或者,
Figure PCTCN2019109696-appb-000082
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000083
表示最大循环位移值;
Figure PCTCN2019109696-appb-000084
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000085
Figure PCTCN2019109696-appb-000086
为总端口数;p i表示当前端口号;
u为预设值,或者,u的取值与时隙索引、符号索引相关;
Figure PCTCN2019109696-appb-000087
为低峰均比序列基序列;
当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000088
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000089
本申请实施例提供的技术方案,通过引入随机相位因子,使得序列映射在每个符号上循环移位不同,这样终端在发送参考信号的自相关与其他终端发送参考信号互相关的峰值错开,可以有效地降低终端之间的干扰,提高定位参数估计的准确性,进而提高定位精度。
第二方面,本申请实施例还提供一种参考信号处理方法,所述方法包括:从终端接收一个或多个符号;得到参考信号,其中所述参考信号的序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示所述参考信号是通过第i个端口发送的,l表示所述序列映射的符号数或符号索引或符号编号,或者,所述序列与随机相位因子相关,其中,所述随机相位因子表示所述序列映射在不同的符号时具有不同的循环位移值;测量所述参考信号。
在一种可能的实现方式中,所述随机相位因子具体与以下参数中的任一项相关:
所述序列所映射的符号对应的符号索引;或者,所述序列所映射的符号对应的符号索引以及所映射的时隙对应的时隙索引;或者,低峰均比序列。在另一种可能的实现方式中,所述随机因子为:
Figure PCTCN2019109696-appb-000090
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000091
或者,
Figure PCTCN2019109696-appb-000092
其中,
Figure PCTCN2019109696-appb-000093
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000094
表示最大循环位移值;
Figure PCTCN2019109696-appb-000095
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000096
Figure PCTCN2019109696-appb-000097
为总端口数;p i表示当前端口号;
n rand用于表示不同符号上的随机相位旋转,其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000098
其中,
Figure PCTCN2019109696-appb-000099
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号索引,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000100
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000101
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000102
Figure PCTCN2019109696-appb-000103
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000104
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000105
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000106
表示最大循环位移值;
Figure PCTCN2019109696-appb-000107
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000108
Figure PCTCN2019109696-appb-000109
表示随机相位旋转的粒度;
Figure PCTCN2019109696-appb-000110
为总端口数;p i表示当前端口号;
n rand表示不同符号上的随机相位旋转,其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000111
其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000112
Figure PCTCN2019109696-appb-000113
可以是序列索引或资源索引,K取值可以是≥0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000114
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000115
Figure PCTCN2019109696-appb-000116
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述序列为伪随机序列。
在另一种可能的实现方式中,所述随机相位因子为
Figure PCTCN2019109696-appb-000117
或者,
Figure PCTCN2019109696-appb-000118
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000119
或者,
Figure PCTCN2019109696-appb-000120
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000121
表示最大循环位移值;
Figure PCTCN2019109696-appb-000122
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000123
Figure PCTCN2019109696-appb-000124
为总端口数;
p i表示当前端口号;
u为预设值,或者,u的取值与时隙索引、符号索引相关;
Figure PCTCN2019109696-appb-000125
为低峰均比序列基序列;
当序列长度为M Zc∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000126
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000127
第三方面,本申请实施例还提供一种用于参考信号处理的装置,包括:处理单元,用于生成参考信号的序列,其中,所述序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示采用第i个端口发送所述参考信号,l表示所述序列映射的符号数或符号索引或符号编号,或者,所述序列与随机相位因子相关,其中,所述随机相位因子表示所述序列映射在不同的符号时具有不同的循环位移值;处理单元,还用于将所述序列映射到一个或多个符号;发送单元,用于发送所述一个或多个符号。
在一种可能的实现方式中,所述随机相位因子具体与以下参数中的任一项相关:
所述序列所映射的符号对应的符号索引;或者,所述序列所映射的符号对应的符号索引以及所映射的时隙对应的时隙索引;或者,低峰均比序列。
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000128
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000129
或者,
Figure PCTCN2019109696-appb-000130
其中,
Figure PCTCN2019109696-appb-000131
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000132
表示最大循环位移值;
Figure PCTCN2019109696-appb-000133
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000134
Figure PCTCN2019109696-appb-000135
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000136
表示随机相位旋转的粒度;
N CS取值是大于等于2的整数,或,与
Figure PCTCN2019109696-appb-000137
相同;
n rand用于确定不同符号上的随机相位旋转;
其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000138
其中,
Figure PCTCN2019109696-appb-000139
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号索引,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000140
表示序列索引或资源索引,K取值为大于等于0的整数;或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000141
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000142
Figure PCTCN2019109696-appb-000143
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000144
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000145
Figure PCTCN2019109696-appb-000146
其中,
Figure PCTCN2019109696-appb-000147
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000148
表示最大循环位移值;
Figure PCTCN2019109696-appb-000149
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000150
Figure PCTCN2019109696-appb-000151
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000152
表示随机相位旋转的粒度;
N CS取值是大于等于2的整数,或,与
Figure PCTCN2019109696-appb-000153
相同;
n rand用于确定不同符号上的随机相位旋转;
其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000154
其中,
Figure PCTCN2019109696-appb-000155
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000156
表示序列索引或资源索引,K取值为大于等于0的整数;或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000157
其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000158
Figure PCTCN2019109696-appb-000159
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述序列为伪随机序列。
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000160
或者,
Figure PCTCN2019109696-appb-000161
所述循环移位相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000162
或者,
Figure PCTCN2019109696-appb-000163
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000164
表示最大循环位移值;
Figure PCTCN2019109696-appb-000165
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000166
Figure PCTCN2019109696-appb-000167
为总端口数;p i表示当前端口号;
u为预设值,或者,u的取值与时隙索引、符号索引相关;
Figure PCTCN2019109696-appb-000168
为低峰均比序列基序列;当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000169
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000170
第四方面,一种参考信号处理的装置,包括:接收单元,用于从终端接收一个或多个符号,处理单元,用于得到参考信号,其中所述参考信号的序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示所述参考信号是通过第i个端口发送的,l表示所述序列映射的符号数或符号索引或符号编号,或者,所述序列与随机相位因子相关,其中,所述随机相位因子表示所述序列映射在不同的符号时具有不同的循环位移值;处理单元,还用于测量所述参考信号。
一种可能的实现方式中,所述随机相位因子具体与以下参数中的任一项相关:
所述序列所映射的符号对应的符号索引;或者,所述序列所映射的符号对应的符号索引以及所映射的时隙对应的时隙索引;或者,低峰均比序列。
一种可能的实现方式中,所述随机因子为:
Figure PCTCN2019109696-appb-000171
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000172
或者,
Figure PCTCN2019109696-appb-000173
其中,
Figure PCTCN2019109696-appb-000174
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000175
表示最大循环位移值;
Figure PCTCN2019109696-appb-000176
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000177
Figure PCTCN2019109696-appb-000178
为总端口数;p i表示当前端口号;
n rand用于表示不同符号上的随机相位旋转,其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000179
其中,
Figure PCTCN2019109696-appb-000180
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000181
表示序列索引或资源索引,K取值为大于等于0的整数;或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000182
其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000183
Figure PCTCN2019109696-appb-000184
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000185
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000186
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000187
表示最大循环位移值;
Figure PCTCN2019109696-appb-000188
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000189
Figure PCTCN2019109696-appb-000190
表示随机相位旋转的粒度;
Figure PCTCN2019109696-appb-000191
为总端口数;p i表示当前端口号;
n rand表示不同符号上的随机相位旋转,其中,n rand满足以下公式:
Figure PCTCN2019109696-appb-000192
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000193
可以是序列索引或资源索引,K取值可以是≥0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000194
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000195
Figure PCTCN2019109696-appb-000196
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
另一种可能的实现方式中,所述序列为伪随机序列。
另一种可能的实现方式中,所述随机相位因子为
Figure PCTCN2019109696-appb-000197
或者,
Figure PCTCN2019109696-appb-000198
所述循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000199
或者,
Figure PCTCN2019109696-appb-000200
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000201
表示最大循环位移值;
Figure PCTCN2019109696-appb-000202
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000203
Figure PCTCN2019109696-appb-000204
为总端口数;
p i表示当前端口号;
u为预设值,或者,u的取值与时隙索引、符号索引相关;
Figure PCTCN2019109696-appb-000205
为低峰均比序列基序列;当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000206
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000207
结合第一方面至第四方面的任一方面,在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000208
所述SRS序列满足以下公式:
Figure PCTCN2019109696-appb-000209
其中,p i表示当前端口号,l′表示符号数或符号索引或符号编号
Figure PCTCN2019109696-appb-000210
Figure PCTCN2019109696-appb-000211
为SRS资源在一个时隙内的连续符号数;
Figure PCTCN2019109696-appb-000212
K TC为comb值,
Figure PCTCN2019109696-appb-000213
为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;
循环移位的相位
Figure PCTCN2019109696-appb-000214
其中,
Figure PCTCN2019109696-appb-000215
Figure PCTCN2019109696-appb-000216
表示最大循环位移值;
Figure PCTCN2019109696-appb-000217
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000218
Figure PCTCN2019109696-appb-000219
为总端口数;p i表示当前端口号;
δ=log 2(K TC);
n rand用于确定不同符号上的随机相位旋转;
n rand取值可以为任意有理数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000220
其中,
Figure PCTCN2019109696-appb-000221
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000222
相同,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000223
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000224
其中,l表示slot内的符号索引,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000225
相同,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000226
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
结合第一方面至第四方面的任一方面,在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000227
所述SRS序列满足以下公式:
Figure PCTCN2019109696-appb-000228
Figure PCTCN2019109696-appb-000229
或者
Figure PCTCN2019109696-appb-000230
其中,p i表示当前端口号,l′表示符号数或符号索引或符号编号
Figure PCTCN2019109696-appb-000231
Figure PCTCN2019109696-appb-000232
为一个时隙内的连续符号数;
Figure PCTCN2019109696-appb-000233
K TC为comb值,
Figure PCTCN2019109696-appb-000234
为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;
循环移位的相位
Figure PCTCN2019109696-appb-000235
其中,
Figure PCTCN2019109696-appb-000236
Figure PCTCN2019109696-appb-000237
表示最大循环位移值;
Figure PCTCN2019109696-appb-000238
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000239
Figure PCTCN2019109696-appb-000240
为总端口数;p i表示当前端口号;
u为预设值,或者,u的取值与时隙索引、符号索引相关;
Figure PCTCN2019109696-appb-000241
为低峰均比序列基序列;
当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000242
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000243
δ=log 2(K TC)。
第五方面,本申请实施例还提供一种计算机可读存储介质,所述存储介质存储有指令,当所述指令在计算机上执行时,使得所述计算机执行如第一方面或第一方面的任一种可能的实现方式所述的方法,或,使得所述计算机执行如第二方面或第二方面的任一种可能的实现方式所述的方法。
第六方面,本申请实施例还提供一种装置,包括处理器和存储器,所述存储器存储 有指令,当运行所述指令时,使得所述处理器用于执行如第一方面或第一方面的任一种可能的实现方式所述的方法,或,使得所述计算机执行如第二方面或第二方面的任一种可能的实现方式所述的方法。
第七方面,本申请实施例还提供一种通信系统,包括网络设备和终端设备,其中终端设备包括如第三方面或第三方面任一种可能的实现方式所述的装置,以及,所述网络设备包括如第四方面或第四方面任一种可能的实现方式所述的装置。
第八方面,本申请实施例还提供一种参考信号处理方法,包括:生成参考信号的序列;将所述序列映射到一个或多个符号上,其中,不同符号上的序列具有不同的循环移位;将所述映射了序列的一个或多个符号发送给网络设备。
第九方面,本申请实施例还提供一种用于参考信号处理的装置,包括:处理单元,用于生成参考信号的序列;将所述序列映射到一个或多个符号上,其中,不同符号上的序列具有不同的循环移位;发送单元,用于将所述映射了序列的一个或多个符号发送给网络设备。
第十方面,本申请实施例还提供了一种参考信号处理的方法,包括:接收一个或多个符号,所述符号上映射有参考信号;其中,不同符号上的参考信号序列具有不同的循环移位;测量所述参考信号。
第十一方面,本申请实施例还提供了一种用于参考信号处理的装置,包括:接收单元,用于接收一个或多个符号,所述符号上映射有参考信号,其中,不同符号上的参考信号序列具有不同的循环移位;以及处理单元,用于测量所述参考信号。
结合第八方面至第十一方面的任一方面,一种可能的实现方式中,所述参考信号为SRS,其序列满足以下公式:
Figure PCTCN2019109696-appb-000244
其中,
Figure PCTCN2019109696-appb-000245
为低峰均比序列,
Figure PCTCN2019109696-appb-000246
为低峰均比序列基序列;
当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000247
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000248
p i表示当前端口号,l′表示符号数或符号索引或符号编号,
Figure PCTCN2019109696-appb-000249
Figure PCTCN2019109696-appb-000250
为SRS资源在一个时隙内的连续符号数;
Figure PCTCN2019109696-appb-000251
K TC为comb值,
Figure PCTCN2019109696-appb-000252
为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;
循环移位的相位
Figure PCTCN2019109696-appb-000253
其中,
Figure PCTCN2019109696-appb-000254
Figure PCTCN2019109696-appb-000255
表示最大循环位移值;
Figure PCTCN2019109696-appb-000256
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000257
Figure PCTCN2019109696-appb-000258
为总端口数;p i表示当前端口号;
δ=log 2(K TC);
n rand用于确定不同符号上的随机相位旋转;
Figure PCTCN2019109696-appb-000259
表示一个序列长度下u对应的
Figure PCTCN2019109696-appb-000260
值。
结合第八方面至第十一方面的任一方面,另一种可能的实现方式中,所述n rand满足以下公式:
Figure PCTCN2019109696-appb-000261
其中,
Figure PCTCN2019109696-appb-000262
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000263
相同,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000264
表示序列索引或资源索引,K取值为大于等于0的整数。
结合第八方面至第十一方面的任一方面,另一种可能的实现方式中,所述n rand满足以下公式:
Figure PCTCN2019109696-appb-000265
其中,l表示slot内的符号索引,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000266
相同,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000267
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
结合第八方面至第十一方面的任一方面,另一种可能的实现方式中,所述参考信号为SRS,其序列满足以下公式:
Figure PCTCN2019109696-appb-000268
其中,
Figure PCTCN2019109696-appb-000269
或者,
Figure PCTCN2019109696-appb-000270
Figure PCTCN2019109696-appb-000271
代入上述公式,得到:
Figure PCTCN2019109696-appb-000272
Figure PCTCN2019109696-appb-000273
代入上述公式,得到:
Figure PCTCN2019109696-appb-000274
其中,
Figure PCTCN2019109696-appb-000275
为低峰均比序列,
Figure PCTCN2019109696-appb-000276
为低峰均比序列基序列;
当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000277
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000278
p i表示当前端口号,l′表示符号数或符号索引或符号编号,
Figure PCTCN2019109696-appb-000279
Figure PCTCN2019109696-appb-000280
为一个时隙内的连续符号数;
Figure PCTCN2019109696-appb-000281
K TC为comb值,
Figure PCTCN2019109696-appb-000282
为一个子载波内的资源块个数,m SRS,b的取值与跳频参数b和c相关。
循环移位的相位
Figure PCTCN2019109696-appb-000283
其中,
Figure PCTCN2019109696-appb-000284
Figure PCTCN2019109696-appb-000285
表示最大循环位移值;
Figure PCTCN2019109696-appb-000286
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000287
Figure PCTCN2019109696-appb-000288
为总端口数;p i表示当前端口号。
结合第八方面至第十一方面的任一方面,另一种可能的实现方式中,所述序列长度M ZC是从网络设备接收的。
本申请实施例所提供的技术方案,通过引入随机相位因子,使得序列映射在每个符号上循环移位不同,这样终端在发送参考信号的自相关与其他终端发送参考信号互相关的峰值错开,可以有效地降低终端之间的干扰,提高定位参数估计的准确性,进而提高定位精度。
附图说明
图1是一个时隙内comb值为2时SRS频分复用的示意图;
图2是本申请实施例提供的一种网络结构示意图;
图3是本申请实施例提供的另一种网络结构示意图;
图4A是本申请实施例提供的一种参考信号处理的方法示意图;
图4B是本申请实施例提供的另一种参考信号处理的方法示意图;
图5是本申请实施例提供的一种装置示意图;
图6是本申请实施例提供的另一种装置示意图;
图7是本申请实施例提供的一种终端设备的示意图;
图8是本申请实施例提供的一种网络设备的示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展以及新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请中出现的术语“和/或”,可以是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的模块的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请方案的目的。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term  evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、或者下一代通信系统等。
为便于理解本申请实施例,首先结合图2和图3详细说明适用于本申请实施例的网络架构。
图2示出了适用于本申请实施例的架构200的示意图。如图2所示,该网络架构具体可以包括下列网元:
1、终端设备:可以为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远程终端、移动设备、用户终端、用户代理或用户装置。本申请实施例中涉及的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。
其中,图2和图3均以终端设备为UE作为示例。
2、网络设备:可以是用于与终端设备通信的设备,该网络设备可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
3、移动性管理实体(mobility management entity,MME):可用于管理终端设备的位置信息、安全性以及业务连续性。
4、位置测量单元(location measurement unit,LMU)网元:可以集成于网络设备中,如基站中,也可以与基站分离。负责接收终端设备发送的上行信号。在本申请实施例中,假设LMU具有发送下行信号的能力。
5、演进的服务移动位置中心(evolved serving mobile location cente,E-SMLC)网元:可以用于定位,例如称为定位服务中心或定位中心或定位管理设备,在本申请实施例中,MME和LMU均称为定位管理设备。用于收集基站和终端设备上报的测量信息 和位置信息,其还负责将基站或终端设备的测量量进行位置解算,确定终端设备位置。
该架构中,终端设备可以通过LTE-Uu接口经由eNodeB连接到无线接入网。E-SMLC与LMU之间通过SLm接口连接,E-SMLC与MME之间通过SLs接口连接。
图3示出了适用于本申请实施例的架构300的另一示意图。如图所示,该架构300具体可以包括下列网元:
1、定位管理功能(location management function,LMF)网元:可以用于定位,例如称为定位服务中心或定位中心或定位管理设备,在本申请实施例中,均称为定位管理设备。用于收集基站和终端设备上报的测量信息和位置信息,其还负责将基站或终端设备的测量量进行位置解算,确定终端设备位置。LMF可以是一种部署在核心网中为终端设备提供定位功能的装置或组件。
2、接入和移动管理功能(access and mobility management function,AMF)实体:主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听、或接入授权(或鉴权)等功能。在本申请实施例中,可用于实现接入和移动管理网元的功能。
其余网元可参考上述架构200的描述,此处不再赘述。
该架构300中,UE通过LTE-Uu和/或NR-Uu接口分别经由下一代基站(next-generation eNodeB,ng-eNB)和gNB连接到无线接入网(NG-RAN);无线接入网通过NG-C接口经由AMF连接到核心网。其中,下一代无线接入网(next-generation radio access network,NG-RAN)包括一个或多个ng-eNB;NG-RAN也可以包括一个或多个gNB;NG-RAN还可以包括一个或多个ng-eNB以及gNB。ng-eNB为接入5G核心网的LTE基站,gNB为接入5G核心网的5G基站。核心网包括AMF与LMF等功能。AMF与LMF之间通过NLs接口连接。
上述图2和图3中的ng-eNB也可以替换为传输节点(transmission point,TP)或传输接收点(transmission and reception point,TRP)。
在本申请实施例中,多次提及定位管理设备。定位管理设备表示可以管理服务小区与邻小区的网元。定位管理设备可以是核心网的一部分,也可以集成到接入网设备中。例如,定位管理设备可以为图3中所示的核心网中的LMF,也可以为图中所示的MME和LMU。定位管理设备也可称为定位中心。本申请并不限定定位管理设备的名称,在未来演进技术中,定位管理设备可能会被赋予其它名称。
应理解,上述应用于本申请实施例的网络架构仅是举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。例如,本申请实施例可以应用于其他定位系统中。
还应理解,上述“网元”也可以称为实体、设备、装置或模块等,本申请并未特别限定。并且,在本申请中,为了便于理解和说明,在对部分描述中省略“网元”这一描述,例如,将LMF网元简称LMF,此情况下,该“LMF”应理解为LMF网元或LMF实体,以下,省略对相同或相似情况的说明。
还应理解,上述各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
还应理解,上述命名仅为便于区分不同的功能,而不应对本申请构成任何限定,本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。在此进行统一说明,以下不再赘述。
如图4A所示,本申请实施例提供一种参考信号处理的方法,包括:
步骤410:终端设备生成参考信号的序列,所述序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示采用第i个端口发送所述参考信号,l表示所述序列映射的符号数或符号索引或符号编号,其中,所述随机相位因子表示所述序列映射在不同的符号时具有不同的循环位移值;
步骤420:将所述序列映射到一个或多个符号上;
步骤430:发送所述一个或多个符号。
步骤440:网络设备接收一个或多个符号,得到所述参考信号,其中,所述参考信号的序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示所述参考信号是通过第i个端口发送的,l表示所述序列映射的符号数或符号索引或符号编号;
步骤450:测量所述参考信号,得到测量结果。
如图4B所示,本申请实施例还提供一种信息配置的方法,包括:
S401:定位设备向服务基站发送位置信息请求(LOCATION INFORMATION REQUEST);
S402:服务基站向终端发送SRS配置信息,其中,SRS配置信息包括如下信息中的一项或多项:随机相位旋转类型,包括:
a)采用伪随机序列、或采用低峰均比序列。该项为可选项。
b)随机相位旋转值组(或称为随机相位旋转值集合),长度与一个时隙内的连续符号数相同,随机相位旋转值组中每个值与符号数(number of symbol)或符号索引(一个时隙内)依次对应。该项为可选项。当配置了多个端口时,随机相位旋转值组可以为多组,组数与端口数依次对应;为一组时,随机相位旋转值组上每个值与符号数依次对应,同符号上不同端口对应相同的随机相位旋转值。例如,参考信号映射在一个时隙内的连续符号为4,端口数为2,随机相位旋转值组为两组,每组内的每个值可以为有理数。可选地,随机相位旋转值组不需要网络设备配置,也可以由终端存储的公式得到,比如如下公式:
Figure PCTCN2019109696-appb-000289
其中,
Figure PCTCN2019109696-appb-000290
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000291
相同,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000292
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,由以下公式得到:
Figure PCTCN2019109696-appb-000293
其中,l表示slot内的符号索引,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000294
相同,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000295
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
c)随机相位旋转粒度N CS和二进制位数K。该项为可选项。当终端根据如下公式得到相位偏移时,随机相位旋转粒度N CS和二进制位数K可由网络设备配置给种丹妮。比如,终端通过如下公式生成随机相位旋转值:
Figure PCTCN2019109696-appb-000296
其中,
Figure PCTCN2019109696-appb-000297
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000298
相同,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000299
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,通过如下公式生成随机相位旋转值:
Figure PCTCN2019109696-appb-000300
其中,l表示slot内的符号索引,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000301
相同,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000302
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
d)低峰均比序列长度,用于指示所选择的低峰均比序列长度。该项为可选项。当参考信号采用低峰均比序列时,低峰均比序列的长度可由网络设备配置。例如,下文示例中提到的序列长度M ZC。低峰均比序列长度应该比一个时隙内连续符号数长,如,一个时隙内连续符号数为4,低峰均比序列长度为6,序列上的值从起始点与符号索引或符号数(一个时隙内)依次对应。
e)低峰均比序列组数偏移,用于指示所选择的低峰均比序列组数与组数0的偏移值。如,天线端口数为2,一个时隙内连续符号数为4,低峰均比序列长度为6,低峰均比序列组数偏移为1时,所选组数从组数1开始,根据TS38.211表5.2.2.2-1,或本文表1所示,组数1对应的值分别为[-3,3,-1,-1,3,-3]、组数2对应的值分别为[-3,-3,-3,3,1,-3],则端口2的一个时隙内第一个符号对应-3,第二个符号对应-3,第三个符号对应-3,第四个符号对应3。此项为可选项,当没有配置时,默认为0。
S403:服务基站发送位置信息响应(LOCATION INFORMATION RESPONSE)给定位设备;可选地,所述位置信息响应携带终端的SRS配置信息,所述SRS的配置信息包括如下信息中的一项或多项:
a)采用伪随机序列、或采用低峰均比序列
b)随机相位旋转值组(或称为随机相位旋转值集合)
c)随机相位旋转粒度N CS和二进制位数K
d)低峰均比序列长度,用于指示所选择的低峰均比序列长度
e)低峰均比序列组数偏移,用于指示所选择的低峰均比序列组数与组数0的偏移值
上述5项信息的含义,可以参照上文的描述。
S404:终端向服务基站和/或邻基站发送SRS。
S405:定位设备向服务基站和邻基站发送位置测量请求,可选地,向邻基站发送的位置测量请求包括SRS配置信息中的一项或多项:
a)采用伪随机序列、或采用低峰均比序列
b)随机相位旋转值组(或称为随机相位旋转值集合)
c)随机相位旋转粒度N CS和二进制位数K
d)低峰均比序列长度,用于指示所选择的低峰均比序列长度
e)低峰均比序列组数偏移,用于指示所选择的低峰均比序列组数与组数0的偏移值
上述5项信息的含义,可以参照上文的描述
S406:服务基站、邻基站测量SRS,且向定位设备上报测量结果。
其中,随机相位因子与如下多个参数的中任一个或多个参数相关:
所述序列所映射的符号对应的符号索引;或者,所述序列所映射的符号对应的符号索引以及所映射的时隙的时隙索引;或者,通过低峰均比序列。
示例性地,在第一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000303
循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000304
Figure PCTCN2019109696-appb-000305
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000306
表示最大循环位移值,与comb取值相关。当前标准中,当comb取值为2时,
Figure PCTCN2019109696-appb-000307
取值为8;当comb取值为4时,
Figure PCTCN2019109696-appb-000308
取值为12;当comb取值为8,
Figure PCTCN2019109696-appb-000309
取值还未确定。例如,当comb取值为8,
Figure PCTCN2019109696-appb-000310
取值可以为6或12,也可以为其他值。
Figure PCTCN2019109696-appb-000311
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000312
Figure PCTCN2019109696-appb-000313
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000314
表示随机相位旋转的粒度,
N CS取值可以是大于等于2的整数,也可以与
Figure PCTCN2019109696-appb-000315
相同.
n rand用于确定不同符号上的随机相位旋转。
一种可能的实现方式中,n rand取值方式与时隙索引和符号索引有关,表达式为:
Figure PCTCN2019109696-appb-000316
其中,
Figure PCTCN2019109696-appb-000317
表示一帧内的时隙索引,l表示时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值
Figure PCTCN2019109696-appb-000318
可以是序列索引或资源索引,K取值可以大于等于0的整数。
例如,当K=7时是复用PUCCH的方案:
Figure PCTCN2019109696-appb-000319
另一种可能的实现方式中,n rand的取值方式仅与符号索引相关,表达式为:
Figure PCTCN2019109696-appb-000320
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000321
Figure PCTCN2019109696-appb-000322
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在第一种实现方式中,在循环移位的公式后增加了随机相位因子
Figure PCTCN2019109696-appb-000323
使得序列在映射到符号时,同一端口上不同符号的SRS的循环位移不同,降低终端之间的干扰,提升时延估计精度。
示例性的,在第二种实现方式中,所述随机相位因子为
Figure PCTCN2019109696-appb-000324
循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000325
其中,i表示第i个端口,l表示符号数;
Figure PCTCN2019109696-appb-000326
表示最大循环位移值,与comb取值相关。当前标准中,当comb取值为2时,
Figure PCTCN2019109696-appb-000327
取值为8;当comb取值为4时,
Figure PCTCN2019109696-appb-000328
取值为12;当comb取值为8,
Figure PCTCN2019109696-appb-000329
取值还未确定。
Figure PCTCN2019109696-appb-000330
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000331
Figure PCTCN2019109696-appb-000332
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000333
表示随机相位旋转的粒度,
N CS取值可以是大于等于2的整数,也可以与
Figure PCTCN2019109696-appb-000334
相同.
n rand用于确定不同符号上的随机相位旋转。
一种可能的实现方式中,n rand取值方式与时隙索引和符号索引有关,表达式为:
Figure PCTCN2019109696-appb-000335
其中,
Figure PCTCN2019109696-appb-000336
表示一帧内的时隙索引,l表示时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值
Figure PCTCN2019109696-appb-000337
可以是序列索引或资源索引,K取值可以大于等于0的整数。
另一种可能的实现方式中,n rand的取值方式仅与符号索引相关,表达式为:
Figure PCTCN2019109696-appb-000338
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000339
Figure PCTCN2019109696-appb-000340
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在上述第二种实现方式中,通过在α i,l上增加随机相位因子
Figure PCTCN2019109696-appb-000341
使得每个符号上循环移位不同,可以有效地降低终端之间的干扰,提高定位参数估计的准确性,进而提高定位精度。
本领域技术人员应理解,上述实现方式1和实现方式2中的序列为伪随机序列。
示例性地,在第三种实现方式中,在每个符号上增加随机相位旋转,随机相位因子为:
Figure PCTCN2019109696-appb-000342
或者
Figure PCTCN2019109696-appb-000343
循环移位的相位α i,l表达式为:
Figure PCTCN2019109696-appb-000344
其中,
Figure PCTCN2019109696-appb-000345
或者,将
Figure PCTCN2019109696-appb-000346
代入到α i,l,得到如下表达式:
Figure PCTCN2019109696-appb-000347
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000348
表示最大循环位移值,与comb取值相关。当前标准中,当comb取值为2时,
Figure PCTCN2019109696-appb-000349
取值为8;当comb取值为4时,
Figure PCTCN2019109696-appb-000350
取值为12;当comb取值为8,
Figure PCTCN2019109696-appb-000351
取值还未确定。
Figure PCTCN2019109696-appb-000352
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000353
Figure PCTCN2019109696-appb-000354
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000355
为低峰均比序列基序列(序列长度<36),当序列长度M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000356
此时,若将
Figure PCTCN2019109696-appb-000357
代入到
Figure PCTCN2019109696-appb-000358
得到如下表达式:
Figure PCTCN2019109696-appb-000359
其中,u∈{0,1,…,29},
Figure PCTCN2019109696-appb-000360
表示一个序列长度下u对应的
Figure PCTCN2019109696-appb-000361
值,如表1至表4所示。另外,
Figure PCTCN2019109696-appb-000362
的值也可以参考3GPP TS38.211。
Figure PCTCN2019109696-appb-000363
表1序列长度为6时的
Figure PCTCN2019109696-appb-000364
Figure PCTCN2019109696-appb-000365
表2序列长度为12时的
Figure PCTCN2019109696-appb-000366
Figure PCTCN2019109696-appb-000367
表3序列长度为18时的
Figure PCTCN2019109696-appb-000368
Figure PCTCN2019109696-appb-000369
表4序列长度为24时的
Figure PCTCN2019109696-appb-000370
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000371
此时,若将
Figure PCTCN2019109696-appb-000372
代入到
Figure PCTCN2019109696-appb-000373
得到如下表达式:
Figure PCTCN2019109696-appb-000374
对应的
Figure PCTCN2019109696-appb-000375
为如下表达式:
Figure PCTCN2019109696-appb-000376
上述序列长度共有5种,序列长度可以由网络设备为终端配置,例如,携带在SRS配置信息发送给终端。选择序列需满足:序列长度大于等于参考信号的符号数量(一个 时隙内)。如,SRS符号数量为12时,长度为12,18,24,30的序列都可选择。
u可以为预设值或者由网络设备配置或者预存表格的方式得到,比如:
第一种,u取值与
Figure PCTCN2019109696-appb-000377
取值相关。例如,u取值与
Figure PCTCN2019109696-appb-000378
取值相同:当
Figure PCTCN2019109696-appb-000379
取值为1时,u取值为1;当
Figure PCTCN2019109696-appb-000380
取值为2时,u取值为2;
Figure PCTCN2019109696-appb-000381
取值为3时,u取值为3。以上只是示例,对应方式不限于此。终端可以预存储表格,所述表格记录有u和
Figure PCTCN2019109696-appb-000382
的对应信息,通过
Figure PCTCN2019109696-appb-000383
的取值,得到u的取值。或者,网络设备指示
Figure PCTCN2019109696-appb-000384
的取值,根据u和
Figure PCTCN2019109696-appb-000385
的对应信息,终端得到u的取值。
第二种,u取值与
Figure PCTCN2019109696-appb-000386
取值和当前端口号相关。如总端口数
Figure PCTCN2019109696-appb-000387
为2,
Figure PCTCN2019109696-appb-000388
取值为12,
Figure PCTCN2019109696-appb-000389
取值为2,p i=i+1000,i∈{0,1},SRS连续符号数量(一个时隙内)为12,端口1对应的
Figure PCTCN2019109696-appb-000390
为2时每个符号上对应的相位旋转对应于序列长度M ZC=12且u=2的序列值,端口2对应的
Figure PCTCN2019109696-appb-000391
为8时每个符号上对应的相位旋转对应于序列长度M ZC=18且u=2的序列值,以上只是示例,对应方式不限于此。
第三种,u取值与
Figure PCTCN2019109696-appb-000392
和s取值相关,s表示低峰均比序列组数偏移。例如,u取值等于
Figure PCTCN2019109696-appb-000393
取值与s值相加:s为1时,当
Figure PCTCN2019109696-appb-000394
取值为1时,u取值为2;当
Figure PCTCN2019109696-appb-000395
取值为2时,u取值为3;
Figure PCTCN2019109696-appb-000396
取值为3时,u取值为4。以上只是示例,对应方式不限于此。
第四种,u取值与当前端口号和s取值相关,s表示低峰均比序列组数偏移。如总端口数
Figure PCTCN2019109696-appb-000397
为2,s为2,端口1对应的u=2,端口2对应的u=3。
通过在α i,l上增加随机相位因子
Figure PCTCN2019109696-appb-000398
Figure PCTCN2019109696-appb-000399
使得每个符号上循环移位不同,可以有效地降低终端之间的干扰,提高定位参数估计的准确性,进而提高定位精度。
可选地,在第四种实现方式中,在每个符号上增加随机相位旋转,所述随机相位因子为:
Figure PCTCN2019109696-appb-000400
其中,
Figure PCTCN2019109696-appb-000401
或者,
Figure PCTCN2019109696-appb-000402
SRS序列的表达式满足以下公式:
Figure PCTCN2019109696-appb-000403
Figure PCTCN2019109696-appb-000404
其中,
Figure PCTCN2019109696-appb-000405
或者,
Figure PCTCN2019109696-appb-000406
Figure PCTCN2019109696-appb-000407
代入上述公式,得到:
Figure PCTCN2019109696-appb-000408
Figure PCTCN2019109696-appb-000409
代入上述公式,得到:
Figure PCTCN2019109696-appb-000410
其中,
Figure PCTCN2019109696-appb-000411
为低峰均比序列基序列;当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000412
0≤n≤M ZC-1;其中,u∈{0,1,…,29},
Figure PCTCN2019109696-appb-000413
表示一个序列长度下u对应的
Figure PCTCN2019109696-appb-000414
值,如表1至表4所示。另外,
Figure PCTCN2019109696-appb-000415
的值也可以参考3GPP TS38.211。
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000416
此时,若将
Figure PCTCN2019109696-appb-000417
代入到
Figure PCTCN2019109696-appb-000418
得到如下SRS序列表达式:
Figure PCTCN2019109696-appb-000419
对应的
Figure PCTCN2019109696-appb-000420
为如下表达式:
Figure PCTCN2019109696-appb-000421
上述序列长度共有5种,由网络设备配置。选择序列需满足:序列长度大于等于参考信号的符号数量(一个时隙内)。如,SRS符号数量为12时,长度为12,18,24,30的序列都可选择。
δ=log 2(K TC);
u可以为预设值或者由网络设备配置或者终端预存储表格的方式,例如通过以下方式:
第一种,u取值与
Figure PCTCN2019109696-appb-000422
取值相关。例如,u取值与
Figure PCTCN2019109696-appb-000423
取值相同:当
Figure PCTCN2019109696-appb-000424
取值为1时,u取值为1;当
Figure PCTCN2019109696-appb-000425
取值为2时,u取值为2;
Figure PCTCN2019109696-appb-000426
取值为3时,u取值为3。以上只是示例,对应方式不限于此。终端可以预存储表格,所述表格记录有u和
Figure PCTCN2019109696-appb-000427
的对应信息,通过
Figure PCTCN2019109696-appb-000428
的取值,得到u的取值。或者,网络设备指示
Figure PCTCN2019109696-appb-000429
的取值,根据u和
Figure PCTCN2019109696-appb-000430
的对应信息,终端得到u的取值。
第二种,u取值与
Figure PCTCN2019109696-appb-000431
取值和当前端口号相关。如总端口数
Figure PCTCN2019109696-appb-000432
为2,
Figure PCTCN2019109696-appb-000433
取值为12,
Figure PCTCN2019109696-appb-000434
取值为2,p i=i+1000,i∈{0,1},SRS连续符号数量(一个时隙内)为12,端口1对应的
Figure PCTCN2019109696-appb-000435
为2时每个符号上对应的相位旋转对应于序列长度M ZC=12且u=2的序列值,端口2对应的
Figure PCTCN2019109696-appb-000436
为8时每个符号上对应的相位旋转对应于序列长度M ZC=18且u=2的序列值,以上只是示例,对应方式不限于此。
第三种,u取值与
Figure PCTCN2019109696-appb-000437
和s取值相关,s表示低峰均比序列组数偏移。例如,u取值等 于
Figure PCTCN2019109696-appb-000438
取值与s值相加:s为1时,当
Figure PCTCN2019109696-appb-000439
取值为1时,u取值为2;当
Figure PCTCN2019109696-appb-000440
取值为2时,u取值为3;
Figure PCTCN2019109696-appb-000441
取值为3时,u取值为4。以上只是示例,对应方式不限于此。
第四种,u取值与当前端口号和s取值相关,s表示低峰均比序列组数偏移。如总端口数
Figure PCTCN2019109696-appb-000442
为2,s为2,端口1对应的u=2,端口2对应的u=3。
p i表示当前端口号,l′表示符号数或符号索引或符号编号,
Figure PCTCN2019109696-appb-000443
Figure PCTCN2019109696-appb-000444
为一个时隙内的连续符号数。
Figure PCTCN2019109696-appb-000445
K TC为comb值,
Figure PCTCN2019109696-appb-000446
为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关,其中,跳频参数由网络设备配置,例如,例如,参考TS38.211表6.4.1.4.3-1,或本文表5,如下,其中b=B SRS,c=C SRS
Figure PCTCN2019109696-appb-000447
Figure PCTCN2019109696-appb-000448
表5 SRS带宽配置
循环移位的相位
Figure PCTCN2019109696-appb-000449
其中,
Figure PCTCN2019109696-appb-000450
Figure PCTCN2019109696-appb-000451
表示最大循环位移值;
Figure PCTCN2019109696-appb-000452
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000453
Figure PCTCN2019109696-appb-000454
为总端口数;p i表示当前端口号;
δ=log 2(K TC);
在上述第四种实现方式中,通过在SRS序列上乘以随机相位因子
Figure PCTCN2019109696-appb-000455
使得每个符号上循环移位不同,可以有效地降低终端之间的干扰,提高定位参数估计的准确性,进而提高定位精度。
可选地,在第五种实现方式中,在每个符号上增加随机相位旋转,所述随机相位因子为:
Figure PCTCN2019109696-appb-000456
所述SRS序列满足以下公式:
Figure PCTCN2019109696-appb-000457
其中,p i表示当前端口号,l′表示符号数或符号索引或符号编号
Figure PCTCN2019109696-appb-000458
Figure PCTCN2019109696-appb-000459
为一个时隙内的连续符号数;
Figure PCTCN2019109696-appb-000460
K TC为comb值,
Figure PCTCN2019109696-appb-000461
为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;其中,跳频参数由网络设备配置,例如,例如,参考TS38.211表6.4.1.4.3-1,或本文表5,其中b=B SRS,c=C SRS
循环移位的相位
Figure PCTCN2019109696-appb-000462
其中,
Figure PCTCN2019109696-appb-000463
Figure PCTCN2019109696-appb-000464
表示最大循环位移值;
Figure PCTCN2019109696-appb-000465
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000466
Figure PCTCN2019109696-appb-000467
为总端口数;p i表示当前端口号;
δ=log 2(K TC);
n rann用于确定不同符号上的随机相位旋转,即上文提到的随机相位旋转值组。
n rand取值可以由网络设备配置,比如,配置为任意有理数;
或者,除了可以由网络设备配置,还可以由终端根据公式得到,例如,n rand满足以下公式:
Figure PCTCN2019109696-appb-000468
其中,
Figure PCTCN2019109696-appb-000469
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000470
相同,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000471
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000472
其中,l表示slot内的符号索引,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000473
相同,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000474
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在第五种实现方式中,通过在SRS序列上乘以随机相位因子
Figure PCTCN2019109696-appb-000475
使得当所述序列映射到符号上时,每个符号上循环移位不同,同一端口上不同符号的SRS的循环位移不同,降低终端之间的干扰,提升时延估计精度。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,处理参考信号的执行主体既可以是终端设备或者可用于终端设备的部件(例如芯片或者电路)。
上文描述了本申请实施例提供的方法实施例,下文将描述本申请实施例提供的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图5示出根据本申请实施例的参考信号处理的装置500的示意性框图。装置500包括如下单元。
生成单元510,用于生成参考信号序列,其中,所述序列映射在不同的符号时具有不同的循环位移值;
生成单元510,用于将所述序列映射到一个或多个符号上;
发送单元520,用于发送所述一个或多个符号。
对应地,本申请实施例还提供一种参考信号处理的装置600的示意图,装置600包括如下单元。
接收单元610,用于接收所述一个或多个符号;
处理单元620,用于得到所述参考信号,所述参考信号的序列映射在不同的符号时具有不同的循环位移值;
所述处理单元620,还用于测量所述参考信号,得到测量结果。
其中,所述随机相位因子具体与以下参数中的任一项相关:所述序列所映射的符号对应的符号索引;或者,所述序列所映射的符号对应的符号索引以及所映射的时隙对应的时隙索引;或者,低峰均比序列。
可选地,装置500还包括接收单元530,用于接收来自网络设备的参考信号配置信息,所述参考信号配置信息包括以下信息中的一项或多项:
随机相位旋转类型、随机相位旋转值组n rand、随机相位旋转粒度N CS和二进制位数K、低峰均比序列长度M ZC、低峰均比序列组数偏移。
相应地,装置600还包括发送单元630,用于向终端发送参考信号配置信息,所述参考信号配置信息包括以下信息中的一项或多项:
随机相位旋转类型、随机相位旋转值组n rand、随机相位旋转粒度N CS和二进制位数K、低峰均比序列长度M ZC、低峰均比序列组数偏移。
可选地,接收单元610,还用于接收来自定位设备的位置信息请求,所述位置信息请求中携带以下信息中的一项或多项:
随机相位旋转类型、随机相位旋转值组n rand、随机相位旋转粒度N CS和二进制位数K、低峰均比序列长度M ZC、低峰均比序列组数偏移。
可选地,所述发送单元630,还用于向所述定位设备发送位置信息响应。
可选地,所述接收单元610,还用于接收来自所述定位设备的位置测量请求。
可选地,所述发送单元630,还用于向所述定位设备上报测量结果。
可选地,在第一种实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000476
序列的循环移位的相位α i,l满足以下公式:
Figure PCTCN2019109696-appb-000477
Figure PCTCN2019109696-appb-000478
其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
Figure PCTCN2019109696-appb-000479
表示最大循环位移值,与comb取值相关。当前标准中,当comb取值为2时,
Figure PCTCN2019109696-appb-000480
取值为8;当comb取值为4时,
Figure PCTCN2019109696-appb-000481
取值为12;当comb取值为8,
Figure PCTCN2019109696-appb-000482
取值还未确定。例如,当comb取值为8,
Figure PCTCN2019109696-appb-000483
取值为6或12,也可以是其他值。
Figure PCTCN2019109696-appb-000484
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000485
Figure PCTCN2019109696-appb-000486
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000487
表示随机相位旋转的粒度,
N CS取值可以是大于等于2的整数,也可以与
Figure PCTCN2019109696-appb-000488
相同.
n rand用于确定不同符号上的随机相位旋转。
一种可能的实现方式中,n rand取值方式与时隙索引和符号索引有关,表达式为:
Figure PCTCN2019109696-appb-000489
其中,
Figure PCTCN2019109696-appb-000490
表示一帧内的时隙索引,l表示时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值
Figure PCTCN2019109696-appb-000491
可以是序列索引或资源索引,K取值可以大于等于0的整数。
例如,当K=7时是复用PUCCH的方案:
Figure PCTCN2019109696-appb-000492
另一种可能的实现方式中,n rand的取值方式仅与符号索引相关,表达式为:
Figure PCTCN2019109696-appb-000493
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000494
Figure PCTCN2019109696-appb-000495
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在第一种实现方式中,在循环移位的公式后增加了随机相位因子
Figure PCTCN2019109696-appb-000496
使得序列在映射到符号时,同一端口上不同符号的SRS的循环位移不同,降低终端之间的干扰,提升时延估计精度。
可选的,在第二种实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000497
序列的循环移位的相位α i满足以下公式:
Figure PCTCN2019109696-appb-000498
其中,i表示第i个端口,l表示符号数;
Figure PCTCN2019109696-appb-000499
表示最大循环位移值,与comb取值相关。当前标准中,当comb取值为2时,
Figure PCTCN2019109696-appb-000500
取值为8;当comb取值为4时,
Figure PCTCN2019109696-appb-000501
取值为12;当comb取值为8,
Figure PCTCN2019109696-appb-000502
取值还未确定。例如,当comb取值为8,
Figure PCTCN2019109696-appb-000503
取值为6或12,也可以为其他值。
Figure PCTCN2019109696-appb-000504
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000505
Figure PCTCN2019109696-appb-000506
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000507
表示随机相位旋转的粒度,
N CS取值可以是大于等于2的整数,也可以与
Figure PCTCN2019109696-appb-000508
相同.
n rand用于确定不同符号上的随机相位旋转。
一种可能的实现方式中,n rand取值方式与时隙索引和符号索引有关,表达式为:
Figure PCTCN2019109696-appb-000509
其中,
Figure PCTCN2019109696-appb-000510
表示一帧内的时隙索引,l表示时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值
Figure PCTCN2019109696-appb-000511
可以是序列索引或资源索引,K取值可以大于等于0的整数。
另一种可能的实现方式中,n rand的取值方式仅与符号索引相关,表达式为:
Figure PCTCN2019109696-appb-000512
其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000513
Figure PCTCN2019109696-appb-000514
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在上述第二种实现方式中,通过在α i,l上增加随机相位因子
Figure PCTCN2019109696-appb-000515
使得每个符号上循环移位不同,可以有效地降低终端之间的干扰,提高定位参数估计的准确性,进而提高定位精度。
本领域技术人员应理解,上述实现方式1和实现方式2中的序列为伪随机序列。
可选地,在第三种实现方式中,在每个符号上增加随机相位旋转,循环移位的表达式为:
Figure PCTCN2019109696-appb-000516
其中,
Figure PCTCN2019109696-appb-000517
或者,将
Figure PCTCN2019109696-appb-000518
代入到α i,l,得到如下表达式:
Figure PCTCN2019109696-appb-000519
其中,i表示第i个端口,l表示符号数;
Figure PCTCN2019109696-appb-000520
表示最大循环位移值,与comb取值相关。当前标准中,当comb取值为2时,
Figure PCTCN2019109696-appb-000521
取值为8;当comb取值为4时,
Figure PCTCN2019109696-appb-000522
取值为12;当comb取值为8,
Figure PCTCN2019109696-appb-000523
取值还未确定。例如,当comb取值为8,
Figure PCTCN2019109696-appb-000524
取值为6或12,也可以是其他值。
Figure PCTCN2019109696-appb-000525
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000526
Figure PCTCN2019109696-appb-000527
为总端口数;p i表示当前端口号;
Figure PCTCN2019109696-appb-000528
为低峰均比序列(序列长度<36),当序列长度M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000529
此时,若将
Figure PCTCN2019109696-appb-000530
代入到
Figure PCTCN2019109696-appb-000531
得到如下表达式:
Figure PCTCN2019109696-appb-000532
其中,u∈{0,1,…,29},
Figure PCTCN2019109696-appb-000533
表示一个序列长度下u对应的
Figure PCTCN2019109696-appb-000534
值,如表1至表4所示。另外,
Figure PCTCN2019109696-appb-000535
的值也可以参考3GPP TS38.211。
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000536
此时,若将
Figure PCTCN2019109696-appb-000537
代入到
Figure PCTCN2019109696-appb-000538
得到如下表达式:
Figure PCTCN2019109696-appb-000539
对应的
Figure PCTCN2019109696-appb-000540
为如下表达式:
Figure PCTCN2019109696-appb-000541
u可以为预设值或者由网络设备配置,例如通过以下方式:
第一种,u取值与
Figure PCTCN2019109696-appb-000542
取值相关。例如,u取值与
Figure PCTCN2019109696-appb-000543
取值相同:当
Figure PCTCN2019109696-appb-000544
取值为1时,u取值为1;当
Figure PCTCN2019109696-appb-000545
取值为2时,u取值为2;
Figure PCTCN2019109696-appb-000546
取值为3时,u取值为3。对应方式不限于此。
第二种,u取值与
Figure PCTCN2019109696-appb-000547
取值和当前端口号相关。如总端口数
Figure PCTCN2019109696-appb-000548
为2,
Figure PCTCN2019109696-appb-000549
取值为12,
Figure PCTCN2019109696-appb-000550
取值为2,p i=i+1000,i∈{0,1},SRS连续符号数量(一个时隙内)为12,端口1对应的
Figure PCTCN2019109696-appb-000551
为2时每个符号上对应的相位旋转对应于序列长度M ZC=12且u=2的序列值,端口2对应的
Figure PCTCN2019109696-appb-000552
为8时每个符号上对应的相位旋转对应于序列长度M ZC=18且u=2的序列值,以上只是示例,对应方式不限于此。
第三种,u取值与
Figure PCTCN2019109696-appb-000553
和s取值相关,s表示低峰均比序列组数偏移。例如,u取值等于
Figure PCTCN2019109696-appb-000554
取值与s值相加:s为1时,当
Figure PCTCN2019109696-appb-000555
取值为1时,u取值为2;当
Figure PCTCN2019109696-appb-000556
取值为2时,u取值为3;
Figure PCTCN2019109696-appb-000557
取值为3时,u取值为4。以上只是示例,对应方式不限于此。
第四种,u取值与当前端口号和s取值相关,s表示低峰均比序列组数偏移。如总端口数
Figure PCTCN2019109696-appb-000558
为2,s为2,端口1对应的u=2,端口2对应的u=3。
p i表示当前端口号,l′表示符号数或符号索引或符号编号,
Figure PCTCN2019109696-appb-000559
Figure PCTCN2019109696-appb-000560
为一个时隙内的连续符号数;
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000561
所述SRS序列满足以下公式:
Figure PCTCN2019109696-appb-000562
其中,
Figure PCTCN2019109696-appb-000563
为低峰均比序列,
Figure PCTCN2019109696-appb-000564
为低峰均比序列基序列;p i表示当前端口号,l′表示符号数或符号索引或符号编号
Figure PCTCN2019109696-appb-000565
Figure PCTCN2019109696-appb-000566
为SRS资源在一个时隙内的连续符号数;
Figure PCTCN2019109696-appb-000567
K TC为comb值,
Figure PCTCN2019109696-appb-000568
为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;关于跳频参数的描述,请参见方法实施例。
循环移位的相位
Figure PCTCN2019109696-appb-000569
其中,
Figure PCTCN2019109696-appb-000570
Figure PCTCN2019109696-appb-000571
表示最大循环位移值;
Figure PCTCN2019109696-appb-000572
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000573
Figure PCTCN2019109696-appb-000574
为总端口数;p i表示当前端口号;
δ=log 2(K TC);
n rand用于确定不同符号上的随机相位旋转;
n rand取值可以由网络设备配置,比如,配置为任意有理数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000575
其中,
Figure PCTCN2019109696-appb-000576
表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000577
相同,c(i)是伪随机序列,初始值c init
Figure PCTCN2019109696-appb-000578
表示序列索引或资源索引,K取值为大于等于0的整数;
或者,n rand满足以下公式:
Figure PCTCN2019109696-appb-000579
其中,l表示slot内的符号索引,N CS取值是大于等于2的整数,或,N CS取值与
Figure PCTCN2019109696-appb-000580
相同,c(i)是伪随机序列初始值
Figure PCTCN2019109696-appb-000581
可以是序列索引或资源索引,K取值可以是大于等于0的整数。
在另一种可能的实现方式中,所述随机相位因子为:
Figure PCTCN2019109696-appb-000582
所述SRS序列满足以下公式:
Figure PCTCN2019109696-appb-000583
Figure PCTCN2019109696-appb-000584
或者
Figure PCTCN2019109696-appb-000585
Figure PCTCN2019109696-appb-000586
为低峰均比序列,
Figure PCTCN2019109696-appb-000587
为低峰均比序列基序列;p i表示当前端口号,l′表示符号数或符号索引或符号编号
Figure PCTCN2019109696-appb-000588
Figure PCTCN2019109696-appb-000589
为一个时隙内的连续符号数;
Figure PCTCN2019109696-appb-000590
K TC为comb值,
Figure PCTCN2019109696-appb-000591
为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;关于跳频参数的描述可以参考上文方法实施例的描述,这里不再赘述。
循环移位的相位
Figure PCTCN2019109696-appb-000592
其中,
Figure PCTCN2019109696-appb-000593
Figure PCTCN2019109696-appb-000594
表示最大循环位移值;
Figure PCTCN2019109696-appb-000595
为循环移位,取值范围为
Figure PCTCN2019109696-appb-000596
Figure PCTCN2019109696-appb-000597
为总端口数;p i表示当前端口号;
u为预设值,或者,u的取值与时隙索引、符号索引相关;
Figure PCTCN2019109696-appb-000598
为低峰均比序列基序列;u可以为预设值或者由网络设备配置,例如通过以下方式:
第一种,u取值与
Figure PCTCN2019109696-appb-000599
取值相关。例如,u取值与
Figure PCTCN2019109696-appb-000600
取值相同:当
Figure PCTCN2019109696-appb-000601
取值为1时,u取值为1;当
Figure PCTCN2019109696-appb-000602
取值为2时,u取值为2;
Figure PCTCN2019109696-appb-000603
取值为3时,u取值为3。对应方式不限于此。
第二种,u取值与
Figure PCTCN2019109696-appb-000604
取值和当前端口号相关。如总端口数
Figure PCTCN2019109696-appb-000605
为2,
Figure PCTCN2019109696-appb-000606
取值为12,
Figure PCTCN2019109696-appb-000607
取值为2,p i=i+1000,i∈{0,1},SRS连续符号数量(一个时隙内)为12,端口1对应的
Figure PCTCN2019109696-appb-000608
为2时每个符号上对应的相位旋转对应于序列长度M ZC=12且u=2的序列值,端口2对应的
Figure PCTCN2019109696-appb-000609
为8时每个符号上对应的相位旋转对应于序列长度M ZC=18且u=2的序列值,以上只是示例,对应方式不限于此。
第三种,u取值与
Figure PCTCN2019109696-appb-000610
和s取值相关,s表示低峰均比序列组数偏移。例如,u取值等于
Figure PCTCN2019109696-appb-000611
取值与s值相加:s为1时,当
Figure PCTCN2019109696-appb-000612
取值为1时,u取值为2;当
Figure PCTCN2019109696-appb-000613
取值为2时,u取值为3;
Figure PCTCN2019109696-appb-000614
取值为3时,u取值为4。以上只是示例,对应方式不限于此。
第四种,u取值与当前端口号和s取值相关,s表示低峰均比序列组数偏移。如总端口数
Figure PCTCN2019109696-appb-000615
为2,s为2,端口1对应的u=2,端口2对应的u=3。
p i表示当前端口号,l′表示符号数或符号索引或符号编号,
Figure PCTCN2019109696-appb-000616
Figure PCTCN2019109696-appb-000617
为一个时隙内的连续符号数;
当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
Figure PCTCN2019109696-appb-000618
当序列长度为M ZC=30时,序列表达式为:
Figure PCTCN2019109696-appb-000619
δ=log 2(K TC)。
本申请实施例通过在引入随机相位因子,使得每个符号上循环移位不同,可以有效地降低终端之间的干扰,提高定位参数估计的准确性,进而提高定位精度。
本申请实施例还提供一种通信装置700,该通信装置700可以是终端设备也可以是芯片。该通信设备700可以用于执行上述方法实施例。
当该通信设备700为终端设备时,图7示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图7中,终端设备以手机作为例子。如图7所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及 对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图7所示,终端设备包括收发单元710和处理单元720。收发单元710也可以称为收发器、收发机、收发装置等。处理单元720也可以称为处理器,处理单板,处理模块、处理装置等。可选地,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
例如,在一种实现方式中,处理单元720用于执行上述方法实施例。收发单元710用于上述方法实施例中相关的收发操作。例如,收发单元710用于发送一个或多个符号。
应理解,图7仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图7所示的结构。
当该通信设备700为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路或通信接口;处理单元可以为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信设备800,该通信设备800可以是网络设备也可以是芯片。该通信设备800可以用于执行上述方法实施例。
当该通信设备800为网络设备时,例如为基站。图8示出了一种简化的基站结构示意 图。基站包括810部分以及820部分。810部分主要用于射频信号的收发以及射频信号与基带信号的转换;820部分主要用于基带处理,对基站进行控制等。810部分通常可以称为收发单元、收发机、收发电路、或者收发器等。820部分通常是基站的控制中心,通常可以称为处理单元,用于控制基站执行上述方法实施例中网络设备侧的处理操作。
810部分的收发单元,也可以称为收发机或收发器等,其包括天线和射频单元,其中射频单元主要用于进行射频处理。可选地,可以将810部分中用于实现接收功能的器件视为接收单元,将用于实现发送功能的器件视为发送单元,即810部分包括接收单元和发送单元。接收单元也可以称为接收机、接收器、或接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
820部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,820部分用于执行上述方法实施例。810部分用于上述方法实施例中相关的收发操作。例如,810部分用于接收一个或多个符号。
应理解,图8仅为示例而非限定,上述包括收发单元和处理单元的网络设备可以不依赖于图8所示的结构。
当该通信设备800为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时使得该计算机实现上述方法实施例。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例。
上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存) 等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态 随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说 对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (49)

  1. 一种参考信号处理的方法,其特征在于,包括:
    生成参考信号的序列,其中,所述序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示采用第i个端口发送所述参考信号,l表示所述序列映射的符号数或符号索引或符号编号,其中,所述随机相位因子表示所述序列映射在不同的符号时具有不同的循环位移值;
    将所述序列映射到一个或多个符号,并发送。
  2. 根据权利要求1所述的方法,其特征在于,所述随机相位因子具体与以下参数中的任一项相关:
    所述序列所映射的符号对应的符号索引;或者,
    所述序列所映射的符号对应的符号索引以及所映射的时隙对应的时隙索引;或者,低峰均比序列。
  3. 根据权利要求1或2所述的方法,其特征在于,所述随机相位因子为:
    Figure PCTCN2019109696-appb-100001
    所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100002
    或者,
    Figure PCTCN2019109696-appb-100003
    其中,
    Figure PCTCN2019109696-appb-100004
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100005
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100006
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100007
    Figure PCTCN2019109696-appb-100008
    为总端口数;p i表示当前端口号;
    Figure PCTCN2019109696-appb-100009
    表示随机相位旋转的粒度;
    N CS取值是大于等于2的整数,或,与
    Figure PCTCN2019109696-appb-100010
    相同;
    n rand用于确定不同符号上的随机相位旋转;
    其中,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100011
    其中,
    Figure PCTCN2019109696-appb-100012
    表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号索引或符 号索引或符号编号,c(i)是伪随机序列,初始值c init
    Figure PCTCN2019109696-appb-100013
    表示序列索引或资源索引,K取值为大于等于0的整数;
    或者,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100014
    其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100015
    Figure PCTCN2019109696-appb-100016
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  4. 根据权利要求1或2所述的方法,其特征在于,所述随机相位因子为
    Figure PCTCN2019109696-appb-100017
    所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100018
    或者,
    Figure PCTCN2019109696-appb-100019
    其中,
    Figure PCTCN2019109696-appb-100020
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100021
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100022
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100023
    Figure PCTCN2019109696-appb-100024
    为总端口数;p i表示当前端口号;
    Figure PCTCN2019109696-appb-100025
    表示随机相位旋转的粒度;
    N CS取值是大于等于2的整数,或,与
    Figure PCTCN2019109696-appb-100026
    相同;
    n rand用于确定不同符号上的随机相位旋转;
    其中,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100027
    其中,
    Figure PCTCN2019109696-appb-100028
    表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号索引或符号索引或符号编号,c(i)是伪随机序列,初始值c init
    Figure PCTCN2019109696-appb-100029
    表示序列索引或资源索引,K取值为大于等于0的整数;
    或者,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100030
    其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100031
    Figure PCTCN2019109696-appb-100032
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  5. 根据权利要求3或4所述的方法,其特征在于,所述序列为伪随机序列。
  6. 根据权利要求1或2所述的方法,其特征在于,所述随机相位因子为:
    Figure PCTCN2019109696-appb-100033
    或者
    Figure PCTCN2019109696-appb-100034
    所述循环移位相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100035
    或者,
    Figure PCTCN2019109696-appb-100036
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100037
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100038
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100039
    Figure PCTCN2019109696-appb-100040
    为总端口数;p i表示当前端口号;
    u为预设值,或者,u的取值与时隙索引、符号索引相关;
    Figure PCTCN2019109696-appb-100041
    为低峰均比序列基序列;当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100042
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100043
  7. 一种参考信号处理方法,其特征在于,所述方法包括:
    从终端接收一个或多个符号;
    得到参考信号,其中,所述参考信号的序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示所述参考信号是通过第i个端口发送的,l表示所述序列映射的符号数或符号索引或符号编号;
    测量所述参考信号,并根据所述测量结果测量确定所述终端的位置信息。
  8. 根据权利要求7所述的方法,其特征在于,所述随机相位因子具体与以下参数中的任一项相关:
    所述序列所映射的符号对应的符号索引;或者,
    所述序列所映射的符号对应的符号索引以及所映射的时隙的时隙索引;或者,
    低峰均比序列。
  9. 根据权利要求7或8所述的方法,其特征在于,所述随机因子为:
    Figure PCTCN2019109696-appb-100044
    所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100045
    或者,
    Figure PCTCN2019109696-appb-100046
    其中,
    Figure PCTCN2019109696-appb-100047
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100048
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100049
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100050
    Figure PCTCN2019109696-appb-100051
    为总端口数;p i表示当前端口号;
    n rand用于表示不同符号上的随机相位旋转,其中,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100052
    其中,
    Figure PCTCN2019109696-appb-100053
    表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号索引或符号索引或符号编号,c(i)是伪随机序列,初始值c init
    Figure PCTCN2019109696-appb-100054
    表示序列索引或资源索引,K取值为大于等于0的整数;
    或者,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100055
    其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100056
    Figure PCTCN2019109696-appb-100057
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  10. 根据权利要求7或8所述的方法,其特征在于,所述随机相位因子为:
    Figure PCTCN2019109696-appb-100058
    所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100059
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100060
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100061
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100062
    Figure PCTCN2019109696-appb-100063
    表示随机相位旋转的粒度;
    Figure PCTCN2019109696-appb-100064
    为总端口数;p i表示当前端口号;
    n rand表示不同符号上的随机相位旋转,其中,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100065
    其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100066
    Figure PCTCN2019109696-appb-100067
    可以是序列索引或资源索引,K取值可以是大于等于0的整数;
    或者,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100068
    其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100069
    Figure PCTCN2019109696-appb-100070
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  11. 根据权利要求9或10所述的方法,其特征在于,所述序列为伪随机序列。
  12. 根据权利要求7或8所述的方法,其特征在于,所述随机相位因子为
    Figure PCTCN2019109696-appb-100071
    或者,
    Figure PCTCN2019109696-appb-100072
    所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100073
    或者,
    Figure PCTCN2019109696-appb-100074
    其中,i表示第i个端口,l表示符号数;
    Figure PCTCN2019109696-appb-100075
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100076
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100077
    Figure PCTCN2019109696-appb-100078
    为总端口数;
    p i表示当前端口号;
    u为预设值,或者,u的取值与时隙索引、符号索引相关;r u,v(l)为低峰均比序列基序列;当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100079
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100080
  13. 一种用于参考信号处理的装置,其特征在于,包括:
    生成单元,用于生成参考信号的序列,其中,所述序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示采用第i个端口发送所述参考信号,l表示所述序列映射的符号数或符号索引或符号编号;
    所述生成单元,还用于将所述序列映射到一个或多个符号;
    发送单元,用于发送所述一个或多个符号。
  14. 根据权利要求13所述的装置,其特征在于,所述随机相位因子具体与以下参数中的任一项相关:
    所述序列所映射的符号对应的符号索引;或者,
    所述序列所映射的符号对应的符号索引以及所映射的时隙的时隙索引;或者,
    低峰均比序列。
  15. 根据权利要求13或14所述的装置,其特征在于,所述随机相位因子为:
    Figure PCTCN2019109696-appb-100081
    所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100082
    或者,
    Figure PCTCN2019109696-appb-100083
    其中,
    Figure PCTCN2019109696-appb-100084
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100085
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100086
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100087
    Figure PCTCN2019109696-appb-100088
    为总端口数;p i表示当前端口号;
    Figure PCTCN2019109696-appb-100089
    表示随机相位旋转的粒度;
    N CS取值是大于等于2的整数,或,与
    Figure PCTCN2019109696-appb-100090
    相同;
    n rand用于确定不同符号上的随机相位旋转;
    其中,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100091
    其中,
    Figure PCTCN2019109696-appb-100092
    表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值c init
    Figure PCTCN2019109696-appb-100093
    表示序列索引或资源索引,K取值为大于等于0的整数;
    或者,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100094
    其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100095
    Figure PCTCN2019109696-appb-100096
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  16. 根据权利要求13或14所述的装置,其特征在于,所述随机相位因子为:
    Figure PCTCN2019109696-appb-100097
    所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100098
    Figure PCTCN2019109696-appb-100099
    其中,
    Figure PCTCN2019109696-appb-100100
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100101
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100102
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100103
    Figure PCTCN2019109696-appb-100104
    为总端口数;p i表示当前端口号;
    Figure PCTCN2019109696-appb-100105
    表示随机相位旋转的粒度;
    N CS取值是大于等于2的整数,或,与
    Figure PCTCN2019109696-appb-100106
    相同;
    n rand用于确定不同符号上的随机相位旋转;
    其中,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100107
    其中,
    Figure PCTCN2019109696-appb-100108
    表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,c(i)是伪随机序列,初始值c init
    Figure PCTCN2019109696-appb-100109
    表示序列索引或资源索引,K取值为大于等于0的整数;
    或者,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100110
    其中,l表示slot内的符号索引,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100111
    Figure PCTCN2019109696-appb-100112
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  17. 根据权利要求15或16所述的装置,其特征在于,所述序列为伪随机序列。
  18. 根据权利要求13或14所述的装置,其特征在于,所述随机相位因子为:
    Figure PCTCN2019109696-appb-100113
    或者,
    Figure PCTCN2019109696-appb-100114
    所述循环移位相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100115
    或者,
    Figure PCTCN2019109696-appb-100116
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100117
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100118
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100119
    Figure PCTCN2019109696-appb-100120
    为总端口数;p i表示当前端口号;
    u为预设值,或者,u的取值与时隙索引、符号索引相关;
    Figure PCTCN2019109696-appb-100121
    为低峰均比序列基序列;当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100122
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100123
  19. 一种参考信号处理的装置,其特征在于,包括:
    接收单元,用于从终端接收一个或多个符号;
    处理单元,用于得到参考信号,其中所述参考信号的序列的循环移位的相位α i,l与随机相位因子相关,其中,i表示所述参考信号是通过第i个端口发送的,l表示所述序列映射的符号数或符号索引或符号编号;
    所述处理单元,还用于测量所述参考信号,并根据所述测量结果测量确定所述终端的位置信息。
  20. 根据权利要求19所述的装置,其特征在于,所述随机相位因子具体与以下参数中的任一项相关:
    所述序列所映射的符号对应的符号索引;或者,
    所述序列所映射的符号对应的符号索引以及所映射的时隙的时隙索引;或者,
    低峰均比序列。
  21. 根据权利要求19或20所述的装置,其特征在于,所述随机因子为:
    Figure PCTCN2019109696-appb-100124
    所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100125
    或者,
    Figure PCTCN2019109696-appb-100126
    其中,
    Figure PCTCN2019109696-appb-100127
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100128
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100129
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100130
    Figure PCTCN2019109696-appb-100131
    为总端口数;p i表示当前端口号;
    n rand用于表示不同符号上的随机相位旋转,其中,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100132
    其中,
    Figure PCTCN2019109696-appb-100133
    表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号索引,c(i)是伪随机序列,初始值c init
    Figure PCTCN2019109696-appb-100134
    表示序列索引或资源索引,K取值为大于等于0的整数;
    或者,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100135
    其中,l表示slot内的符号数或符号索引或符号编号引,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100136
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  22. 根据权利要求19或20所述的装置,其特征在于,所述随机相位因子为:
    Figure PCTCN2019109696-appb-100137
    所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100138
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100139
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100140
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100141
    Figure PCTCN2019109696-appb-100142
    表示随机相位旋转的粒度;
    Figure PCTCN2019109696-appb-100143
    为总端口数;p i表示当前端口号;
    n rand表示不同符号上的随机相位旋转,其中,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100144
    其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100145
    可以是序列索引或资源索引,K取值可以是≥0的整数;
    或者,n rand满足以下公式:
    Figure PCTCN2019109696-appb-100146
    其中,l表示slot内的符号数或符号索引或符号编号,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100147
    Figure PCTCN2019109696-appb-100148
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  23. 根据权利要求21或22所述的装置,其特征在于,所述序列为伪随机序列。
  24. 根据权利要求19或20所述的装置,其特征在于,所述随机相位因子为
    Figure PCTCN2019109696-appb-100149
    或者,
    Figure PCTCN2019109696-appb-100150
    所述所述循环移位的相位α i,l满足以下公式:
    Figure PCTCN2019109696-appb-100151
    或者,
    Figure PCTCN2019109696-appb-100152
    其中,i表示第i个端口,l表示符号数或符号索引或符号编号;
    Figure PCTCN2019109696-appb-100153
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100154
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100155
    Figure PCTCN2019109696-appb-100156
    为总端口数;
    p i表示当前端口号;
    u为预设值,或者,u的取值与时隙索引、符号索引相关;
    Figure PCTCN2019109696-appb-100157
    为低峰均比序列基序列;当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100158
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100159
    Figure PCTCN2019109696-appb-100160
    表示一个序列长度下u对应的
    Figure PCTCN2019109696-appb-100161
    值。
  25. 一种计算机可读存储介质,存储有计算机指令,当运行所述指令时,使得计算机执行如权利要求1-6任一项所述的方法,或者,使得计算机执行如权利要求7-12任一项所述的方法。
  26. 一种参考信号处理方法,其特征在于,包括:
    生成参考信号的序列;
    将所述序列映射到一个或多个符号上,其中,不同符号上的序列具有不同的循环移位;
    将所述映射了序列的一个或多个符号发送给网络设备。
  27. 根据权利要求26所述的方法,其特征在于,所述参考信号为SRS,其序列满足以下公式:
    Figure PCTCN2019109696-appb-100162
    其中,
    Figure PCTCN2019109696-appb-100163
    为低峰均比序列基序列;
    当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100164
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100165
    p i表示当前端口号,l′表示符号数或符号索引或符号编号,
    Figure PCTCN2019109696-appb-100166
    Figure PCTCN2019109696-appb-100167
    为SRS资源在一个时隙内的连续符号数;
    Figure PCTCN2019109696-appb-100168
    K TC为comb值,
    Figure PCTCN2019109696-appb-100169
    为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;
    循环移位的相位
    Figure PCTCN2019109696-appb-100170
    其中,
    Figure PCTCN2019109696-appb-100171
    Figure PCTCN2019109696-appb-100172
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100173
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100174
    Figure PCTCN2019109696-appb-100175
    为总端口数;p i表示当前端口号;
    δ=log 2(K TC);
    n rand用于确定不同符号上的随机相位旋转;
    Figure PCTCN2019109696-appb-100176
    表示一个序列长度下u对应的
    Figure PCTCN2019109696-appb-100177
    值。
  28. 根据权利要求27所述的方法,其特征在于,所述n rand是从网络设备接收的有理数。
  29. 根据权利要求27所述的方法,其特征在于,所述n rand满足以下公式:
    Figure PCTCN2019109696-appb-100178
    其中,
    Figure PCTCN2019109696-appb-100179
    表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号 索引或符号编号,N CS取值是大于等于2的整数,或,N CS取值与
    Figure PCTCN2019109696-appb-100180
    相同,c(i)是伪随机序列,初始值c init
    Figure PCTCN2019109696-appb-100181
    表示序列索引或资源索引,K取值为大于等于0的整数。
  30. 根据权利要求27所述的方法,其特征在于,所述n rand满足以下公式:
    Figure PCTCN2019109696-appb-100182
    其中,l表示slot内的符号索引,N CS取值是大于等于2的整数,或,N CS取值与
    Figure PCTCN2019109696-appb-100183
    相同,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100184
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  31. 根据权利要求26所述的方法,其特征在于,所述参考信号为SRS,其序列满足以下公式:
    Figure PCTCN2019109696-appb-100185
    或者,
    Figure PCTCN2019109696-appb-100186
    Figure PCTCN2019109696-appb-100187
    为低峰均比序列基序列;
    当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100188
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100189
    p i表示当前端口号,l′表示符号数或符号索引或符号编号,
    Figure PCTCN2019109696-appb-100190
    Figure PCTCN2019109696-appb-100191
    为一个时隙内的连续符号数;
    Figure PCTCN2019109696-appb-100192
    K TC为comb值,
    Figure PCTCN2019109696-appb-100193
    为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;
    循环移位的相位
    Figure PCTCN2019109696-appb-100194
    其中,
    Figure PCTCN2019109696-appb-100195
    Figure PCTCN2019109696-appb-100196
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100197
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100198
    Figure PCTCN2019109696-appb-100199
    为总端口数;p i表示当前端口号。
  32. 根据权利要求26-30任一项所述的方法,其特征在于,所述方法还包括:
    从网络设备接收参考信号配置信息,所述配置信息包括以下信息中的一项或多项:
    随机相位旋转类型、随机相位旋转值组n rand、随机相位旋转粒度N CS和二进制位数K、低峰均比序列长度M ZC、低峰均比序列组数偏移;
    其中,所述随机相位旋转类型包括伪随机序列和低峰均比序列。
  33. 一种用于参考信号处理的装置,其特征在于,包括:
    处理单元,用于生成参考信号的序列;将所述序列映射到一个或多个符号上,其中,不同符号上的序列具有不同的循环移位;
    发送单元,用于将所述映射了序列的一个或多个符号发送给网络设备。
  34. 根据权利要求33所述的装置,其特征在于,所述参考信号为SRS,其序列满足以下公式:
    Figure PCTCN2019109696-appb-100200
    其中,
    Figure PCTCN2019109696-appb-100201
    为低峰均比序列基序列;
    当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100202
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100203
    p i表示当前端口号,l′表示符号数或符号索引或符号编号,
    Figure PCTCN2019109696-appb-100204
    Figure PCTCN2019109696-appb-100205
    为SRS资源在一个时隙内的连续符号数;
    Figure PCTCN2019109696-appb-100206
    K TC为comb值,
    Figure PCTCN2019109696-appb-100207
    为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;
    循环移位的相位
    Figure PCTCN2019109696-appb-100208
    其中,
    Figure PCTCN2019109696-appb-100209
    Figure PCTCN2019109696-appb-100210
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100211
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100212
    Figure PCTCN2019109696-appb-100213
    为总端口数;p i表示当前端口号;
    δ=log 2(K TC);
    n rand用于确定不同符号上的随机相位旋转;
    Figure PCTCN2019109696-appb-100214
    表示一个序列长度下u对应的
    Figure PCTCN2019109696-appb-100215
    值。
  35. 根据权利要求34所述的装置,其特征在于,所述n rand是从网络设备接收的。
  36. 根据权利要求34所述的装置,其特征在于,所述n rand满足以下公式:
    Figure PCTCN2019109696-appb-100216
    其中,
    Figure PCTCN2019109696-appb-100217
    表示所述伪随机序列映射的时隙索引,l表示所述时隙内的符号数或符号索引或符号编号,N CS取值是大于等于2的整数,或,N CS取值与
    Figure PCTCN2019109696-appb-100218
    相同,c(i)是伪随机序列,初始值c init
    Figure PCTCN2019109696-appb-100219
    表示序列索引或资源索引,K取值为大于等于0的整数。
  37. 根据权利要求34所述的装置,其特征在于,所述n rand满足以下公式:
    Figure PCTCN2019109696-appb-100220
    其中,l表示slot内的符号索引,N CS取值是大于等于2的整数,或,N CS取值与
    Figure PCTCN2019109696-appb-100221
    相同,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100222
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  38. 根据权利要求33所述的装置,其特征在于,所述参考信号为SRS,其序列满足以下公式:
    Figure PCTCN2019109696-appb-100223
    或者,
    Figure PCTCN2019109696-appb-100224
    Figure PCTCN2019109696-appb-100225
    为低峰均比序列基序列;
    当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100226
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100227
    p i表示当前端口号,l′表示符号数或符号索引或符号编号,
    Figure PCTCN2019109696-appb-100228
    Figure PCTCN2019109696-appb-100229
    为一个时隙内的连续符号数;
    Figure PCTCN2019109696-appb-100230
    K TC为comb值,
    Figure PCTCN2019109696-appb-100231
    为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;
    循环移位的相位
    Figure PCTCN2019109696-appb-100232
    其中,
    Figure PCTCN2019109696-appb-100233
    Figure PCTCN2019109696-appb-100234
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100235
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100236
    Figure PCTCN2019109696-appb-100237
    为总端口数;p i表示当前端口号。
  39. 根据权利要求33-38任一项所述的装置,其特征在于,还包括接收单元,用于从网络设备接收参考信号配置信息,所述配置信息包括以下信息中的一项或多项:
    随机相位旋转类型、随机相位旋转值组、随机相位旋转粒度N CS和二进制位数K、低峰均比序列长度M ZC、低峰均比序列组数偏移;
    其中,所述随机相位旋转类型包括伪随机序列和低峰均比序列。
  40. 一种参考信号处理的方法,其特征在于,包括:
    接收一个或多个符号,所述符号上映射有参考信号;其中,不同符号上的参考信号序列具有不同的循环移位;
    测量所述参考信号。
  41. 一种用于参考信号处理的装置,其特征在于,包括:
    接收单元,用于接收一个或多个符号,所述符号上映射有参考信号,其中,不同符号上的参考信号序列具有不同的循环移位;以及
    处理单元,用于测量所述参考信号。
  42. 根据权利要求40或41所述的方法或装置,其特征在于,所述参考信号为SRS,其序列满足以下公式:
    Figure PCTCN2019109696-appb-100238
    其中,
    Figure PCTCN2019109696-appb-100239
    为低峰均比序列,
    Figure PCTCN2019109696-appb-100240
    为低峰均比序列基序列;
    当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100241
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100242
    p i表示当前端口号,l′表示符号数或符号索引或符号编号,
    Figure PCTCN2019109696-appb-100243
    Figure PCTCN2019109696-appb-100244
    为SRS资源在一个时隙内的连续符号数;
    Figure PCTCN2019109696-appb-100245
    K TC为comb值,
    Figure PCTCN2019109696-appb-100246
    为一个子载波内的资源块个数,m SRS,b的取值与跳频参数相关;
    循环移位的相位
    Figure PCTCN2019109696-appb-100247
    其中,
    Figure PCTCN2019109696-appb-100248
    Figure PCTCN2019109696-appb-100249
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100250
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100251
    Figure PCTCN2019109696-appb-100252
    为总端口数;p i表示当前端口号;
    δ=log 2(K TC);
    n rand用于确定不同符号上的随机相位旋转;
    Figure PCTCN2019109696-appb-100253
    表示一个序列长度下u对应的
    Figure PCTCN2019109696-appb-100254
    值。
  43. 根据权利要求42所述的方法或装置,其特征在于,所述n rand满足以下公式:
    Figure PCTCN2019109696-appb-100255
    其中,l表示slot内的符号索引,N CS取值是大于等于2的整数,或,N CS取值与
    Figure PCTCN2019109696-appb-100256
    相同,c(i)是伪随机序列初始值
    Figure PCTCN2019109696-appb-100257
    可以是序列索引或资源索引,K取值可以是大于等于0的整数。
  44. 根据权利要求42所述的方法或装置,其特征在于,所述参考信号为SRS,其序列满足以下公式:
    Figure PCTCN2019109696-appb-100258
    其中,
    Figure PCTCN2019109696-appb-100259
    或者,
    Figure PCTCN2019109696-appb-100260
    Figure PCTCN2019109696-appb-100261
    代入上述公式,得到:
    Figure PCTCN2019109696-appb-100262
    Figure PCTCN2019109696-appb-100263
    代入上述公式,得到:
    Figure PCTCN2019109696-appb-100264
    其中,
    Figure PCTCN2019109696-appb-100265
    为低峰均比序列,
    Figure PCTCN2019109696-appb-100266
    为低峰均比序列基序列;
    当序列长度为M ZC∈{6,12,18,24}时,序列表达式为:
    Figure PCTCN2019109696-appb-100267
    当序列长度为M ZC=30时,序列表达式为:
    Figure PCTCN2019109696-appb-100268
    p i表示当前端口号,l′表示符号数或符号索引或符号编号,
    Figure PCTCN2019109696-appb-100269
    Figure PCTCN2019109696-appb-100270
    为一个时隙内的连续符号数;
    Figure PCTCN2019109696-appb-100271
    K TC为comb值,
    Figure PCTCN2019109696-appb-100272
    为一个子载波内的资源块个数,m SRS,b的取值与跳频参数b和c相关;
    循环移位的相位
    Figure PCTCN2019109696-appb-100273
    其中,
    Figure PCTCN2019109696-appb-100274
    Figure PCTCN2019109696-appb-100275
    表示最大循环位移值;
    Figure PCTCN2019109696-appb-100276
    为循环移位,取值范围为
    Figure PCTCN2019109696-appb-100277
    Figure PCTCN2019109696-appb-100278
    为总端口数;p i表示当前端口号。
  45. 根据权利要求40所述的方法,其特征在于,所述方法还包括:
    从定位设备接收位置信息请求,所述位置信息请求携带以下信息中的一项或多项:
    随机相位旋转类型、随机相位旋转值组、随机相位旋转粒度N CS和二进制位数K、低峰均比序列长度M ZC、低峰均比序列组数偏移;
    其中,所述随机相位旋转类型包括伪随机序列和低峰均比序列。
  46. 根据权利要求40或45所述的方法,其特征在于,所述方法还包括:
    向定位设备发送位置信息响应。
  47. 根据权利要求40或45或46所述的方法,其特征在于,所述方法还包括:
    从定位设备接收位置测量请求,其中,位置测量请求携带以下信息中的一项或多项:
    随机相位旋转类型、随机相位旋转值组、随机相位旋转粒度N CS和二进制位数K、低峰均比序列长度M ZC、低峰均比序列组数偏移。
  48. 根据权利要求41所述的装置,其特征在于,所述接收单元,还用于从定位设备接收位置信息请求,所述位置信息请求携带以下信息中的一项或多项:
    随机相位旋转类型、随机相位旋转值组、随机相位旋转粒度N CS和二进制位数K、低峰均比序列长度M ZC、低峰均比序列组数偏移;
    其中,所述随机相位旋转类型包括伪随机序列和低峰均比序列。
  49. 根据权利要求41或48所述的装置,其特征在于,所述装置还包括发送单元,用于向定位设备发送位置信息响应。
PCT/CN2019/109696 2019-09-12 2019-09-30 一种参考信号处理方法、装置及系统 WO2021046948A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202311704772.9A CN117834364A (zh) 2019-09-12 2019-09-30 一种参考信号处理方法、装置及系统
CN201980099651.1A CN114287123B (zh) 2019-09-12 2019-09-30 一种参考信号处理方法、装置及系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/105791 2019-09-12
PCT/CN2019/105791 WO2021046823A1 (zh) 2019-09-12 2019-09-12 一种参考信号处理方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2021046948A1 true WO2021046948A1 (zh) 2021-03-18

Family

ID=74866877

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/105791 WO2021046823A1 (zh) 2019-09-12 2019-09-12 一种参考信号处理方法、装置及系统
PCT/CN2019/109696 WO2021046948A1 (zh) 2019-09-12 2019-09-30 一种参考信号处理方法、装置及系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105791 WO2021046823A1 (zh) 2019-09-12 2019-09-12 一种参考信号处理方法、装置及系统

Country Status (2)

Country Link
CN (2) CN117834364A (zh)
WO (2) WO2021046823A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116016079A (zh) * 2022-12-05 2023-04-25 西南交通大学 一种信号传输方法、系统、设备及存储介质
WO2024021116A1 (en) * 2022-07-29 2024-02-01 Zte Corporation Design and configuration of reference signals in wireless communication systems
WO2024067652A1 (zh) * 2022-09-30 2024-04-04 华为技术有限公司 通信方法、通信装置、芯片及计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086131B (zh) * 2022-07-28 2023-01-20 北京智芯微电子科技有限公司 峰均比降低方法、装置、电子设备和可读存储介质
WO2024148624A1 (en) * 2023-01-13 2024-07-18 Nec Corporation Methods, devices and medium for communication

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102377719A (zh) * 2010-08-18 2012-03-14 中兴通讯股份有限公司 数据符号正交处理方法及装置
CN102739597A (zh) * 2011-04-02 2012-10-17 普天信息技术研究院有限公司 一种ack/nack信号的生成方法
CN102769592A (zh) * 2011-05-04 2012-11-07 普天信息技术研究院有限公司 一种用于通信系统的上行参考信号的生成方法及装置
CN105072074A (zh) * 2008-04-15 2015-11-18 德克萨斯仪器股份有限公司 用于ofdm蜂窝系统的伪随机序列的产生
US20190104009A1 (en) * 2017-10-02 2019-04-04 Hughes Network Systems, Llc System and method for robust ofdm synchronization

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1942596T3 (pl) * 2007-01-05 2013-07-31 Samsung Electronics Co Ltd Sposób i urządzenie do transmitowania i odbierania informacji sterującej dla powodowania losowości zakłóceń międzykomórkowych w komórkowym systemie telekomunikacyjnym
US9372266B2 (en) * 2009-09-10 2016-06-21 Nextnav, Llc Cell organization and transmission schemes in a wide area positioning system (WAPS)
KR101753586B1 (ko) * 2010-02-03 2017-07-04 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR101802756B1 (ko) * 2010-04-05 2017-11-29 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
KR101699493B1 (ko) * 2010-05-03 2017-01-26 주식회사 팬택 Mimo 환경에서 직교성을 제공하는 사이클릭 쉬프트 파라메터를 송수신하는 방법 및 장치
CN107888532B (zh) * 2016-09-30 2020-04-14 华为技术有限公司 数据传输方法及通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105072074A (zh) * 2008-04-15 2015-11-18 德克萨斯仪器股份有限公司 用于ofdm蜂窝系统的伪随机序列的产生
CN102377719A (zh) * 2010-08-18 2012-03-14 中兴通讯股份有限公司 数据符号正交处理方法及装置
CN102739597A (zh) * 2011-04-02 2012-10-17 普天信息技术研究院有限公司 一种ack/nack信号的生成方法
CN102769592A (zh) * 2011-05-04 2012-11-07 普天信息技术研究院有限公司 一种用于通信系统的上行参考信号的生成方法及装置
US20190104009A1 (en) * 2017-10-02 2019-04-04 Hughes Network Systems, Llc System and method for robust ofdm synchronization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024021116A1 (en) * 2022-07-29 2024-02-01 Zte Corporation Design and configuration of reference signals in wireless communication systems
WO2024067652A1 (zh) * 2022-09-30 2024-04-04 华为技术有限公司 通信方法、通信装置、芯片及计算机可读存储介质
CN116016079A (zh) * 2022-12-05 2023-04-25 西南交通大学 一种信号传输方法、系统、设备及存储介质

Also Published As

Publication number Publication date
CN117834364A (zh) 2024-04-05
WO2021046823A1 (zh) 2021-03-18
CN114287123B (zh) 2023-12-15
CN114287123A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2021046948A1 (zh) 一种参考信号处理方法、装置及系统
US20210091905A1 (en) Method for configuring positioning reference signal in nr system, method for receiving positioning reference signal in nr system, and device
WO2020164334A1 (zh) 信号传输的方法与装置
CN109802792B (zh) 接收参考信号的方法和发送参考信号的方法
EP3739800A1 (en) Pilot signal generation method and apparatus
WO2019095828A1 (zh) 参考信号的传输方法和传输装置
US11368339B2 (en) Sounding reference signal transmission method, network device and terminal device
US20200403678A1 (en) Wireless communication method and device
WO2018137198A1 (zh) 通信方法、网络侧设备和终端设备
CN110311764B (zh) 用于传输解调参考信号的方法、终端设备和网络侧设备
WO2019080120A1 (zh) 无线通信方法和设备
WO2020216068A1 (zh) 发送参考信号的方法和装置
WO2022152291A1 (zh) 信号处理方法及装置
WO2020220839A1 (zh) 获取时间提前量的方法与装置
WO2022247655A1 (zh) 一种功率放大器非线性特征参数确定方法及相关装置
US20220255668A1 (en) Sequence-based signal transmission method and communication apparatus
WO2021119941A1 (zh) 反射通信的方法和通信装置
WO2019071624A1 (zh) 无线通信方法、终端和网络设备
CN110830202B (zh) 通信方法、装置和通信系统
WO2018202041A1 (zh) 信息发送的方法及其装置和信息接收的方法及其装置
WO2020088080A1 (zh) 传输参考信号的方法与设备
EP3531608A1 (en) Method and device for transmitting reference signal
WO2020001533A1 (zh) 定位参考信号配置、接收方法和设备
WO2021056189A1 (zh) 一种参考信号处理方法、装置及系统
WO2020164324A1 (zh) 生成prs序列的方法、终端设备和定位设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944995

Country of ref document: EP

Kind code of ref document: A1