WO2024067652A1 - 通信方法、通信装置、芯片及计算机可读存储介质 - Google Patents

通信方法、通信装置、芯片及计算机可读存储介质 Download PDF

Info

Publication number
WO2024067652A1
WO2024067652A1 PCT/CN2023/121809 CN2023121809W WO2024067652A1 WO 2024067652 A1 WO2024067652 A1 WO 2024067652A1 CN 2023121809 W CN2023121809 W CN 2023121809W WO 2024067652 A1 WO2024067652 A1 WO 2024067652A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic shift
port
communication device
information
srs
Prior art date
Application number
PCT/CN2023/121809
Other languages
English (en)
French (fr)
Inventor
张哲宁
高翔
刘显达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067652A1 publication Critical patent/WO2024067652A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present application relates to the field of communications, and in particular to a communication method, a communication device, a chip, and a computer-readable storage medium.
  • a sounding reference signal is an uplink reference signal sent by a terminal device to an access network device (e.g., a base station).
  • SRS is used by the access network device to obtain the uplink (UL) channel of the terminal device.
  • SRS is used by the access network device to obtain the downlink (DL) channel of the terminal device based on channel reciprocity, thereby scheduling data for the terminal device based on the downlink channel.
  • the sequence (i.e., SRS sequence) used by the SRS in the long term evolution (LTE) and new radio (NR) systems is a cyclic shift (CS) of a base sequence.
  • the SRS sequences used by different terminal devices can be CSs of different base sequences or different CSs of the same base sequence.
  • the access network device allocates SRS sequences obtained based on the same or different cyclic shift values of different base sequences to different terminal devices, and these terminal devices send their respective allocated SRS sequences on the same time-frequency resources, the interference between these SRS sequences will cause interference between the terminal devices.
  • cyclic shift hopping is currently used to randomize the interference between SRS sequences.
  • Using cyclic shift hopping to randomize the interference between SRS sequences can achieve a better interference randomization effect.
  • the access network equipment configures the SRS port corresponding to the terminal device that supports cyclic shift hopping and the SRS port corresponding to the terminal device that does not support cyclic shift hopping on the same comb teeth for multiplexing, the channel estimation performance of the two may suffer serious losses. How to make full use of the interference randomization effect brought by cyclic shift hopping while ensuring that the channel estimation performance in the above case is not lost is an urgent problem to be solved.
  • the embodiments of the present application disclose a communication method, a communication device, a chip and a computer-readable storage medium, which fully utilize the interference randomization effect brought by cyclic shift hopping while ensuring that the channel estimation performance is not lost.
  • an embodiment of the present application provides a communication method, the method comprising: a first communication device receives first information; the first communication device determines a cyclic shift range of a first port according to the first information, the first port being one of the ports corresponding to the first communication device, and the cyclic shift range of the first port including two or more cyclic shift values; the first communication device sends a reference signal on the first port.
  • the cyclic shift value occupied by the first port changes with the sending time and/or sending frequency of the reference signal, and the cyclic shift value occupied by the first port belongs to the cyclic shift range of the first port.
  • the first port may be one of several SRS ports included in an SRS resource in an SRS resource set.
  • the cyclic shift value occupied by the first port refers to the cyclic shift value occupied by the first communication device when sending the reference signal on the first port.
  • the cyclic shift range of the first port can be understood as the cyclic shift range available for the first port.
  • the first port can adopt any cyclic shift value in the cyclic shift range of the first port.
  • the cyclic shift range of the first port may be a true subset of the first cyclic shift range.
  • the cyclic shift value used by the first communication device may jump within the first cyclic shift range, which may cause interference with the SRS sequence of other communication devices.
  • the cyclic shift value used by the first communication device jumps within the cyclic shift range of the first port to avoid or reduce interference with the SRS sequence of other communication devices.
  • the first cyclic shift range can be regarded as a cyclic shift range available to existing communication devices that support cyclic shift hopping.
  • the first cyclic shift range is not limited in this application.
  • the first cyclic shift range can be [0, 2 ⁇ ] (corresponding to the entire delay domain); (The entire delay domain It can also be ⁇ 0,1 ⁇ 2 ⁇ /M ZC ,...,(M ZC -1) ⁇ 2 ⁇ /M ZC ⁇ (dividing the entire delay domain M ZC into equal parts), or other values.
  • c represents a positive integer constant
  • M ZC represents the SRS sequence length.
  • the first communication device determines the cyclic shift range of the first port according to the first information.
  • the first port corresponding to the first communication device occupies any cyclic shift value in the cyclic shift range to send a reference signal, it can avoid or reduce the problem that the channel estimation performance of the two may suffer serious loss when the SRS port corresponding to the terminal device supporting cyclic shift hopping and the SRS port corresponding to the terminal device that does not support cyclic shift hopping are configured on the same comb teeth for multiplexing.
  • the first communication device determines the cyclic shift range of the first port according to the first information, which can ensure that the channel estimation performance is not lost while making full use of the interference randomization effect brought by the cyclic shift hopping.
  • the difference between any cyclic shift value in the cyclic shift range of the first port and any cyclic shift value used by the SRS port corresponding to the terminal device that does not support cyclic shift hopping is greater than a first threshold.
  • the first threshold is not limited.
  • the delay domain channel corresponding to the SRS port is composed of multiple delay paths.
  • a too small cyclic shift difference i.e., the difference between the cyclic shift value occupied by the SRS port corresponding to the terminal device supporting cyclic shift hopping and the cyclic shift value occupied by the SRS port corresponding to the terminal device not supporting cyclic shift hopping
  • the same cyclic shift value will cause the delay domain channels corresponding to the two to overlap, and the channel estimation performance of the two will suffer serious loss.
  • the difference between any cyclic shift value in the cyclic shift range of the first port and the cyclic shift value occupied by the SRS port corresponding to the terminal device not supporting cyclic shift hopping is greater than the first threshold value, which can avoid or reduce the overlap of the delay domain channel corresponding to the first port and the delay domain channel corresponding to the SRS port corresponding to the terminal device not supporting cyclic shift hopping, thereby ensuring that the channel estimation performance is not lost.
  • the first information indicates a first interval length
  • the cyclic shift range of the first port is determined by a cyclic shift value configured for the first port and the first interval length.
  • the first information indicates the length of the first interval.
  • the first communication device can quickly and accurately determine the cyclic shift range of the first port according to the first information and the cyclic shift value configured for the first port.
  • the first information indicates the number of ports, the number of comb teeth, the cyclic shift reference index and the length of the first interval; the first communication device determines the cyclic shift range of the first port according to the first information, including: the first communication device determines the maximum cyclic shift number through the number of comb teeth; determines the cyclic shift value configured for the first port through the number of ports, the cyclic shift reference index and the maximum cyclic shift number; determines the cyclic shift range of the first port through the cyclic shift value configured for the first port and the first interval length.
  • the first communication device determines the cyclic shift range of the first port according to the first information, so as to ensure that the channel estimation performance is not lost while fully utilizing the interference randomization effect brought by the cyclic shift hopping.
  • the first information indicates the number of ports, the number of comb teeth, the cyclic shift reference index, and the first scaling factor; the first communication device determines the cyclic shift range of the first port according to the first information, including: the first communication device determines the maximum cyclic shift number through the number of comb teeth; determines the cyclic shift value configured for the first port through the number of ports, the cyclic shift reference index, and the maximum cyclic shift number; determines the cyclic shift range of the first port through the cyclic shift value configured for the first port, the first scaling factor, and the maximum cyclic shift number.
  • the first information indicating the number of ports, the number of comb teeth, the cyclic shift reference index, and the first scaling factor can be replaced by: the first information indicating the number of ports, the number of comb teeth, the cyclic shift reference index, and the first scaling factor is predefined, that is, the first information does not need to indicate the first scaling factor.
  • the first communication device determines the cyclic shift range of the first port according to the first information, so as to ensure that the channel estimation performance is not lost while fully utilizing the interference randomization effect brought by the cyclic shift hopping.
  • the first information indicates the number of ports, the number of comb teeth, the cyclic shift reference index and the first scaling factor; the first communication device determines the cyclic shift range of the first port according to the first information, including: the first communication device determines the maximum cyclic shift number through the number of comb teeth; determines the cyclic shift value configured for the first port through the number of ports, the cyclic shift reference index and the maximum cyclic shift number; determines the first interval length through the first scaling factor and the maximum cyclic shift number; determines the cyclic shift range of the first port through the cyclic shift value configured for the first port and the first interval length.
  • the first information indicating the number of ports, the number of comb teeth, the cyclic shift reference index and the first scaling factor can be replaced by: the first information indicating the number of ports, the number of comb teeth, the cyclic shift reference index, and the first scaling factor is predefined, that is, the first information does not need to indicate the first scaling factor.
  • the first communication device determines the cyclic shift range of the first port according to the first information, so as to ensure that the channel estimation performance is not lost while fully utilizing the interference randomization effect brought by the cyclic shift hopping.
  • the cyclic shift range of the first port is in, represents the cyclic shift value configured for the first port, represents the maximum number of cyclic shifts, represents the first interval length, and ⁇ represents the first scaling factor.
  • ⁇ >0 is a first scaling factor predefined or indicated by an access network device (eg, a base station) through first information.
  • the cyclic shift range of the first port is The first port uses a cyclic shift value within the cyclic shift range to send a reference signal, which can fully utilize the interference randomization effect brought by the cyclic shift jump while ensuring that the channel estimation performance is not lost.
  • the first information indicates a first set
  • the first set includes cyclic shift indexes that are unavailable for the first port
  • the cyclic shift range of the first port is determined by the first set.
  • the cyclic shift range of the first port is determined by the first set, and the cyclic shift range of the first port can be accurately determined.
  • the first information indicates a first set and a comb number
  • the first set includes unavailable cyclic shift indexes for the first port
  • the cyclic shift range of the first port is determined by the first set and the comb number.
  • the first communication device determines the cyclic shift range of the first port according to the first information, including: the first communication device determines a maximum cyclic shift number through the comb number; and determines the cyclic shift range of the first port through the maximum cyclic shift number and the first set.
  • the cyclic shift range of the first port is determined by the first set and the number of comb teeth, and the cyclic shift range of the first port can be accurately determined.
  • the first information indicates a first set, a comb number, and a second scaling factor
  • the first set includes a cyclic shift index that is unavailable for the first port
  • the cyclic shift range of the first port is jointly determined by the first set, the comb number, and the second scaling factor.
  • the first communication device determines the cyclic shift range of the first port according to the first information, including: the first communication device determines the maximum cyclic shift number through the comb number; determines the cyclic shift range of the first port through the maximum cyclic shift number, the first set, and the second scaling factor.
  • the first information indicating the first set, the comb number, and the second scaling factor can be replaced by: the first information indicates the first set and the comb number, and the second scaling factor is predefined, that is, the first information does not need to indicate the second scaling factor.
  • the cyclic shift range of the first port is determined by the first set, the number of comb teeth, and the second scaling factor, so the cyclic shift range of the first port can be accurately determined.
  • a formula for the first communication device to determine the cyclic shift range of the first port is as follows:
  • 0 ⁇ 1 is a second scaling factor predefined or indicated by an access network device (such as a base station) through the first information.
  • the cyclic shift range of the first port can be accurately determined by using formula (1).
  • a formula for the first communication device to determine the cyclic shift range of the first port is as follows:
  • 0 ⁇ 1 is a second scaling factor predefined or indicated by an access network device (such as a base station) through the first information.
  • formula (2) can be used to accurately determine the cyclic shift range of the first port.
  • the first information indicates the cyclic shift indexes included in the first set in a bitmap manner, and the N bits in the bitmap correspond to the N cyclic shift indexes one by one.
  • the value of any bit in the N bits is 1 or 0, indicating that the cyclic shift index corresponding to the any bit belongs to the first set.
  • N is an integer greater than 1. N can be It can also be other values. Indicates the maximum number of cyclic shifts.
  • the first information indicates the cyclic shift indices included in the first set in a bitmap manner, which can accurately indicate the cyclic shift indices included in the first set.
  • the first information indicates a second set
  • the second set includes one or more cyclic shift indexes
  • the second set is a proper subset of a full set consisting of all cyclic shift indexes
  • the cyclic shift range of the first port is determined by the second set.
  • the one or more cyclic shift indexes included in the second set can be regarded as cyclic shift indexes available for the first port.
  • the full set of all cyclic shift indices can be It can also be ⁇ 0,1,...,M ZC -1 ⁇ , or other values.
  • c represents a positive integer constant.
  • M ZC represents the SRS sequence length.
  • the cyclic shift range of the first port is determined by the second set, and the cyclic shift range of the first port can be accurately determined.
  • the first information indicates a second set and a comb number
  • the second set includes one or more cyclic shift indexes
  • the second set is a proper subset of the full set consisting of all cyclic shift indexes
  • the cyclic shift range of the first port is determined by the second set and the comb number.
  • the first communication device determines the cyclic shift range of the first port according to the first information, including: the first communication device determines a maximum cyclic shift number through the comb number; and determines the cyclic shift range of the first port through the maximum cyclic shift number and the second set.
  • the cyclic shift range of the first port is determined by the first set and the number of comb teeth, and the cyclic shift range of the first port can be accurately determined.
  • the first information indicates a second set, a comb number, and a third scaling factor
  • the second set includes one or more cyclic shift indices
  • the second set is a proper subset of the full set consisting of all cyclic shift indices
  • the cyclic shift range of the first port is jointly determined by the second set, the comb number, and the third scaling factor.
  • the first communication device determines the cyclic shift range of the first port according to the first information, including: the first communication device determines the maximum cyclic shift number through the comb number; determines the cyclic shift range of the first port through the maximum cyclic shift number, the second set, and the third scaling factor.
  • the first information indicating the second set, the comb number, and the third scaling factor can be replaced by: the first information indicates the second set and the comb number, and the third scaling factor is predefined, that is, the first information does not need to indicate the third scaling factor.
  • the cyclic shift range of the first port is determined by the first set, the number of comb teeth, and the third scaling factor, so the cyclic shift range of the first port can be accurately determined.
  • a formula for the first communication device to determine the cyclic shift range of the first port is as follows:
  • 0 ⁇ 1 is a third scaling factor predefined or indicated by an access network device (eg, a base station) through the first information.
  • formula (3) can be used to accurately determine the cyclic shift range of the first port.
  • the full set of all cyclic shift indices is divided into ⁇ predefined proper subsets, the first The second set is one of the ⁇ proper subsets, the first information indicates the second set, and the cyclic shift range of the first port is determined by the second set.
  • the ⁇ is an integer greater than 1.
  • the full set of all cyclic shift indices can be equally divided into ⁇ predefined proper subsets at intervals of ⁇ , or can be equally divided into ⁇ predefined proper subsets in succession.
  • the second set indicated by the first information is one of several predefined proper subsets, and the cyclic shift range of the first port can be determined with a relatively small overhead.
  • the first information indicates the cyclic shift indexes included in the second set in a bitmap manner, and the N bits in the bitmap correspond to the N cyclic shift indexes one by one.
  • the value of any bit in the N bits is 1 or 0, indicating that the cyclic shift index corresponding to the any bit belongs to the second set.
  • N is an integer greater than 1.
  • N can be It can be M ZC or other values. Where c represents a positive integer constant. Indicates the maximum cyclic shift number, M ZC indicates the SRS sequence length. Maximum cyclic shift number
  • the first information indicates the cyclic shift indexes included in the second set in a bitmap manner, which can accurately indicate the cyclic shift indexes included in the second set.
  • the cyclic shift range of the first port is determined by the second set, including: the cyclic shift range of the first port is a cyclic shift value corresponding to a cyclic shift index in the second set.
  • the cyclic shift value corresponding to the cyclic shift index in the second set is used as the cyclic shift range of the first port, so as to fully utilize the interference randomization effect brought by the cyclic shift hopping while ensuring that the channel estimation performance is not lost.
  • the first port is one of several SRS ports included in an SRS resource in an SRS resource set, and the first communication device supports cyclic shift hopping.
  • the first port is an SRS port, which can fully utilize the interference randomization effect brought by cyclic shift hopping while ensuring that the channel estimation performance is not lost.
  • the first information is carried on one or more signalings with the same and/or different formats.
  • the first information is carried on one or more signalings with the same and/or different formats, which can improve the flexibility of configuration.
  • an embodiment of the present application provides another communication method, the method comprising: a first communication device receives first information; the first communication device determines a cyclic shift change pattern corresponding to a first port according to the first information, the first port is one of the ports corresponding to the first communication device, and the set of cyclic shift indices included in the cyclic shift change pattern corresponding to the first port is a true subset of the full set of all cyclic shift indices; the first communication device sends a reference signal on the first port.
  • the cyclic shift value occupied by the first port changes with the sending time and/or sending frequency of the reference signal
  • the cyclic shift change pattern corresponding to the first port is used to characterize the relationship between the cyclic shift value occupied by the first port and the sending time and/or sending frequency of the reference signal.
  • the first port may be one of several SRS ports included in an SRS resource in an SRS resource set.
  • the cyclic shift value occupied by the first port refers to the cyclic shift value occupied by the first communication device when sending the reference signal on the first port.
  • the cyclic shift change pattern corresponding to the first port can be understood as a pattern having the same change rule as the cyclic shift value occupied by the first port with the SRS sending time and/or sending frequency.
  • the first port changes the cyclic shift value it occupies with the SRS transmission time and/or transmission frequency according to its corresponding cyclic shift change pattern.
  • the full set of all cyclic shift indexes is not limited in this application.
  • the full set of all cyclic shift indexes can be It can also be ⁇ 0,1,...,M ZC -1 ⁇ , or other values.
  • c represents a positive integer constant. represents the maximum number of cyclic shifts
  • M ZC represents the SRS sequence length.
  • the first communication device determines the cyclic shift change pattern corresponding to the first port based on the first information.
  • the first port corresponding to the first communication device occupies the cyclic shift to send a reference signal according to the cyclic shift change pattern, it can avoid or reduce the problem that the channel estimation performance of the two may suffer serious loss when the SRS port corresponding to the terminal device supporting cyclic shift hopping and the SRS port corresponding to the terminal device not supporting cyclic shift hopping are configured on the same comb teeth for multiplexing.
  • the first communication device determines the cyclic shift change pattern corresponding to the first port based on the first information, which can ensure that the channel estimation performance is not lost while making full use of the interference randomization effect brought by the cyclic shift hopping.
  • an embodiment of the present application provides another communication method, the method comprising: generating first information; sending the first information, the first information being used to indicate a cyclic shift range of a first port, the first port being one of the ports corresponding to a first communication device, the cyclic shift range of the first port comprising two or more cyclic shift values; receiving a reference signal on the first port, the cyclic shift value occupied by the first port varying with a sending time and/or a sending frequency of the reference signal, the cyclic shift value occupied by the first port belonging to the cyclic shift range of the first port.
  • the first information is used to indicate the cyclic shift range of the first port.
  • the first communication device occupies any cyclic shift value in the cyclic shift range to send a reference signal, it can avoid or reduce the problem that the channel estimation performance of the two may suffer serious loss when the SRS port corresponding to the terminal device supporting cyclic shift hopping and the SRS port corresponding to the terminal device not supporting cyclic shift hopping are configured on the same comb teeth for multiplexing.
  • the first communication device determines the cyclic shift range of the first port based on the first information; it can ensure that the channel estimation performance is not lost while making full use of the interference randomization effect brought by the cyclic shift hopping.
  • the difference between any cyclic shift value in the cyclic shift range of the first port and any cyclic shift value used by a terminal device that does not support cyclic shift hopping is greater than a first threshold.
  • the first threshold is not limited.
  • the first port may be one of several SRS ports included in an SRS resource in an SRS resource set.
  • the difference between any cyclic shift value in the cyclic shift range of the first port and any cyclic shift value adopted by a terminal device that does not support cyclic shift hopping is greater than a first threshold value; the overlap of the delay domain channel corresponding to the first port and the SRS port corresponding to the terminal device that does not support cyclic shift hopping can be avoided or reduced, thereby ensuring that the channel estimation performance is not lost.
  • the first information indicates a first interval length
  • the cyclic shift range of the first port is determined by a cyclic shift value configured for the first port and the first interval length.
  • the first information indicates the length of the first interval.
  • the first communication device can quickly and accurately determine the cyclic shift range of the first port according to the first information.
  • the first information indicates the number of ports, the number of comb teeth, the cyclic shift reference index and the length of the first interval; the cyclic shift range of the first port is jointly determined by the number of ports, the number of comb teeth, the cyclic shift reference index and the length of the first interval.
  • the number of comb teeth is used to determine the maximum cyclic shift number, the number of ports, the cyclic shift reference index and the maximum cyclic shift number are used to determine the cyclic shift value configured for the first port, and the maximum cyclic shift number, the cyclic shift value configured for the first port and the length of the first interval are used to determine the cyclic shift range of the first port.
  • the first information indicates the number of ports, the number of comb teeth, the cyclic shift reference index and the length of the first interval; this allows the first communication device to determine the cyclic shift range of the first port.
  • the first information indicates the number of ports, the number of comb teeth, the cyclic shift reference index and the first scaling factor
  • the cyclic shift range of the first port is jointly determined by the number of ports, the number of comb teeth, the cyclic shift reference index and the first scaling factor.
  • the number of comb teeth is used to determine the maximum cyclic shift number
  • the number of ports, the cyclic shift reference index and the maximum cyclic shift number are used to determine the cyclic shift value configured for the first port
  • the maximum cyclic shift number, the cyclic shift value configured for the first port and the first scaling factor are used to determine the cyclic shift range of the first port.
  • the first information indicating the number of ports, the number of comb teeth, the cyclic shift reference index and the first scaling factor can be replaced by: the first information indicating the number of ports, the number of comb teeth, the cyclic shift reference index, and the first scaling factor is predefined, that is, the first information does not need to indicate the first scaling factor.
  • the first information indicates the number of ports, the number of comb teeth, the cyclic shift reference index and the first scaling factor; this allows the first communication device to determine the cyclic shift range of the first port.
  • the cyclic shift range of the first port is in, represents the cyclic shift value configured for the first port, represents the maximum number of cyclic shifts, represents the first interval length, and ⁇ represents the first scaling factor.
  • ⁇ >0 is a first scaling factor predefined or indicated by an access network device (eg, a base station) through first information.
  • the cyclic shift range of the first port is The first port uses a cyclic shift value within the cyclic shift range to send a reference signal, which can fully utilize the interference randomization effect brought by the cyclic shift jump while ensuring that the channel estimation performance is not lost.
  • the first information is used to indicate a first set, where the first set includes unavailable cyclic shift indexes of the first port, and a cyclic shift range of the first port is determined by the first set.
  • the first information is used to indicate a first set, so that the first communication device determines the cyclic shift range of the first port according to the first set.
  • the first information indicates a first set and a comb number
  • the first set includes unavailable cyclic shift indexes of the first port
  • the cyclic shift range of the first port is determined by the first set and the comb number.
  • the comb number is used to determine a maximum cyclic shift number; the maximum cyclic shift number and the first set are used to determine the cyclic shift range of the first port.
  • the first information indicates the first set and the number of comb teeth, so that the first communication device determines the cyclic shift range of the first port according to the first information.
  • the first information indicates a first set, a comb number, and a second scaling factor
  • the first set includes a cyclic shift index that is unavailable for the first port
  • the cyclic shift range of the first port is determined by the first set, the comb number, and the second scaling factor. and the second scaling factor.
  • the comb teeth number is used to determine the maximum cyclic shift number
  • the maximum cyclic shift number, the first set and the second scaling factor are used to determine the cyclic shift range of the first port.
  • the first information indicating the first set, the comb teeth number and the second scaling factor can be replaced by: the first information indicates the first set and the comb teeth number, and the second scaling factor is predefined, that is, the first information does not need to indicate the second scaling factor.
  • the first information indicates the first set, the number of comb teeth, and the second scaling factor, so that the first communication device determines the cyclic shift range of the first port according to the first information.
  • the first information indicates the cyclic shift indexes included in the first set in the form of a bitmap
  • the N bits in the bitmap correspond one-to-one to the N cyclic shift indexes.
  • the value of any bit in the N bits is 1 or 0, representing that the cyclic shift index corresponding to the any bit belongs to the first set.
  • the first information indicates the cyclic shift indexes included in the first set in a bitmap manner, which can accurately indicate the cyclic shift indexes included in the first set and occupies fewer bits.
  • the first information is used to indicate a second set
  • the second set includes one or more cyclic shift indexes
  • the second set is a proper subset of the full set consisting of all cyclic shift indexes
  • the cyclic shift range of the first port is determined by the second set.
  • the first information indicates the second set, so that the first communication device determines the cyclic shift range of the first port according to the second set.
  • the first information indicates a second set, a comb number, and a third scaling factor
  • the second set includes one or more cyclic shift indices
  • the second set is a proper subset of the full set consisting of all cyclic shift indices
  • the cyclic shift range of the first port is jointly determined by the second set, the comb number, and the third scaling factor.
  • the comb number is used to determine the maximum cyclic shift number; the maximum cyclic shift number, the second set, and the third scaling factor are used to determine the cyclic shift range of the first port.
  • the first information indicating the second set, the comb number, and the third scaling factor can be replaced by: the first information indicating the second set and the comb number, the third scaling factor is predefined, that is, the first information does not need to indicate the third scaling factor.
  • the first information indicates the second set, the number of comb teeth, and the third scaling factor, so that the first communication device determines the cyclic shift range of the first port according to the second set.
  • the full set of all cyclic shift indices is divided into ⁇ predefined true subsets
  • the second set is one of the ⁇ true subsets
  • the first information indicates the second set
  • the cyclic shift range of the first port is determined by the second set.
  • the ⁇ is an integer greater than 1.
  • the full set of all cyclic shift indices can be equally divided into ⁇ predefined true subsets at intervals of ⁇ , or can be equally divided into ⁇ predefined true subsets in succession.
  • the second set indicated by the first information is one of several predefined proper subsets, and the cyclic shift range of the first port can be determined with a relatively small overhead.
  • the first information indicates the cyclic shift indexes included in the second set in the form of a bitmap
  • the N bits in the bitmap correspond one-to-one to the N cyclic shift indexes
  • the value of any bit in the N bits is 1 or 0, representing that the cyclic shift index corresponding to the any bit belongs to the second set.
  • the first information indicates the cyclic shift indexes included in the second set in a bitmap manner, which can accurately indicate the cyclic shift indexes included in the second set and occupies fewer bits.
  • the cyclic shift range of the first port is determined by the second set, including: the cyclic shift range of the first port is a cyclic shift value corresponding to a cyclic shift index in the second set.
  • the cyclic shift range of the first port is the cyclic shift value corresponding to the cyclic shift index in the second set, so as to fully utilize the interference randomization effect brought by the cyclic shift hopping while ensuring that the channel estimation performance is not lost.
  • the first port is one of several SRS ports included in an SRS resource in an SRS resource set, and the first communication device supports cyclic shift hopping.
  • the first port is an SRS port, which can fully utilize the interference randomization effect brought by cyclic shift hopping while ensuring that the channel estimation performance is not lost.
  • the first information is carried on one or more signalings with the same and/or different formats.
  • the first information is carried on one or more signalings with the same and/or different formats, which can be applicable to different scenarios.
  • an embodiment of the present application provides a communication method, the method comprising: generating first information, the first information being used to indicate a cyclic shift change pattern corresponding to a first port, the first port being one of the ports corresponding to a first communication device, the first port corresponding to The cyclic shift variation pattern includes a set of cyclic shift indices which is a true subset of the full set of all cyclic shift indices; sending the first information; receiving a reference signal on the first port, the cyclic shift value occupied by the first port changes with the sending time and/or the sending frequency of the reference signal, and the cyclic shift variation pattern corresponding to the first port is used to characterize the relationship between the cyclic shift value occupied by the first port and the sending time and/or the sending frequency of the reference signal.
  • the first information is used to indicate a cyclic shift change pattern corresponding to the first port.
  • the first communication device sends a reference signal according to the cyclic shift change pattern, it can avoid or reduce the problem that when the SRS port corresponding to the terminal device supporting cyclic shift hopping and the SRS port corresponding to the terminal device not supporting cyclic shift hopping are configured on the same comb teeth for multiplexing, the channel estimation performance of the two may suffer serious loss.
  • the full set of all cyclic shift indices corresponds to the configured maximum cyclic bit index.
  • the full set of all cyclic shift indices corresponds to the configured maximum cyclic shift index, and the full set of all cyclic shift indices can be accurately determined.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behavior in the method embodiment of the first aspect above.
  • the communication device may be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can implement all or part of the functions of the communication device.
  • the function of the communication device may be implemented by hardware, or may be implemented by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, wherein: the transceiver module is used to receive first information; the processing module is used to determine the cyclic shift range of the first port according to the first information, the first port is one of the ports corresponding to the first communication device, and the cyclic shift range of the first port includes two or more cyclic shift values; the transceiver module is also used to send a reference signal on the first port.
  • the cyclic shift value occupied by the first port changes with the sending time and/or sending frequency of the reference signal, and the cyclic shift value occupied by the first port belongs to the cyclic shift range of the first port.
  • the first information indicates the number of ports, the number of comb teeth, a cyclic shift reference index and a first interval length; the processing module is specifically used to determine the maximum cyclic shift number through the number of comb teeth; determine the cyclic shift value configured for the first port through the number of ports, the cyclic shift reference index and the maximum cyclic shift number; determine the cyclic shift range of the first port through the cyclic shift value configured for the first port and the first interval length.
  • the first information indicates the number of ports, the number of comb teeth, a cyclic shift reference index and a first scaling factor; the processing module is specifically used to determine the maximum cyclic shift number through the number of comb teeth; determine the cyclic shift value configured for the first port through the number of ports, the cyclic shift reference index and the maximum cyclic shift number; determine the first interval length through the first scaling factor and the maximum cyclic shift number; determine the cyclic shift range of the first port through the cyclic shift value configured for the first port and the first interval length.
  • the first information indicates a first set, a comb tooth number, and a second scaling factor, the first set including a cyclic shift index that is unavailable for the first port; the processing module is specifically used to determine a maximum cyclic shift number through the comb tooth number; and determine a cyclic shift range of the first port through the maximum cyclic shift number, the first set, and the second scaling factor.
  • the processing module is specifically configured to determine the cyclic shift range of the first port by using the above formula (1), formula (2) or formula (3).
  • the first information indicates a second set, a comb tooth number, and a third scaling factor
  • the second set includes one or more cyclic shift indexes
  • the second set is a proper subset of the full set consisting of all cyclic shift indexes
  • the processing module is specifically used to determine the maximum cyclic shift number through the comb tooth number; and determine the cyclic shift range of the first port through the maximum cyclic shift number, the second set, and the third scaling factor.
  • Possible implementations of the communication device of the fifth aspect may refer to various possible implementations of the first aspect.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behavior in the method embodiment of the second aspect above.
  • the communication device may be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can implement all or part of the functions of the communication device.
  • the functions of the communication device may be implemented by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, wherein: the transceiver module is used to receive first information; the processing module is used to determine, based on the first information, a cyclic shift change pattern corresponding to a first port, the first port being one of the ports corresponding to the first communication device, and the cyclic shift change pattern corresponding to the first port includes a set of cyclic shift indices. is a true subset of the full set of all cyclic shift indices; the first communication device sends a reference signal on the first port.
  • the cyclic shift value occupied by the first port changes with the sending time and/or sending frequency of the reference signal
  • the cyclic shift change pattern corresponding to the first port is used to characterize the relationship between the cyclic shift value occupied by the first port and the sending time and/or sending frequency of the reference signal.
  • Possible implementations of the communication device of the sixth aspect may refer to various possible implementations of the second aspect.
  • an embodiment of the present application provides a communication device, which has the function of implementing the behavior in the method embodiment of the third aspect above.
  • the communication device may be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can implement all or part of the functions of the communication device.
  • the function of the communication device may be implemented by hardware, or may be implemented by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, wherein: the processing module is used to generate first information; the transceiver module is used to send the first information, the first information is used to indicate the cyclic shift range of the first port, the first port is one of the ports corresponding to the first communication device, and the cyclic shift range of the first port includes two or more cyclic shift values; the transceiver module is also used to receive a reference signal on the first port, the cyclic shift value occupied by the first port changes with the sending time and/or sending frequency of the reference signal, and the cyclic shift value occupied by the first port belongs to the cyclic shift range of the first port.
  • Possible implementations of the communication device of the seventh aspect may refer to various possible implementations of the third aspect.
  • an embodiment of the present application provides a communication device having the function of implementing the behavior in the method embodiment of the fourth aspect above.
  • the communication device may be a communication device, or a component of a communication device (such as a processor, a chip, or a chip system, etc.), or a logic module or software that can implement all or part of the functions of the communication device.
  • the functions of the communication device may be implemented by hardware, or by hardware executing corresponding software, and the hardware or software includes one or more modules or units corresponding to the above functions.
  • the communication device includes a processing module and a transceiver module, wherein: the processing module is used to generate first information, the first information is used to indicate a cyclic shift change pattern corresponding to a first port, the first port is one of the ports corresponding to the first communication device, and the cyclic shift change pattern corresponding to the first port includes a set of cyclic shift indices that is a true subset of a full set of all cyclic shift indices; the transceiver module is used to send the first information; receive a reference signal on the first port, the cyclic shift value occupied by the first port changes with the sending time and/or sending frequency of the reference signal, and the cyclic shift change pattern corresponding to the first port is used to characterize the relationship between the cyclic shift value occupied by the first port and the sending time and/or sending frequency of the reference signal.
  • Possible implementations of the communication device of the eighth aspect may refer to various possible implementations of the fourth aspect.
  • an embodiment of the present application provides another communication device, which includes a processor, the processor is coupled to a memory, the memory is used to store programs or instructions, when the program or instructions are executed by the processor, the communication device executes the method shown in any possible implementation method of the first to fourth aspects above.
  • the process of sending information (or signal) in the above method can be understood as the process of outputting information based on the instructions of the processor.
  • the processor When outputting information, the processor outputs the information to the transceiver so that it can be transmitted by the transceiver. After the information is output by the processor, it may also need to be processed in other ways before it reaches the transceiver.
  • the processor receives input information
  • the transceiver receives the information and inputs it into the processor.
  • the information may need to be processed in other ways before it is input into the processor.
  • the processor may be a processor specifically used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the processor may also be used to execute a program stored in the memory, and when the program is executed, the communication device executes the method as shown in the first aspect or any possible implementation of the first aspect.
  • the memory is located outside the communication device. In a possible implementation, the memory is located inside the communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, and the transceiver is used to receive a signal or send a signal.
  • the present application provides another communication device, which includes a processing circuit and an interface circuit, wherein the interface circuit is used to acquire or output data; the processing circuit is used to execute the corresponding method as shown in any possible implementation method in the first to fourth aspects above.
  • the present application provides another chip, which includes a processor and a communication interface, and the processor reads instructions stored in the memory through the communication interface to execute the corresponding method shown in any possible implementation method in the first to fourth aspects above.
  • the present application provides a computer-readable storage medium, which stores a computer program.
  • the computer program includes program instructions, which, when executed, enable the computer to execute the method shown in any possible implementation of the first to fourth aspects above.
  • the present application provides a computer program product, which includes a computer program, and the computer program includes program instructions, which, when executed, enable the computer to execute the method shown in any possible implementation of the first to fourth aspects above.
  • the present application provides a communication system, comprising the communication device described in the fifth aspect or any possible implementation of the fifth aspect, or the communication device described in the sixth aspect or any possible implementation of the sixth aspect.
  • the communication system comprises the communication device described in the seventh aspect or any possible implementation of the seventh aspect, or the communication device described in the eighth aspect or any possible implementation of the eighth aspect.
  • FIG1 is an example of a comb with three different numbers of comb teeth provided by the present application.
  • FIG2 is an example of a transmission bandwidth and a frequency hopping bandwidth provided in an embodiment of the present application.
  • FIG3 is an example of a wireless communication system provided in an embodiment of the present application.
  • FIG4 is a flow chart of a communication interaction method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a delay domain channel corresponding to an SRS port provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a delay domain channel corresponding to another SRS port provided in an embodiment of the present application.
  • FIG7 is a flow chart of another communication interaction method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of the structure of a communication device 800 provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of another communication device 90 provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the structure of another communication device 100 provided in an embodiment of the present application.
  • SRS is an uplink reference signal sent by a terminal device to an access network device (such as a base station).
  • the SRS of the terminal device is used to obtain the UL channel of the terminal device.
  • the access network device obtains the DL channel of the terminal device according to the channel reciprocity, thereby scheduling data for the terminal device according to the DL channel.
  • the user equipment (UE) and/or user in the following text can be regarded as a terminal device.
  • SRS resources are semi-statically configured by access network equipment (e.g., base stations) through high-level parameters, including:
  • Each SRS port corresponds to a specific time-frequency code resource. Ideally, each SRS port is orthogonal. Each SRS port corresponds to a physical antenna or a virtual antenna of a terminal device.
  • SRS comb The frequency domain subcarriers on the comb teeth of an SRS are equally spaced, and the number of comb teeth K TC ⁇ 2,4,8 ⁇ is semi-statically configured by the access network device (the base station is taken as an example below) through high-level parameters, which determines the number of comb teeth contained in the SRS transmission bandwidth.
  • Figure 1 is an example of a comb under three different numbers of comb teeth provided in this application.
  • each grid represents a resource element (RE), and the black grid is an example of the RE position occupied by a comb under different numbers of comb teeth.
  • One SRS transmission corresponds to R consecutive OFDM symbols within an SRS resource.
  • the repetition factor R ⁇ 1,2,4 ⁇ is semi-statically configured by the base station through the high-level parameter repetitionFactor.
  • the first OFDM symbol in the R consecutive OFDM symbols corresponding to one SRS transmission is numbered in the SRS resource that is divisible by R.
  • the transmission bandwidth, frequency hopping bandwidth and frequency hopping period of SRS are determined according to high-level parameters and protocol predefined tables.
  • the SRS transmission bandwidth is the bandwidth range corresponding to the channel obtained by the base station according to the SRS
  • the SRS frequency hopping bandwidth is the bandwidth range corresponding to the channel obtained by the base station after a single SRS is sent
  • the frequency hopping bandwidth is less than or equal to the scanning bandwidth
  • the frequency hopping period is the number of SRS transmissions required for the base station to obtain the channel corresponding to the transmission bandwidth
  • the base station configures the frequency scaling factor PF through high-level parameters
  • the transmission bandwidth, frequency hopping bandwidth and frequency hopping period of SRS remain unchanged, but because the bandwidth of a single SRS transmission becomes the original 1/ PF , in this case, the transmission bandwidth is PF times the bandwidth range corresponding to the channel obtained by the base station according to the SRS, and the SRS frequency hopping bandwidth is PF times the bandwidth range corresponding to the channel obtained by
  • Figure 2 is an example of a transmission bandwidth and frequency hopping bandwidth provided in an embodiment of the present application.
  • each grid represents a resource block (RB) in the frequency domain
  • the SRS bandwidth is 16 RB
  • the frequency hopping bandwidth is 4 RB
  • the frequency hopping period is 4, the left figure does not configure PF
  • the sequence elements i.e., the elements in the SRS sequence
  • the above base sequence It can be a sequence generated by a Zadoff-Chu (ZC) sequence, such as the ZC sequence itself, or a sequence generated by expanding or truncating the ZC sequence by cyclic shift.
  • ZC Zadoff-Chu
  • a ZC sequence of length N can be expressed as follows:
  • N is a positive integer
  • q is the root index of the ZC sequence, and is a positive integer that is coprime with N and less than N.
  • the cyclic shift ⁇ i corresponding to the SRS port pi is defined as follows:
  • Each cyclic shift value corresponds to the starting point of each portion. It is a cyclic shift reference index, which is semi-statically configured by the base station through the high-layer parameter transmissionComb.
  • different SRS sequences can be obtained by using different cyclic shift values ⁇ .
  • ⁇ 1 and ⁇ 2 satisfy ⁇ 1 mod 2 ⁇ ⁇ ⁇ 2 mod 2 ⁇
  • the base sequence obtained by cyclic shift ⁇ 1 is the same as the base sequence
  • the sequences obtained by cyclic shift ⁇ 2 are mutually orthogonal, that is, the mutual correlation coefficient is zero.
  • the base station can allocate the SRS sequences obtained based on the same base sequence and different cyclic shift values to different users, and these users can send these SRS sequences on the same time-frequency resources.
  • the user refers to a terminal device, such as a mobile phone.
  • the base station allocates the SRS sequences obtained based on the same or different cyclic shift values of different base sequences to different users, and these users can send these SRS sequences on the same time-frequency resources.
  • these SRS sequences will cause interference between users.
  • two cells use base sequences s 1 and s 2 respectively, and there are two users in each cell.
  • the two users in each cell use two different cyclic shift values of the same base sequence, so four users can send SRS on the same time-frequency resources.
  • UE1 and UE2 are located in the same cell
  • UE3 and UE4 are located in the same cell
  • UE1 and UE2 both use base sequence s 1
  • UE1 uses the cyclic shift value ⁇ 1 of base sequence s 1 as the SRS sequence to send SRS
  • UE2 uses the cyclic shift ⁇ 2 of base sequence s 1 as the SRS sequence to send SRS
  • UE3 and UE4 both use base sequence s 2
  • UE3 uses the cyclic shift ⁇ 3 of base sequence s 2 as the SRS sequence to send SRS
  • UE4 uses the cyclic shift ⁇ 4 of base sequence s 2 as the SRS sequence to send SRS.
  • the received signal y(k) of the base station is:
  • the base station may use the following formula to correlate the received signal with the SRS sequence used by the UE:
  • the interference between the SRS sequences of two UEs will be affected by the difference between the cyclic shifts of the two sequences
  • the interference between the SRS sequences can be randomized by using cyclic shift hopping.
  • the cyclic shift of SRS is determined by the following formula:
  • nf is the system frame number (SFN);
  • SFN system frame number
  • the number of time slots contained in each frame under the subcarrier configuration ⁇ ; is the number of symbols contained in each time slot;
  • the time slot number l 0 ⁇ ⁇ 0, 1, ..., 13 ⁇ in the next frame of the subcarrier configuration ⁇ is the time domain starting position of the SRS resource in the time slot; is the OFDM symbol index in the SRS resource;
  • M ZC is the length of the SRS sequence.
  • cyclic shift hopping is that the cyclic shift of SRS at different times follows a certain cyclic shift change pattern.
  • the cyclic shift change pattern followed by SRS port p i indicates that p i sequentially uses cyclic shift 1, cyclic shift 2, 3, ..., cyclic shift d of the base sequence as the SRS sequence to send SRS, where d is an integer greater than 1.
  • SRS port p i first uses cyclic shift 1 of the base sequence as the SRS sequence to send SRS, then uses cyclic shift 2 of the base sequence as the SRS sequence to send SRS, then uses cyclic shift 3 of the base sequence as the SRS sequence to send SRS, and so on, after using cyclic shift d of the base sequence as the SRS sequence to send SRS, it restarts using cyclic shift 1 of the base sequence as the SRS sequence to send SRS.
  • a terminal device that supports cyclic shift hopping refers to a terminal device that can randomize the interference between SRS sequences by cyclic shift hopping.
  • a terminal device that supports cyclic shift hopping has the ability or function to randomize the interference between SRS sequences by cyclic shift hopping.
  • a terminal device that does not support cyclic shift hopping refers to a terminal device that cannot randomize the interference between SRS sequences by cyclic shift hopping.
  • a terminal device that does not support cyclic shift hopping does not have the ability or function to randomize the interference between SRS sequences by cyclic shift hopping.
  • the communication solution provided by the present application can ensure that the channel estimation performance is not lost while making full use of the interference randomization effect brought by cyclic shift hopping.
  • the communication scheme provided in this application is applicable to transmission scenarios, mainly for scenarios of transmitting SRS.
  • the communication scheme provided in this application is applicable to scenarios of both homogeneous networks and heterogeneous networks.
  • the communication scheme provided in this application has no restrictions on the transmission points in the applicable transmission scenarios, which can be multi-point collaborative transmission between macro base stations and macro base stations, micro base stations and micro base stations, and macro base stations and micro base stations, and is applicable to FDD/TDD systems.
  • the communication scheme provided in this application is applicable to low-frequency scenarios (sub 6G), high-frequency scenarios (above 6G), single transmission reception point (transmission reception point, TRP) scenarios or multiple transmission reception point (multi-TRP) scenarios, and any of their derivative scenarios.
  • the communication scheme provided in this application can be applied to 5G, satellite communication, short-distance and other wireless communication systems.
  • the wireless communication system to which the communication scheme provided in this application is applicable can comply with the wireless communication standards of the third generation partnership project (3GPP) or other wireless communication standards.
  • 3GPP third generation partnership project
  • the 802 series e.g., 802.11, 802.15, or 802.20
  • IEEE Institute of Electrical and Electronics Engineers
  • the wireless communication systems mentioned in the embodiments of the present application include but are not limited to: narrowband Internet of Things (NB-IoT) systems, long term evolution (LTE) systems, LTE frequency division duplex (FDD) systems, LTE time division duplex (TDD) systems, universal mobile telecommunication systems (UMTS), worldwide interoperability for microwave access (WiMAX) communication systems, fifth generation (5G) communication systems, and future sixth generation (6G) communication systems and other communication systems evolved after 5G.
  • NB-IoT narrowband Internet of Things
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication systems
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation
  • 6G sixth generation
  • the technical solution of the present application can also be applied to wireless local area networks (WLAN), Internet of Things (IoT) networks, ultra wide band (UWB) systems, vehicle to X (V2X) and other wireless local area network systems.
  • FIG3 is an example of a wireless communication system provided in an embodiment of the present application.
  • the communication system includes: one or more terminals Terminal devices, FIG3 only takes two terminal devices as an example, and one or more access network devices (such as base stations) that can provide communication services for the terminal devices, FIG3 only takes one access network device as an example.
  • the wireless communication system can be composed of cells, each cell includes one or more access network devices, and the access network device provides communication services to multiple terminal devices.
  • the wireless communication system can also perform point-to-point communication, such as multiple terminal devices communicating with each other.
  • Terminal equipment is a device with wireless transceiver functions.
  • Terminal equipment can communicate with one or more core network (CN) devices (or core devices) via access network equipment (or access equipment) in the radio access network (RAN).
  • CN core network
  • Terminal equipment can send uplink signals and receive downlink signals.
  • Terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (such as airplanes, balloons and satellites, etc.).
  • the terminal device may also be referred to as a terminal or user equipment (UE), which may be a mobile phone, a mobile station (MS), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, a subscriber unit, a cellular phone, a wireless data card, a personal digital assistant (PDA) computer, a tablet computer, a laptop computer, a machine type communication (MTC) terminal, a drone, etc.
  • UE user equipment
  • the terminal device may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem with wireless communication functions.
  • the terminal device may be a handheld device (handset), vehicle-mounted device, wearable device or terminal device in the Internet of Things, Internet of Vehicles, 5G and any form of terminal device in the communication system evolved after 5G with wireless communication functions, etc., and this application does not limit this.
  • Access network equipment can be any device with wireless transceiver functions and can communicate with terminal devices, such as a radio access network (RAN) node that connects terminal devices to a wireless network. Access network equipment can configure uplink and downlink resources, as well as send downlink signals and receive uplink signals.
  • RAN radio access network
  • RAN nodes include: macro base stations, micro base stations (also known as small stations), pico base stations, femto base stations, relay stations, access points, gNBs, transmission reception points (TRP), evolved Node B (eNB), radio network controllers (RNC), home base stations (e.g., home evolved Node B, or home Node B, HNB), baseband units (BBU), WiFi access points (AP), integrated access and backhaul (IAB), satellites, drones, etc.
  • TRP transmission reception points
  • eNB evolved Node B
  • RNC radio network controllers
  • home base stations e.g., home evolved Node B, or home Node B, HNB
  • BBU baseband units
  • WiFi access points AP
  • IAB integrated access and backhaul
  • the communication method provided by the embodiment of the present application is first introduced in conjunction with the accompanying drawings.
  • the main principle of the communication method provided by the present application is: to enable a communication device supporting cyclic shift hopping to obtain a cyclic shift range available for its corresponding SRS port, and when the cyclic shift value occupied by the SRS port corresponding to the communication device jumps within the cyclic shift range available for the SRS port, the channel estimation performance can be avoided from being lost, and the interference randomization effect brought by the cyclic shift hopping can be fully utilized.
  • FIG4 is a flow chart of a communication interaction method provided in an embodiment of the present application. As shown in FIG4 , the method includes:
  • a second communication device sends first information to a first communication device.
  • the first communication device receives the first information from the second communication device.
  • the second communication device may be an access network device, such as a base station.
  • the first communication device is a terminal device.
  • the first information is used to indicate the cyclic shift range of the first port, and the above-mentioned first port is one of the ports corresponding to the above-mentioned first communication device.
  • the first port may be one of several SRS ports included in an SRS resource in an SRS resource set.
  • the embodiment of the present application takes the first port as an example to describe the process of the first communication device determining the cyclic shift range of the SRS port. It should be understood that the first communication device can determine the cyclic shift range of any SRS port in a similar manner.
  • the first information can be carried on one or more signalings with the same/different formats, such as radio resource control (RRC) signaling, media access control (MAC) control element (CE), downlink control information (DCI), etc.
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • DCI downlink control information
  • the second communication device generates the first information before sending the first information.
  • the first information is used by the first communication device to determine the cyclic shift range of the first port.
  • the second communication device generates the first information according to the occupancy of the cyclic shift index by the SRS port that does not support cyclic shift hopping and/or the occupancy of the cyclic shift index by the SRS port that supports cyclic shift hopping and/or the delay extension of the channel corresponding to the SRS port that supports cyclic shift hopping, see Example 1 below.
  • the first communication device determines a cyclic shift range of the first port according to first information.
  • the cyclic shift range of the first port includes two or more cyclic shift values.
  • the first information indicates a first interval length
  • the cyclic shift range of the first port is determined by the cyclic shift value configured for the first port and the first interval length.
  • the first interval length indicated by the first information is No.
  • the cyclic shift value for a port configuration is
  • the cyclic shift range of the first port is
  • the first information indicates the number of ports. Comb number K TC , cyclic shift reference index and a first scaling factor ⁇ .
  • a possible implementation of step 402 is as follows: the first communication device determines the maximum cyclic shift number by the comb number K TC Refer to Table 1; via the above port number The above circular shift reference index And the maximum number of cyclic shifts mentioned above Determine the cyclic shift value of the first port configuration Refer to the above formula (6) and formula (7); by the above first scaling factor ⁇ and the above maximum cyclic shift number Determine the length of the first interval The cyclic shift value configured by the first port above and the length of the first interval Determine the cyclic shift range of the first port The first information indicating the number of ports, the number of comb teeth, the cyclic shift reference index, and the first scaling factor can be replaced by: the first information indicating the number of ports, the number of comb teeth, the cyclic shift reference index, and the first scaling factor is predefined, that is, the first information does not need to
  • the first information indicates a first set
  • the first set includes unavailable cyclic shift indices for the first port
  • the cyclic shift range of the first port is determined by the first set.
  • the unavailable cyclic shift indices for the first port can be understood as: the cyclic shift indices occupied by the SRS port corresponding to the communication device that does not support cyclic shift hopping or the cyclic shift indices corresponding to the cyclic shift values occupied by the SRS port corresponding to the communication device that does not support cyclic shift hopping, that is, the cyclic shift indices already occupied by the SRS port that does not support cyclic shift hopping or the cyclic shift indices corresponding to the cyclic shift values already occupied by the SRS port that does not support cyclic shift hopping.
  • the first information indicates the cyclic shift indices included in the first set in the form of a bitmap
  • the N bits in the bitmap correspond one-to-one to the N cyclic shift indices
  • the value of any bit in the N bits is 1 or 0, representing that the cyclic shift index corresponding to the any bit belongs to the first set.
  • the N is an integer greater than 1.
  • N can be equal to the maximum number of cyclic shifts. Other values may also be used, which are not limited in this application.
  • the cyclic shift range of the first port is determined by the first set, and the cyclic shift range of the first port can be accurately determined.
  • the first information indicates a first set, a comb number K TC , and a second scaling factor ⁇
  • the first set includes unavailable cyclic shift indexes of the first port
  • the cyclic shift range of the first port is determined by the first set, the comb number, and the second scaling factor.
  • a possible implementation of step 402 is as follows: the first communication device determines the maximum cyclic shift number by the comb number K TC Refer to Table 1; through the above maximum number of cyclic shifts The above-mentioned first set and the above-mentioned second scaling factor ⁇ determine the cyclic shift range of the above-mentioned first port.
  • the above-mentioned first information indicating the first set, the number of comb teeth and the second scaling factor can be replaced by: the above-mentioned first information indicating the first set and the number of comb teeth, and the above-mentioned second scaling factor is predefined, that is, the first information does not need to indicate the second scaling factor.
  • the first communication device uses the above-mentioned formula (1) or formula (2) to determine the cyclic shift range of the above-mentioned first port.
  • the cyclic shift range of the first port is jointly determined by the first set, the number of comb teeth and the second scaling factor, and the cyclic shift range of the first port can be accurately determined.
  • the first information indicates a second set
  • the second set includes one or more cyclic shift indexes
  • the second set is a true subset of the full set of all cyclic shift indexes
  • the cyclic shift range of the first port is determined by the second set.
  • the second set includes one or more cyclic shift indexes that can be regarded as cyclic shift indexes available for the first port.
  • the full set of all cyclic shift indexes here can be It can also be ⁇ 0,1,...,M ZC -1 ⁇ , or other values. represents the maximum cyclic shift number, and M ZC represents the SRS sequence length.
  • the first information indicates the cyclic shift indexes included in the second set in a bitmap manner, and the N bits in the bitmap correspond to the N cyclic shift indexes one by one.
  • the value of any bit in the N bits is 1 or 0, indicating that the cyclic shift index corresponding to the any bit belongs to the second set.
  • the N is an integer greater than 1.
  • N can be equal to the maximum cyclic shift number. It may also be equal to the SRS sequence length M ZC , or may be other values, which are not limited in the present application.
  • the cyclic shift range of the first port is determined by the second set, and the cyclic shift range of the first port can be accurately determined.
  • the first information indicates a second set, a comb tooth number K TC , and a third scaling factor ⁇
  • the second set includes one or more cyclic shift indexes
  • the second set is a proper subset of the full set of all cyclic shift indexes
  • the cyclic shift range of the first port is jointly determined by the second set, the comb tooth number, and the third scaling factor.
  • Step 402 is a possible The implementation method is as follows: the first communication device determines the maximum cyclic shift number by the comb number K TC Refer to Table 1; through the above maximum number of cyclic shifts
  • the second set and the third scaling factor ⁇ determine the cyclic shift range of the first port.
  • the first information indicating the second set, the number of comb teeth and the third scaling factor can be replaced by: the first information indicating the second set and the number of comb teeth, the third scaling factor is predefined, that is, the first information does not need to indicate the third scaling factor.
  • the first communication device uses the above formula (3) to determine the cyclic shift range of the first port.
  • the cyclic shift range of the first port is jointly determined by the first set, the number of comb teeth and the third scaling factor, and the cyclic shift range of the first port can be accurately determined.
  • the first communication device sends a reference signal on the first port.
  • the first communication device sending the reference signal on the first port may be: the first communication device sends the reference signal on the first port according to the cyclic shift range of the first port.
  • the cyclic shift value occupied by the first port belongs to the cyclic shift range of the first port.
  • the cyclic shift value occupied by the first port changes with the sending time and/or sending frequency of the above-mentioned reference signal
  • the cyclic shift value occupied by the above-mentioned first port belongs to the cyclic shift range of the above-mentioned first port.
  • the cyclic shift value occupied by the first port refers to the cyclic shift value occupied by sending the reference signal, and the reference signal may be an SRS.
  • the cyclic shift value occupied by the first port changes with the sending time of the above-mentioned reference signal, which can be understood as: the cyclic shift values occupied by the first port when sending SRS at different times are different.
  • the first communication device occupies the cyclic shift value 1 when sending SRS 1 through the first port at a first moment, and the first communication device occupies the cyclic shift value 2 when sending SRS 2 through the first port at a second moment; wherein the first moment and the second moment are different, and the cyclic shift value 1 and the cyclic shift value 2 are different.
  • the cyclic shift value occupied by the first port changes with the sending frequency of the above-mentioned reference signal, which can be understood as: the cyclic shift values occupied by the first port when sending SRS on different frequency resources are different.
  • the first communication device occupies a cyclic shift value of 1 when sending SRS 1 through the first port on frequency resource 1, and occupies a cyclic shift value of 2 when sending SRS 2 through the first port on frequency resource 2; wherein frequency resource 1 and frequency resource 2 are different, the cyclic shift value 1 and the cyclic shift value 2 are different, and frequency resource 1 and frequency resource 2 correspond to the same time resource or different time resources.
  • the first communication device determines the cyclic shift range of the first port based on the first information.
  • the first communication device occupies any cyclic shift value in the cyclic shift range to send a reference signal, it can avoid or reduce the problem that the channel estimation performance of the two may suffer serious loss when the SRS port corresponding to the terminal device supporting cyclic shift hopping and the SRS port corresponding to the terminal device not supporting cyclic shift hopping are configured on the same comb teeth for multiplexing.
  • the first communication device determines the cyclic shift range of the first port based on the first information, which can ensure that the channel estimation performance is not lost while making full use of the interference randomization effect brought by the cyclic shift hopping.
  • the following describes possible formats of the first information and possible implementation methods in which the first communication device determines the cyclic shift range of the first port according to the first information through several embodiments.
  • First information indicates cyclic shift range of first port.
  • the first information indicating cyclic shift range of first port can be regarded as: first information indicates first interval length, and the cyclic shift range of first port is determined by cyclic shift value configured by first port and first interval length.
  • the value of the first field in the first information corresponds to the cyclic shift range of the first port.
  • the first field occupies one or more bits.
  • the value of the first field in the first information corresponds to the length of the first interval.
  • Example 11 The first field in the first information occupies 1 bit.
  • the corresponding relationship between the value of the first field in the first information and the cyclic shift range of the first port may be as follows:
  • the first field indicates that the cyclic shift range of the first port is [0, 2 ⁇ ], that is, the cyclic shift range of the first port is not restricted; in other words, if the value of the first field is 0, the first field indicates that the length of the first interval is 2 ⁇ .
  • the first field indicates that the cyclic shift range of the first port is In other words, if the value of the first field is 1, then the first field indicates that the length of the first interval is
  • ⁇ >0 is a first scaling factor predefined or indicated by the second communication device (eg, base station) through first information.
  • the first information further indicates K TC , as well as The first communication device obtains according to K TC Refer to Table 1; according to as well as get Refer to the above formula (6) and formula (7); according to ⁇ and get according to as well as get The first information indicates the first interval length, K TC , and ⁇ , or indicates the length of the first interval, K TC , as well as When the first communication device can use the first information to determine the cyclic shift range of the first port.
  • the first information in the first information A field may be regarded as a formula for determining the cyclic shift range of the first port or the length of the first interval, which may be indicated by the first information K TC , And ⁇ is a parameter required to determine the cyclic shift range of the first port or the length of the first interval.
  • the first field indicates that the cyclic shift range of the first port is not restricted, that is, [0,2 ⁇ ], and the value of the first field corresponds to the situation where the second communication device does not configure the first port and the SRS port corresponding to the communication device that does not support cyclic shift hopping on the same comb teeth for code division multiplexing;
  • the value of the first field indicates that the cyclic shift range of the first port is That is, the delay domain is divided into 8 equal parts (indexed from 0 to 7), the cyclic shift value used by the first port can be any value between the starting point of the xth part and the midpoint of the xth part, and the value of the first field corresponds to the situation where the second communication device configures the first port and the SRS port corresponding to the communication device that does not support cyclic shift hopping on the same comb tooth for code division multiplexing.
  • the second communication device does not configure the first port and the SRS port corresponding to the communication device that does not support cyclic shift hopping on the same comb tooth for code division multiplexing, then the first information containing the first field with a value of 0 is sent to the first communication device, and the first communication device can learn from the first information that the cyclic shift range of the first port is not restricted, that is, the cyclic shift range of the first port is [0,2 ⁇ ]; if the second communication device configures the first port and the SRS port corresponding to the communication device that does not support cyclic shift hopping on the same comb tooth for code division multiplexing, then the first information containing the first field with a value of 1 is sent to the first communication device, and the first communication device determines the cyclic shift range of the first port based on the first information, for example
  • Example 12 The first field in the first information occupies 2 bits.
  • the corresponding relationship between the value of the first field and the cyclic shift range of the first port can be as follows:
  • the first field indicates that the first cyclic shift range is [0, 2 ⁇ ], that is, the cyclic shift range of the first port is not restricted; in other words, if the value of the first field is 00, the first field indicates that the first interval length is 2 ⁇ ;
  • the first field indicates that the cyclic shift range of the first port is In other words, if the value of the first field is 01, then the first field indicates that the length of the first interval is
  • the first field indicates that the cyclic shift range of the first port is In other words, if the value of the first field is 10, then the first field indicates that the length of the first interval is
  • the first field indicates that the cyclic shift range of the first port is In other words, if the value of the first field is 11, then the first field indicates that the length of the first interval is
  • ⁇ 3 > ⁇ 2 > ⁇ 1 >0 is a first scaling factor predefined or indicated by the second communication device through the first information.
  • the first information further indicates K TC , as well as
  • the first communication device obtains according to K TC Refer to Table 1; according to as well as get Refer to the above formula (6) and formula (7); according to ⁇ 1 , ⁇ 2 , ⁇ 3 and get as well as according to as well as get as well as
  • the first information indicates the first interval length, K TC , ⁇ 1 , ⁇ 2 and ⁇ 3 , or indicates the length of the first interval, K TC , and
  • the first communication device may use the first information to determine the cyclic shift range of the first port.
  • the first field in the first information may be regarded as a formula for determining the cyclic shift range of the first port or the length of the first interval, which may be indicated by the first information.
  • ⁇ 2 and ⁇ 3 are parameters required to determine the cyclic shift range of the first port or the length of the first interval.
  • the first field indicates that the cyclic shift range of the first port is not restricted, that is, [0,2 ⁇ ], and the value of the first field corresponds to the situation that the second communication device does not configure the first port and the SRS port corresponding to the communication device that does not support cyclic shift hopping on the same comb teeth for code division multiplexing;
  • the value of the first field is 01
  • the first field indicates that the cyclic shift range of the first port is That is, the delay domain is divided into 8 equal parts (indexed from 0 to 7), and the cyclic shift value used by the first port can be any value between the starting point of the xth part and the midpoint of the xth part;
  • the first field indicates that the cyclic shift range of the first port is That is, the delay domain is divided into 8 equal parts (indexed from 0 to 7), and the cyclic shift value used by the first port can be
  • the first field corresponds to the second communication device configuring the first port and the SRS port corresponding to the communication device that does not support cyclic shift hopping on the same comb teeth for code division multiplexing.
  • the specific value of the first field may be determined by the cyclic shift index configured by the second communication device for the SRS ports corresponding to all communication devices that do not support cyclic shift hopping on the same comb tooth (hereinafter referred to as the SRS ports that do not support cyclic shift hopping), the cyclic shift index configured by the second communication device for the SRS ports corresponding to all communication devices that support cyclic shift hopping on the comb tooth (hereinafter referred to as the SRS ports that support cyclic shift hopping), and the delay spread of the channels corresponding to all SRS ports that support cyclic shift hopping on the comb tooth.
  • the second communication device may generate the first information indicating the cyclic shift range of the SRS port that supports cyclic shift hopping based on the occupancy of the cyclic shift index by the SRS port that does not support cyclic shift hopping, the occupancy of the cyclic shift index by the SRS port that supports cyclic shift hopping, and the delay spread of the channel corresponding to the SRS port that supports cyclic shift hopping.
  • the second communication device may also generate the first information based on other factors, which are not limited in this application.
  • Any cyclic shift value within the cyclic shift range of the SRS port (e.g., the first port) that supports cyclic shift hopping needs to ensure that after the SRS port that supports cyclic shift hopping occupies the arbitrary cyclic shift value to send SRS, its corresponding delay domain channel and the delay domain channel corresponding to the SRS port that does not support cyclic shift hopping do not overlap as much as possible.
  • the cyclic shift range of the first port is indicated by the first information
  • the first communication device can obtain the cyclic shift range of the corresponding SRS port in combination with the first scaling factor predefined or indicated by the first information by the second communication device, thereby ensuring that the channel estimation performance of the SRS port that does not support cyclic shift hopping and the SRS port that supports cyclic shift hopping is not lost.
  • the interference randomization effect brought by the cyclic shift hopping is fully utilized.
  • the following describes the implementation method of the second communication device generating the first information indicating the cyclic shift range of the SRS port that supports cyclic shift hopping in combination with the accompanying drawings and examples.
  • FIG5 is a schematic diagram of a delay domain channel corresponding to an SRS port provided in an embodiment of the present application.
  • the black vertical dashed line divides the delay domain represented by the black horizontal solid line into 8 equal parts (indexed from 0 to 7)
  • curve 501 represents the delay domain channel corresponding to the SRS port that does not support cyclic shift hopping
  • the solid curve 502 represents the delay domain channel corresponding to the SRS port that supports cyclic shift hopping when no cyclic shift hopping (i.e., occupying the cyclic shift value configured by the base station) is performed
  • the dashed curve 503 represents the delay domain channel corresponding to the SRS port that supports cyclic shift hopping after cyclic shift hopping.
  • the arrow indicates the available cyclic shift range of the SRS port that supports cyclic shift hopping. It should be understood that as long as the cyclic shift value of the SRS port that supports cyclic shift hopping after cyclic shift hopping is still within the range indicated by the arrow, the channel estimation performance of the SRS port that does not support cyclic shift hopping and the SRS port that supports cyclic shift hopping will not suffer losses.
  • the second communication device (such as a base station) configures cyclic shift indexes 0, 2, 4, and 6 for each SRS port that does not support cyclic shift hopping, and configures cyclic shift indexes 1 and 5 for each SRS port that supports cyclic shift hopping.
  • the second communication device estimates in some way (such as predicting based on historical information) that the delay spread of the channels corresponding to each SRS port that supports cyclic shift hopping is relatively small (for example, the delay path of the channel corresponding to the SRS port configured with cyclic shift index 1 is concentrated between the starting point of the first part and the midpoint of the first part in the 8-equally divided delay domain, and the delay path of the channel corresponding to the SRS port configured with cyclic shift index 5 is concentrated between the starting point of the fifth part and the midpoint of the fifth part in the 8-equally divided delay domain).
  • the second communication device can indicate through the first field with a value of "01" that the available cyclic shift range for the SRS port configured with cyclic shift index 1 is And indicates that the available cyclic shift range for the SRS port configured with cyclic shift index 5 is
  • the channel corresponding to the SRS port configured with cyclic shift index 1 The delay path is concentrated between the starting point and the midpoint of the first portion of the 8-part delay domain.
  • the delay path of the channel corresponding to the SRS port is in the overall rightward shift delay domain.
  • the delay path of the channel corresponding to the SRS port is distributed between the midpoint of the first portion and the end point of the first portion (the starting point of the second portion) in the 8-equally divided delay domain, which will not affect the channel estimation performance of each SRS port; the delay path of the channel corresponding to the SRS port configured with cyclic shift index 5 is concentratedly distributed between the starting point of the fifth portion and the midpoint of the fifth portion in the 8-equally divided delay domain, and the delay path of the channel corresponding to the SRS port is in the overall rightward shift delay domain.
  • the delay path of the channel corresponding to the SRS port is distributed between the midpoint of the fifth portion and the end point of the fifth portion (the starting point of the sixth portion) in the 8-part delay domain, which will not affect the channel estimation performance of each SRS port.
  • the value of ⁇ 1 can be A communication device supporting cyclic shift hopping combines a first scaling factor predefined or indicated by a second communication device through first information
  • the available cyclic shift range for the SRS port configured with cyclic shift index 1 is
  • the available cyclic shift range for an SRS port configured with cyclic shift index 5 is In this way, it can ensure that the channel estimation performance of the SRS port that does not support cyclic shift hopping and the SRS port that supports cyclic shift hopping is not lost, and the interference randomization effect brought by cyclic shift hopping can be fully utilized.
  • the second communication device can generate the first information indicating the cyclic shift range of the SRS port that supports cyclic shift hopping in a similar manner, which will not be described in detail here.
  • the first information indicates the cyclic shift range of the first port, and the cyclic shift range of the first port can be accurately determined.
  • Embodiment 2 The first information indicates a first set, the first set includes unavailable cyclic shift indexes of the first port, and the cyclic shift range of the first port is determined by the first set.
  • the first information indicates the cyclic shift indexes included in the first set in a bitmap manner, and the N bits in the bitmap correspond to the N cyclic shift indexes one by one.
  • the value of any bit in the N bits is 1 or 0, indicating that the cyclic shift index corresponding to the any bit belongs to the first set.
  • the N is an integer greater than 1.
  • N can be equal to the maximum cyclic shift number. It may also be equal to the SRS sequence length M ZC , or may be other values, which are not limited in the present application.
  • B represents a bitmap occupying N bits
  • B is used to indicate the cyclic shift index included in the first set
  • j represents the cyclic shift index
  • B(j) represents the value of the j+1th bit in B
  • the first information indicates the cyclic shift index included in the first set in the form of a bitmap, which can accurately indicate the cyclic shift index included in the first set.
  • Example 21 The first information indicates a first set, that is, unavailable cyclic shift indices for a first port, and the cyclic shift range of the first port is:
  • is the second scaling factor
  • 0 ⁇ 1 is a second scaling factor predefined or indicated by the second communication device (e.g., a base station) through the first information.
  • Example 22 The first information indicates a first set, that is, unavailable cyclic shift indices for the first port, and the cyclic shift range of the first port is:
  • 0 ⁇ 1 is a predefined or first
  • the second communication device (eg, base station) uses the second scaling factor indicated by the first information.
  • the first information indicates a first set, a comb number K TC , and a second scaling factor ⁇
  • the first set includes unavailable cyclic shift indexes of the first port
  • the cyclic shift range of the first port is determined by the first set, the comb number, and the second scaling factor.
  • the first communication device determines the cyclic shift range of the first port in the following possible implementations: the first communication device determines the maximum cyclic shift number by the comb number K TC Refer to Table 1; through the above maximum number of cyclic shifts
  • the first set and the second scaling factor ⁇ determine the cyclic shift range of the first port.
  • the first communication device uses the formula (1) or formula (2) to determine the cyclic shift range of the first port.
  • the cyclic shift range of the first port is determined by the first set, the number of comb teeth, and the second scaling factor, and the cyclic shift range of the first port can be accurately determined.
  • FIG6 is a schematic diagram of a delay domain channel corresponding to another SRS port provided in an embodiment of the present application.
  • the black vertical dashed line divides the delay domain represented by the black horizontal solid line into 8 equal parts (indexed from 0 to 7)
  • curve 601 represents the delay domain channel corresponding to the SRS port that does not support cyclic shift hopping
  • the solid curve 602 represents the delay domain channel corresponding to the SRS port that supports cyclic shift hopping when no cyclic shift hopping (i.e., occupying the cyclic shift value configured by the base station) is performed
  • the dashed curve 603 represents the delay domain channel corresponding to the SRS port that supports cyclic shift hopping after cyclic shift hopping.
  • the arrow indicates the available cyclic shift range of the SRS port that supports cyclic shift hopping. It should be understood that as long as the cyclic shift value of the SRS port that supports cyclic shift hopping after cyclic shift hopping is still within the range indicated by the arrow, the channel estimation performance of the SRS port that does not support cyclic shift hopping and the SRS port that supports cyclic shift hopping will not suffer losses.
  • the second communication device indicates through the above-mentioned first information a set of cyclic shift indices occupied by the SRS port that does not support cyclic shift hopping, i.e., the first set.
  • the first communication device can obtain the available cyclic shift range of the first port in combination with the second scaling factor ⁇ that is predefined or indicated by the second communication device through the first information, so as to fully utilize the interference randomization effect brought by the cyclic shift hopping under the premise of ensuring that the channel estimation performance of the SRS port that does not support cyclic shift hopping and the SRS port that supports cyclic shift hopping is not lost.
  • the first information indicates a first set
  • the first communication device can accurately determine the cyclic shift range of the first port according to the first set.
  • Embodiment 3 The first information indicates a second set, the second set includes one or more cyclic shift indexes, the second set is a true subset of the full set consisting of all cyclic shift indexes, and the cyclic shift range of the first port is determined by the second set.
  • the full set consisting of all cyclic shift indexes is divided into ⁇ predefined true subsets, the second set is one of the ⁇ true subsets, the first information indicates the second set, and the cyclic shift range of the first port is determined by the second set.
  • the ⁇ is an integer greater than 1.
  • the second set indicated by the first information is one of several predefined true subsets, and the cyclic shift range of the first port can be determined with a relatively small overhead.
  • the first information indicates the cyclic shift indexes included in the second set in a bitmap manner, and the N bits in the bitmap correspond to the N cyclic shift indexes one by one.
  • the value of any bit in the N bits is 1 or 0, indicating that the cyclic shift index corresponding to the any bit belongs to the second set.
  • the N is an integer greater than 1.
  • N can be equal to the maximum cyclic shift number. It may also be equal to the SRS sequence length M ZC , or may be other values, which are not limited in the present application.
  • B represents a bitmap occupying N bits
  • B is used to indicate the cyclic shift value included in the second set
  • j represents the cyclic shift index
  • B(j) represents the value of the j+1th bit in B
  • the first information indicates the cyclic shift index included in the second set in the form of a bitmap, which can accurately indicate the cyclic shift index included in the first set.
  • Example 3 The first information indicates a second set, the second set includes one or more cyclic shift indexes, and the cyclic shift range of the first port is:
  • represents a third scaling factor.
  • 0 ⁇ 1 is a third scaling factor predefined or indicated by the second communication device (eg, base station) through the first information.
  • the first information indicates the second set, the number of comb teeth K TC and the third scaling factor ⁇
  • the second The set includes one or more cyclic shift indices
  • the second set is a proper subset of the full set consisting of all cyclic shift indices
  • the cyclic shift range of the first port is determined by the second set, the comb tooth number, and the third scaling factor.
  • the first communication device determines the cyclic shift range of the first port in the following possible implementations: the first communication device determines the maximum cyclic shift number by the comb tooth number K TC See Table 1; by the maximum number of cyclic shifts
  • the second set and the third scaling factor ⁇ determine the cyclic shift range of the first port.
  • the first communication device uses the formula (3) to determine the cyclic shift range of the first port.
  • the cyclic shift range of the first port is determined by the second set, the number of comb teeth and the third scaling factor, and the cyclic shift range of the first port can be accurately determined.
  • the full set of all cyclic shift indices may be equally divided into ⁇ 1 predefined subsets at intervals of ⁇ 1 , where ⁇ 1 is Considering that there is a delay difference between SRSs used for channel estimation at different TRPs, the full set of all cyclic shift indices may be continuously divided into ⁇ 2 predefined subsets, where ⁇ 2 is The entire set of all cyclic shift indices may also be divided into several predefined subsets in other ways, which is not limited in the embodiments of the present application.
  • the second communication device can indicate that the second set is ⁇ 0, 2, 4, 6 ⁇ or ⁇ 1, 3, 5, 7 ⁇ through the first information.
  • the second field in the first information indicates the second set, and if the value of the second field is 0, the second field indicates that the second set is ⁇ 0, 2, 4, 6 ⁇ ; if the value of the second field is 1, the second field indicates that the second set is ⁇ 1, 3, 5, 7 ⁇ .
  • the second communication device can indicate that the second set is ⁇ 0, 1, 2, 3 ⁇ or ⁇ 4, 5, 6, 7 ⁇ through the first information.
  • the second communication device may indicate through the first information that the second set is any one of ⁇ 0,4 ⁇ , ⁇ 1,5 ⁇ , ⁇ 2,6 ⁇ , and ⁇ 3,7 ⁇ .
  • the second field in the first information indicates the second set.
  • the second field indicates that the second set is ⁇ 0,4 ⁇ ; if the value of the second field is 01, the second field indicates that the second set is ⁇ 1,5 ⁇ ; if the value of the second field is 10, the second field indicates that the second set is ⁇ 2,6 ⁇ ; if the value of the second field is 11, the second field indicates that the second set is ⁇ 3,7 ⁇ . Furthermore, assuming that the second set is ⁇ 0,2,4,6 ⁇ , For example, the cyclic shift range of the first port is
  • the second communication device indicates through the above-mentioned first information a set of cyclic shift indices that are not occupied by the SRS port that does not support cyclic shift hopping, i.e., the second set.
  • the first communication device can obtain the cyclic shift range of the first port in combination with the third scaling factor ⁇ that is predefined or indicated by the second communication device through the first information, so as to fully utilize the interference randomization effect brought by the cyclic shift hopping under the premise of ensuring that the channel estimation performance of the SRS port that does not support cyclic shift hopping and the SRS port that supports cyclic shift hopping is not lost.
  • the first information indicates the second set
  • the first communication device can accurately determine the cyclic shift range of the first port according to the second set.
  • cyclic shift hopping There are two possible implementations of cyclic shift hopping: in one possible implementation, the cyclic shift of SRS is determined by the above formula (10), and in this implementation, the cyclic shift of SRS does not follow a certain cyclic shift change pattern; in another possible implementation, the cyclic shift of SRS at different times follows a certain cyclic shift change pattern.
  • the above describes a communication scheme for making full use of the interference randomization effect brought by cyclic shift hopping when the cyclic shift hopping does not follow the cyclic shift change pattern, while ensuring that the channel estimation performance of the SRS ports multiplexed on the same comb teeth is not lost.
  • the following describes a communication scheme for making full use of the interference randomization effect brought by cyclic shift hopping when the cyclic shift hopping follows a certain cyclic shift change pattern, while ensuring that the channel estimation performance of the SRS ports multiplexed on the same comb teeth is not lost.
  • FIG7 is a flow chart of another communication interaction method provided in an embodiment of the present application. As shown in FIG7 , the method includes:
  • a second communication device sends first information to a first communication device.
  • the first communication device receives the first information from the second communication device.
  • the second communication device may be an access network device, such as a base station.
  • the first communication device is a terminal device.
  • the first information is used to indicate the cyclic shift change pattern corresponding to the first port.
  • the above-mentioned first port is one of the ports corresponding to the above-mentioned first communication device.
  • the first port may be one of several SRS ports included in an SRS resource in an SRS resource set.
  • the embodiment of the present application takes the first port as an example to describe the process of the first communication device determining the cyclic shift range of the SRS port. It should be understood that the first communication device can determine the cyclic shift range of any SRS port in a similar manner.
  • the first information may be carried on one or more signalings of the same/different formats, such as radio resource control (RRC) signaling, media access control (MAC) control element (CE), Downlink control information (DCI), etc.
  • RRC radio resource control
  • MAC media access control
  • CE control element
  • DCI Downlink control information
  • the second communication device generates the first information before sending the first information.
  • the first information is used by the first communication device to determine the cyclic shift change pattern corresponding to the first port.
  • the second communication device generates the first information according to the occupancy of the cyclic shift index by the SRS port that does not support cyclic shift hopping and/or the occupancy of the cyclic shift index by the SRS port that supports cyclic shift hopping and/or the delay spread of the channel corresponding to the SRS port that supports cyclic shift hopping.
  • the first communication device determines a cyclic shift change pattern corresponding to the first port according to the first information.
  • the set of cyclic shift indices included in the cyclic shift change pattern corresponding to the first port is a proper subset of the full set of all cyclic shift indices.
  • the full set of all cyclic shift indices can be It can also be ⁇ 0,1,...,M ZC -1 ⁇ , or other values.
  • c represents a positive integer constant.
  • M ZC represents the SRS sequence length.
  • the first communication device sends a reference signal on the first port.
  • the first communication device sending a reference signal on the first port may be: the first communication device sends the reference signal on the first port, and the cyclic shift value occupied by the first port changes with the sending time and/or sending frequency of the reference signal according to the cyclic shift change pattern corresponding to the first port.
  • the first field in the first information indicates the cyclic shift change pattern corresponding to the first port, and the number of bits occupied by the first field is related to the number of candidate cyclic shift change patterns.
  • Cyclic shift change patterns containing the same cyclic shift index in different orders can be regarded as different cyclic shift change patterns, or as the same cyclic shift change patterns at different starting points.
  • the starting point can be the cyclic shift index configured by the second communication device for the first port, or it can be determined by other means.
  • cyclic shift change patterns containing the same cyclic shift index in different orders are regarded as the same cyclic shift change pattern at different starting points, and the starting point is the cyclic shift index configured by the second communication device for the first port.
  • the full set of all cyclic shift indices may be equally divided into ⁇ 1 cyclic shift change patterns at intervals of ⁇ 1 , where ⁇ 1 is Considering that there is a delay difference between SRSs used for channel estimation at different TRPs, the full set of all cyclic shift indices may be continuously divided into ⁇ 2 cyclic shift change patterns, where ⁇ 2 is The entire set of all cyclic shift indices may also be divided into a number of cyclic shift change patterns in other ways, which is not limited in the embodiments of the present application.
  • the second communication device can indicate through the first information that the cyclic shift change pattern corresponding to the SRS port (e.g., the first port) supporting cyclic shift hopping is ⁇ 0, 2, 4, 6 ⁇ or ⁇ 1, 3, 5, 7 ⁇ .
  • the second communication device can indicate through the first information that the cyclic shift change pattern corresponding to the SRS port supporting cyclic shift hopping is ⁇ 0, 1, 2, 3 ⁇ or ⁇ 4, 5, 6, 7 ⁇ .
  • the first field in the first information indicates the cyclic shift change pattern corresponding to the first port.
  • the first field indicates that the cyclic shift change pattern corresponding to the SRS port supporting cyclic shift hopping is ⁇ 0,1,2,3 ⁇ ; if the value of the first field is 1, the first field indicates that the cyclic shift change pattern corresponding to the SRS port supporting cyclic shift hopping is ⁇ 4,5,6,7 ⁇ .
  • the second communication device can indicate through the first information that the cyclic shift change pattern corresponding to the SRS port supporting cyclic shift hopping is any one of ⁇ 0,4 ⁇ , ⁇ 1,5 ⁇ , ⁇ 2,6 ⁇ , and ⁇ 3,7 ⁇ .
  • the first field in the first information indicates the cyclic shift change pattern corresponding to the first port.
  • the first field indicates that the cyclic shift change pattern corresponding to the SRS port supporting cyclic shift hopping is ⁇ 0,4 ⁇ ; if the value of the first field is 01, the first field indicates that the cyclic shift change pattern corresponding to the SRS port supporting cyclic shift hopping is ⁇ 1,5 ⁇ ; if the value of the first field is 10, the first field indicates that the cyclic shift change pattern corresponding to the SRS port supporting cyclic shift hopping is ⁇ 2,6 ⁇ ; if the value of the first field is 11, the first field indicates that the cyclic shift change pattern corresponding to the SRS port supporting cyclic shift hopping is ⁇ 3,7 ⁇ .
  • the first information indicates that the cyclic shift change pattern corresponding to the SRS port p i that supports cyclic shift hopping is ⁇ 0, 2, 4, 6 ⁇
  • the second communication device configures the cyclic shift index 4 for the SRS port p i
  • the cyclic shift change pattern corresponding to the SRS port p i is ⁇ 4, 6, 0, 2 ⁇ , that is, the cyclic shift index occupied by the SRS port p i changes with the SRS sending time and/or sending frequency according to the rule of 4, 6, 0, 2, 4, 6, 0, 2,...
  • the first communication device determines the cyclic shift change pattern corresponding to the first port based on the first information.
  • the first communication device sends a reference signal according to the cyclic shift change pattern, it can avoid or reduce the problem that the channel estimation performance of the two may suffer serious losses when the SRS port corresponding to the terminal device supporting cyclic shift hopping and the SRS port corresponding to the terminal device not supporting cyclic shift hopping are configured on the same comb teeth for multiplexing.
  • the first communication device determines the cyclic shift change pattern corresponding to the first port based on the first information, which can ensure that the channel estimation performance is not lost while making full use of the interference randomization effect brought by the cyclic shift hopping.
  • FIG8 is a schematic diagram of the structure of a communication device 800 provided in an embodiment of the present application.
  • the communication device 800 may correspond to the functions or steps implemented by the first communication device in each of the above-mentioned method embodiments, and may also correspond to the functions or steps implemented by the second communication device in each of the above-mentioned method embodiments.
  • the communication device 800 may include a processing module 810 and a transceiver module 820.
  • it may also include a storage unit, which may be used to store instructions (codes or programs) and/or data.
  • the processing module 810 and the transceiver module 820 may be connected to the storage unit.
  • the processing module 810 may be coupled to a storage unit, for example, the processing module 810 may read instructions (codes or programs) and/or data in the storage unit to implement the corresponding method.
  • the above-mentioned units may be independently arranged or partially or fully integrated.
  • the transceiver module 820 may include a sending module and a receiving module.
  • the sending module may be a transmitter
  • the receiving module may be a receiver.
  • the entity corresponding to the transceiver module 820 may be a transceiver or a communication interface.
  • the communication device 800 can correspond to the implementation of the behavior and function of the first communication device in the above-mentioned method embodiment.
  • the communication device 800 can be a first communication device, or it can be a component (such as a chip or circuit) used in the first communication device.
  • the transceiver module 820 can be used to perform all receiving or sending operations performed by the first communication device in the embodiments of Figures 4 and 7, such as step 401 and step 403 in the embodiment shown in Figure 4, step 701 and step 703 in the embodiment shown in Figure 7, and/or other processes for supporting the technology described herein.
  • the processing module 810 is used to perform all operations except the transceiver operation performed by the first communication device in the embodiments of Figures 4 and 7, such as step 402 in the embodiment shown in Figure 4, and step 702 in the embodiment shown in Figure 7.
  • the communication device 800 can correspond to the implementation of the behavior and function of the second communication device in the above-mentioned method embodiment.
  • the communication device 800 can be a second communication device, or it can be a component (such as a chip or circuit) used in the second communication device.
  • the transceiver module 820 can be used to perform all receiving or sending operations performed by the second communication device in the embodiments of Figures 4 and 7, such as steps 401 and 403 in the embodiment shown in Figure 4, steps 701 and 703 in the embodiment shown in Figure 7, and/or other processes for supporting the technology described herein.
  • the processing module 810 is used to perform all operations performed by the second communication device except the transceiver operation, such as the operation of generating the first information.
  • Fig. 9 is a schematic diagram of the structure of another communication device 90 provided in an embodiment of the present application.
  • the communication device in Fig. 9 can be the first communication device mentioned above, or can be the second communication device mentioned above.
  • the communication device 90 includes at least one processor 910 and a transceiver 920 .
  • the processor 910 and the transceiver 920 may be used to execute functions or operations performed by the first communication device.
  • the transceiver 920 for example, executes all receiving or sending operations performed by the first communication device in the embodiments of FIG. 4 and FIG. 7.
  • the processor 910 for example, is used to execute all operations except the receiving and sending operations performed by the first communication device in the embodiments of FIG. 4 and FIG. 7.
  • the processor 910 and the transceiver 920 may be used to execute functions or operations performed by the second communication device.
  • the transceiver 920 for example, executes all receiving or sending operations performed by the second communication device in the embodiments of FIG. 4 and FIG. 7.
  • the processor 910 for example, executes all operations except the receiving and sending operations performed by the second communication device in the embodiments of FIG. 4 and FIG. 7.
  • the transceiver 920 is used to communicate with other devices/apparatuses via a transmission medium.
  • the processor 910 uses the transceiver 920 to send and receive data and/or signaling, and is used to implement the method in the above method embodiment.
  • the processor 910 can implement the function of the processing module 810, and the transceiver 920 can implement the function of the transceiver module 820.
  • the transceiver 920 may include a radio frequency circuit and an antenna.
  • the radio frequency circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the antenna is mainly used for transmitting and receiving radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as a touch screen, a display screen, a keyboard, etc., are mainly used to receive data input by a user and output data to the user.
  • the communication device 90 may further include at least one memory 930 for storing program instructions and/or data.
  • the memory 930 is coupled to the processor 910.
  • the coupling in the embodiment of the present application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 910 may operate in coordination with the memory 930.
  • the processor 910 may execute program instructions stored in the memory 930. At least one of the at least one memory may be included in the processor.
  • the processor 910 can read the software program in the memory 930, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 910 performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal outward in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 910.
  • the processor 910 converts the baseband signal into data and processes the data.
  • the above-mentioned RF circuit and antenna can be arranged independently of the processor performing baseband processing.
  • the RF circuit and antenna can be arranged independently of the communication device in a remote manner.
  • connection medium between the above-mentioned transceiver 920, processor 910 and memory 930 is not limited in the embodiment of the present application.
  • the memory 930, processor 910 and transceiver 920 are connected through a bus 940.
  • the bus is represented by a bold line in FIG. 9 .
  • the connection mode between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one bold line is used in FIG. 9 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the methods, steps, and logic diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc. The steps of the method disclosed in the embodiment can be directly embodied as being executed by a hardware processor, or can be executed by a combination of hardware and software modules in the processor.
  • FIG10 is a schematic diagram of the structure of another communication device 100 provided in an embodiment of the present application.
  • the communication device shown in FIG10 includes a logic circuit 1001 and an interface 1002.
  • the processing module 810 in FIG8 can be implemented with the logic circuit 1001, and the transceiver module 820 in FIG8 can be implemented with the interface 1002.
  • the logic circuit 1001 can be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 1002 can be a communication interface, an input and output interface, etc.
  • the logic circuit and the interface can also be coupled to each other.
  • the embodiment of the present application does not limit the specific connection method of the logic circuit and the interface.
  • the logic circuit and the interface may be used to execute the functions or operations performed by the first communication device described above.
  • the logic circuit and the interface may be used to execute the functions or operations performed by the second communication device described above.
  • the present application also provides a computer-readable storage medium, in which a computer program or instruction is stored.
  • a computer program or instruction is stored.
  • the computer program or instruction is executed on a computer, the computer executes the method of the above embodiment.
  • the present application also provides a computer program product, which includes instructions or a computer program.
  • a computer program product which includes instructions or a computer program.
  • the present application also provides a communication system, comprising the first communication device and the second communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法、通信装置、芯片及计算机可读存储介质,该方法包括:第一通信装置接收第一信息;第一通信装置根据第一信息,确定第一端口的循环移位范围,第一端口为第一通信装置对应的端口(例如SRS端口)中的一个,第一端口的循环移位范围包括两个或两个以上循环移位值;第一通信装置在第一端口上发送参考信号,第一端口占用的循环移位值随参考信号(例如SRS)的发送时刻和/或发送频率变化,第一端口占用的循环移位值属于第一端口的循环移位范围;能够在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。

Description

通信方法、通信装置、芯片及计算机可读存储介质
本申请要求于2022年9月30日提交中国专利局、申请号为202211213854.9、申请名称为“通信方法、通信装置、芯片及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信方法、通信装置、芯片及计算机可读存储介质。
背景技术
信道探测参考信号(sounding reference signal,SRS)是一种终端设备向接入网设备(例如基站)发送的上行参考信号。SRS用于接入网设备获取该终端设备的上行(uplink,UL)信道。或者,SRS用于接入网设备根据信道互易性获取该终端设备的下行(downlink,DL)信道,从而根据该下行信道对该终端设备做数据调度。
长期演进系统(long term evolution,LTE)和新无线(new radio,NR)中的SRS采用的序列(即SRS序列)是基序列(base sequence)的循环移位(cyclic shift,CS)。不同的终端设备采用的SRS序列可以是不同基序列的CS,也可以是相同基序列的不同CS。对于不同的基序列来说,无论采用相同或不同的循环移位值,得到的SRS序列之间均存在干扰。也就是说,若接入网设备将基于不同基序列的相同或不同循环移位值得到的SRS序列分配给不同的终端设备,且这些终端设备在相同的时频资源上发送各自被分配的SRS序列,则这些SRS序列之间存在的干扰会造成终端设备间的干扰。
由于两个SRS序列之间的干扰会受到这两个SRS序列的循环移位之间的差值的影响,目前采用循环移位跳变的方式随机化SRS序列间的干扰。采用循环移位跳变的方式随机化SRS序列间的干扰能达到较好的干扰随机化效果。在实际应用场景中,既有支持循环移位跳变的终端设备,也有不支持循环移位跳变的终端设备。当接入网设备将支持循环移位跳变的终端设备对应的SRS端口与不支持循环移位跳变的终端设对应的SRS端口配置在同一把梳齿上进行复用时,二者的信道估计性能可能会遭受严重损失。如何在充分利用循环移位跳变带来的干扰随机化效果的同时,保证上述情况下信道估计性能不受损失是亟待解决的问题。
发明内容
本申请实施例公开了通信方法、通信装置、芯片及计算机可读存储介质,在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
第一方面,本申请实施例提供一种通信方法,该方法包括:第一通信装置接收第一信息;所述第一通信装置根据所述第一信息,确定第一端口的循环移位范围,所述第一端口为所述第一通信装置对应的端口中的一个,所述第一端口的循环移位范围包括两个或两个以上循环移位值;所述第一通信装置在所述第一端口上发送参考信号。可选的,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口占用的循环移位值属于所述第一端口的循环移位范围。所述第一端口可以是一个SRS资源集中的一个SRS资源包括的若干SRS端口中的一个。所述第一端口占用的循环移位值是指所述第一通信装置在所述第一端口上发送所述参考信号占用的循环移位值。本申请中,第一端口的循环移位范围可理解为该第一端口可用的循环移位范围。或者说,第一端口可采用第一端口的循环移位范围中的任意循环移位值。所述第一端口的循环移位范围可以是第一循环移位范围的真子集,第一通信装置采用的循环移位值在该第一循环移位范围内跳变可能会造成与其他通信装置的SRS序列之间的干扰,第一通信装置采用的循环移位值在该第一端口的循环移位范围内跳变能够避免或减少与其他通信装置的SRS序列之间的干扰。第一循环移位范围可视为现有的支持循环移位跳变的通信装置可用的循环移位范围。本申请中不限定第一 端口的循环移位范围内的循环移位值的粒度和第一循环移位范围内的循环移位值的粒度。例如,第一循环移位范围可以是[0,2π](对应于整个时延域);可以是(将整个时延域等分),也可以是{0,1·2π/MZC,…,(MZC-1)·2π/MZC}(将整个时延域MZC等分),还可以包括其他取值。其中,c表示正整数常量,表示最大循环移位数量,MZC表示SRS序列长度。本申请实施例中,第一通信装置根据第一信息,确定第一端口的循环移位范围。第一通信装置对应的第一端口占用该循环移位范围中的任意循环移位值发送参考信号时,能够避免或减少在将支持循环移位跳变的终端设备对应的SRS端口与不支持循环移位跳变的终端设对应的SRS端口配置在同一把梳齿上进行复用时,二者的信道估计性能可能会遭受严重损失的问题。或者说,第一通信装置根据第一信息,确定第一端口的循环移位范围,能够在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一端口的循环移位范围中的任意循环移位值与不支持循环移位跳变的终端设备对应的SRS端口采用的任意循环移位值的差值大于第一阈值。该第一阈值不作限定。
SRS端口对应的时延域信道由多个时延径组成,在将支持循环移位跳变的终端设备对应的SRS端口与不支持循环移位跳变的终端设对应的SRS端口配置在同一把梳齿上进行复用时,过小的循环移位差值(即支持循环移位跳变的终端设备对应的SRS端口占用的循环移位值与不支持循环移位跳变的终端设备对应的SRS端口占用的循环移位值的差值)甚至相同的循环移位值会使得二者对应的时延域信道发生重叠,二者的信道估计性能均会遭受严重损失。在该实现方式中,第一端口的循环移位范围中的任意循环移位值与不支持循环移位跳变的终端设备对应的SRS端口占用的循环移位值的差值大于第一阈值,可以避免或减少第一端口对应的时延域信道和不支持循环移位跳变的终端设对应的SRS端口对应的时延域信道发生重叠,从而保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一信息指示第一区间长度,所述第一端口的循环移位范围由所述第一端口配置的循环移位值和所述第一区间长度共同确定。
在该实现方式中,第一信息指示第一区间长度。第一通信装置根据该第一信息和第一端口配置的循环移位值,可快速、准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示端口数量、梳齿数量、循环移位参考索引及第一区间长度;所述第一通信装置根据所述第一信息,确定第一端口的循环移位范围包括:所述第一通信装置通过所述梳齿数量确定最大循环移位数量;通过所述端口数量、所述循环移位参考索引以及所述最大循环移位数量,确定所述第一端口配置的循环移位值;通过所述第一端口配置的循环移位值和所述第一区间长度,确定所述第一端口的循环移位范围。
在该实现方式中,第一通信装置根据第一信息,确定第一端口的循环移位范围;以便在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一信息指示端口数量、梳齿数量、循环移位参考索引以及第一缩放因子;所述第一通信装置根据所述第一信息,确定第一端口的循环移位范围包括:所述第一通信装置通过所述梳齿数量确定最大循环移位数量;通过所述端口数量、所述循环移位参考索引以及所述最大循环移位数量,确定所述第一端口配置的循环移位值;通过所述第一端口配置的循环移位值,所述第一缩放因子和所述最大循环移位数量,确定所述第一端口的循环移位范围。所述第一信息指示端口数量、梳齿数量、循环移位参考索引以及第一缩放因子可替换为:所述第一信息指示端口数量、梳齿数量、循环移位参考索引,所述第一缩放因子是预定义的,即第一信息不需要指示第一缩放因子。
在该实现方式中,第一通信装置根据第一信息,确定第一端口的循环移位范围;以便在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一信息指示端口数量、梳齿数量、循环移位参考索引以及第一缩放因子;所述第一通信装置根据所述第一信息,确定第一端口的循环移位范围包括:所述第一通信装置通过所述梳齿数量确定最大循环移位数量;通过所述端口数量、所述循环移位参考索引以及所述最大循环移位数量,确定所述第一端口配置的循环移位值;通过所述第一缩放因子和所述最大循环移位数量,确定第一区间长度;通过所述第一端口配置的循环移位值和所述第一区间长度,确定所述第一端口的循环移位范围。 所述第一信息指示端口数量、梳齿数量、循环移位参考索引以及第一缩放因子可替换为:所述第一信息指示端口数量、梳齿数量、循环移位参考索引,所述第一缩放因子是预定义的,即第一信息不需要指示第一缩放因子。
在该实现方式中,第一通信装置根据第一信息,确定第一端口的循环移位范围;以便在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一端口的循环移位范围为其中,表示所述第一端口配置的循环移位值,表示最大循环移位数量,表示所述第一区间长度,β表示所述第一缩放因子。可选的,β>0为预定义的或接入网设备(例如基站)通过第一信息指示的第一缩放因子。
在该实现方式中,第一端口的循环移位范围为第一端口采用该循环移位范围内的循环移位值发送参考信号,可以在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一信息指示第一集合,所述第一集合包括所述第一端口不可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合确定。
在该实现方式中,第一端口的循环移位范围由第一集合确定,可以准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示第一集合和梳齿数量,所述第一集合包括所述第一端口不可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合和所述梳齿数量共同确定。可选的,第一通信装置根据所述第一信息,确定第一端口的循环移位范围包括:所述第一通信装置通过所述梳齿数量确定最大循环移位数量;通过所述最大循环移位数量和所述第一集合,确定所述第一端口的循环移位范围。
在该实现方式中,第一端口的循环移位范围由第一集合和梳齿数量共同确定,可以准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示第一集合、梳齿数量以及第二缩放因子,所述第一集合包括所述第一端口不可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合、所述梳齿数量以及所述第二缩放因子共同确定。可选的,第一通信装置根据所述第一信息,确定第一端口的循环移位范围包括:所述第一通信装置通过所述梳齿数量确定最大循环移位数量;通过所述最大循环移位数量、所述第一集合以及所述第二缩放因子,确定所述第一端口的循环移位范围。所述第一信息指示第一集合、梳齿数量以及第二缩放因子可替换为:所述第一信息指示第一集合和梳齿数量,所述第二缩放因子是预定义的,即第一信息不需要指示第二缩放因子。
在该实现方式中,第一端口的循环移位范围由第一集合、梳齿数量以及第二缩放因子共同确定,可以准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一通信装置确定所述第一端口的循环移位范围的公式如下:
其中,表示所述第一端口的循环移位范围,j表示循环移位索引,表示所述最大循环移位数量,γ为所述第二缩放因子,B(j)=1表示循环移位索引j已经被不支持循环移位跳变的SRS端口占用,B(j)=0表示循环移位索引j没有被不支持循环移位跳变的SRS端口占用(可能被支持循环移位跳变的SRS端口占用,也可能没有被任何SRS端口占用)。可选的,0≤γ≤1为预定义的或接入网设备(例如基站)通过第一信息指示的第二缩放因子。
在该实现方式中,采用公式(1)可准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一通信装置确定所述第一端口的循环移位范围的公式如下:
其中,表示所述第一端口的循环移位范围,j表示循环移位索引,表示所述最大循环移位数量,γ为所述第二缩放因子,B(j)=1表示循环移位索引j已经被不支持循环移位跳变的SRS端口占用,B(j)=0表示循环移位索引j没有被不支持循环移位跳变的SRS端口占用(可能被支持循环移位跳变的SRS端口占用,也可能没有被任何SRS端口占用)。可选的,0≤γ≤1为预定义的或接入网设备(例如基站)通过第一信息指示的第二缩放因子。
在该实现方式中,采用公式(2)可准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息以位图的方式指示所述第一集合包括的循环移位索引,所述位图中的N个比特与N个循环移位索引一一对应,所述N个比特中任意比特的值为1或0代表与所述任意比特对应的循环移位索引属于所述第一集合。所述N为大于1的整数。所述N可以是还可以是其他取值。其中,表示最大循环移位数量。
在该实现方式中,第一信息以位图的方式指示第一集合包括的循环移位索引,可以准确地指示第一集合包括的循环移位索引。
在一种可能的实现方式中,所述第一信息指示第二集合,所述第二集合包括一个或多个循环移位索引,所述第二集合为所有循环移位索引构成的全集的真子集,所述第一端口的循环移位范围由所述第二集合确定。所述第二集合包括的一个或多个循环移位索引可视为第一端口可用的循环移位索引。
所述所有循环移位索引构成的全集可以是也可以是{0,1,…,MZC-1},还可以包括其他取值。其中,c表示正整数常量,表示最大循环移位数量,MZC表示SRS序列长度。
在该实现方式中,第一端口的循环移位范围由第二集合确定,可以准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示第二集合和梳齿数量,所述第二集合包括一个或多个循环移位索引,所述第二集合为所有循环移位索引构成的全集的真子集,所述第一端口的循环移位范围由所述第二集合和所述梳齿数量共同确定。可选的,第一通信装置根据所述第一信息,确定第一端口的循环移位范围包括:所述第一通信装置通过所述梳齿数量确定最大循环移位数量;通过所述最大循环移位数量和所述第二集合确定所述第一端口的循环移位范围。
在该实现方式中,第一端口的循环移位范围由第一集合和梳齿数量共同确定,可以准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示第二集合、梳齿数量以及第三缩放因子,所述第二集合包括一个或多个循环移位索引,所述第二集合为所有循环移位索引构成的全集的真子集,所述第一端口的循环移位范围由所述第二集合、所述梳齿数量以及所述第三缩放因子共同确定。可选的,第一通信装置根据所述第一信息,确定第一端口的循环移位范围包括:所述第一通信装置通过所述梳齿数量确定最大循环移位数量;通过所述最大循环移位数量、所述第二集合以及所述第三缩放因子,确定所述第一端口的循环移位范围。所述第一信息指示第二集合、梳齿数量以及第三缩放因子可替换为:所述第一信息指示所述第二集合和所述梳齿数量,所述第三缩放因子是预定义的,即第一信息不需要指示第三缩放因子。
在该实现方式中,第一端口的循环移位范围由第一集合、梳齿数量以及第三缩放因子共同确定,可以准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一通信装置确定所述第一端口的循环移位范围的公式如下:
其中,表示所述第一端口的循环移位范围,R表示第二集合,k表示第二集合包括的循环移位索引,表示所述最大循环移位数量,δ表示第三缩放因子。可选的,0≤δ≤1为预定义的或接入网设备(例如基站)通过第一信息指示的第三缩放因子。
在该实现方式中,采用公式(3)可准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述所有循环移位索引构成的全集被划分为ε个预定义的真子集,所述第 二集合为ε个真子集中的一个,所述第一信息指示第二集合,所述第一端口的循环移位范围由所述第二集合确定。所述ε为大于1的整数。可选的,所述所有循环移位索引构成的全集可以以ε为间隔被等分为ε个预定义的真子集,也可以连读的等分为ε个预定义的真子集。
在该实现方式中,第一信息指示的第二集合为若干个预定义的真子集中的一个,可以以较小的开销确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息以位图的方式指示所述第二集合包括的循环移位索引,所述位图中的N个比特与N个循环移位索引一一对应,所述N个比特中任意比特的值为1或0代表与所述任意比特对应的循环移位索引属于所述第二集合。所述N为大于1的整数。所述N可以是可以是MZC,还可以是其他取值。其中,c表示正整数常量,表示最大循环移位数量,MZC表示SRS序列长度。最大循环移位数量在该实现方式中,第一信息以位图的方式指示第二集合包括的循环移位索引,可以准确地指示第二集合包括的循环移位索引。
在一种可能的实现方式中,所述第一端口的循环移位范围由所述第二集合确定包括:所述第一端口的循环移位范围为与所述第二集合中的循环移位索引对应的循环移位值。
在该实现方式中,将与第二集合中的循环移位索引对应的循环移位值作为第一端口的循环移位范围,以便在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一端口是一个SRS资源集中的一个SRS资源包括的若干SRS端口中的一个,所述第一通信装置支持循环移位跳变。
在该实现方式中,第一端口为SRS端口,能够在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一信息承载于一个或者多个格式相同和/或不同的信令之上。
在该实现方式中,第一信息承载于一个或者多个格式相同和/或不同的信令之上,可以提高配置的灵活性。
第二方面,本申请实施例提供另一种通信方法,该方法包括:第一通信装置接收第一信息;所述第一通信装置根据所述第一信息,确定第一端口对应的循环移位变化图样,所述第一端口为所述第一通信装置对应的端口中的一个,所述第一端口对应的循环移位变化图样包括的循环移位索引构成的集合为所有循环移位索引构成的全集的真子集;所述第一通信装置在所述第一端口上发送参考信号。可选的,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口对应的循环移位变化图样用于表征第一端口占用的循环移位值与所述参考信号的发送时刻和/或发送频率之间的关系。所述第一端口可以是一个SRS资源集中的一个SRS资源包括的若干SRS端口中的一个。所述第一端口占用的循环移位值是指所述第一通信装置在所述第一端口上发送所述参考信号占用的循环移位值。本申请中,第一端口对应的循环移位变化图样可理解为变化规律与该第一端口占用的循环移位值随SRS发送时刻和/或发送频率的变化规律相同的图样。或者说,第一端口按照其对应的循环移位变化图样随SRS发送时刻和/或发送频率变化其占用的循环移位值。本申请中不对所有循环移位索引构成的全集进行限定。例如,所有循环移位索引构成的全集可以是也可以是{0,1,…,MZC-1},还可以包括其他取值。其中,c表示正整数常量,表示最大循环移位数量,MZC表示SRS序列长度。
本申请实施例中,第一通信装置根据第一信息,确定第一端口对应的循环移位变化图样。第一通信装置对应的第一端口在按照该循环移位变化图样占用循环移位发送参考信号时,能够避免或减少在将支持循环移位跳变的终端设备对应的SRS端口与不支持循环移位跳变的终端设对应的SRS端口配置在同一把梳齿上进行复用时,二者的信道估计性能可能会遭受严重损失的问题。或者说,第一通信装置根据第一信息,确定第一端口对应的循环移位变化图样,能够在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
第三方面,本申请实施例提供另一种通信方法,该方法包括:生成第一信息;发送所述第一信息,所述第一信息用于指示第一端口的循环移位范围,所述第一端口为第一通信装置对应的端口中的一个,所述第一端口的循环移位范围包括两个或两个以上循环移位值;在所述第一端口上接收参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口占用的循环移位值属于所述第一端口的循环移位范围。
本申请实施例中,第一信息用于指示第一端口的循环移位范围。第一通信装置在占用该循环移位范围中的任意循环移位值发送参考信号时,能够避免或减少在将支持循环移位跳变的终端设备对应的SRS端口与不支持循环移位跳变的终端设对应的SRS端口配置在同一把梳齿上进行复用时,二者的信道估计性能可能会遭受严重损失的问题。或者说,第一通信装置根据第一信息,确定第一端口的循环移位范围;能够在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一端口的循环移位范围中的任意循环移位值与不支持循环移位跳变的终端设备采用的任意循环移位值的差值大于第一阈值。该第一阈值不作限定。所述第一端口可以是一个SRS资源集中的一个SRS资源包括的若干SRS端口中的一个。
在该实现方式中,第一端口的循环移位范围中的任意循环移位值与不支持循环移位跳变的终端设备采用的任意循环移位值的差值大于第一阈值;可以避免或减少第一端口和不支持循环移位跳变的终端设对应的SRS端口对应的时延域信道发生重叠,从而保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一信息指示第一区间长度,所述第一端口的循环移位范围由所述第一端口配置的循环移位值和所述第一区间长度共同确定。
在该实现方式中,第一信息指示第一区间长度。第一通信装置根据该第一信息,可快速、准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示端口数量、梳齿数量、循环移位参考索引及第一区间长度;所述第一端口的循环移位范围由所述端口数量、所述梳齿数量、所述循环移位参考索引及所述第一区间长度共同确定。可选的,所述梳齿数量用于确定最大循环移位数量,所述端口数量、所述循环移位参考索引以及所述最大循环移位数量用于确定所述第一端口配置的循环移位值,所述最大循环移位数量、所述第一端口配置的循环移位值及所述第一区间长度用于确定所述第一端口的循环移位范围。
在该实现方式中,第一信息指示端口数量、梳齿数量、循环移位参考索引及第一区间长度;可以使得第一通信装置确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示端口数量、梳齿数量、循环移位参考索引以及第一缩放因子,所述第一端口的循环移位范围由所述端口数量、所述梳齿数量、所述循环移位参考索引及所述第一缩放因子共同确定。可选的,所述梳齿数量用于确定最大循环移位数量,所述端口数量、所述循环移位参考索引以及所述最大循环移位数量用于确定所述第一端口配置的循环移位值,所述最大循环移位数量、所述第一端口配置的循环移位值及所述第一缩放因子用于确定所述第一端口的循环移位范围。所述第一信息指示端口数量、梳齿数量、循环移位参考索引以及第一缩放因子可替换为:所述第一信息指示端口数量、梳齿数量、循环移位参考索引,所述第一缩放因子是预定义的,即第一信息不需要指示第一缩放因子。
在该实现方式中,第一信息指示端口数量、梳齿数量、循环移位参考索引及第一缩放因子;可以使得第一通信装置确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一端口的循环移位范围为其中,表示所述第一端口配置的循环移位值,表示最大循环移位数量,表示所述第一区间长度,β表示所述第一缩放因子。可选的,β>0为预定义的或接入网设备(例如基站)通过第一信息指示的第一缩放因子。
在该实现方式中,第一端口的循环移位范围为第一端口采用该循环移位范围内的循环移位值发送参考信号,可以在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一信息用于指示第一集合,所述第一集合包括所述第一端口不可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合确定。
在该实现方式中,第一信息用于指示第一集合,以便第一通信装置根据该第一集合确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示第一集合和梳齿数量,所述第一集合包括所述第一端口不可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合和所述梳齿数量共同确定。可选的,所述梳齿数量用于确定最大循环移位数量;所述最大循环移位数量和所述第一集合用于确定所述第一端口的循环移位范围。
在该实现方式中,第一信息指示第一集合和梳齿数量,以便第一通信装置根据该第一信息确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示第一集合、梳齿数量以及第二缩放因子,所述第一集合包括所述第一端口不可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合、所述梳齿数量 以及所述第二缩放因子共同确定。可选的,所述梳齿数量用于确定最大循环移位数量;所述最大循环移位数量、所述第一集合以及所述第二缩放因子用于确定所述第一端口的循环移位范围。所述第一信息指示第一集合、梳齿数量以及第二缩放因子可替换为:所述第一信息指示第一集合和梳齿数量,所述第二缩放因子是预定义的,即第一信息不需要指示第二缩放因子。
在该实现方式中,第一信息指示第一集合、梳齿数量以及第二缩放因子,以便第一通信装置根据该第一信息确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息以位图的方式指示所述第一集合包括的循环移位索引,所述位图中的N个比特与N个循环移位索引一一对应,所述N个比特中任意比特的值为1或0代表与所述任意比特对应的循环移位索引属于所述第一集合。
在该实现方式中,第一信息以位图的方式指示第一集合包括的循环移位索引,可以准确地指示第一集合包括的循环移位索引,占用比特较少。
在一种可能的实现方式中,所述第一信息用于指示第二集合,所述第二集合包括一个或多个循环移位索引,所述第二集合为所有循环移位索引构成的全集的真子集,所述第一端口的循环移位范围由所述第二集合确定。
在该实现方式中,第一信息指示第二集合,以便第一通信装置根据该第二集合确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示第二集合、梳齿数量以及第三缩放因子,所述第二集合包括一个或多个循环移位索引,所述第二集合为所有循环移位索引构成的全集的真子集,所述第一端口的循环移位范围由所述第二集合、所述梳齿数量以及所述第三缩放因子共同确定。可选的,所述梳齿数量用于确定最大循环移位数量;所述最大循环移位数量、所述第二集合以及所述第三缩放因子用于确定所述第一端口的循环移位范围。所述第一信息指示第二集合、梳齿数量以及第三缩放因子可替换为:所述第一信息指示所述第二集合和所述梳齿数量,所述第三缩放因子是预定义的,即第一信息不需要指示第三缩放因子。
在该实现方式中,第一信息指示第二集合、梳齿数量以及第三缩放因子,以便第一通信装置根据该第二集合确定第一端口的循环移位范围。
在一种可能的实现方式中,所述所有循环移位索引构成的全集被划分为ε个预定义的真子集,所述第二集合为ε个真子集中的一个,所述第一信息指示第二集合,所述第一端口的循环移位范围由所述第二集合确定。所述ε为大于1的整数。可选的,所述所有循环移位索引构成的全集可以以ε为间隔被等分为ε个预定义的真子集,也可以连读的等分为ε个预定义的真子集。
在该实现方式中,第一信息指示的第二集合为若干个预定义的真子集中的一个,可以以较小的开销确定第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息以位图的方式指示所述第二集合包括的循环移位索引,所述位图中的N个比特与N个循环移位索引一一对应,所述N个比特中任意比特的值为1或0代表与所述任意比特对应的循环移位索引属于所述第二集合。
在该实现方式中,第一信息以位图的方式指示第二集合包括的循环移位索引,可以准确地指示第二集合包括的循环移位索引,占用比特较少。
在一种可能的实现方式中,所述第一端口的循环移位范围由所述第二集合确定包括:所述第一端口的循环移位范围为与所述第二集合中的循环移位索引对应的循环移位值。
在该实现方式中,第一端口的循环移位范围为第二集合中的循环移位索引对应的循环移位值,以便在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一端口是一个SRS资源集中的一个SRS资源包括的若干SRS端口中的一个,所述第一通信装置支持循环移位跳变。
在该实现方式中,第一端口为SRS端口,能够在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,所述第一信息承载于一个或者多个格式相同和/或不同的信令之上。
在该实现方式中,第一信息承载于一个或者多个格式相同和/或不同的信令之上,可以适用于不同的场景。
第四方面,本申请实施例提供一种通信方法,该方法包括:生成第一信息,所述第一信息用于指示第一端口对应的循环移位变化图样,所述第一端口为第一通信装置对应的端口中的一个,所述第一端口对应 的循环移位变化图样包括的循环移位索引构成的集合为所有循环移位索引构成的全集的真子集;发送所述第一信息;在所述第一端口上接收参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口对应的循环移位变化图样用于表征第一端口占用的循环移位值与所述参考信号的发送时刻和/或发送频率之间的关系。
本申请实施例中,第一信息用于指示第一端口对应的循环移位变化图样。第一通信装置在按照该循环移位变化图样发送参考信号时,能够避免或减少在将支持循环移位跳变的终端设备对应的SRS端口与不支持循环移位跳变的终端设对应的SRS端口配置在同一把梳齿上进行复用时,二者的信道估计性能可能会遭受严重损失的问题。
在一种可能的实现方式中,所有循环移位索引构成的全集对应于配置的最大循环位索引。
在该实现方式中,所有循环移位索引构成的全集对应于配置的最大循环位移索引,能够准确地确定所有循环移位索引构成的全集。
第五方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面方法实施例中的行为的功能。该通信装置可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括处理模块和收发模块,其中:所述收发模块,用于接收第一信息;所述处理模块,用于根据所述第一信息,确定第一端口的循环移位范围,所述第一端口为所述第一通信装置对应的端口中的一个,所述第一端口的循环移位范围包括两个或两个以上循环移位值;所收发模块还用于在所述第一端口上发送参考信号。可选的,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口占用的循环移位值属于所述第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示端口数量、梳齿数量、循环移位参考索引及第一区间长度;所述处理模块,具体用于通过所述梳齿数量确定最大循环移位数量;通过所述端口数量、所述循环移位参考索引以及所述最大循环移位数量,确定所述第一端口配置的循环移位值;通过所述第一端口配置的循环移位值和所述第一区间长度,确定所述第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示端口数量、梳齿数量、循环移位参考索引以及第一缩放因子;所述处理模块,具体用于通过所述梳齿数量确定最大循环移位数量;通过所述端口数量、所述循环移位参考索引以及所述最大循环移位数量,确定所述第一端口配置的循环移位值;通过所述第一缩放因子和所述最大循环移位数量,确定第一区间长度;通过所述第一端口配置的循环移位值和所述第一区间长度,确定所述第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示第一集合、梳齿数量以及第二缩放因子,所述第一集合包括所述第一端口不可用的循环移位索引;所述处理模块,具体用于通过所述梳齿数量确定最大循环移位数量;通过所述最大循环移位数量、所述第一集合以及所述第二缩放因子,确定所述第一端口的循环移位范围。
在一种可能的实现方式中,所述处理模块,具体用于采用上述公式(1)、公式(2)或公式(3)确定所述第一端口的循环移位范围。
在一种可能的实现方式中,所述第一信息指示第二集合、梳齿数量以及第三缩放因子,所述第二集合包括一个或多个循环移位索引,所述第二集合为所有循环移位索引构成的全集的真子集;所述处理模块,具体用于通过所述梳齿数量确定最大循环移位数量;通过所述最大循环移位数量、所述第二集合以及所述第三缩放因子,确定所述第一端口的循环移位范围。
第五方面的通信装置可能的实现方式可参见第一方面的各种可能的实现方式。
关于第五方面的各种可能的实现方式所带来的技术效果,可参考对于第一方面或第一方面的各种可能的实现方式的技术效果的介绍。
第六方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第二方面方法实施例中的行为的功能。该通信装置可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括处理模块和收发模块,其中:所述收发模块,用于接收第一信息;所述处理模块,用于根据所述第一信息,确定第一端口对应的循环移位变化图样,所述第一端口为所述第一通信装置对应的端口中的一个,所述第一端口对应的循环移位变化图样包括的循环移位索引构成的集合 为所有循环移位索引构成的全集的真子集;所述第一通信装置在所述第一端口上发送参考信号。可选的,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口对应的循环移位变化图样用于表征第一端口占用的循环移位值与所述参考信号的发送时刻和/或发送频率之间的关系。
第六方面的通信装置可能的实现方式可参见第二方面的各种可能的实现方式。
关于第六方面的各种可能的实现方式所带来的技术效果,可参考对于第二方面或第二方面的各种可能的实现方式的技术效果的介绍。
第七方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第三方面方法实施例中的行为的功能。该通信装置可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括处理模块和收发模块,其中:所述处理模块,用于生成第一信息;所述收发模块,用于发送所述第一信息,所述第一信息用于指示第一端口的循环移位范围,所述第一端口为第一通信装置对应的端口中的一个,所述第一端口的循环移位范围包括两个或两个以上循环移位值;所述收发模块,还用于在所述第一端口上接收参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口占用的循环移位值属于所述第一端口的循环移位范围。
第七方面的通信装置可能的实现方式可参见第三方面的各种可能的实现方式。
关于第七方面的各种可能的实现方式所带来的技术效果,可参考对于第三方面或第三方面的各种可能的实现方式的技术效果的介绍。
第八方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第四方面方法实施例中的行为的功能。该通信装置可以是通信设备,也可以是通信设备的部件(例如处理器、芯片、或芯片系统等),还可以是能实现全部或部分该通信设备的功能的逻辑模块或软件。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,该硬件或软件包括一个或多个与上述功能相对应的模块或单元。在一种可能的实现方式中,该通信装置包括处理模块和收发模块,其中:所述处理模块,用于生成第一信息,所述第一信息用于指示第一端口对应的循环移位变化图样,所述第一端口为第一通信装置对应的端口中的一个,所述第一端口对应的循环移位变化图样包括的循环移位索引构成的集合为所有循环移位索引构成的全集的真子集;所述收发模块,用于发送所述第一信息;在所述第一端口上接收参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口对应的循环移位变化图样用于表征第一端口占用的循环移位值与所述参考信号的发送时刻和/或发送频率之间的关系。
第八方面的通信装置可能的实现方式可参见第四方面的各种可能的实现方式。
关于第八方面的各种可能的实现方式所带来的技术效果,可参考对于第四方面或第四方面的各种可能的实现方式的技术效果的介绍。
第九方面,本申请实施例提供另一种通信装置,该通信装置包括处理器,该处理器与存储器耦合,该存储器用于存储程序或指令,当该程序或指令被该处理器执行时,使得该通信装置执行上述第一方面至第四方面中任意可能的实现方式所示的方法。
本申请实施例中,在执行上述方法的过程中,上述方法中有关发送信息(或信号)的过程,可以理解为基于处理器的指令进行输出信息的过程。在输出信息时,处理器将信息输出给收发器,以便由收发器进行发射。该信息在由处理器输出之后,还可能需要进行其他的处理,然后到达收发器。类似的,处理器接收输入的信息时,收发器接收该信息,并将其输入处理器。更进一步的,在收发器收到该信息之后,该信息可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发送和/或接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以一般性的理解为基于处理器的指令输出。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器等。例如,处理器还可以用于执行存储器中存储的程序,当该程序被执行时,使得该通信装置执行如上述第一方面或第一方面的任意可能的实现方式所示的方法。
在一种可能的实现方式中,存储器位于上述通信装置之外。在一种可能的实现方式中,存储器位于上述通信装置之内。
在一种可能的实现方式中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可能被集成于一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号等。
第十方面,本申请提供另一种通信装置,该通信装置包括处理电路和接口电路,该接口电路用于获取数据或输出数据;处理电路用于执行如上述第一方面至第四方面中任意可能的实现方式所示的相应的方法。
第十一方面,本申请提供另一种芯片,该芯片包括处理器与通信接口,所述处理器通过所述通信接口读取存储器上存储的指令,执行如上述第一方面至第四方面中任意可能的实现方式所示的相应的方法。
第十二方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,该计算机程序包括程序指令,该程序指令被执行时使得计算机执行如上述第一方面至第四方面中任意可能的实现方式所示的方法。
第十三方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序包括程序指令,该程序指令被执行时使得计算机执行如上述第一方面至第四方面中任意可能的实现方式所示的方法。
第十四方面,本申请提供一种通信系统,包括上述第五方面或第五方面的任意可能的实现方式所述的通信装置、上述第六方面或第六方面的任意可能的实现方式所述的通信装置。或者,该通信系统,包括上述第七方面或第七方面的任意可能的实现方式所述的通信装置、上述第八方面或第八方面的任意可能的实现方式所述的通信装置。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请提供的三种不同梳齿数量下一把梳齿的示例;
图2为本申请实施例提供的一种发送带宽和跳频带宽的示例;
图3为本申请实施例提供的一种无线通信系统的示例;
图4为本申请实施例提供的一种通信交互方法流程图;
图5为本申请实施例提供的一种SRS端口对应的时延域信道的示意图;
图6为本申请实施例提供的另一种SRS端口对应的时延域信道的示意图;
图7为本申请实施例提供的另一种通信交互方法流程图;
图8为本申请实施例提供的一种通信装置800的结构示意图;
图9为本申请实施例提供的另一种通信装置90的结构示意图;
图10为本申请实施例提供的另一种通信装置100的结构示意图。
具体实施方式
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。本申请中使用的术语“多个”是指两个或两个以上。
首先,对本申请实施例涉及的一些概念进行阐述。
1、SRS、SRS资源、SRS的梳齿(comb)、SRS发送
SRS是一种终端设备向接入网设备(例如基站)发送的上行参考信号。接入网设备根据终端设备发送 的SRS获取该终端设备的UL信道。或者,接入网设备根据信道互易性获取该终端设备的DL信道,从而根据该DL信道对该终端设备做数据调度。下文中的用户设备(user equipment,UE)和/或用户可视为终端设备。
SRS资源由接入网设备(例如基站)通过高层参数半静态配置,包括:
个SRS端口每个SRS端口会对应特定的时频码资源。在理想情况下,各个SRS端口是正交的。每个SRS端口会对应终端设备的物理天线或者虚拟天线。
SRS的梳齿(comb):一把SRS的梳齿上的频域子载波呈等间隔分布,梳齿数量KTC∈{2,4,8}由接入网设备(下文以基站为例)通过高层参数半静态配置,其决定了SRS发送带宽中包含的梳齿数量。图1为本申请提供的三种不同梳齿数量下一把梳齿的示例。图1中,每个格子表示一个资源元素(resource element,RE),黑色格子是不同梳齿数量下一把梳齿占用的RE位置的示例。一次SRS发送对应一个SRS资源内的连续R个OFDM符号。重复因子R∈{1,2,4}由基站通过高层参数repetitionFactor半静态的配置。一次SRS发送对应的连续R个OFDM符号中的第一个OFDM符号在SRS资源内的编号能够被R整除。
2、SRS的发送带宽、跳频带宽及跳频周期
SRS的发送带宽、跳频带宽及跳频周期是根据高层参数及协议预定义表格确定的。当基站没有配置频率缩放因子PF时,SRS发送带宽为基站根据SRS获取的信道对应的带宽范围,SRS跳频带宽为单次SRS发送后基站获取的信道对应的带宽范围,跳频带宽小于等于扫描带宽,跳频周期为基站获取发送带宽对应的信道所需要的SRS发送次数;当基站通过高层参数配置了频率缩放因子PF时,SRS的发送带宽、跳频带宽及跳频周期不变,但由于单次SRS发送的带宽变为原先的1/PF,这种情况下发送带宽为基站根据SRS获取的信道对应的带宽范围的PF倍,SRS跳频带宽为单次SRS发送后基站获取的信道对应的带宽范围的PF倍。图2为本申请实施例提供的一种发送带宽和跳频带宽的示例。图2中,每个格子频域上表示一个资源块(resource block,RB),SRS的带宽为16RB,跳频带宽为4RB,跳频周期为4,左图没有配置PF,右图配置了PF=2。
3、SRS的循环移位
LTE和NR的SRS采用的序列是基序列(base sequence)的循环移位:
其中,α为循环移位值,为实数;δ=log2(KTC),为整数;u,v为SRS基序列组中某个基序列的索引,为整数;j为虚数单位;MZC为SRS序列的长度,为正整数;n为SRS序列中元素的索引,为整数,序列元素(即SRS序列中的元素)按照索引由小到大的顺序依次映射在SRS资源对应的子载波索引由小到大的各个子载波上。
上述基序列可以是Zadoff-Chu(ZC)序列生成的序列,例如是ZC序列本身,或者是ZC序列通过循环移位扩充或者截取生成的序列。例如,长度为N的ZC序列为zq(n),n=0,1,…,N-1,则由该ZC序列生成的长度为M的序列可以表示为:zq(m mod N),m=0,1,…,M-1。其中,长度为N的ZC序列可以表示为如下形式:
其中,N为正整数;q为ZC序列的根指标,且为与N互质且小于N的正整数。
SRS端口pi对应的循环移位αi由下式定义:

其中,表示端口数量(即SRS资源包括的SRS端口的数量),为最大循环移位数量,根据KTC取值分别定义,参阅表1:
表1
的含义可以理解为将时延域等分成份,也可以理解为将相位值2π等分成份,每个循环移位值对应每份的起始点。为循环移位参考索引,由基站通过高层参数transmissionComb半静态配置。
对于同一个基序列来说,采用不同的循环移位值α,可以得到不同的SRS序列。当α1和α2满足α1mod 2π≠α2mod 2π时,由基序列和循环移位α1得到的序列与由基序列和循环移位α2得到的序列是相互正交的,即互相关系数为零。其中,长度为M的序列s1(m)和s2(m),m=0,1,…,M-1,的互相关系数定义为:表示s2(m)的共轭。由于基于同一个基序列和不同循环移位值得到的SRS序列相互正交,基站可以将基于同一个基序列和不同循环移位值得到的SRS序列分配给不同的用户,这些用户可以在相同的时频资源上发送这些SRS序列。本申请中,用户是指终端设备,例如手机。当用户与基站之间的信道在SRS序列长度内平坦时,这些SRS序列不会造成用户间干扰。
对于不同的基序列来说,无论采用相同或不同的循环移位值,得到的SRS序列之间均存在干扰。也就是说,基站将基于不同基序列的相同或不同循环移位值得到的SRS序列分配给不同的用户,这些用户可以在相同的时频资源上发送这些SRS序列,当用户与基站之间的信道在SRS序列长度内平坦时,这些SRS序列会造成用户间干扰。
例如,两个小区分别使用基序列s1、s2,每个小区内有两个用户,每个小区内的两个用户使用同一个基序列的2个不同的循环移位值,则有4个用户可以在相同的时频资源上发送SRS。参阅表2,UE1和UE2位于同一小区,UE3和UE4位于同一小区,UE1和UE2均使用基序列s1,UE1以基序列s1的循环位移值α1作为SRS序列进行SRS发送,UE2以基序列s1的循环位移α2作为SRS序列进行SRS发送,UE3和UE4均使用基序列s2,UE3以基序列s2的循环位移α3作为SRS序列进行SRS发送,UE4以基序列s2的循环位移α4作为SRS序列进行SRS发送。
表2
假设四个UE与基站之间的信道在SRS序列占据的M个子载波上平坦且分别为h1、h2、h3和h4。在SRS序列占据的M个子载波中的第k个子载波上,基站的接收信号y(k)为:
为了估计UE1的信道h1,基站可采用如下公式将接收信号与该UE使用的SRS序列进行相关操作:
其中,为UE3对UE1的信道估计产生的干扰,为UE4对UE1的信道估计产生的干扰。可以看出,两个UE的SRS序列之间的干扰会受到这两个SRS序列的循环移位之间的差值的影响。
由于两个UE的SRS序列之间的干扰会受到这两个序列的循环移位之间的差值的影响,可采用循环移位跳变的方式随机化SRS序列间的干扰。循环移位跳变一种可能的实现方式中,SRS的循环移位由下式决定:
其中,nf为系统帧号(system frame number,SFN);为子载波配置μ下每个帧包含的时隙数;为每个时隙包含的符号数;为子载波配置μ下一个帧内的时隙号l0∈{0,1,…,13}为SRS资源在时隙内的时域起始位置;为SRS资源内的OFDM符号索引;MZC为SRS序列的长度。
循环移位跳变另一种可能的实现方式为:不同时刻SRS的循环移位遵循某种循环移位变化图样。例如,SRS端口pi遵循的循环移位变化图样指示pi依次以基序列的循环移位1、循环移位2、3、…、循环移位d作为SRS序列进行SRS发送,d为大于1的整数。也就是说,SRS端口pi先以基序列的循环位移1作为SRS序列进行SRS发送,然后以基序列的循环位移2作为SRS序列进行SRS发送,然后以基序列的循环位移3作为SRS序列进行SRS发送,依次类推,以基序列的循环位移d作为SRS序列进行SRS发送之后,重新开始以基序列的循环位移1作为SRS序列进行SRS发送。
如背景技术部分所述,采用循环移位跳变的方式随机化SRS序列间的干扰能达到较好的干扰随机化效果。然而,在实际应用场景中,既有支持循环移位跳变的终端设备,也有不支持循环移位跳变的终端设备。本申请中,支持循环移位跳变的终端设备是指可采用循环移位跳变的方式随机化SRS序列间的干扰的终端设备。或者说,支持循环移位跳变的终端设备具备采用循环移位跳变的方式随机化SRS序列间的干扰的能力或功能。本申请中,不支持循环移位跳变的终端设备是指不能采用循环移位跳变的方式随机化SRS序列间的干扰的终端设备。或者说,不支持循环移位跳变的终端设备不具备采用循环移位跳变的方式随机化SRS序列间的干扰的能力或功能。当接入网设备(例如基站)将支持循环移位跳变的终端设备对应的SRS端口与不支持循环移位跳变的终端设对应的SRS端口配置在同一把梳齿上进行复用时,二者的信道估计性能可能会遭受严重损失。因此,如何在充分利用循环移位跳变带来的干扰随机化效果的同时,保证上述情况下信道估计性能不受损失是亟待解决的问题。
本申请提供的通信方案,在充分利用循环移位跳变带来的干扰随机化效果的同时,能够保证信道估计性能不受损失。
本申请提供的通信方案适用于传输场景,主要针对传输SRS的场景。本申请提供的通信方案对于同构网络与异构网络的场景均适用。本申请提供的通信方案对适用的传输场景中的传输点无限制,可以是宏基站与宏基站、微基站与微基站、宏基站与微基站间的多点协同传输,对FDD/TDD系统均适用。本申请提供的通信方案适用于低频场景(sub 6G),也适用于高频场景(6G以上),也适用于单传输接收点(transmission reception point,TRP)场景或多传输接收点(multi-TRP)场景,以及它们任何一种衍生的场景。本申请提供的通信方案可应用于5G、卫星通信、短距等无线通信系统中。本申请提供的通信方案适用的无线通信系统可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准,也可以遵从其它无线通信标准。例如,电气电子工程师学会(institute of electrical andelectronics engineers,IEEE)的802系列(例如,802.11,802.15,或者802.20)的无线通信标准。
需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(narrow band-internet of things,NB-IoT)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)通信系统,以及未来的第六代(6th generation,6G)通信系统等5G之后演进的通信系统。本申请的技术方案还可以适用于无线局域网(wireless local area networks,WLAN)、物联网(internet of things,IoT)网络、超宽带(ultra wide band,UWB)系统、车联网(Vehicle to X,V2X)等无线局域网系统中。
下面先介绍本申请提供的通信方案适用的无线通信系统的示例。
图3为本申请实施例提供的一种无线通信系统的示例。如图3所示,该通信系统包括:一个或多个终 端设备,图3中仅以2个终端设备为例,以及可为终端设备提供的通信服务的一个或多个接入网设备(例如基站),图3中仅以一个接入网设备为例。在一些实施例中,无线通信系统可以由小区组成,每个小区包含一个或多个接入网设备,接入网设备向多个终端设备提供通信服务。无线通信系统也可以进行点对点通信,如多个终端设备之间互相通信。
终端设备是一种具有无线收发功能的设备。终端设备可经无线接入网(radioaccess network,RAN)中的接入网设备(或者称为接入设备)与一个或多个核心网(core network,CN)设备(或者称为核心设备)进行通信。终端设备可进行上行信号的发送和下行信号的接收。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。本申请实施例中,终端设备也可以称为终端或者用户设备(user equipment,UE),可以是手机(mobile phone)、移动台(mobile station,MS)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、用户单元(subscriber unit)、蜂窝电话(cellular phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、无人机等。终端设备可包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。可选的,终端设备可以是具有无线通信功能的手持设备(handset)、车载设备、可穿戴设备或物联网、车联网中的终端设备、5G以及5G之后演进的通信系统中的任意形态的终端设备等,本申请对此并不限定。
接入网设备可以是任意一种具有无线收发功能且能和终端设备通信的设备,例如将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点。接入网设备可进行上下行资源的配置,以及下行信号的发送和上行信号的接收。目前,一些RAN节点的举例包括:宏基站、微基站(也称为小站)、微微基站、毫微微基站、中继站、接入点、gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU)、WiFi接入点(access point,AP)、接入回传一体化(integrated access and backhaul,IAB)、卫星、无人机等。
下面先结合附图介绍本申请实施例提供的通信方法。本申请提供的通信方法的主要原理是:使得支持循环移位跳变的通信装置得到其对应的SRS端口可用的循环移位范围,该通信装置对应的SRS端口占用的循环移位值在该SRS端口可用的循环移位范围内跳变时,可避免信道估计性能受损失,并充分利用循环移位跳变带来的干扰随机化效果。
图4为本申请实施例提供的一种通信交互方法流程图。如图4所示,该方法包括:
401、第二通信装置向第一通信装置发送第一信息。
相应的,第一通信装置接收来自第二通信装置的第一信息。第二通信装置可以是接入网设备,例如基站。第一通信装置为终端设备。第一信息用于指示第一端口的循环移位范围,上述第一端口为上述第一通信装置对应的端口中的一个。第一端口可以是一个SRS资源集中的一个SRS资源包括的若干SRS端口中的一个。本申请实施例以第一端口为例来描述第一通信装置确定SRS端口的循环移位范围的流程。应理解,第一通信装置可采用类似的方式确定任意SRS端口的循环移位范围。
第一信息可以承载于一个或者多个格式相同/不同的信令之上,例如无线资源控制(radio resource control,RRC)信令、介质接入控制(media access control,MAC)控制元素(control element,CE)、下行控制信息(downlink control information,DCI)等。
第二通信装置在发送第一信息之前,生成第一信息。第一信息用于第一通信装置确定第一端口的循环移位范围。可选的,第二通信装置根据不支持循环移位跳变的SRS端口对循环移位索引的占用情况和/或支持循环移位跳变的SRS端口对循环移位索引的占用情况和/或支持循环移位跳变的SRS端口对应的信道的时延扩展生成第一信息,参阅下文的实施例一。
402、第一通信装置根据第一信息,确定第一端口的循环移位范围。
第一端口的循环移位范围包括两个或两个以上循环移位值。
在一种可能的实现方式中,第一信息指示第一区间长度,上述第一端口的循环移位范围由上述第一端口配置的循环移位值和上述第一区间长度共同确定。例如,第一信息指示的第一区间长度为第 一端口配置的循环移位值为第一端口的循环移位范围为在该实现方式中,第一信息指示第一区间长度。第一通信装置根据该第一信息和第一端口配置的循环移位值,可快速、准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,上述第一信息指示端口数量梳齿数量KTC、循环移位参考索引以及第一缩放因子β。步骤402一种可能的实现方式如下:上述第一通信装置通过梳齿数量KTC确定最大循环移位数量参阅表1;通过上述端口数量上述循环移位参考索引以及上述最大循环移位数量确定上述第一端口配置的循环移位值参阅上述公式(6)和公式(7);通过上述第一缩放因子β和上述最大循环移位数量确定第一区间长度通过上述第一端口配置的循环移位值和上述第一区间长度确定上述第一端口的循环移位范围上述第一信息指示端口数量、梳齿数量、循环移位参考索引以及第一缩放因子可替换为:上述第一信息指示端口数量、梳齿数量、循环移位参考索引,上述第一缩放因子是预定义的,即第一信息不需要指示第一缩放因子。在该实现方式中,第一通信装置根据第一信息,确定第一端口的循环移位范围;以便在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
在一种可能的实现方式中,上述第一信息指示第一集合,上述第一集合包括上述第一端口不可用的循环移位索引,上述第一端口的循环移位范围由上述第一集合确定。第一端口不可用的循环移位索引可理解为:不支持循环移位跳变的通信装置对应的SRS端口占用的循环移位索引或者不支持循环移位跳变的通信装置对应的SRS端口占用的循环移位值对应的循环移位索引,即已经被不支持循环移位跳变的SRS端口占用的循环移位索引或者已经被不支持循环移位跳变的SRS端口占用的循环移位值对应的循环移位索引。可选的,上述第一信息以位图的方式指示上述第一集合包括的循环移位索引,上述位图中的N个比特与N个循环移位索引一一对应,上述N个比特中任意比特的值为1或0代表与上述任意比特对应的循环移位索引属于上述第一集合。上述N为大于1的整数。N可以等于最大循环移位数量还可以是其他取值,本申请不作限定。在该实现方式中,第一端口的循环移位范围由第一集合确定,可以准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,上述第一信息指示第一集合、梳齿数量KTC以及第二缩放因子γ,上述第一集合包括上述第一端口不可用的循环移位索引,上述第一端口的循环移位范围由上述第一集合、上述梳齿数量以及上述第二缩放因子共同确定。步骤402一种可能的实现方式如下:第一通信装置通过梳齿数量KTC确定最大循环移位数量参阅表1;通过上述最大循环移位数量上述第一集合以及上述第二缩放因子γ,确定上述第一端口的循环移位范围。上述第一信息指示第一集合、梳齿数量以及第二缩放因子可替换为:上述第一信息指示第一集合和梳齿数量,上述第二缩放因子是预定义的,即第一信息不需要指示第二缩放因子。可选的,第一通信装置采用上述公式(1)或公式(2)确定上述第一端口的循环移位范围。在该实现方式中,第一端口的循环移位范围由第一集合、梳齿数量以及第二缩放因子共同确定,可以准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,上述第一信息指示第二集合,上述第二集合包括一个或多个循环移位索引,上述第二集合为所有循环移位索引构成的全集的真子集,上述第一端口的循环移位范围由上述第二集合确定。上述第二集合包括一个或多个循环移位索引可视为第一端口可用的循环移位索引。这里的所有循环移位索引构成的全集可以是也可以是{0,1,…,MZC-1},还可以包括其他取值。其中,表示最大循环移位数量,MZC表示SRS序列长度。可选的,上述第一信息以位图的方式指示上述第二集合包括的循环移位索引,上述位图中的N个比特与N个循环移位索引一一对应,上述N个比特中任意比特的值为1或0代表与上述任意比特对应的循环移位索引属于上述第二集合。上述N为大于1的整数。N可以等于最大循环移位数量也可以等于SRS序列长度MZC,还可以是其他取值,本申请不作限定。在该实现方式中,第一端口的循环移位范围由第二集合确定,可以准确地确定第一端口的循环移位范围。
在一种可能的实现方式中,上述第一信息指示第二集合、梳齿数量KTC以及第三缩放因子δ,上述第二集合包括一个或多个循环移位索引,上述第二集合为所有循环移位索引构成的全集的真子集,上述第一端口的循环移位范围由上述第二集合、上述梳齿数量以及上述第三缩放因子共同确定。步骤402一种可能的 实现方式如下:上述第一通信装置通过上述梳齿数量KTC确定最大循环移位数量参阅表1;通过上述最大循环移位数量上述第二集合以及上述第三缩放因子δ,确定上述第一端口的循环移位范围。上述第一信息指示第二集合、梳齿数量以及第三缩放因子可替换为:上述第一信息指示上述第二集合和上述梳齿数量,上述第三缩放因子是预定义的,即第一信息不需要指示第三缩放因子。可选的,第一通信装置采用上述公式(3)确定上述第一端口的循环移位范围。在该实现方式中,第一端口的循环移位范围由第一集合、梳齿数量以及第三缩放因子共同确定,可以准确地确定第一端口的循环移位范围。
403、第一通信装置在第一端口上发送参考信号。
第一通信装置在第一端口上发送参考信号可以是:第一通信装置根据第一端口的循环移位范围,在第一端口上发送参考信号。第一通信装置在第一端口上发送参考信号时,第一端口占用的循环移位值属于第一端口的循环移位范围。
可选的,第一端口占用的循环移位值随上述参考信号的发送时刻和/或发送频率变化,上述第一端口占用的循环移位值属于上述第一端口的循环移位范围。第一端口占用的循环移位值是指发送参考信号占用的循环移位值,参考信号可以是SRS。第一端口占用的循环移位值随上述参考信号的发送时刻变化可以理解为:第一端口在不同时刻发送SRS占用的循环移位值不同。例如,第一通信装置在第一时刻通过第一端口发送SRS 1时占用循环移位值1,第一通信装置在第二时刻通过该第一端口发送SRS 2时占用循环移位值2;其中,该第一时刻和该第二时刻不同,该循环移位值1和该循环移位值2不同。第一端口占用的循环移位值随上述参考信号的发送频率变化可以理解为:第一端口在不同频率资源上发送SRS占用的循环移位值不同。例如,第一通信装置在频率资源1上通过第一端口发送SRS 1时占用循环移位值1,第一通信装置在频率资源2上通过该第一端口发送SRS 2时占用循环移位值2;其中,频率资源1和频率资源2不同,该循环移位值1和该循环移位值2不同,频率资源1和频率资源2对应于相同的时间资源或不同的时间资源。
本申请实施例中,第一通信装置根据第一信息,确定第一端口的循环移位范围。第一通信装置在占用该循环移位范围中的任意循环移位值发送参考信号时,能够避免或减少在将支持循环移位跳变的终端设备对应的SRS端口与不支持循环移位跳变的终端设对应的SRS端口配置在同一把梳齿上进行复用时,二者的信道估计性能可能会遭受严重损失的问题。或者说,第一通信装置根据第一信息,确定第一端口的循环移位范围,能够在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
下面通过几个实施例来介绍第一信息可能的格式以及第一通信装置根据第一信息确定第一端口的循环移位范围可能的实现方式。
实施例一:第一信息指示第一端口的循环移位范围。第一信息指示第一端口的循环移位范围可视为:第一信息指示第一区间长度,上述第一端口的循环移位范围由上述第一端口配置的循环移位值和上述第一区间长度共同确定。
可选的,第一信息中的第一字段的取值与第一端口的循环移位范围具有对应关系。第一字段占用一个或多个比特(bit)。或者说,第一信息中的第一字段的取值与第一区间长度具有对应关系。
示例11:第一信息中的第一字段占用1bit。第一信息中的第一字段的取值与第一端口的循环移位范围的对应关系可如下:
若第一字段的取值为0,则该第一字段指示第一端口的循环移位范围为[0,2π],即第一端口的循环移位范围不受限制;或者说,若第一字段的取值为0,则该第一字段指示第一区间长度为2π。
若第一字段的取值为1,则该第一字段指示第一端口的循环移位范围为或者说,若第一字段的取值为1,则该第一字段指示第一区间长度为
其中,β>0为预定义的或第二通信装置(例如基站)通过第一信息指示的第一缩放因子。可选的,第一信息还指示KTC以及第一通信装置根据KTC得到参阅表1;根据以及得到参阅上述公式(6)和公式(7);根据β以及得到根据以及得到第一信息指示第一区间长度、KTC以及β时,或指示第一区间长度、KTC以及时,第一通信装置可利用第一信息确定第一端口的循环移位范围。应理解,第一信息中的第 一字段可视为确定第一端口的循环移位范围或者第一区间长度的公式,可能由第一信息指示的KTC 以及β为确定第一端口的循环移位范围或者第一区间长度所需的参数。
为例,当第一字段的取值为0时,该第一字段指示第一端口的循环移位范围不受限制,即[0,2π],该第一字段的取值对应第二通信装置没有将第一端口与不支持循环移位跳变的通信装置对应的SRS端口配置在同一把梳齿上进行码分复用的情况;当该第一字段的取值为1时,该第一字段指示第一端口的循环移位范围为即将时延域等分成8份(索引为0~7),第一端口使用的循环移位值可以为第x份的起始点与第x份的中点之间的任意值,该第一字段的取值对应第二通信装置将第一端口与不支持循环移位跳变的通信装置对应的SRS端口配置在同一把梳齿上进行码分复用的情况。可理解,若第二通信装置没有将第一端口与不支持循环移位跳变的通信装置对应的SRS端口配置在同一把梳齿上进行码分复用,则向第一通信装置发送包含取值为0的第一字段的第一信息,该第一通信装置根据该第一信息可获知第一端口的循环移位范围不受限制,即第一端口的循环移位范围为[0,2π];若第二通信装置将第一端口与不支持循环移位跳变的通信装置对应的SRS端口配置在同一把梳齿上进行码分复用,则向第一通信装置发送包含取值为1的第一字段的第一信息,该第一通信装置根据该第一信息确定第一端口的循环移位范围,例如
示例12:第一信息中的第一字段占用2bit。第一字段的取值与第一端口的循环移位范围的对应关系可如下:
若第一字段的取值为00,则该第一字段指示第一的循环移位范围为[0,2π],即第一端口的循环移位范围不受限制;或者说,若第一字段的取值为00,则该第一字段指示第一区间长度为2π;
若第一字段的取值为01,该第一字段指示第一端口的循环移位范围为或者说,若第一字段的取值为01,则该第一字段指示第一区间长度为
若第一字段的取值为10,该第一字段指示第一端口的循环移位范围为或者说,若第一字段的取值为10,则该第一字段指示第一区间长度为
若第一字段的取值为11,该第一字段指示第一端口的循环移位范围为或者说,若第一字段的取值为11,则该第一字段指示第一区间长度为
其中,β321>0为预定义的或第二通信装置通过第一信息指示的第一缩放因子。可选的,第一信息还指示KTC以及第一通信装置根据KTC得到参阅表1;根据以及得到参阅上述公式(6)和公式(7);根据β1、β2、β3以及得到以及根据以及得到以及第一信息指示第一区间长度、KTCβ1、β2以及β3中时,或指示第一区间长度、KTC、以及时,第一通信装置可利用第一信息确定第一端口的循环移位范围。应理解,第一信息中的第一字段可视为确定第一端口的循环移位范围或者第一区间长度的公式,可能由第一信息指示的KTCβ2以及β3为确定第一端口的循环移位范围或者第一区间长度所需的参数。
β2=1,β3=2为例,当第一字段的取值为00时,该第一字段指示第一端口的循环移位范围不受限制,即[0,2π],该第一字段的取值对应第二通信装置没有将第一端口与不支持循环移位跳变的通信装置对应的SRS端口配置在同一把梳齿上进行码分复用的情况;当该第一字段的取值为01时,该第一字段指示第一端口的循环移位范围为即将时延域等分成8份(索引为0~7),第一端口使用的循环移位值可以为第x份的起始点与第x份的中点之间的任意值;当第一字段的取值为10时,该第一字段指示第一端口的循环移位范围为即将时延域等分成8份(索引为0~7),第一端口使用的循环移位值可以为第x份的起始点与第(x+1)份的起始点之间的任意值;当第一字段的取值为11时,该第一字段指示第一端口的循环移位范围为即将时延域等分成8份(索引为0~7),第一端口使用的循环移位值可以为第x份的起始点与第(x+2)份的起始点之间的任意值。若第一字段的取值为01、10、11中的任一个,则该第一字段对应第二通信装置将第一端口与不支持循环移位跳变的通信装置对应的SRS端口配置在同一把梳齿上进行码分复用的情况。
第一字段的具体取值可视第二通信装置为同一梳齿上所有不支持循环移位跳变的通信装置对应的SRS端口(下文简称不支持循环移位跳变的SRS端口)配置的循环移位索引、该第二通信装置为该梳齿上所有支持循环移位跳变的通信装置对应的SRS端口(下文简称支持循环移位跳变的SRS端口)配置的循环移位索引以及该梳齿上所有支持循环移位跳变的SRS端口对应的信道的时延扩展而定。或者说,第二通信装置可以根据不支持循环移位跳变的SRS端口对循环移位索引的占用情况、支持循环移位跳变的SRS端口对循环移位索引的占用情况以及支持循环移位跳变的SRS端口对应的信道的时延扩展生成指示支持循环移位跳变的SRS端口的循环移位范围的第一信息。第二通信装置还可根据其他因素生成第一信息,本申请不作限定。支持循环移位跳变的SRS端口(例如第一端口)的循环移位范围内的任意循环移位值需要保证支持循环移位跳变的SRS端口占用该任意循环移位值进行SRS发送后其对应的时延域信道与不支持循环移位跳变的SRS端口对应的时延域信道尽量不发生重叠。通过第一信息指示第一端口的循环移位范围,第一通信装置结合预定义的或第二通信装置通过第一信息指示的第一缩放因子即可得到其对应的SRS端口的循环移位范围,从而在保证不支持循环移位跳变的SRS端口与支持循环移位跳变的SRS端口的信道估计性能不受损失的前提下,充分利用了循环移位跳变带来的干扰随机化效果。下面结合附图和举例来描述第二通信装置生成指示支持循环移位跳变的SRS端口的循环移位范围的第一信息的实现方式。
图5为本申请实施例提供的一种SRS端口对应的时延域信道的示意图。假设复用在同一把梳齿上的SRS端口对应的信道的时延扩展近似相同,黑色垂直虚线将黑色水平实线代表的时延域等分成8份(索引为0~7),曲线501表示不支持循环移位跳变的SRS端口对应的时延域信道,实曲线502表示支持循环移位跳变的SRS端口在不进行循环移位跳变(即占用基站配置的循环移位值)时对应的时延域信道,虚曲线503表示支持循环移位跳变的SRS端口进行循环移位跳变后对应的时延域信道。箭头表示支持循环移位跳变的SRS端口可用的循环移位范围。应理解,只要支持循环移位跳变的SRS端口进行循环移位跳变后的循环移位值仍处在箭头表示的范围内,不支持循环移位跳变的SRS端口与支持循环移位跳变的SRS端口的信道估计性能就不会遭受损失。
以图5中的第一行为例,第二通信装置(例如基站)为不支持循环移位跳变的各个SRS端口分别配置了循环移位索引0、2、4、6,为支持循环移位跳变的各个SRS端口分别配置了循环移位索引1、5,第二通信装置通过某种方式估计(如根据历史信息预测)支持循环移位跳变的各个SRS端口对应的信道的时延扩展均较小(例如,配置了循环移位索引1的SRS端口对应的信道的时延径集中分布在8等分时延域中第1份的起始点与第1份的中点之间,配置了循环移位索引5的SRS端口对应的信道的时延径集中分布在8等分时延域中第5份的起始点与第5份的中点之间),则第二通信装置可以通过取值为“01”的第一字段指示配置了循环移位索引1的SRS端口可用的循环移位范围为以及指示配置了循环移位索引5的SRS端口可用的循环移位范围为配置了循环移位索引1的SRS端口对应的信道的 时延径集中分布在8等分时延域中第1份的起始点与第1份的中点之间,该SRS端口对应的信道的时延径在整体向右移位时延域的(8等分时延域中一份的)后,该SRS端口对应的信道的时延径分布在8等分时延域中第1份的中点与第1份的终止点(第2份的起始点)之间,不会影响各SRS端口的信道估计性能;配置了循环移位索引5的SRS端口对应的信道的时延径集中分布在8等分时延域中第5份的起始点与第5份的中点之间,该SRS端口对应的信道的时延径在整体向右移位时延域的(8等分时延域中一份的)后,该SRS端口对应的信道的时延径分布在8等分时延域中第5份的中点与第5份的终止点(第6份的起始点)之间,不会影响各SRS端口的信道估计性能,因此β1的取值可以为支持循环移位跳变的通信装置结合预定义的或第二通信装置通过第一信息指示的第一缩放因子即可得到配置了循环移位索引1的SRS端口可用的循环移位范围为配置了循环移位索引5的SRS端口可用的循环移位范围为这样既可以保证不支持循环移位跳变的SRS端口与支持循环移位跳变的SRS端口的信道估计性能不受损失,又可以充分利用循环移位跳变带来的干扰随机化效果。应理解,如图5中的第二行和第三行所示,第二通信装置可采用类似的方式生成指示支持循环移位跳变的SRS端口的循环移位范围的第一信息,这里不再详述。
实施例一中,第一信息指示第一端口的循环移位范围,可以准确地确定第一端口的循环移位范围。
实施例二:第一信息指示第一集合,上述第一集合包括上述第一端口不可用的循环移位索引,上述第一端口的循环移位范围由上述第一集合确定。
可选的,第一信息以位图的方式指示上述第一集合包括的循环移位索引,上述位图中的N个比特与N个循环移位索引一一对应,上述N个比特中任意比特的值为1或0代表与上述任意比特对应的循环移位索引属于上述第一集合。上述N为大于1的整数。N可以等于最大循环移位数量也可以等于SRS序列长度MZC,还可以是其他取值,本申请不作限定。举例来说,B表示占用N个比特的位图,B用于指示第一集合包括的循环移位索引,j表示循环移位索引,B(j)表示B中的第j+1个比特的取值,B(j)=1表示与B中的第j+1个比特对应的循环移位索引属于第一集合。第一信息以位图的方式指示第一集合包括的循环移位索引,可以准确地指示第一集合包括的循环移位索引。
示例21:第一信息指示第一集合,即第一端口不可用的循环移位索引,第一端口的循环移位范围为:
其中,表示上述第一端口的循环移位范围,j表示循环移位索引,表示上述最大循环移位数量,γ为第二缩放因子,B(j)=1表示循环移位索引j已经被不支持循环移位跳变的SRS端口占用,B(j)=0表示循环移位索引j没有被不支持循环移位跳变的SRS端口占用(可能被支持循环移位跳变的SRS端口占用,也可能没有被任何SRS端口占用)。可选的,0≤γ≤1为预定义的或第二通信装置(例如基站)通过第一信息指示的第二缩放因子。
示例22:第一信息指示第一集合,即第一端口不可用的循环移位索引,第一端口的循环移位范围为:
其中,表示上述第一端口的循环移位范围,j表示循环移位索引,表示上述最大循环移位数量,γ为第二缩放因子,B(j)=1表示循环移位值j已经被不支持循环移位跳变的SRS端口占用,B(j)=0表示循环移位值j没有被不支持循环移位跳变的SRS端口占用(可能被支持循环移位跳变的SRS端口占用,也可能没有被任何SRS端口占用)。可选的,0≤γ≤1为预定义的或第 二通信装置(例如基站)通过第一信息指示的第二缩放因子。
在一种可能的实现方式中,第一信息指示第一集合、梳齿数量KTC以及第二缩放因子γ,上述第一集合包括上述第一端口不可用的循环移位索引,上述第一端口的循环移位范围由上述第一集合、上述梳齿数量以及上述第二缩放因子共同确定。第一通信装置确定第一端口的循环移位范围可能的实现方式如下:第一通信装置通过梳齿数量KTC确定最大循环移位数量参阅表1;通过上述最大循环移位数量上述第一集合以及上述第二缩放因子γ,确定上述第一端口的循环移位范围。可选的,第一通信装置采用上述公式(1)或公式(2)确定上述第一端口的循环移位范围。在该实现方式中,第一端口的循环移位范围由第一集合、梳齿数量以及第二缩放因子共同确定,可以准确地确定第一端口的循环移位范围。
为例,当B的取值为[0,1,0,0,0,1,0,0],时,根据上述公式(1)得到的第一端口的循环移位范围为
根据上述公式(2)得到的第一端口的循环移位范围为
图6为本申请实施例提供的另一种SRS端口对应的时延域信道的示意图。假设复用在同一把梳齿上的SRS端口对应的信道的时延扩展近似相同,黑色垂直虚线将黑色水平实线代表的时延域等分成8份(索引为0~7),曲线601表示不支持循环移位跳变的SRS端口对应的时延域信道,实曲线602表示支持循环移位跳变的SRS端口在不进行循环移位跳变(即占用基站配置的循环移位值)时对应的时延域信道,虚曲线603表示支持循环移位跳变的SRS端口进行循环移位跳变后对应的时延域信道。箭头表示支持循环移位跳变的SRS端口可用的循环移位范围。应理解,只要支持循环移位跳变的SRS端口进行循环移位跳变后的循环移位值仍处在箭头表示的范围内,不支持循环移位跳变的SRS端口与支持循环移位跳变的SRS端口的信道估计性能就不会遭受损失。
第二通信装置通过上述第一信息指示已经被不支持循环移位跳变的SRS端口占用的循环移位索引的集合,即第一集合,第一通信装置结合预定义的或第二通信装置通过第一信息指示的第二缩放因子γ即可得到第一端口可用的循环移位范围,以便在保证不支持循环移位跳变的SRS端口与支持循环移位跳变的SRS端口的信道估计性能不受损失的前提下,充分利用了循环移位跳变带来的干扰随机化效果。
实施例二中,第一信息指示第一集合,第一通信装置根据该第一集合可以准确地确定第一端口的循环移位范围。
实施例三:上述第一信息指示第二集合,上述第二集合包括一个或多个循环移位索引,上述第二集合为所有循环移位索引构成的全集的真子集,上述第一端口的循环移位范围由上述第二集合确定。可选的,上述所有循环移位索引构成的全集被划分为ε个预定义的真子集,上述第二集合为ε个真子集中的一个,上述第一信息指示第二集合,上述第一端口的循环移位范围由所述第二集合确定。上述ε为大于1的整数。第一信息指示的第二集合为若干个预定义的真子集中的一个,可以以较小的开销确定第一端口的循环移位范围。
可选的,第一信息以位图的方式指示上述第二集合包括的循环移位索引,上述位图中的N个比特与N个循环移位索引一一对应,上述N个比特中任意比特的值为1或0代表与上述任意比特对应的循环移位索引属于上述第二集合。上述N为大于1的整数。N可以等于最大循环移位数量也可以等于SRS序列长度MZC,还可以是其他取值,本申请不作限定。举例来说,B表示占用N个比特的位图,B用于指示第二集合包括的循环移位值,j表示循环移位索引,B(j)表示B中的第j+1个比特的取值,B(j)=1表示B中的第j+1个比特对应的循环移位索引属于第二集合。第一信息以位图的方式指示第二集合包括的循环移位索引,可以准确地指示第一集合包括的循环移位索引。
示例3:第一信息指示第二集合,上述第二集合包括一个或多个循环移位索引,第一端口的循环移位范围为:
其中,表示上述第一端口的循环移位范围,R表示第二集合,k表示第二集合包括的循环移位索引,表示上述最大循环移位数量,δ表示第三缩放因子。可选的,0≤δ≤1为预定义的或第二通信装置(例如基站)通过第一信息指示的第三缩放因子。
在一种可能的实现方式中,上述第一信息指示第二集合、梳齿数量KTC以及第三缩放因子δ,上述第二 集合包括一个或多个循环移位索引,上述第二集合为所有循环移位索引构成的全集的真子集,上述第一端口的循环移位范围由上述第二集合、上述梳齿数量以及上述第三缩放因子共同确定。第一通信装置确定第一端口的循环移位范围可能的实现方式如下:第一通信装置通过梳齿数量KTC确定最大循环移位数量参阅表1;通过最大循环移位数量上述第二集合以及上述第三缩放因子δ,确定上述第一端口的循环移位范围。可选的,第一通信装置采用上述公式(3)确定上述第一端口的循环移位范围。在该实现方式中,第一端口的循环移位范围由第二集合、梳齿数量以及第三缩放因子共同确定,可以准确地确定第一端口的循环移位范围。
考虑到现有协议中属于一个SRS资源的若干个SRS端口占用的循环移位索引呈均匀分布,所有循环移位索引构成的全集可能以ε1为间隔被等分为ε1个预定义子集,ε1的约数。考虑到用于不同TRP进行信道估计的SRS之间存在时延差,所有循环移位索引构成的全集可能被连续地等分为ε2个预定义子集,ε2的约数。所有循环移位索引构成的全集还可能以其他的方式被划分为若干个预定义子集,本申请实施例不作限定。
为例,当所有循环移位索引构成的全集被划分为{0,2,4,6}、{1,3,5,7}两个预定义子集时,第二通信装置可以通过第一信息指示第二集合为{0,2,4,6}或{1,3,5,7}。例如,第一信息中的第二字段指示第二集合,若该第二字段的取值为0,则该第二字段指示第二集合为{0,2,4,6};若该第二字段的取值为1,则该第二字段指示第二集合为{1,3,5,7}。当所有循环移位索引构成的全集被划分为{0,1,2,3}、{4,5,6,7}两个预定义集合时,第二通信装置可以通过第一信息指示第二集合为{0,1,2,3}或{4,5,6,7}。当所有循环移位索引构成的全集被划分为{0,4}、{1,5}、{2,6}、{3,7}四个预定义子集时,第二通信装置可以通过第一信息指示第二集合为{0,4}、{1,5}、{2,6}、{3,7}中的任一集合。例如,第一信息中的第二字段指示第二集合,若该第二字段的取值为00,则该第二字段指示第二集合为{0,4};若该第二字段的取值为01,则该第二字段指示第二集合为{1,5};若该第二字段的取值为10,则该第二字段指示第二集合为{2,6};若该第二字段的取值为11,则该第二字段指示第二集合为{3,7}。进一步地,以第二集合为{0,2,4,6},为例,则第一端口的循环移位范围为
第二通信装置通过上述第一信息指示没有被不支持循环移位跳变的SRS端口占用的循环移位索引的集合,即第二集合,第一通信装置结合预定义的或第二通信装置通过第一信息指示的第三缩放因子δ即可得到第一端口的循环移位范围,以便在保证不支持循环移位跳变的SRS端口与支持循环移位跳变的SRS端口的信道估计性能不受损失的前提下,充分利用了循环移位跳变带来的干扰随机化效果。
实施例三中,第一信息指示第二集合,第一通信装置根据该第二集合可以准确地确定第一端口的循环移位范围。
循环移位跳变可能的实现方式有以下两种:一种可能的实现方式中SRS的循环移位由上述公式(10)决定,这种实现方式中SRS的循环移位未遵循某种循环移位变化图样;另一种可能的实现方式中不同时刻的SRS的循环移位遵循某种循环移位变化图样。
前面介绍了循环移位跳变未遵循循环移位变化图样时,在保证复用在同一把梳齿上的SRS端口的信道估计性能不受损失的前提下,充分利用循环移位跳变带来的干扰随机化效果的通信方案。下面介绍循环移位跳变遵循某种循环移位变化图样时,在保证复用在同一把梳齿上的SRS端口的信道估计性能不受损失的前提下,充分利用循环移位跳变带来的干扰随机化效果的通信方案。
图7为本申请实施例提供的另一种通信交互方法流程图。如图7所示,该方法包括:
701、第二通信装置向第一通信装置发送第一信息。
相应的,第一通信装置接收来自第二通信装置的第一信息。第二通信装置可以是接入网设备,例如基站。第一通信装置为终端设备。第一信息用于指示第一端口对应的循环移位变化图样。上述第一端口为上述第一通信装置对应的端口中的一个。第一端口可以是一个SRS资源集中的一个SRS资源包括的若干SRS端口中的一个。本申请实施例以第一端口为例来描述第一通信装置确定SRS端口的循环移位范围的流程。应理解,第一通信装置可采用类似的方式确定任意SRS端口的循环移位范围。
第一信息可以承载于一个或者多个格式相同/不同的信令之上,例如无线资源控制(radio resource control,RRC)信令、介质接入控制(media access control,MAC)控制元素(control element,CE)、下 行控制信息(downlink control information,DCI)等。
第二通信装置在发送第一信息之前,生成第一信息。第一信息用于第一通信装置确定第一端口对应的循环移位变化图样。可选的,第二通信装置根据不支持循环移位跳变的SRS端口对循环移位索引的占用情况和/或支持循环移位跳变的SRS端口对循环移位索引的占用情况和/或支持循环移位跳变的SRS端口对应的信道的时延扩展生成第一信息。
702、第一通信装置根据第一信息,确定第一端口对应的循环移位变化图样。
上述第一端口对应的循环移位变化图样包括的循环移位索引构成的集合为所有循环移位索引构成的全集的真子集。所有循环移位索引构成的全集可以是也可以是{0,1,…,MZC-1},还可以包括其他取值。其中,c表示正整数常量,表示最大循环移位数量,MZC表示SRS序列长度。
703、第一通信装置在第一端口上发送参考信号。
第一通信装置在第一端口上发送参考信号可以是:第一通信装置在第一端口上发送参考信号,第一端口占用的循环移位值按照第一端口对应的循环移位变化图样随参考信号的发送时刻和/或发送频率变化。
可选的,第一信息中的第一字段指示第一端口对应的循环移位变化图样,该第一字段占用的比特数与候选的循环移位变化图样的数量有关。包含不同顺序的相同循环移位索引的循环移位变化图样(如{0,2,4,6}与{4,6,0,2})可以被视为不同的循环移位变化图样,也可以被视为不同起始点下的相同的循环移位变化图样。起始点可以是第二通信装置为第一端口配置的循环移位索引,也可以通过其他方式确定。下文中包含不同顺序的相同循环移位索引的循环移位变化图样被视为不同起始点下的相同的循环移位变化图样,起始点为第二通信装置为第一端口配置的循环移位索引。
考虑到现有协议中属于一个SRS资源的若干个SRS端口占用的循环移位索引呈均匀分布,所有循环移位索引构成的全集可能以ε1为间隔被等分为ε1个循环移位变化图样,ε1的约数。考虑到用于不同TRP进行信道估计的SRS之间存在时延差,所有循环移位索引构成的全集可能被连续地等分为ε2个循环移位变化图样,ε2的约数。所有循环移位索引构成的全集还可能以其他的方式被划分为若干个循环移位变化图样,本申请实施例不作限定。
为例,当所有循环移位索引构成的全集被划分为{0,2,4,6}、{1,3,5,7}两个循环移位变化图样时,第二通信装置可以通过第一信息指示支持循环移位跳变的SRS端口(例如第一端口)对应的循环移位变化图样为{0,2,4,6}或{1,3,5,7}。当所有循环移位索引构成的全集被划分为{0,1,2,3}、{4,5,6,7}两个循环移位变化图样时,第二通信装置可以通过第一信息指示支持循环移位跳变的SRS端口对应的循环移位变化图样为{0,1,2,3}或{4,5,6,7}。例如,第一信息中的第一字段指示第一端口对应的循环移位变化图样,若该第一字段的取值为0,则该第一字段指示支持循环移位跳变的SRS端口对应的循环移位变化图样为{0,1,2,3};若该第一字段的取值为1,则该第一字段指示支持循环移位跳变的SRS端口对应的循环移位变化图样为{4,5,6,7}。当所有循环移位值构成的全集被划分为{0,4}、{1,5}、{2,6}、{3,7}四个循环移位变化图样时,第二通信装置可以通过第一信息指示支持循环移位跳变的SRS端口对应的循环移位变化图样为{0,4}、{1,5}、{2,6}、{3,7}中的任一个。例如,第一信息中的第一字段指示第一端口对应的循环移位变化图样,若该第一字段的取值为00,则该第一字段指示支持循环移位跳变的SRS端口对应的循环移位变化图样为{0,4};若该第一字段的取值为01,则该第一字段指示支持循环移位跳变的SRS端口对应的循环移位变化图样为{1,5};若该第一字段的取值为10,则该第一字段指示支持循环移位跳变的SRS端口对应的循环移位变化图样为{2,6};若该第一字段的取值为11,则该第一字段指示支持循环移位跳变的SRS端口对应的循环移位变化图样为{3,7}。进一步地,以第一信息指示支持循环移位跳变的SRS端口pi对应的循环移位变化图样为{0,2,4,6},第二通信装置为SRS端口pi配置的循环移位索引为4为例,则SRS端口pi对应的循环移位变化图样为{4,6,0,2},即SRS端口pi占用的循环移位索引随SRS发送时刻和/或发送频率以4,6,0,2,4,6,0,2,…的规律进行变化。
本申请实施例中,第一通信装置根据第一信息,确定第一端口对应的循环移位变化图样。第一通信装置在按照该循环移位变化图样发送参考信号时,能够避免或减少在将支持循环移位跳变的终端设备对应的SRS端口与不支持循环移位跳变的终端设对应的SRS端口配置在同一把梳齿上进行复用时,二者的信道估计性能可能会遭受严重损失的问题。或者说,第一通信装置根据第一信息,确定第一端口对应的循环移位变化图样,能够在充分利用循环移位跳变带来的干扰随机化效果的同时,保证信道估计性能不受损失。
下面结合附图介绍可实施本申请实施例提供通信方法的通信装置的结构。
图8为本申请实施例提供的一种通信装置800的结构示意图。该通信装置800可以对应实现上述各个方法实施例中第一通信装置实现的功能或者步骤,也可以对应实现上述各个方法实施例中第二通信装置实现的功能或者步骤。通信装置800可以包括处理模块810和收发模块820。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块810和收发模块820可以与该存储单 元耦合,例如,处理模块810可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。例如,收发模块820可包括发送模块和接收模块。发送模块可以是发射机,接收模块可以是接收机。收发模块820对应的实体可以是收发器,也可以是通信接口。
在一些可能的实施方式中,通信装置800能够对应实现上述方法实施例中第一通信装置的行为和功能。例如通信装置800可以为第一通信装置,也可以为应用于第一通信装置中的部件(例如芯片或者电路)。收发模块820例如可以用于执行图4、图7的实施例中由第一通信装置所执行的全部接收或发送操作,例如图4所示的实施例中的步骤401、步骤403,图7所示的实施例中的步骤701、步骤703,和/或用于支持本文所描述的技术的其它过程。处理模块810用于执行图4、图7的实施例中由第一通信装置所执行的除了收发操作之外的全部操作,例如图4所示的实施例中的步骤402,图7所示的实施例中的步骤702。
在一些可能的实施方式中,通信装置800能够对应实现上述方法实施例中第二通信装置的行为和功能。例如通信装置800可以为第二通信装置,也可以为应用于第二通信装置中的部件(例如芯片或者电路)。收发模块820例如可以用于执行图4、图7的实施例中由第二通信装置所执行的全部接收或发送操作,例如图4所示的实施例中的步骤401、步骤403,图7所示的实施例中的步骤701、步骤703,和/或用于支持本文所描述的技术的其它过程。处理模块810用于执行由第二通信装置所执行的除了收发操作之外的全部操作,例如生成第一信息的操作。
图9为本申请实施例提供的另一种通信装置90的结构示意图。图9中的通信装置可以是上述第一通信装置,也可以是上述第二通信装置。
如图9所示,该通信装置90包括至少一个处理器910和收发器920。
在本申请的一些实施例中,处理器910和收发器920可以用于执行第一通信装置执行的功能或操作等。收发器920例如执行图4、图7的实施例中由第一通信装置所执行的全部接收或发送操作。处理器910例如用于执行图4、图7的实施例中由第一通信装置所执行的除了收发操作之外的全部操作。
在本申请的一些实施例中,处理器910和收发器920可以用于执行第二通信装置执行的功能或操作等。收发器920例如执行图4、图7的实施例中由第二通信装置所执行的全部接收或发送操作。处理器910例如执行图4、图7的实施例中用于执行由第二通信装置所执行的除了收发操作之外的全部操作。
收发器920用于通过传输介质和其他设备/装置进行通信。处理器910利用收发器920收发数据和/或信令,并用于实现上述方法实施例中的方法。处理器910可实现处理模块810的功能,收发器920可实现收发模块820的功能。
可选的,收发器920可以包括射频电路和天线,射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
可选的,通信装置90还可以包括至少一个存储器930,用于存储程序指令和/或数据。存储器930和处理器910耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器910可能和存储器930协同操作。处理器910可能执行存储器930中存储的程序指令。该至少一个存储器中的至少一个可以包括于处理器中。
当通信装置90开机后,处理器910可以读取存储器930中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器910对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器910,处理器910将基带信号转换为数据并对该数据进行处理。
在另一种实现中,上述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
本申请实施例中不限定上述收发器920、处理器910以及存储器930之间的具体连接介质。本申请实施例在图9中以存储器930、处理器910以及收发器920之间通过总线940连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请 实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
图10为本申请实施例提供的另一种通信装置100的结构示意图。如图10所示,图10所示的通信装置包括逻辑电路1001和接口1002。图8中的处理模块810可以用逻辑电路1001实现,图8中的收发模块820可以用接口1002实现。其中,该逻辑电路1001可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1002可以为通信接口、输入输出接口等。本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
在本申请的一些实施例中,该逻辑电路和接口可用于执行上述第一通信装置执行的功能或操作等。
在本申请的一些实施例中,该逻辑电路和接口可用于执行上述第二通信装置执行的功能或操作等。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行上述实施例的方法。
本申请还提供一种计算机程序产品,该计算机程序产品包括指令或计算机程序,当该指令或计算机程序在计算机上运行时,使得上述实施例中的方法被执行。
本申请还提供一种通信系统,包括上述第一通信装置和上述第二通信装置。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以上述权利要求的保护范围为准。

Claims (28)

  1. 一种通信方法,其特征在于,包括:
    第一通信装置接收第一信息;
    所述第一通信装置根据所述第一信息,确定第一端口的循环移位范围,所述第一端口为所述第一通信装置对应的端口中的一个,所述第一端口的循环移位范围包括两个或两个以上循环移位值;
    所述第一通信装置在所述第一端口上发送参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口占用的循环移位值属于所述第一端口的循环移位范围。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息指示第一区间长度,所述第一端口的循环移位范围由所述第一端口配置的循环移位值和所述第一区间长度共同确定。
  3. 根据权利要求1所述的方法,其特征在于,所述第一信息指示第一集合,所述第一集合包括所述第一端口不可用的循环移位索引,或者,所述第一集合包括所述第一端口可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合确定。
  4. 根据权利要求3所述的方法,其特征在于,所述第一信息以位图的方式指示所述第一集合包括的循环移位索引,所述位图中的N个比特与N个循环移位索引一一对应,所述N个比特中任意比特的值为1或0代表与所述任意比特对应的循环移位索引属于所述第一集合。
  5. 根据权利要求1所述的方法,其特征在于,所述第一信息指示第二集合,所述第二集合包括一个或多个循环移位索引,所述第二集合为所有循环移位索引构成的全集的子集,所述第一端口的循环移位范围由所述第二集合确定。
  6. 根据权利要求5所述的方法,其特征在于,所述第一端口的循环移位范围由所述第二集合确定包括:所述第一端口的循环移位范围包括与所述第二集合中的循环移位索引对应的循环移位值。
  7. 一种通信方法,其特征在于,包括:
    第一通信装置接收第一信息;
    所述第一通信装置根据所述第一信息,确定第一端口对应的循环移位变化图样,所述第一端口为所述第一通信装置对应的端口中的一个,所述第一端口对应的循环移位变化图样包括的循环移位索引构成的集合为所有循环移位索引构成的全集的真子集;
    所述第一通信装置在所述第一端口上发送参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口对应的循环移位变化图样用于表征第一端口占用的循环移位值与所述参考信号的发送时刻和/或发送频率之间的关系。
  8. 一种通信方法,其特征在于,包括:
    生成第一信息;
    发送所述第一信息,所述第一信息用于指示第一端口的循环移位范围,所述第一端口为第一通信装置对应的端口中的一个,所述第一端口的循环移位范围包括两个或两个以上循环移位值;
    在所述第一端口上接收参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口占用的循环移位值属于所述第一端口的循环移位范围。
  9. 根据权利要求8所述的方法,其特征在于,所述第一信息指示第一区间长度,所述第一端口的循环移位范围由所述第一端口配置的循环移位值和所述第一区间长度共同确定。
  10. 根据权利要求8所述的方法,其特征在于,所述第一信息用于指示第一集合,所述第一集合包括所述第一端口不可用的循环移位索引,或者,所述第一集合包括所述第一端口可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合确定。
  11. 根据权利要求10所述的方法,其特征在于,所述第一信息以位图的方式指示所述第一集合包括的循环移位索引,所述位图中的N个比特与N个循环移位索引一一对应,所述N个比特中任意比特的值为1或0代表与所述任意比特对应的循环移位索引属于所述第一集合。
  12. 根据权利要求8所述的方法,其特征在于,所述第一信息用于指示第二集合,所述第二集合包括一个或多个循环移位索引,所述第二集合为所有循环移位索引构成的全集的真子集,所述第一端口的循环移位范围由所述第二集合确定。
  13. 根据权利要求12所述的方法,其特征在于,所述第一端口的循环移位范围由所述第二集合确定包括:所述第一端口的循环移位范围包括与所述第二集合中的循环移位索引对应的循环移位值。
  14. 一种通信方法,其特征在于,包括:
    生成第一信息;
    发送所述第一信息,所述第一信息用于指示第一端口对应的循环移位变化图样,所述第一端口为第一通信装置对应的端口中的一个,所述第一端口对应的循环移位变化图样包括的循环移位索引构成的集合为所有循环移位索引构成的全集的真子集;
    在所述第一端口上接收参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口对应的循环移位变化图样用于表征第一端口占用的循环移位值与所述参考信号的发送时刻和/或发送频率之间的关系。
  15. 一种通信装置,其特征在于,包括用于实现权利要求1至6中任一项所述的方法的模块或单元。
  16. 一种通信装置,其特征在于,包括用于实现权利要求7所述的方法的模块或单元。
  17. 一种通信装置,其特征在于,包括用于实现权利要求8至13中任一项所述的方法的模块或单元。
  18. 一种通信装置,其特征在于,包括用于实现权利要求14所述的方法的模块或单元。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被执行时使得计算机执行如权利要求1至6中任一项所述的方法,或者,所述程序指令被执行时使得计算机执行如权利要求7所述的方法,或者,所述程序指令被执行时使得计算机执行如权利要求8至13中任一项所述的方法,或者,所述程序指令被执行时使得计算机执行如权利要求14所述的方法。
  20. 一种通信装置,其特征在于,包括处理器,所述处理器,所述处理器用于在执行指令时,使得所述通信装置执行如权利要求1至6任一项所述的方法,或者,使得所述通信装置执行如权利要求7所述的方法,或者,使得所述通信装置执行如权利要求8至13中任一项所述的方法,或者,使得所述通信装置执行如权利要求14所述的方法。
  21. 根据权利要求20所述的装置,其特征在于,所述装置还包括存储器,所述存储器用于存储所述指令。
  22. 一种芯片,其特征在于,所述芯片包括处理器与通信接口,所述处理器通过所述通信接口读取存储器上存储的指令,执行如权利要求1至6任一项所述的方法,或者,执行如权利要求7所述的方法,或者,执行如权利要求8至13中任一项所述的方法,或者,执行如权利要求14所述的方法。
  23. 一种通信方法,其特征在于,包括:
    第一通信装置接收第一信息;
    所述第一通信装置根据所述第一信息,确定第一端口的循环移位范围,所述第一端口为所述第一通信装置对应的端口中的一个,所述第一端口的循环移位范围包括一个或多个循环移位值;
    所述第一通信装置在所述第一端口上发送参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口占用的循环移位值属于所述第一端口的循环移位范围。
  24. 根据权利要求23所述的方法,其特征在于,所述第一信息指示第一集合,所述第一集合包括所述第一端口不可用的循环移位索引,或者,所述第一集合包括所述第一端口可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合确定。
  25. 根据权利要求24所述的方法,其特征在于,所述第一信息以位图的方式指示所述第一集合包括的循环移位索引,所述位图中的N个比特与N个循环移位索引一一对应,所述N个比特中任意比特的值为1或0代表与所述任意比特对应的循环移位索引属于所述第一集合。
  26. 一种通信方法,其特征在于,包括:
    生成第一信息;
    发送所述第一信息,所述第一信息用于指示第一端口的循环移位范围,所述第一端口为第一通信装置对应的端口中的一个,所述第一端口的循环移位范围包括一个或多个循环移位值;
    在所述第一端口上接收参考信号,所述第一端口占用的循环移位值随所述参考信号的发送时刻和/或发送频率变化,所述第一端口占用的循环移位值属于所述第一端口的循环移位范围。
  27. 根据权利要求26所述的方法,其特征在于,所述第一信息指示第一集合,所述第一集合包括所述第一端口不可用的循环移位索引,或者,所述第一集合包括所述第一端口可用的循环移位索引,所述第一端口的循环移位范围由所述第一集合确定。
  28. 根据权利要求27所述的方法,其特征在于,所述第一信息以位图的方式指示所述第一集合包括的循环移位索引,所述位图中的N个比特与N个循环移位索引一一对应,所述N个比特中任意比特的值为1或0代表与所述任意比特对应的循环移位索引属于所述第一集合。
PCT/CN2023/121809 2022-09-30 2023-09-26 通信方法、通信装置、芯片及计算机可读存储介质 WO2024067652A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211213854.9A CN117856990A (zh) 2022-09-30 2022-09-30 通信方法、通信装置、芯片及计算机可读存储介质
CN202211213854.9 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067652A1 true WO2024067652A1 (zh) 2024-04-04

Family

ID=90476448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121809 WO2024067652A1 (zh) 2022-09-30 2023-09-26 通信方法、通信装置、芯片及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117856990A (zh)
WO (1) WO2024067652A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163318A1 (en) * 2009-06-23 2012-06-28 Ntt Docomo, Inc. Mobile terminal apparatus, radio base station apparatus and communication control method
CN105792375A (zh) * 2014-12-26 2016-07-20 北京信威通信技术股份有限公司 一种扩展探测导频可支持的最大ue端口数量的方法
CN111865524A (zh) * 2019-04-29 2020-10-30 华为技术有限公司 传输探测参考信号srs的方法和装置
WO2021046948A1 (zh) * 2019-09-12 2021-03-18 华为技术有限公司 一种参考信号处理方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120163318A1 (en) * 2009-06-23 2012-06-28 Ntt Docomo, Inc. Mobile terminal apparatus, radio base station apparatus and communication control method
CN105792375A (zh) * 2014-12-26 2016-07-20 北京信威通信技术股份有限公司 一种扩展探测导频可支持的最大ue端口数量的方法
CN111865524A (zh) * 2019-04-29 2020-10-30 华为技术有限公司 传输探测参考信号srs的方法和装置
WO2021046948A1 (zh) * 2019-09-12 2021-03-18 华为技术有限公司 一种参考信号处理方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHARP: "Remaining Issues on Dynamic Aperiodic SRS Signaling", 3GPP DRAFT; R1-110278, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Dublin, Ireland; 20110117, 11 January 2011 (2011-01-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050474461 *

Also Published As

Publication number Publication date
CN117856990A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
US11683768B2 (en) Method and apparatus for time and frequency tracking in cellular communication system
US11128510B2 (en) Data transmission method, user equipment, and network side device
CN108632006B (zh) 一种参考信号传输方法、装置及系统
KR102393630B1 (ko) 참조 신호 시퀀스를 결정하는 방법 및 장치, 컴퓨터 프로그램 제품 그리고 컴퓨터 판독 가능 저장 매체
WO2018228335A1 (zh) 导频信号发送、接收方法及装置、设备、存储介质
AU2017410632B2 (en) Method for configuring transmission direction of time-frequency resource, and apparatus
US11139934B2 (en) Method for transmitting reference signal, device, and system
JP6958958B2 (ja) 通信プロセスにおけるリソース要素の数量を取得するための方法、および関連する装置
US20170164401A1 (en) Method and apparatus for space division multiple access for wireless local area network system
WO2022022579A1 (zh) 一种通信方法及装置
JP2020523933A (ja) 情報送信方法、端末デバイス、及びネットワーク・デバイス
WO2018082672A1 (zh) 一种上行测量参考信号传输方法、装置和系统
US11165606B2 (en) Method and apparatus for sending demodulation reference signal, and demodulation method and apparatus
WO2018082669A1 (zh) 一种信息传输方法、装置和系统
WO2015109526A1 (zh) 导频信号的传输方法及装置
WO2023207476A1 (zh) 一种通信方法、装置及设备
EP3531608A1 (en) Method and device for transmitting reference signal
WO2021195975A1 (zh) 传输参考信号的方法和装置
WO2023098399A1 (zh) 通信方法及通信装置
WO2024067652A1 (zh) 通信方法、通信装置、芯片及计算机可读存储介质
JP7371001B2 (ja) 制御フォーマットインジケータ値の信頼できるインジケーション
CN117121414A (zh) 用于传输参考信号的方法和装置
CN115024005A (zh) 用于窄带物联网通信中资源预留的方法和装置
WO2022262620A1 (zh) 一种指示解调参考信号的方法和装置
WO2024061236A1 (zh) 发送和接收参考信号的方法、通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870879

Country of ref document: EP

Kind code of ref document: A1