WO2018082669A1 - 一种信息传输方法、装置和系统 - Google Patents

一种信息传输方法、装置和系统 Download PDF

Info

Publication number
WO2018082669A1
WO2018082669A1 PCT/CN2017/109382 CN2017109382W WO2018082669A1 WO 2018082669 A1 WO2018082669 A1 WO 2018082669A1 CN 2017109382 W CN2017109382 W CN 2017109382W WO 2018082669 A1 WO2018082669 A1 WO 2018082669A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
time domain
domain resource
resource unit
Prior art date
Application number
PCT/CN2017/109382
Other languages
English (en)
French (fr)
Inventor
李俊超
龚政委
张弛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17866443.9A priority Critical patent/EP3528415B1/en
Publication of WO2018082669A1 publication Critical patent/WO2018082669A1/zh
Priority to US16/402,924 priority patent/US20190260565A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an information transmission method, apparatus, and system.
  • D-TDD Dynamic Time Division Duplex
  • D-TDD has been initially completed in the 3rd Generation Partnership Project (3GPP) in the Rel-12 phase (the relevant part of the standard is enhanced interference management and transmission adaptive eIMTA, Enhanced Interference Management and Traffic Adaptation).
  • 3GPP has now developed the 5th Generation (5G) New Radio (NR) standard, and D-TDD is one of the important features of NR.
  • 5G 5th Generation
  • NR New Radio
  • D-TDD there is the same-frequency cross-interference between the neighboring cells, including the interference of the downlink transmission of the neighboring cell with the same-frequency base station to the uplink receiving of the base station, and the uplink transmission of the user equipment (UE, User Equipment) to the downlink receiving of the UE.
  • the interference is shown in Figure 1-1.
  • the interference existing in D-TDD can be detected by measuring the reference signal (MRS, Measurement Reference Signal).
  • MRS Measurement Reference Signal
  • Embodiments of the present invention provide a method, an apparatus, a communication system, and a terminal for information transmission, so as to be applicable to communication in a future network.
  • an embodiment of the present invention provides an information transmission method, including:
  • a user equipment transmits a measurement reference signal, the subcarrier spacing of the measurement reference signal being a multiple of a subcarrier spacing of a data channel of the UE.
  • the subcarrier spacing of the measurement reference signal may be predefined, and is not required to be indicated by a wireless network device specific configuration (such as an explicit indication). This can reduce the overhead of the configuration.
  • the subcarrier spacing of the measurement reference signal may be implicitly indicated, such as having a certain relationship with a subcarrier spacing of a certain channel, such as using the same or different subcarrier spacing of the synchronization signal or the broadcast channel.
  • the subcarrier spacing of a certain relationship may be predefined or configured for a wireless network device.
  • the subcarrier spacing of the measurement reference signal may be configured (explicitly indicated) by the wireless network device. This increases the flexibility of measuring reference signal transmission.
  • the method further includes:
  • a user equipment receives configuration information from a wireless network device, the configuration information including for configuring the Information of a measurement reference signal transmitted by the user equipment, the information of the measurement reference signal including information of a subcarrier spacing of the measurement reference signal.
  • an embodiment of the present invention further provides an information transmission method, including:
  • a user equipment receives configuration information from a wireless network device, the configuration information including information for configuring a measurement reference signal transmitted by the user equipment, the information of the measurement reference signal including subcarriers of the measurement reference signal Interval information.
  • the UE transmits a measurement reference signal according to the configuration information.
  • the subcarrier spacing of the measurement reference signal is a multiple of a subcarrier spacing of a data channel of the UE.
  • the subcarrier spacing of the measurement reference signal is different from the subcarrier spacing of the data channel of the UE.
  • the subcarrier spacing of the measurement reference signal is greater than the subcarrier spacing of the data channel of the UE.
  • the multiple is not 1.
  • the multiple is greater than one.
  • the transmitting, by the UE, the measurement reference signal includes: the UE receiving the measurement reference signal; or the UE transmitting the measurement reference signal.
  • the first measurement reference signal may be received by the first UE; or the second measurement reference signal may be sent.
  • the method comprises: the second UE transmitting the first measurement reference signal; or receiving the second measurement reference signal.
  • the measurement reference signal can be transmitted between the UEs to measure the interference between the UEs, and the measurement results can be used for short-term or long-term control.
  • the data transmission direction on the time domain resource unit where the first measurement reference signal is located is uplink; and the data transmission direction on the time domain resource unit where the second measurement reference signal is located is downlink.
  • the first UE may perform measurement on the received first measurement reference signal, and may use the measurement result to control uplink data transmission, such as adjusting power of uplink data transmission, to reduce interference between UEs.
  • the method further includes:
  • the UE receives information from a parameter used by the wireless network device to configure the data channel, the parameters of the data channel including information of subcarrier spacing of the data channel.
  • the data channel may be an uplink data channel or a downlink data channel.
  • the method further includes:
  • UE User equipment
  • the UE sends a measurement result to the wireless network device, where the measurement result is related to feature information on the time domain resource unit.
  • the feature information may further include the set information of the time domain resource unit, for example, the time domain resource unit is used as the subframe, and the wireless network device determines the interference information received by the respective subframe included in the frame.
  • the sub-frames may be divided into more than one set according to different interference levels, and each set corresponds to one piece of information, such as having different index information.
  • the feature information may further include level information of interference received on a time domain resource unit.
  • the feature information may further include information about a data channel transmission direction on a time domain resource unit.
  • the UE can be made aware of the interference situation on its time domain resource unit, so that the long-term control based on the measurement result of the measurement reference signal is more accurate.
  • the time domain resource unit is a time domain resource unit used for uplink data transmission.
  • an embodiment of the present invention further provides an information configuration method, including:
  • the wireless network device transmits information for configuring a measurement reference signal transmitted by the user equipment (UE), the information including information of a subcarrier spacing of the measurement reference signal.
  • the method further includes:
  • the wireless network device determines the information for configuring the measurement reference signal transmitted by the user equipment.
  • the wireless network device may determine, by using an interaction with a wireless network device to which the neighboring cell of the cell where the user equipment belongs, the information used to configure the measurement reference signal transmitted by the user equipment.
  • the method further includes:
  • the wireless network device sends the feature information on the time domain resource unit to the UE through the downlink control channel; the feature information is related to the received interference on the time domain resource unit, or the data transmission on the time domain resource unit Direction dependent; the time domain resource unit includes a resource for transmitting the measurement reference signal;
  • the wireless network device receives measurement results from the UE, the measurement results being related to feature information on the time domain resource unit.
  • the information about the subcarrier spacing of the measurement reference signal is a value of a subcarrier spacing of the measurement reference signal.
  • it may be an index value of a value of a subcarrier spacing.
  • the information about the subcarrier spacing of the measurement reference signal includes multiple information of a subcarrier spacing of the measurement reference signal compared to a subcarrier spacing of the data channel of the UE.
  • it can be an index value of the multiple information.
  • the configuration information is carried in a downlink control channel.
  • the configuration information is carried in a broadcast channel or a high layer signaling.
  • the multiple is an integer multiple.
  • the information of the measurement reference signal further includes one or more of time domain resource information, frequency domain resource information, sequence information, and timing information of the measurement reference signal.
  • the transmission of the measurement reference signal is in an area for the guard interval.
  • the transmitting comprises transmitting and/or receiving.
  • the feature information is one of more than one feature information.
  • the more than one type of feature information is obtained according to an interference level (also referred to as a category of interference information) received by the UE on a time domain resource unit, and the codes may be one-to-one correspondence, such as
  • the feature information on the time domain resource unit with cross interference is set to 1, the feature information on the time domain resource unit without cross interference is 0, or the feature information on the time domain resource unit without cross interference If it is 0, the feature information on the time domain resource unit with one cross interference is set to 1, and the feature information on the time domain resource unit of the two cross interference is 2.
  • the embodiment of the present invention further provides a method for information transmission, which is described from a side of a wireless network device, and includes:
  • the wireless network device sends the feature information on the time domain resource unit to the UE through the downlink control channel; the feature information is related to the received interference on the time domain resource unit, or the data transmission on the time domain resource unit Direction related;
  • the wireless network device receives measurement results from the UE, the measurement results being related to feature information on the time domain resource unit.
  • the embodiment of the present invention further provides a method for measuring in a communication system, where the method is described from a user equipment side, and includes:
  • UE User equipment
  • the UE sends a measurement result to the wireless network device, where the measurement result is related to feature information on the time domain resource unit.
  • the feature information may further include the set information of the time domain resource unit, for example, the time domain resource unit is used as the subframe, and the wireless network device determines the interference information received by the respective subframe included in the frame.
  • the sub-frames may be divided into more than one set according to different interference levels, and each set corresponds to one piece of information, such as having different index information.
  • the feature information may further include level information of interference received on a time domain resource unit.
  • the feature information may further include information about a data channel transmission direction on a time domain resource unit.
  • the time domain resource unit includes a time domain resource for reference signal transmission.
  • the reference signal includes a measurement reference signal, and/or a downlink reference signal.
  • the subcarrier spacing of the measurement reference signal is greater than the subcarrier spacing of the data channel of the UE.
  • the subcarrier spacing of the measurement reference signal is a multiple of a subcarrier spacing of a data channel of the UE.
  • the multiple is greater than one.
  • the multiple is an integer multiple.
  • the configuration of the subcarrier spacing may refer to the foregoing first aspect or the description of the second aspect, and details are not described herein.
  • the reference signal is transmitted on a guard interval area or a blank resource of the time domain resource unit, where the blank resource is a resource that is not configured for transmission.
  • the feature information is one of more than one feature information.
  • a wireless network device including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the wireless network device uses The method of any of the wireless network devices as described in the second or third aspect is completed.
  • a user equipment including a processor, a memory, and a transceiver.
  • the memory is configured to store instructions
  • the processor is configured to execute the memory stored instructions to control transceivers to receive and transmit signals
  • the wireless network device uses The method of any one of the user equipments described in the second aspect or the fourth aspect is completed as in the first aspect.
  • an apparatus for information transmission including a module for implementing any one of the methods involved in the foregoing wireless network device.
  • the specific modules may correspond to the method steps, and are not described herein.
  • the ninth aspect further provides an apparatus for transmitting information, including some modules, for implementing any one of the methods involved in the foregoing user equipment.
  • the specific modules may correspond to the method steps, and are not described herein.
  • a computer storage medium is further provided for storing instructions that, when executed, perform any of the methods involved in the aforementioned wireless network device or user equipment.
  • a communication system comprising the wireless network device provided in the foregoing second or third aspect and the user equipment provided in the first, second or fourth aspects.
  • a communication device having a function of implementing the behavior of a wireless network device or a user device in the above method aspect, comprising means for performing the steps or functions described in the above method aspects (means ).
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • the communication device described above includes one or more processors.
  • the one or more processors are configured to support the wireless network device or user equipment to perform corresponding functions in the methods described above.
  • the user equipment is supported to generate a measurement reference signal, or the wireless network device is supported to generate configuration information.
  • the communication device may further include one or more memories for coupling with the processor, which store programs and/or instructions necessary for the communication device, and may further store data.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the program and/or instructions are executed by the processor, the communication device performs the corresponding functions of the wireless network device or the user device in the above method.
  • the communication device described above includes one or more processors and transceiver units.
  • the one or more processors are configured to support the wireless network device or user equipment to perform corresponding functions in the methods described above. For example, measuring a reference signal.
  • the transceiver unit is configured to support the wireless network device or the user equipment to communicate with other devices to implement a receiving/transmitting function.
  • the user equipment is supported to send the measurement reference signal generated by the processor, and the wireless network device is configured to send the configuration information generated by the processor.
  • the communication device may further include one or more memories for coupling with the processor, which store programs and/or instructions necessary for the communication device. Further, data can also be saved.
  • the one or more memories may be integrated with the processor or may be separate from the processor. This application is not limited.
  • the communication device may be a base station, a TRP or a user equipment (which may also be a terminal device), and the transceiver unit may be a transceiver or a transceiver circuit.
  • the transceiver unit can also be an input/output circuit or an interface.
  • the communication device can also be a communication chip.
  • the transceiver unit can be an input/output circuit or an interface of a communication chip.
  • One or more of the above processors may be set centrally or separately.
  • the above one or more memories may be set collectively or separately. This is not limited here.
  • the 3rd generation partnership project (English: 3rd generation partnership project, 3GPP) is a project dedicated to the development of wireless communication networks. Generally, a 3GPP related organization is referred to as a 3GPP organization.
  • a wireless communication network is a network that provides wireless communication functions.
  • the wireless communication network may use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (English: time) Division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency division Multiple Carrier (English: Single Carrier FDMA, SC-FDMA for short), Carrier Sense Multiple Access with Collision Avoidance (English: Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • Single carrier frequency division Multiple Carrier English: Single Carrier FDMA, SC-FDMA for short
  • Carrier Sense Multiple Access with Collision Avoidance English: Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English
  • a typical 2G network includes a global system for mobile communications/general packet radio service (GSM) network or a general packet radio service (English: general packet radio) Service, abbreviated as: GPRS) network.
  • GSM general packet radio service
  • GPRS general packet radio Service
  • a typical 3G network includes a universal mobile telecommunications system (UMTS) network.
  • UMTS universal mobile telecommunications system
  • a typical 4G network includes long term evolution (LTE) network. Future evolution networks, such as 5G networks, can adopt new radio (NR) technology.
  • the UMTS network may also be referred to as a universal terrestrial radio access network (UTRAN).
  • the LTE network may also be referred to as an evolved universal terrestrial radio access network (English: evolved universal terrestrial) Radio access network, referred to as E-UTRAN.
  • a cellular communication network can be divided into a cellular communication network and a wireless local area network (English: wireless local area networks, WLAN for short), wherein the cellular communication network is dominated by scheduling, and the WLAN is dominant.
  • the aforementioned 2G, 3G and 4G networks are all cellular communication networks. It should be understood by those skilled in the art that as the technology advances, the technical solutions provided by the embodiments of the present invention are equally applicable to other wireless communication networks, such as 4.5G or 5G networks, or other non-cellular communication networks. For the sake of brevity, embodiments of the present invention sometimes refer to a wireless communication network as a network.
  • the cellular communication network is a type of wireless communication network, which adopts a cellular wireless networking mode, and is connected between the terminal device and the network device through a wireless channel, thereby enabling users to communicate with each other during activities. Its main feature is the mobility of the terminal, and it has the function of handoff and automatic roaming across the local network.
  • User equipment (English: user equipment, abbreviated as UE) is a terminal device, which can be a mobile terminal device or a non-mobile terminal device. The device is mainly used to receive or send business data. User equipment can be distributed in the network. User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld devices, knees. Upper computer, cordless phone, wireless local loop station, etc. The user equipment can communicate with one or more core networks via a radio access network (RAN) (access portion of the wireless communication network), such as exchanging voice and/or data with the radio access network.
  • RAN radio access network
  • a base station (English: base station, BS for short) device also referred to as a base station, is a device deployed in a wireless access network to provide wireless communication functions.
  • a device that provides a base station function in a 2G network includes a base transceiver station (BTS) and a base station controller (BSC), and a device that provides a base station function in a 3G network.
  • BTS base transceiver station
  • BSC base station controller
  • the device providing the base station function in the 4G network includes the evolved Node B (English: evolved NodeB, eNB for short)
  • the device that provides the function of the base station in the 5G network includes the Node B (gNB) that continues to evolve.
  • the device that provides the function of the base station is an access point (English: access point, abbreviated as AP).
  • a wireless device refers to a device that is located in a wireless communication network and that can communicate wirelessly.
  • the device may be a base station, a user equipment, or other network elements.
  • a network-side device is a device located on the network side in a wireless communication network, and may be an access network element, such as a base station or a controller (if any), or may be a core network element or other network. yuan.
  • New Radio (English: New Radio, NR for short) refers to a new OFDM-based next-generation mobile network air interface standard.
  • Wireless local area network (English: wireless local area networks, referred to as WLAN) refers to a local area network using radio waves as a data transmission medium, and the transmission distance is generally only several tens of meters.
  • An access point (English: access point, abbreviated as AP) that connects to a wireless network and can also be connected to a wired network device. It can be used as an intermediary point to connect wired and wireless Internet devices to each other and transmit data.
  • RRC radio resource control
  • the RRC processes the third layer information of the control plane between the UE and the UTRAN.
  • the RRC processes the third layer information of the control plane between the UE and the UTRAN.
  • Usually contains at least one of the following features:
  • the information provided by the non-access stratum of the broadcast core network is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition. It also supports the broadcast of upper layer information.
  • the RRC is responsible for broadcasting the network system information to the UE.
  • System information is usually repeated according to certain basic rules, and RRC is responsible for execution planning, segmentation, and repetition.
  • the RRC connection between the UE and the UTRAN is established, re-established, maintained, and released.
  • an RRC connection is established by the higher layer of the UE.
  • the RRC connection setup procedure includes several steps of reselection of available cells, access grant control, and establishment of a layer 2 signal link.
  • the RRC connection release is also requested by the upper layer to tear down the last signal connection; or when the RRC link fails, it is initiated by the RRC layer. If the connection fails, the UE will request to re-establish an RRC connection. If the RRC connection fails, the RRC releases the allocated resources.
  • a unit for describing time domain resource scheduling and/or allocation in a wireless communication system may correspond to a subframe in an LTE system, or a time slot.
  • a time domain resource unit may be composed of more than one symbol resource, and more than one time domain resource unit may constitute a longer time domain resource, such as a frame corresponding to an LTE system.
  • a slot structure Also referred to as a slot structure, a frame structure, or a subframe structure, including the number of symbols included in a time domain resource unit, the type of signal carried, such as control signals, data signals, and the type of each signal.
  • the number of symbols One or more of the number of symbols, the direction of transmission, and the like. It can be understood as a pattern that the wireless network device or the user equipment performs wireless transmission on the time domain resource unit.
  • Interference level Also known as the type of interference information, it is the interference-related information set according to certain principles. The specific principles can be changed according to the protocol definition or system requirements. For example, the principle can be whether there is cross interference or the number of cross interferences.
  • Interference received by one UE on a time domain resource unit interference caused by uplink or downlink transmissions from other UEs received by one UE on one time domain resource unit
  • 1-1 is a schematic diagram of a communication system and cross interference in the communication system (only base station and UE are shown);
  • Figure 1-2 is a simplified schematic diagram of the internal structure of a base station and a UE
  • FIG. 2 is a schematic diagram of NR technology supporting multiple subcarrier spacings
  • FIG. 3 is a schematic flowchart diagram of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart diagram of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a time domain resource unit in another information transmission method according to an embodiment of the present disclosure
  • FIG. 5b is a schematic flowchart of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a time domain resource unit in another information transmission method according to an embodiment of the present disclosure.
  • 6b is a schematic flowchart diagram of another information transmission method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a structure of a time domain resource unit having multiple feature information according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of another information transmission method according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an apparatus for information transmission according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another apparatus for information transmission according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an evolved subframe structure according to an embodiment of the present invention.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread in execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution, and a component can be located in a computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures thereon.
  • These components may be passed, for example, by having one or more data packets (eg, data from one component that interacts with the local system, another component of the distributed system, and/or signaled through, such as the Internet)
  • the network interacts with other systems to communicate in a local and/or remote process.
  • the wireless network device may be a base station, the base station may be used to communicate with one or more user equipments, or may be used to communicate with one or more base stations having partial user equipment functions (such as a macro base station and a micro base station, such as Incoming, communication between the two); the wireless device can also be a user equipment, the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
  • partial user equipment functions such as a macro base station and a micro base station, such as Incoming, communication between the two
  • the wireless device can also be a user equipment, the user equipment can be used for communication (such as D2D communication) of one or more user equipments, and can also be used for communication with one or more base stations.
  • User equipment may also be referred to as user terminals and may include systems, subscriber units, subscriber stations, mobile stations, mobile wireless terminals, mobile devices, nodes, devices, remote stations, remote terminals, terminals, wireless communication devices, wireless communication devices, or Some or all of the features of the user agent.
  • User equipment can be cellular phones, cordless phones, Session Initiation Protocol (SIP) phones, smart phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), laptop computers, handheld communication devices, handheld computing Devices, satellite wireless devices, wireless modem cards, and/or other processing devices for communicating over wireless systems.
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • laptop computers handheld communication devices
  • handheld computing Devices satellite wireless devices
  • wireless modem cards wireless modem cards
  • a base station may also be referred to as an access point, a node, a Node B, an evolved Node B (eNB), a Continuing Evolved Node B (gNB), or some other network entity, and may include some or all of the functions of the above network entities.
  • the base station can communicate with the wireless terminal over the air interface. This communication can be done by one or more sectors.
  • the base station can act as a router between the wireless terminal and the rest of the access network by converting the received air interface frame to an IP packet, wherein the access network includes an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the management of air interface features and can also be a gateway between the wired network and the wireless network.
  • the base station may be an evolved Node B (eNB), a Radio Network Controller (RNC), a Node B (NB), and a Base Station Controller (BSC).
  • Base Transceiver Station (BTS) home base station (for example, Home evolved NodeB, or Home Node B, HNB), BaseBand Unit (BBU), Wireless Fidelity (WIFI), access Point (AP), transmission and receiver point (TRP or transmission point, TP), etc.
  • BTS Base Transceiver Station
  • home base station for example, Home evolved NodeB, or Home Node B, HNB
  • BBU BaseBand Unit
  • WIFI Wireless Fidelity
  • AP transmission and receiver point
  • TRP or transmission point, TP transmission point
  • 5G such as NR (new radio), gNB in the system, or transmission point (TRP (transmission) And receiving point) or TP (transmission point)
  • a network node constituting a gNB or a transmission point such as a baseband unit (BBU), or
  • the gNB may include a control unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB
  • the DU implements some functions of the gNB.
  • the CU implements the functions of the RRC (radio resource control), the PDCP (packet data convergence protocol) layer
  • the DU implements RLC (radio link control) and MAC (media access). Control, media access control) and PHY (physical) layer functions. Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, high-level signaling, such as RRC layer signaling or PHCP layer signaling, can also be used in this architecture. It is considered to be sent by the DU or sent by the DU+RU.
  • the application will present various aspects, embodiments, or features in a system that can include multiple devices, components, modules, and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules, etc. discussed in connection with the figures. In addition, a combination of these schemes can also be used.
  • the word "exemplary” is used to mean an example, an illustration, or a description. Any embodiment or design described as “example” in this application should not be construed as preferred or advantageous over other embodiments or designs. Rather, the term use examples is intended to present concepts in a concrete manner.
  • information, signal, message, and channel may sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the difference is not emphasized. “of”, “corresponding (relevant)” and “corresponding” can sometimes be mixed. It should be noted that the meaning to be expressed is consistent when the distinction is not emphasized.
  • Embodiments of the present invention may form the subject of the non-typo as W1, while not emphasize the difference, to express their meaning is the same.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • the embodiment of the present invention is described by taking a scenario of a 4G network in a wireless communication network as an example. It should be noted that the solution in the embodiment of the present invention can also be applied to other wireless communication networks, such as a 5G communication network, and corresponding names are also used. It can be replaced with the name of the corresponding function in other wireless communication networks.
  • the method or device in the embodiment of the present invention may be applied between a base station and a user equipment, and may also be applied between a base station and a base station (such as a macro base station and a micro base station), and may also be applied to user equipments and users.
  • a base station and a base station such as a macro base station and a micro base station
  • the communication between the base station and the UE is taken as an example for description.
  • Figure 1-1 shows the structure of a communication system.
  • the communication system can include a core network, an access network, and a terminal. Only the wireless network devices included in the access network, such as base stations, and terminals, such as user equipment, are shown in FIG.
  • Figure 1-2 shows a simplified schematic diagram of the internal structure of a base station and a UE.
  • a base station can include an antenna array, a duplexer, a transmitter (TX), and a receiver (RX) (sometimes, TX and RX are collectively referred to as transceiver TRX), and a baseband processing portion.
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include power amplifier PA, digital-to-analog converter DAC and frequency converter.
  • RX can include low noise amplifier LNA, analog-to-digital converter ADC and frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the base station may further include a control portion for performing multi-user scheduling and resource allocation, pilot scheduling, user physical layer parameter configuration, and the like.
  • the UE may include an antenna, a duplexer, a transmitter (TX), and a receiver (RX) (sometimes, TX and RX are collectively referred to as transceiver TRX), and a baseband processing portion.
  • TX transmitter
  • RX receiver
  • the UE has a single antenna. It can be understood that the UE can also have multiple antennas (ie, an antenna array).
  • the duplexer is used to implement the antenna array for both transmitting signals and receiving signals.
  • TX is used to convert between RF signal and baseband signal.
  • TX can include power amplifier PA, digital-to-analog converter DAC and frequency converter.
  • RX can include low noise amplifier LNA, analog-to-digital converter ADC and frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the UE may further include a control part, configured to request an uplink physical resource, calculate channel state information (CSI) corresponding to the downlink channel, determine whether the downlink data packet is successfully received, or the like.
  • CSI channel state information
  • the 5G system is still an OFDM system (a system employing OFDM technology), and the subcarrier spacing selection of the OFDM system depends on a compromise between spectral efficiency and frequency offset resistance.
  • CP Cyclic Prefix
  • the smaller the subcarrier spacing the longer the OFDM symbol period, and the higher the system spectral efficiency.
  • too small subcarrier spacing is too sensitive to Doppler shift and phase noise, which can affect system performance.
  • the larger the subcarrier spacing the shorter the OFDM symbol period, but the ability to combat Doppler shift and phase noise can be improved while reducing the complexity of the Fourier transform (FFT) transform.
  • FFT Fourier transform
  • the NR technology supports multiple subcarrier spacing (such as 15 kHz, 30 kHz, 60 kHz, etc.) OFDM symbols are multiplexed by Frequency Division Multiplexing (FDM) and/or Time Dimultiplex Multiplexing (TDM), such as Figure 2 shows.
  • FDM Frequency Division Multiplexing
  • TDM Time Dimultiplex Multiplexing
  • an embodiment of the present invention provides a method for information transmission, as shown in FIG. 3, including:
  • the first UE sends a measurement reference signal, where a subcarrier spacing of the measurement reference signal is a multiple of a subcarrier spacing of a data channel of the UE.
  • the second UE receives the measurement reference signal, the subcarrier spacing of the measurement reference signal being a multiple of the subcarrier spacing of the data channel of the UE.
  • the subcarrier spacing of the measurement reference signal is greater than the subcarrier spacing of the data channel of the UE.
  • the multiple is greater than one.
  • the measurement reference signal can be transmitted between the UEs to measure the interference between the UEs, and the measurement results can be used for short-term or long-term control.
  • the data transmission direction on the time domain resource unit where the measurement reference signal is located is downlink; and on the second UE side, the data transmission direction on the time domain resource unit where the measurement reference signal is located is uplink.
  • the first UE may perform measurement on the received first measurement reference signal, and may use the measurement result to control uplink data transmission, for example, adjust uplink data transmission control to reduce inter-UE interference.
  • the subcarrier spacing of the measurement reference signal may be predefined, and is not required to be indicated by a wireless network device specific configuration (such as an explicit indication). This can reduce the overhead of the configuration.
  • the subcarrier spacing of the measurement reference signal may be configured by a wireless network device. This increases the flexibility of measuring reference signal transmission.
  • the method further includes:
  • the first wireless network device sends information for configuring a measurement reference signal transmitted by the first user equipment (UE), where the information includes information about a subcarrier spacing of the measurement reference signal.
  • a first user equipment receives configuration information from a first wireless network device, the configuration information including And configuring information of the measurement reference signal transmitted by the first user equipment, where the information of the measurement reference signal includes information about a subcarrier spacing of the measurement reference signal.
  • the second wireless network device And transmitting, by the second wireless network device, information for configuring a measurement reference signal transmitted by the second user equipment (UE), the information including information of a subcarrier spacing of the measurement reference signal;
  • a second user equipment receiving configuration information from a second wireless network device, the configuration information including information for configuring a measurement reference signal transmitted by the second user equipment, the information of the measurement reference signal including the Information on the subcarrier spacing of the reference signal is measured.
  • the configuration information including information for configuring a measurement reference signal transmitted by the second user equipment, the information of the measurement reference signal including the Information on the subcarrier spacing of the reference signal is measured.
  • the method further includes:
  • the first UE receives information from a parameter used by the first wireless network device to configure the data channel, where parameters of the data channel include information of subcarrier spacing of the data channel.
  • the data channel may be a downlink data channel.
  • the second UE receives information from a parameter used by the second wireless network device to configure the data channel, the parameters of the data channel including information of subcarrier spacing of the data channel.
  • the data channel may be an uplink data channel.
  • the method further includes:
  • the second wireless network device sends, by using a downlink control channel, feature information of a time domain resource unit to the second UE, where the time domain resource unit includes a resource for receiving the measurement reference signal.
  • the feature information is related to the received interference on the time domain resource unit, or is related to the data transmission direction on the time domain resource unit.
  • the data transmission direction on the time domain resource unit includes a data transmission direction on a time domain resource unit of a neighboring cell of the second UE and a cell where the second UE is located.
  • the second user equipment receives the feature information of a time domain resource unit from the second wireless network device through the downlink control channel.
  • the second UE sends a measurement result to the wireless network device, where the measurement result is related to feature information on the time domain resource unit.
  • the second wireless network device receives a measurement result from the second UE.
  • the UE can be made aware of the interference situation on its time domain resource unit, so that the long-term control based on the measurement result of the measurement reference signal is more accurate.
  • the time domain resource unit is a time domain resource unit used for uplink data transmission.
  • S303 may further include:
  • the first wireless network device determines the information for configuring the measurement reference signal transmitted by the first user equipment and the second wireless network device determines the information for configuring the measurement reference signal transmitted by the second user equipment.
  • the first wireless network device may determine, by using an interaction with the second wireless network device, the information used to configure the measurement reference signal transmitted by the first user equipment or the second user equipment.
  • the information about the subcarrier spacing of the measurement reference signal is a value of a subcarrier spacing of the measurement reference signal.
  • it may be an index value of a value of a subcarrier spacing.
  • the information about the subcarrier spacing of the measurement reference signal includes multiple information of a subcarrier spacing of the measurement reference signal compared to a subcarrier spacing of the data channel of the UE.
  • it can be an index value of the multiple information.
  • the configuration information is carried in a downlink control channel, or the configuration information is carried in a broadcast channel or a high layer signaling.
  • the multiple is an integer multiple.
  • the information of the measurement reference signal further includes one or more of time domain resource information, frequency domain resource information, sequence information, and timing information of the measurement reference signal.
  • the transmission of the measurement reference signal is in an area for the guard interval.
  • the transmitting comprises transmitting and/or receiving.
  • the feature information is one of more than one feature information.
  • the more than one type of feature information is obtained according to an interference level (also referred to as a category of interference information) received by the UE on a time domain resource unit, and the codes may be one-to-one correspondence, such as
  • the feature information on the time domain resource unit with cross interference is set to 1, the feature information on the time domain resource unit without cross interference is 0, or the feature information on the time domain resource unit without cross interference If it is 0, the feature information on the time domain resource unit with one cross interference is set to 1, and the feature information on the time domain resource unit of the two cross interference is 2.
  • a transmission mode of a measurement reference signal suitable for a 5G system can be provided, and further, the wireless network device can be improved by transmitting a feature information of a time domain resource unit by the wireless network device.
  • the accuracy of the measurement results reported by the serving UE to the wireless network device may refer to a communication connection, or may be specifically related to data transmission, or may have control information transmission, which is not limited herein.
  • the embodiment of the invention further provides a method for information transmission. As shown in FIG. 4, the method may include:
  • the wireless network device sends, by using a downlink control channel, feature information on a time domain resource unit to the UE.
  • the feature information is related to the received interference on the time domain resource unit, or is related to the data transmission direction on the time domain resource unit;
  • the user equipment receives the feature information on a time domain resource unit from the wireless network device through the downlink control channel;
  • the UE sends a measurement result to the wireless network device, where the measurement result is related to feature information on the time domain resource unit.
  • the wireless network device receives measurement results from the UE.
  • the time domain resource unit includes a time domain resource for reference signal transmission.
  • the reference signal includes a measurement reference signal, and/or a downlink reference signal.
  • the subcarrier spacing of the measurement reference signal is greater than the subcarrier spacing of the data channel of the UE.
  • the subcarrier spacing of the measurement reference signal is different from the subcarrier spacing of the data channel of the UE.
  • the subcarrier spacing of the measurement reference signal is a multiple of a subcarrier spacing of a data channel of the UE.
  • the multiple is greater than one.
  • the multiple is an integer multiple.
  • the configuration of the subcarrier spacing may refer to the description in the embodiment shown in FIG. 3, and details are not described herein.
  • the reference signal is transmitted on a guard interval area or a blank resource of the time domain resource unit, where the blank resource is a resource that is not configured for transmission.
  • the feature information is one of more than one feature information.
  • an evolved subframe or slot structure (shown in FIG. 11) is proposed, where the subframe or slot structure includes a downlink control region and an uplink data region, or a downlink control region. And a downlink data area, and inserting a GP between the downlink control area and the uplink data area, and the same subframe or time slot, inserting a GP between the downlink control area and the downlink data area, and a partial area in the GP Used for measurements of interference between base stations and/or between UEs.
  • the inventor of the present application found in the process of research that the measurement reference signal inserted in the GP also needs to consider the interval of the uplink and downlink conversion, and if the measurement reference signal inserted in the GP adopts the same subcarrier spacing as the data channel, the original only
  • the length of time for the GP set for uplink and downlink conversion needs to be lengthened to accommodate the portion for transmitting the measurement reference signal and to ensure the accuracy of the measurement reference signal received at the base station and/or UE. For example, if the measurement reference signal occupies 1 symbol in the time domain, and to ensure the accuracy of the measurement reference signal received at the base station and/or the UE, an additional 1 symbol is needed for the transmission timing adjustment, so that one will be made. The number of symbols that can be used to transmit a data channel in a subframe or time slot is reduced.
  • the present application provides a transmission method of a reference signal applied to the above structure, which can support measurement of interference between base stations and/or UEs, and can reduce overhead of resources used for interference measurement.
  • FIG. 5b a method for information transmission according to an embodiment of the present invention
  • a schematic diagram of a corresponding time domain resource unit is shown in FIG. 5a, and the method includes:
  • the UE performs communication according to a structure of a time domain resource unit, where the structure of the time domain resource unit includes a first part for controlling signal transmission and a third part for uplink or downlink data transmission, where the first part and the first part There is a second portion for reference signal transmission in the middle of the three parts, wherein the subcarrier spacing of the reference signal is a multiple of the subcarrier spacing of the uplink or downlink data.
  • the method can also include:
  • the wireless network device performs communication based on the structure of the time domain resource unit.
  • the transmission includes sending or receiving.
  • the uplink refers to the direction that the UE sends, and the direction that the wireless network device receives.
  • the downlink refers to the direction that the UE receives and the wireless network device sends.
  • the second part is also used for the guard interval required for uplink and downlink handover (including uplink to downlink handover, or downlink to uplink handover).
  • the time domain resource unit is one subframe or time slot, and can also be a unit on other time domain resources.
  • the structure of the time domain resource unit includes a first structure of the time domain resource unit and a first structure of the time domain resource unit, wherein the first structure includes a first portion for controlling signal reception and a third portion for downlink data reception, Between the first portion and the third portion is a second portion for reference signal transmission; the second structure includes a first portion for controlling signal reception and a third portion for uplink data transmission, in the first portion and the There is a second part for reference signal reception in the middle of the three parts.
  • the structure of the foregoing time domain resource unit may further include a fourth part for uplink control signal transmission.
  • the UE may include the first UE and the second UE, where the method S501 may include:
  • the first UE performs communication according to the first structure of the time domain resource unit, including: the first UE receives the control signal in the first part, the reference signal in the second part, and the downlink data in the third part; and/or
  • the second UE performs communication according to the second structure of the time domain resource unit, where the second UE receives the control signal in the first part, the reference signal in the second part, and the uplink data in the third part.
  • the second UE receives the reference signal in the second part, such as the measurement reference signal, so that the interference of the first UE to the second UE can be learned, and the uplink data on the third part of the second UE can be learned according to the channel dissimilarity. Transmitting interference to the reception of the third portion of the uplink and downlink data of the first UE.
  • S502 may include:
  • the first wireless network device sends a control signal to the first UE in the first part, and sends the downlink data to the first UE in the third part; and/or,
  • the second wireless network device sends a control signal to the second UE in the first part, and receives the uplink data from the second UE in the third part.
  • the time interval between the UEs can be measured by using the guard interval of the uplink and downlink handover, and on the other hand, since the subcarrier spacing of the reference signal used for the interference measurement is larger than the subcarrier spacing of the data transmission, Therefore, the OFDM symbol period of the reference signal is smaller than the OFDM symbol period of the data, which can reduce the overhead of the time domain resource while ensuring the alignment of the reference signal transmission and reception in the time domain, thereby reducing the influence of the reference signal on the data channel, and fully utilizing the time. Domain resource.
  • the larger the subcarrier spacing the simpler the processing of the FFT transform, because the scheme further simplifies the processing of the reference signal by the UE side, and reduces the processing overhead of the UE.
  • the reference signal in the foregoing S501 is a first reference signal, and may be used for the measurement of the interference between the UEs.
  • the S5021 may further include:
  • the first wireless network device receives the second reference signal in the second portion
  • the above S5022 may further include:
  • the second wireless network device transmits the second reference signal in the second portion.
  • the second reference signal is used for measurement of interference between wireless network devices.
  • the sequence of the second reference signal and the first reference signal are different.
  • the subcarrier spacing of the second reference signal is a multiple of the subcarrier spacing of the data (and possibly the data channel).
  • the second part can also be used to perform interference measurement between wireless network devices, thereby further improving the utilization of time domain resources.
  • the subcarrier spacing of the foregoing reference signal may be predefined, as predefined by a system or a standard protocol, such that the wireless network device and the UE
  • the transmission of the reference signal can be performed according to a predefined subcarrier spacing.
  • the subcarrier spacing of the foregoing reference signal may be explicitly indicated, for example, the first reference signal (for inter-UE interference measurement) is dynamically or Semi-static signaling is configured, where dynamic signaling can be carried on a control channel, such as by downlink control information (DCI) carried on a control channel, and semi-static signaling can be carried in high-layer signaling. (such as radio resource control (RRC) signaling) or in a broadcast channel.
  • DCI downlink control information
  • RRC radio resource control
  • the second reference signal for wireless network inter-device interference measurement
  • the second reference signal is indicated by interaction between wireless network devices, with an explicit indication being used in the interaction.
  • the subcarrier spacing of the reference signal may be implicitly indicated, for example, the same as or different from the subcarrier spacing of a certain channel.
  • the subcarrier spacing of the channel has a fixed relationship, and the certain channel may include a synchronization signal or a broadcast channel.
  • the subcarrier spacing of the certain channel may be predefined or explicitly or implicitly indicated.
  • the fixed relationship may be predefined or may be explicitly or implicitly indicated.
  • the foregoing method may further include:
  • the first wireless network device sends configuration information of the first reference signal to the first UE, where the configuration information includes subcarrier spacing information of the first reference signal.
  • the second wireless network device sends configuration information of the first reference signal to the second UE, where the configuration information includes subcarrier spacing information of the first reference signal.
  • the configuration may be the explicit configuration or the implicit configuration.
  • the subcarrier spacing information of the first reference signal may be a value of a subcarrier spacing, or may be information indicating a subcarrier spacing, which may not be limited herein.
  • the foregoing method may further include:
  • the first wireless network device and the second wireless network device determine a subcarrier spacing of the second reference signal.
  • the determining may be pre-defined as described above, or may be explicitly or implicitly indicated, and the indication may be implemented by interaction between the first wireless network device and the second wireless network device.
  • the embodiment of the present application further provides a method for information transmission, and a schematic diagram of a corresponding time domain resource unit is shown in FIG. 6a.
  • the method includes:
  • the wireless network device performs communication according to a structure of a time domain resource unit, where the structure of the time domain resource unit includes a first part for controlling signal transmission and a third part for uplink or downlink data transmission, where the first part is There is a second portion for reference signal transmission between the third part and the third part, wherein the subcarrier spacing of the reference signal is a multiple of the subcarrier spacing of the uplink or downlink data.
  • the control signal may include a downlink control signal.
  • the method can also include:
  • the UE performs communication according to the structure of the time domain resource unit.
  • the transmission includes sending or receiving.
  • the uplink refers to the direction that the UE sends, and the direction that the wireless network device receives.
  • the downlink refers to the direction that the UE receives and the wireless network device sends.
  • the second part is also used for the guard interval required for uplink and downlink handover (including uplink to downlink handover, or downlink to uplink handover).
  • the time domain resource unit is one subframe or time slot, and can also be a unit on other time domain resources.
  • the structure of the time domain resource unit includes a first structure of a time domain resource unit and a first structure of a time domain resource unit, wherein the first structure includes a first portion for controlling signal transmission and a third portion for downlink data transmission, a second portion for reference signal reception between the first portion and the third portion; the second structure includes a first portion for control signal transmission and a third portion for uplink data reception, in the first portion and There is a second part for the reference signal transmission in the middle of the three parts.
  • the structure of the foregoing time domain resource unit may further include a fourth part for uplink control signal transmission.
  • the wireless network device may include the first wireless network device and the second wireless network device.
  • S601 may include:
  • the first wireless network device performs communication according to the first structure of the time domain resource unit, including: the first wireless network device sends a control signal in the first part, receives the reference signal in the second part, and sends the downlink data in the third part; /or
  • the second wireless network device performs communication according to the second structure of the time domain resource unit, where the second wireless network device sends a control signal in the first part, the reference signal in the second part, and the uplink data in the third part.
  • the first wireless network device receives the reference signal in the first part, such as the measurement reference signal, so that the interference of the second wireless network device to the first wireless network device can be known, and the first wireless network device can be known according to the channel dissimilarity.
  • the third part of the uplink and downlink data transmission interferes with the reception of the uplink data on the third part of the second wireless network device.
  • S602 in the above method may include:
  • the first UE receives a control signal from the first wireless network device in the first part, and receives downlink data from the first wireless network device in the third part; and/or,
  • the second UE receives the control signal from the second wireless network device in the first part, and sends the uplink data to the second wireless network device in the third part.
  • the measurement of interference between the wireless network devices can be performed by using the guard interval of the uplink and downlink handover, and on the other hand, the subcarrier spacing of the reference signal for interference measurement is smaller than the subcarrier spacing of the data transmission. Therefore, the OFDM symbol period of the reference signal is smaller than the OFDM symbol period of the data, which can reduce the overhead of the time domain resource while ensuring alignment of the reference signal transmission and reception in the time domain, thereby reducing the influence of the reference signal on the data channel, and making full use of Time domain resources.
  • the larger the subcarrier spacing the simpler the processing of the FFT transform, because the scheme further simplifies the processing of the reference signal by the wireless network device side, and reduces the processing overhead of the wireless network device.
  • the reference signal in the foregoing S601 is a second reference signal, and is used for the measurement of the interference between the wireless network devices.
  • the S6021 may further include:
  • the above S6022 may further include:
  • the second UE receives the first reference signal in the second portion.
  • the first reference signal is used for measurement of interference between UEs.
  • the sequence of the first reference signal and the second reference signal are different.
  • the subcarrier spacing of the first reference signal is a multiple of the subcarrier spacing of the data.
  • the second part can also be used to perform interference measurement between UEs, thereby further improving the utilization of time domain resources.
  • the subcarrier spacing of the foregoing reference signal may be predefined, as predefined by a system or a standard protocol, such that the wireless network device and the UE
  • the transmission of the reference signal can be performed according to a predefined subcarrier spacing.
  • the subcarrier spacing of the foregoing reference signal may be explicitly indicated, for example, the first reference signal (for inter-UE interference measurement) is dynamically or Semi-static signaling is configured, where dynamic signaling can be carried on a control channel, such as by downlink control information (DCI) carried on a control channel, and semi-static signaling can be carried in high-layer signaling. (such as radio resource control (RRC) signaling) or in a broadcast channel.
  • DCI downlink control information
  • RRC radio resource control
  • the second reference signal for wireless network inter-device interference measurement
  • the second reference signal is indicated by interaction between wireless network devices, with an explicit indication being used in the interaction.
  • the subcarrier spacing of the reference signal may be implicitly indicated, for example, the same as or different from the subcarrier spacing of a certain channel.
  • the subcarrier spacing of the channel has a fixed relationship, and the certain channel may include a synchronization signal or a broadcast channel.
  • the subcarrier spacing of the certain channel may be predefined or explicitly or implicitly indicated.
  • the fixed relationship may be predefined or may be explicitly or implicitly indicated.
  • the foregoing method may further include:
  • the first wireless network device and the second wireless network device determine a subcarrier spacing of the second reference signal.
  • the determining may be pre-defined as described above, or may be explicitly or implicitly indicated, and the indication may be implemented by interaction between the first wireless network device and the second wireless network device.
  • the foregoing method may further include:
  • the wireless network device configures a subcarrier spacing of the first reference signal to the UE.
  • the configuration may be the explicit configuration or the implicit configuration.
  • interference measurement between the wireless network device and/or the UE can be ensured, and on the other hand, The overhead caused by the reference signal transmission for measurement and the guard interval of the reference signal is reduced, thereby improving the utilization of time domain resources and ensuring the efficiency of data transmission.
  • short-time regulation may be implemented according to the result of the interference measurement of the current time domain resource unit, such as performing power control, rate adjustment, etc. of the current time domain resource unit, or may be based on multiple time domains.
  • the interference measurement result of the resource unit is long-term adjusted, for example, user scheduling or resource allocation according to the measurement result.
  • the structure of the foregoing time domain resource unit used by different neighboring cells under dynamic TDD may be the first structure or the second
  • the structure that is, may be different
  • one cell may have one or more neighboring cells
  • the interference of the UE of the neighboring cell received by the UE of one cell may be different in different time domain resource units.
  • the cell is referred to as a first cell
  • the neighboring cell includes a second cell and a third cell.
  • the UE of the first cell is the first UE
  • the UE of the second cell is the second UE
  • the UE of the third cell is the third UE.
  • the foregoing first structure may be simply referred to as a downlink (UL) structure
  • the second structure may be simply referred to as an uplink (UL) structure.
  • the first UE may measure measurement reference signals of two UEs (second UE and third UE) from the neighboring cell (because the second UE and the third UE are also UL structures)
  • the first UE does not detect the measurement reference signal from the neighboring cell (because the second UE and the third UE are also UL structures)
  • the third UL structure of the first UE The first UE may measure the measurement reference signal of the UE (second UE) from one neighboring cell (because the third UE is a UL structure and the second UE is a
  • the first UE may also receive the reference signal from the radio network device side in the UL structure (not limited to the foregoing structure of the time domain resource unit, where the UL structure may also be the UL structure under the structure of other time domain resource units.
  • the reference signal may not be the reference signal carried by the second part of the UL structure.
  • the reference signal from the wireless network device side occupies a downlink control transmission part, for example, the reference signal is a downlink reference signal, and the downlink is performed.
  • the reference signal measured by the UL structure of the first UE may be from a first wireless network device serving the first UE and/or a wireless network device to which the neighboring cell belongs (eg, a second wireless serving the second UE)
  • the network device and the third wireless network device serving the third UE are in the same time domain resource unit in the neighboring cell, and if the DL structure is used, the reference signal sent by the wireless network device to which the neighboring cell belongs may also be
  • the downlink control transmission part of the UE performs the receiving, so that, in the same time domain resource unit, the first UE can not only detect the reference signal sent by the first wireless network device.
  • the reference signal sent by the radio network device of the DL structure in the neighboring cell can also be measured, so that the interference of the neighboring cell to the cell (the cell where the first UE is located) can be measured.
  • the interference of the downlink measured by the first UE is also variable.
  • the embodiment of the present invention further provides a method for transmitting information, as shown in FIG. 8, including:
  • the first wireless network device sends the feature information of the time domain resource unit to the first UE.
  • the feature information is related to interference received on a time domain resource unit, or related to a data transmission direction on a time domain resource unit.
  • the data transmission direction on the time domain resource unit may include information about a data transmission direction of the first UE (or the cell where the first UE is located) and the neighboring cell of the cell where the first cell is located in the time domain resource unit.
  • the first wireless network device includes determining, by the first wireless network device, feature information of a time domain resource unit of the first UE (or the first cell to which the first UE belongs);
  • the feature information of one time domain resource unit may be used to indicate the structure of the time domain resource unit of the first cell and the structure of the time domain resource unit of the cell adjacent to the first cell (which may also be simply referred to as a neighboring cell). .
  • the cell adjacent to the first cell belongs to the second wireless network device, or belongs to the first wireless network device.
  • the time domain resource unit is a time domain resource unit for uplink data transmission of the first UE.
  • the information about the direction of data transmission on the time domain resource unit of the first UE (or the cell where the first UE is located) and the direction of data transmission on the time domain resource unit of the neighboring cell of the first cell may be used. Encode the direction information for the time domain resource unit set).
  • the number of time domain resource units used for downlink data transmission in the time domain resource unit of the neighboring cell may be encoded, for example, When the number is 0, the direction information of the time domain resource unit set is first information, for example, 0, and when the number is 1, the direction information of the time domain resource unit set is compiled into the second information, For example, if the number is 1, the direction information of the time domain resource unit set is compiled into the third information, for example, 2, and so on.
  • the feature information of the time domain resource unit may be determined according to the direction information of the time domain resource unit set, and the direction information of different time domain resource unit sets corresponds to the feature information of different time domain resource units.
  • the feature information of the time domain resource unit is equal to the direction information of the time domain resource unit set.
  • the coding manner of the feature information of the time domain resource unit may be predefined by the system, so that the first wireless network device and the first UE may determine the time domain resource unit set according to the feature information of the time domain resource unit.
  • Direction information to determine the category also referred to as the interference level
  • the category to which the interference information belongs may correspond to the direction information of the time domain resource unit set.
  • the interference When the direction of the time domain resource unit of the neighboring cell is different from the direction of the time domain resource unit of the current cell, the interference may be regarded as interference, and the interference may be The presence or absence, or the difference in the number of interferences, can determine the category to which different interference information belongs. For example, the number of interferences is 0, the category to which the interference information belongs is the first category, the number of interferences is 1, the category to which the interference information belongs is the second category, the number of interferences is 2, and the category to which the interference information belongs is the third category. And so on.
  • the data transmission direction of the time domain resource unit of the local cell and the neighboring cell may be encoded.
  • 0 indicates that the data transmission direction is uplink
  • 1 indicates that the data transmission direction is downlink
  • the corresponding cell takes three cells as an example, the highest bit represents the local cell, and the other bits represent the neighboring cells in turn (can be sorted according to the neighboring cell id or according to other rules, the rule can be predefined in the whole system, no The air interface configuration), 000, indicates that the data transmission direction of the three cells in a time domain resource unit is uplink, 010, indicating that the data transmission direction of the current cell in a time domain resource unit is uplink, and one of the neighboring cells is Downstream, the other is uplink, 001, indicating that the data transmission direction of the current cell in a time domain resource unit is uplink, one of the neighboring cells is uplink, and the other is downlink, and 011 indicates the cell in a time domain resource unit.
  • the data transmission direction is uplink, and both neighboring areas are downlink.
  • the number of interferences received by the UE is one, that is, the interference information is of the same type, and the UE can use the same measurement result corresponding to the two codes 010 and 001. Processing method, and the measurement results are combined and reported.
  • the determining, by the wireless network device, the feature information of the time domain resource unit of the first UE (or the first cell to which the first UE belongs) may specifically include:
  • the wireless network device interacts with the wireless network device to which the neighboring cell of the first cell belongs to the structure of the respective time domain resource unit, so that the wireless network device learns the first cell to which the first UE belongs and the neighboring cell of the first cell.
  • the structure of the domain resource unit further determines feature information of a time domain resource unit of the first cell to which the first UE belongs.
  • the feature information of a time domain resource unit in S801 may be sent by dynamic or semi-static signaling.
  • the dynamic signaling may be carried in the control channel, where the downlink control information (DCI) on the control channel is as follows.
  • DCI downlink control information
  • Semi-static signaling can be carried in a broadcast channel or higher layer signaling, such as Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • the feature information of the time domain resource unit may be configured by dynamic signaling
  • the time domain resource list The feature information of the bits can be configured by semi-static signaling.
  • the wireless network device serving the second UE may also perform the method shown in FIG. 8.
  • the wireless network device serving the third UE can also perform the method corresponding to FIG. 8.
  • the S801 can also include:
  • the first UE receives feature information of the time domain resource unit from the first wireless network device.
  • the method can also include
  • the first UE processes the measurement result obtained on the time domain resource unit according to the feature information of the time domain resource unit.
  • the first UE reports the measurement result to the first wireless network device.
  • the S803 may include: the first UE processes the measurement result on the at least two time domain resource units according to the feature information of the at least two time domain resource units; and one possible manner is: when the feature information is the same The measurement results on the domain resource unit are combined. Another possible way is: combining the measurement results on the multiple time domain resource units according to the category of the interference information corresponding to the feature information; wherein the correspondence between the feature information and the category of the interference information may be Defined.
  • the merging process may be: averaging or weighting the measurement results of the time domain resource units of the category having the same interference information, such as smoothing filtering, and sending the averaged or weighted processed result to the wireless Internet equipment.
  • the wireless network device can know the channel status more accurately according to the received result.
  • the wireless network device learns the interference level corresponding to the reported measurement result, and may pass the specific time-frequency resource of the reported measurement result (the different levels correspond to different time-frequency resources), or the specific coding of the reported measurement result. (different levels correspond to different codes), or the reported measurement results are reported according to the corresponding indications of the wireless network device, or the sequence numbers of the measurement results corresponding to different interference levels are different, and one of the various methods is known, This is not limited.
  • an embodiment of the present invention further provides an apparatus for information transmission, which may be a wireless device 10.
  • the wireless device 10 may correspond to a wireless network device (such as a first wireless network device or a second wireless network device) in the above method.
  • the wireless network device may be a base station or other devices, which is not limited herein.
  • the apparatus can include a processor 110, a memory 120, a bus system 130, a receiver 140, and a transmitter 150.
  • the processor 110, the memory 120, the receiver 140 and the transmitter 150 are connected by a bus system 130 for storing instructions for executing instructions stored in the memory 120 to control the receiver 140 to receive.
  • Signaling, and controlling the transmitter 150 to transmit a signal completes the steps of the wireless network device (e.g., base station) in the above method.
  • the receiver 140 and the transmitter 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the functions of the receiver 140 and the transmitter 150 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 110 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless access device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 110, the receiver 140 and the transmitter 150 is stored in a memory, and the general purpose processor implements the functions of the processor 110, the receiver 140 and the transmitter 150 by executing the code in the memory.
  • the embodiment of the present invention further provides another apparatus for information transmission, and the apparatus may be a wireless device 20, where the wireless device 20 corresponds to a user equipment (such as a first UE) in the foregoing method. Or the second UE). It is to be understood that the wireless device may be a UE or a micro base station or a small base station, which is not limited herein.
  • the apparatus can include a processor 210, a memory 220, a bus system 230, a receiver 240, and a transmitter 250.
  • the processor 210, the memory 220, the receiver 240 and the transmitter 250 are connected by a bus system 230 for storing instructions for executing instructions stored in the memory 220 to control the receiver 240 to receive.
  • the signal is transmitted, and the transmitter 250 is controlled to transmit a signal to complete the steps of the UE in the above method.
  • the receiver 240 and the transmitter 250 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the functions of the receiver 240 and the transmitter 250 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 210 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • a wireless access device provided by an embodiment of the present invention may be implemented by using a general-purpose computer.
  • the program code that is to implement the functions of the processor 210, the receiver 240 and the transmitter 250 is stored in a memory, and the general purpose processor implements the functions of the processor 210, the receiver 240, and the transmitter 250 by executing code in the memory.
  • the embodiment of the present invention further provides a communication system, including the foregoing wireless network device and one or more user devices.
  • the processor 110 or 210 may be a central processing unit ("CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 120 or 220 can include read only memory and random access memory and provides instructions and data to the processor 310.
  • a portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the bus system 130 or 230 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for the sake of clarity, the various buses are labeled as bus systems in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 110 or 210 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Abstract

本发明实施例提供一种信息传输方法,包括用户设备(UE)传输测量参考信号,所述测量参考信号的子载波间隔为所述UE的数据信道的子载波间隔的倍数。该方法可以包括用户设备(UE)接收来自无线网络设备的配置信息,所述配置信息包括用于配置用户设备(UE)传输所述测量参考信号的信息,所述测量参考信号的信息包括所述测量参考信号的子载波间隔的信息。从而可以减少参考信号的传输开销。

Description

一种信息传输方法、装置和系统 技术领域
本发明涉及通信技术领域,特别是涉及一种信息传输方法、装置和系统。
背景技术
随着无线网络技术的发展,层出不穷的业务对无线资源的需求日益增加。为了适应某些网络,如小覆盖网络,中所需的上下行业务特性的快速变化,动态时分双工(D-TDD,Dynamic Time Division Duplex)技术越来越受到关注。所谓D-TDD,就是指根据网络内上下行业务负载情况,灵活快速地切换时分双工(Time Division Duplex,TDD)子帧或时隙的上下行,从而匹配网络中具体业务需求,提高网络上下行业务的吞吐量。
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)中在Rel-12阶段已经初步完成了对D-TDD的标准化工作(标准中的相关部分是增强型干扰管理和传输自适应eIMTA,Enhanced Interference Management and Traffic Adaptation)。3GPP目前已展开第5代网络(5th Generation,5G)新空口(New Radio,NR)标准的制定,D-TDD是NR的重要特性之一。
在D-TDD下,存在邻小区间的同频交叉干扰,包括邻小区同频基站下行发射对本小区基站上行接收的干扰,以及邻小区用户设备(UE,User Equipment)上行发射对本小区UE下行接收的干扰,如图1-1所示。
为了更好地获得D-TDD技术灵活高效的性能优势,有效地提升D-TDD的性能增益,可以通过测量参考信号(MRS,Measurement Reference Signal)来对D-TDD中存在的干扰进行检测。如何提供一种适用于未来网络,如5G场景下的测量参考信号成为一个亟需解决的问题。
发明内容
本发明实施例提供一种信息传输的方法、装置,通信系统和终端,以适用在未来网络中的通信。
第一方面,本发明实施例提供一种信息传输方法,包括:
用户设备(UE)传输测量参考信号,所述测量参考信号的子载波间隔为所述UE的数据信道的子载波间隔的倍数。
这样,可以节省测量参考信号的传输开销。
可选的,所述测量参考信号的子载波间隔可以为预先定义的,无需无线网络设备特定的配置来指示(如显式指示)。这样可以减少配置的开销。
可选的,所述测量参考信号的子载波间隔可以为隐式指示的,比如与某种信道的子载波间隔有一定的关系,如使用与同步信号或广播信道的子载波间隔相同的或有一定关系的子载波间隔。所述关系可以为预先定义的,也可以为无线网络设备配置的。
可选的,所述测量参考信号的子载波间隔可以为无线网络设备配置的(显式指示)。这样可以增加测量参考信号传输的灵活性。
可选的,所述方法还包括:
用户设备(UE)接收来自无线网络设备的配置信息,所述配置信息包括用于配置所述用 户设备传输的测量参考信号的信息,所述测量参考信号的信息包括所述测量参考信号的子载波间隔的信息。
第二方面,本发明实施例还提供一种信息传输方法,包括:
用户设备(UE)接收来自无线网络设备的配置信息,所述配置信息包括用于配置所述用户设备传输的测量参考信号的信息,所述测量参考信号的信息包括所述测量参考信号的子载波间隔的信息。
这样可以使测量参考信号的传输更为灵活。
可选的,所述UE根据所述配置信息传输测量参考信号。
可选的,所述测量参考信号的子载波间隔为所述UE的数据信道的子载波间隔的倍数。
可选的,所述测量参考信号的子载波间隔与所述UE的数据信道的子载波间隔不同。
结合第一方面或第二方面提供的方法,
可选的,所述测量参考信号的子载波间隔大于所述UE的数据信道的子载波间隔。
可选的,所述倍数不为1。
可选的,所述倍数大于1。
这样,可以节省测量参考信号的传输开销。
所述UE传输测量参考信号包括:UE接收测量参考信号;或者,UE发送测量参考信号。
具体的,可以为第一UE接收第一测量参考信号;或者,发送第二测量参考信号。
相应的,所述方法包括:第二UE发送所述第一测量参考信号;或者,接收第二测量参考信号。
这样,可以通过UE间传输测量参考信号,实现UE间的干扰的测量,进而可以利用测量结果进行短时或长时的控制。
可选的,第一UE侧,第一测量参考信号所在的时域资源单位上的数据传输方向为上行;第二测量参考信号所在的时域资源单位上的数据传输方向为下行。
这样,可以第一UE对接收到的第一测量参考信号进行测量,并可以利用测量结果对上行数据传输进行控制,比如调整上行数据传输的功率,以降低UE间的干扰。
可选的,所述方法还包括:
UE接收来自无线网络设备用于配置所述数据信道的参数的信息,所述数据信道的参数包括所述数据信道的子载波间隔的信息。
可选的,所述数据信道可以为上行数据信道,或者,下行数据信道。
可选的,所述方法还包括:
用户设备(UE)通过下行控制信道接收来自无线网络设备的一个时域资源单位上的特征信息;所述特征信息与所述时域资源单位上的受到的干扰相关,或,与所述时域资源单位上数据传输方向相关;所述时域资源单位上包括用于传输所述测量参考信号的资源;
所述UE向所述无线网络设备发送测量结果,所述测量结果与所述时域资源单位上的特征信息相关。
可选的,所述特征信息还可以包括时域资源单位的集合信息,比如以时域资源单位为子帧为例,无线网络设备在确定一个帧所包括的各自子帧受到的干扰信息的情况下,子帧可以根据干扰级别的不同被分为多于一个集合,每个集合对应一个信息,如具有不同的索引信息。
可选的,所述特征信息还可以包括时域资源单位上受到的干扰的级别信息。
可选的,所述特征信息还可以包括时域资源单位上数据信道传输方向的信息。
这样,可以使得UE获知其一个时域资源单位上受到的干扰情况,从而使基于测量参考信号的测量结果的长时控制更准确。
可选的,所述时域资源单位为用于上行数据传输的时域资源单位。
第三方面,本发明实施例还提供一种信息配置方法,包括:
无线网络设备发送用于配置用户设备(UE)传输的测量参考信号的信息,所述信息包括所述测量参考信号的子载波间隔的信息。
可选的,所述方法还包括:
无线网络设备确定所述用于配置用户设备传输的测量参考信号的信息。
可选的,无线网络设备可以通过与用户设备所在小区的邻区所属的无线网络设备之间的交互来确定所述用于配置用户设备传输的测量参考信号的信息。
可选的,所述方法还包括:
无线网络设备通过下行控制信道向UE发送一个时域资源单位上的特征信息;所述特征信息与所述时域资源单位上的受到的干扰相关,或,与所述时域资源单位上数据传输方向相关;所述时域资源单位包括用于传输所述测量参考信号的资源;
所述无线网络设备接收来自所述UE的测量结果,所述测量结果与所述时域资源单位上的特征信息相关。
结合所述第一方面,第二方面,或者第三方面提供的任意一种方法,
可选的,所述测量参考信号的子载波间隔的信息为所述测量参考信号的子载波间隔的值。可选的,可以为子载波间隔的值的索引值。
可选的,所述测量参考信号的子载波间隔的信息包括测量参考信号的子载波间隔较所述UE的数据信道的子载波间隔的倍数信息。可选的,可以为倍数信息的索引值。
可选的,所述配置信息携带在下行控制信道。
可选的,所述配置信息携带在广播信道或高层信令中。
可选的,所述倍数为整数倍。
可选的,所述测量参考信号的信息还包括所述测量参考信号的时域资源信息,频域资源信息,序列信息和定时信息中的一个或多于一个。
可选的,所述测量参考信号的传输在用于保护间隔的区域内。
可选的,所述传输包括发送和/或接收。
可选的,所述特征信息为多于一种特征信息中的一种。
示例的,所述多于一种特征信息为根据所述UE在一个时域资源单位上受到的干扰级别(也可以称为干扰信息的类别)进行编码获得,编码可以为一一对应的,比如,将有交叉干扰的时域资源单位上的特征信息编为1,将没有交叉干扰的时域资源单位上的特征信息编为0,或者,将没有交叉干扰的时域资源单位上的特征信息编为0,将有1个交叉干扰的时域资源单位上的特征信息编为1,将2个交叉干扰的时域资源单位上的特征信息编为2。
第四方面,本发明实施例还提供一种信息传输的方法,该方法从无线网络设备侧描述,包括:
无线网络设备通过下行控制信道向UE发送一个时域资源单位上的特征信息;所述特征信息与所述时域资源单位上的受到的干扰相关,或,与所述时域资源单位上数据传输方向相关;
所述无线网络设备接收来自所述UE的测量结果,所述测量结果与所述时域资源单位上的特征信息相关。
第五方面,本发明实施例还提供一种通信系统中测量的方法,该方法从用户设备侧描述,包括:
用户设备(UE)通过下行控制信道接收来自无线网络设备的一个时域资源单位上的特征信息;所述特征信息与所述时域资源单位上的受到的干扰相关,或,与所述时域资源单位上数据传输方向相关;
所述UE向所述无线网络设备发送测量结果,所述测量结果与所述时域资源单位上的特征信息相关。
结合第四方面或第五方面提供的方法,
可选的,所述特征信息还可以包括时域资源单位的集合信息,比如以时域资源单位为子帧为例,无线网络设备在确定一个帧所包括的各自子帧受到的干扰信息的情况下,子帧可以根据干扰级别的不同被分为多于一个集合,每个集合对应一个信息,如具有不同的索引信息。
可选的,所述特征信息还可以包括时域资源单位上受到的干扰的级别信息。
可选的,所述特征信息还可以包括时域资源单位上数据信道传输方向的信息。
可选的,所述时域资源单位上包括用于参考信号传输的时域资源。
可选的,所述参考信号包括测量参考信号,和/或,下行参考信号。
可选的,所述测量参考信号的子载波间隔大于所述UE的数据信道的子载波间隔。
可选的,所述测量参考信号的子载波间隔为所述UE的数据信道的子载波间隔的倍数。可选的,所述倍数大于1。
可选的,所述倍数为整数倍。
可选的,所述子载波间隔的配置可以参考前述第一方面或第二方面的描述,在此不予赘述。
可选的,所述参考信号在所述时域资源单位的保护间隔区域或空白资源上传输,所述空白资源为未被配置用于传输的资源。
可选的,所述特征信息为多于一种特征信息中的一种。
可以理解的是,第四方面或第五方面中的描述可以参考第一方面,第二方面或第三方面相关的描述,在此不予赘述。
第六方面,还提供一种无线网络设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述无线网络设备用于完成如第二方面或第三方面中所描述的无线网络设备所涉及的任意一种方法。
第七方面,还提供一种用户设备,包括处理器、存储器和收发器,
所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述无线网络设备用于完成如第一方面,第二方面或第四方面中所描述的用户设备所涉及的任意一种方法。
第八方面,还提供一种信息传输的装置,包括一些模块,用于实现前述无线网络设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
第九方面,还提供一种信息传输的装置,包括一些模块,用于实现前述用户设备所涉及的任意一种方法。具体模块可以和各方法步骤相对应,在此不予赘述。
第十方面,还提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成前述无线网络设备或用户设备所涉及的任意一种方法。
第十一方面,还提供一种通信系统,包括前述第二或三方面提供的无线网络设备和第一,二或四方面提供的用户设备。
第十二方面,还提供一种通信装置,该装置具有实现上述方法方面中无线网络设备或用户设备行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述通信装置包括一个或多个处理器。所述一个或多个处理器被配置为支持所述无线网络设备或用户设备执行上述方法中相应的功能。例如,支持用户设备生成测量参考信号,或者,支持无线网络设备生成配置信息。进一步的,上述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序和/或指令,还可以进一步保存数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。当程序和/或指令被处理器执行时,所述通信装置执行上述方法中无线网络设备或用户设备相应的功能。
在一种可能的设计中,上述通信装置包括一个或多个处理器和收发单元。所述一个或多个处理器被配置为支持所述无线网络设备或用户设备执行上述方法中相应的功能。例如,测量参考信号。所述收发单元用于支持所述无线网络设备或用户设备与其他设备通信,实现接收/发送功能。例如,支持用户设备发送所述处理器生成的测量参考信号,支持无线网络设备发送所述处理器生成的配置信息等。
可选的,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序和/或指令。进一步的,还可以保存数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述通信装置可以为基站、TRP或是用户设备(也可以为终端设备),所述收发单元可以是收发器,或收发电路。所述收发单元也可以是输入输出电路或者接口。
所述通信装置还可以为通信芯片。所述收发单元可以为通信芯片的输入输出电路或者接口。
以上一个或多个处理器可以集中设置,也可以分离设置。以上一个或多个存储器可以集中设置,也可以分离设置。在此不予限定。
为了便于理解,示例的给出了与部分与本发明相关概念的说明以供参考。如下所示:
第三代合作伙伴计划(英文:3rd generation partnership project,简称3GPP)是一个致力于发展无线通信网络的项目。通常,将3GPP相关的机构称为3GPP机构。
无线通信网络,是一种提供无线通信功能的网络。无线通信网络可以采用不同的通信技术,例如码分多址(英文:code division multiple access,简称CDMA)、宽带码分多址(wideband code division multiple access,简称WCDMA)、时分多址(英文:time division multiple access,简称:TDMA)、频分多址(英文:frequency division multiple access,简称FDMA)、正交频分多址(英文:orthogonal frequency-division multiple access,简称:OFDMA)、单载波频分多址(英文:single Carrier FDMA,简称:SC-FDMA)、载波侦听多路访问/冲突避免(英文:Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或未来演进网络,如5G网络。典型的2G网络包括全球移动通信系统(英文:global system for mobile communications/general packet radio service,简称:GSM)网络或者通用分组无线业务(英文:general packet radio  service,简称:GPRS)网络,典型的3G网络包括通用移动通信系统(英文:universal mobile telecommunications system,简称:UMTS)网络,典型的4G网络包括长期演进(英文:long term evolution,简称:LTE)网络,未来演进网络,如5G网络,可以采用新无线(new radio,NR)技术。其中,UMTS网络有时也可以称为通用陆地无线接入网(英文:universal terrestrial radio access network,简称:UTRAN),LTE网络有时也可以称为演进型通用陆地无线接入网(英文:evolved universal terrestrial radio access network,简称:E-UTRAN)。根据资源分配方式的不同,可以分为蜂窝通信网络和无线局域网络(英文:wireless local area networks,简称:WLAN),其中,蜂窝通信网络为调度主导,WLAN为竞争主导。前述的2G、3G和4G网络,均为蜂窝通信网络。本领域技术人员应知,随着技术的发展本发明实施例提供的技术方案同样可以应用于其他的无线通信网络,例如4.5G或者5G网络,或其他非蜂窝通信网络。为了简洁,本发明实施例有时会将无线通信网络简称为网络。
蜂窝通信网络是无线通信网络的一种,其采用蜂窝无线组网方式,在终端设备和网络设备之间通过无线通道连接起来,进而实现用户在活动中可相互通信。其主要特征是终端的移动性,并具有越区切换和跨本地网自动漫游功能。
用户设备(英文:user equipment,简称:UE)是一种终端设备,可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该用户设备可以经无线接入网(radio access network,简称:RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
基站(英文:base station,简称:BS)设备,也可称为基站,是一种部署在无线接入网用以提供无线通信功能的装置。例如在2G网络中提供基站功能的设备包括基地无线收发站(英文:base transceiver station,简称:BTS)和基站控制器(英文:base station controller,简称:BSC),3G网络中提供基站功能的设备包括节点B(英文简称:NodeB)和无线网络控制器(英文:radio network controller,简称:RNC),在4G网络中提供基站功能的设备包括演进的节点B(英文:evolved NodeB,简称:eNB),在5G网络中提供基站功能的设备包括继续演进的节点B(gNB),在WLAN中,提供基站功能的设备为接入点(英文:access point,简称:AP)。
无线设备,是指位于无线通信网络中的可以通过无线方式进行通信的设备。该设备可以是基站,也可以是用户设备,还可以是其他网元。
网络侧设备,是指位于无线通信网络中位于网络侧的设备,可以为接入网网元,如基站或控制器(如有),或者,也可以为核心网网元,还可以为其他网元。
新无线(英文:New Radio,简称:NR),是指一个全新的基于OFDM的下一代移动网络空口标准。
无线局域网络(英文:wireless local area networks,简称:WLAN),是指采用无线电波作为数据传送媒介的局域网,传送距离一般只有几十米。
接入点(英文:access point,简称:AP),连接无线网络,亦可以连接有线网络的设备。它能当作中介点,使得有线与无线上网的设备互相连接、传输数据。
RRC(radio resource control):无线资源控制
RRC处理UE和UTRAN之间控制平面的第三层信息。通常包含以下功能中的至少一项:
广播核心网非接入层提供的信息。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。也支持上层信息的广播。
将广播信息关联到接入层。RRC负责网络系统信息向UE的广播。系统信息通常情况下按照一定的基本规律重复,RRC负责执行计划、分割和重复。
建立、重新建立、维持和释放在UE和UTRAN之间的RRC连接。为了建立UE的第一个信号连接,由UE的高层请求建立一个RRC的连接。RRC连接建立过程包括可用小区的重新选择、接入许可控制以及2层信号链路的建立几个步骤。RRC连接释放也是由高层请求,用于拆除最后的信号连接;或者当RRC链路失败的时候由RRC本层发起。如果连接失败,UE会要求重新建立RRC连接。如果RRC连接失败,RRC释放已经分配的资源。
时域资源单位:
用于描述无线通信系统中时域资源调度和/或分配的单位,可以对应于LTE系统中的子帧,或,时隙。一个时域资源单位可以由多于一个符号资源构成,多于一个时域资源单位可以构成一个时间更长的时域资源,比如对应LTE系统中的帧。
时域资源单位的结构:
也可称为时隙结构、帧结构或子帧结构,包括一个时域资源单位所包括的符号的个数,所承载的信号的类别,如控制信号,数据信号,每个信号的类别所占的符号的个数,传输方向等信息中的一个或多于一个。可以理解为时域资源单位上,无线网络设备或用户设备进行无线传输所满足的图样(pattern)。
干扰级别:也称为干扰信息的类型,是依据一定原则所设置的与干扰相关的信息,具体的原则可以依据协议定义或系统需求有所变化。比如,原则可以是有无交叉干扰,或是,交叉干扰的个数。
一个UE在一个时域资源单位上受到的干扰:一个UE在一个时域资源单位上受到的来自其他UE的上行或下行传输所带来的干扰
附图说明
图1-1为通信系统及该通信系统中交叉干扰的示意图(仅示出基站和UE);
图1-2为基站和UE的内部结构的简化示意图
图2为NR技术支持多种子载波间隔的示意图;
图3为本发明实施例提供的信息传输方法的流程示意图;
图4为本发明实施例提供的另一种信息传输方法的流程示意图;
图5a为本发明实施例提供的另一种信息传输方法中时域资源单位的结构示意图;
图5b为本发明实施例提供的另一种信息传输方法的流程示意图;
图6a为本发明实施例提供的另一种信息传输方法中时域资源单位的结构示意图;
图6b为本发明实施例提供的另一种信息传输方法的流程示意图;
图7为本发明实施例中具有多种特征信息的时域资源单位的结构的示意图;
图8为本发明实施例提供的另一种信息传输方法的流程示意图;
图9为本发明实施例提供的用于信息传输的装置的示意图;
图10为本发明实施例提供的另一用于信息传输的装置的示意图;
图11为本发明实施例提供的一种演进型的子帧结构的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如本申请所使用的,术语“组件”、“模块”、“系统”等等旨在指代计算机相关实体,该计算机相关实体可以是硬件、固件、硬件和软件的结合、软件或者运行中的软件。例如,组件可以是,但不限于是:在处理器上运行的处理、处理器、对象、可执行文件、执行中的线程、程序和/或计算机。作为示例,在计算设备上运行的应用和该计算设备都可以是组件。一个或多个组件可以存在于执行中的过程和/或线程中,并且组件可以位于一个计算机中以及/或者分布在两个或更多个计算机之间。此外,这些组件能够从在其上具有各种数据结构的各种计算机可读介质中执行。这些组件可以通过诸如根据具有一个或多个数据分组(例如,来自一个组件的数据,该组件与本地系统、分布式系统中的另一个组件进行交互和/或以信号的方式通过诸如互联网之类的网络与其它系统进行交互)的信号,以本地和/或远程过程的方式进行通信。
此外,本申请结合无线设备来描述各个方面,其中,无线设备可以为无线网络设备,也可以为终端设备。该无线网络设备可以为基站,基站可以用于与一个或多个用户设备进行通信,也可以用于与一个或多个具有部分用户设备功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信);该无线设备还可以为用户设备,用户设备可以用于一个或多个用户设备进行通信(比如D2D通信),也可以用于与一个或多个基站进行通信。用户设备还可以称为用户终端,并且可以包括系统、用户单元、用户站、移动站、移动无线终端、移动设备、节点、设备、远程站、远程终端、终端、无线通信设备、无线通信装置或用户代理的功能中的一些或者所有功能。用户设备可以是蜂窝电话、无绳电话、会话发起协议(SIP)电话、智能电话、无线本地环路(WLL)站、个人数字助理(PDA)、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡和/或用于在无线系统上进行通信的其它处理设备。基站还可以称为接入点、节点、节点B、演进节点B(eNB)、继续演进节点B(gNB)或某种其它网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。基站可以通过空中接口与无线终端进行通信。该通信可以通过一个或多个扇区来进行。基站可以通过将所接收的空中接口帧转换成IP分组,来用作无线终端和接入网络的其余部分之间的路由器,其中所述接入网络包括互联网协议(IP)网络。基站还可以对空中接口特征的管理进行协调,并且还可以是有线网络和无线网络之间的网关。举例而言,基站可以为演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、无线保真(Wireless Fidelity,WIFI)、接入点(Access Point,AP),传输点(transmission and receiver point,TRP或者transmission point,TP)等,还可以为5G,如NR(new radio),系统中的gNB,或,传输点(TRP(transmitting and receiving point)或TP(transmission point)),或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,数据单元(DU,data unit)等。在一些部署中,gNB可以包括控制单元(CU,control unit)和DU。gNB还可以包括射频单元(RU,radio unit)。CU实现gNB的部分功能,DU实现gNB的部分功能, 比如,CU实现RRC(无线资源控制,radio resource control),PDCP(packet data convergence protocol,分组数据汇聚层协议)层的功能,DU实现RLC(radio link control,无线链路控制)、MAC(media access control,媒体接入控制)和PHY(physical)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本发明实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本发明实施例中,信息(information),信号(signal),消息(message),信道(channel)有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
本发明实施例以无线通信网络中4G网络的场景为例进行说明,应当指出的是,本发明实施例中的方案还可以应用于其他无线通信网络中,如5G通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。
需指出的是,本发明实施例中的方法或装置可以应用于基站和用户设备之间,也可以应用于基站和基站(如宏基站和微基站)之间,还可以应用于用户设备和用户设备(如D2D场景)之间,在本发明部分实施例中,以基站和UE之间的通信为例进行描述。
图1-1所示为一种通信系统的结构示意图。通信系统可以包括核心网,接入网和终端。在图1-1中仅示出了接入网所包括的无线网络设备,如基站,和终端,如用户设备。
图1-2所示为基站和UE的内部结构的简化示意图。
示例的,基站可以包括天线阵列,双工器,发信机(TX)和收信机(RX)(有时,TX和RX统称为收发信机TRX),以及基带处理部分。其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括功率放大器PA,数模转换器DAC和变频器,通常RX可以包括低噪放LNA,模数转换器ADC和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。
在一个示例中,基站还可以包括控制部分,用于进行多用户调度和资源分配、导频调度、用户物理层参数配置等。
示例的,UE可以包括天线,双工器,发信机(TX)和收信机(RX)(有时,TX和RX统称为收发信机TRX),以及基带处理部分。在图1-2中,UE具有单天线。可以理解的是,UE也可以具有多天线(即天线阵列)。
其中,双工器用于实现天线阵列既用于发送信号,又用于接收信号。TX用于实现射频信号和基带信号之间的转换,通常TX可以包括功率放大器PA,数模转换器DAC和变频器,通常RX可以包括低噪放LNA,模数转换器ADC和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。
在一个示例中,UE也可以包括控制部分,用于请求上行物理资源、计算下行信道对应的信道状态信息(CSI)、判断下行数据包是否接收成功等等。
5G系统仍为OFDM系统(采用了OFDM技术的系统),OFDM系统的子载波间隔选择取决于频谱效率和抗频偏能力的折中。在一定循环前缀(CP,Cyclic Prefix)长度下,子载波间隔越小,OFDM符号周期越长,系统频谱效率越高。但同时,过小的子载波间隔对多普勒频移和相位噪声过于敏感,会影响系统性能。相反,子载波间隔越大,OFDM符号周期越短,但可以提高对抗多普勒频移和相位噪声的能力,同时降低傅里叶变换(FFT)变换的复杂度。
NR技术支持多种子载波间隔(如15KHz、30KHz、60KHz等)的OFDM符号通过频分复用(FDM,Frequency Division Multiplexing)和/或时分复用(TDM,Time Diviosn Multiplexing)的方式复用,如图2所示。
基于此,本发明实施例提出一种信息传输的方法,如图3所示,包括:
S301,第一UE发送测量参考信号,所述测量参考信号的子载波间隔为所述UE的数据信道的子载波间隔的倍数。
第二UE接收测量参考信号,所述测量参考信号的子载波间隔为所述UE的数据信道的子载波间隔的倍数。
可选的,所述测量参考信号的子载波间隔大于所述UE的数据信道的子载波间隔。
可选的,所述倍数大于1。
这样,可以节省测量参考信号的传输开销。
这样,可以通过UE间传输测量参考信号,实现UE间的干扰的测量,进而可以利用测量结果进行短时或长时的控制。
可选的,第一UE侧,测量参考信号所在的时域资源单位上的数据传输方向为下行;第二UE侧,测量参考信号所在的时域资源单位上的数据传输方向为上行。
这样,可以第一UE对接收到的第一测量参考信号进行测量,并可以利用测量结果对上行数据传输进行控制,比如调整上行数据传输的控制,以降低UE间的干扰。
可选的,所述测量参考信号的子载波间隔可以为预先定义的,无需无线网络设备特定的配置来指示(如显式指示)。这样可以减少配置的开销。
可选的,所述测量参考信号的子载波间隔可以为无线网络设备配置的。这样可以增加测量参考信号传输的灵活性。
可选的,所述方法还包括:
S303,第一无线网络设备发送用于配置第一用户设备(UE)传输的测量参考信号的信息,所述信息包括所述测量参考信号的子载波间隔的信息;
第一用户设备(UE)接收来自第一无线网络设备的配置信息,所述配置信息包括用于 配置所述第一用户设备传输的测量参考信号的信息,所述测量参考信号的信息包括所述测量参考信号的子载波间隔的信息。
以及,第二无线网络设备发送用于配置第二用户设备(UE)传输的测量参考信号的信息,所述信息包括所述测量参考信号的子载波间隔的信息;
第二用户设备(UE)接收来自第二无线网络设备的配置信息,所述配置信息包括用于配置所述第二用户设备传输的测量参考信号的信息,所述测量参考信号的信息包括所述测量参考信号的子载波间隔的信息。
可选的,所述方法还包括:
S306,第一UE接收来自第一无线网络设备用于配置所述数据信道的参数的信息,所述数据信道的参数包括所述数据信道的子载波间隔的信息。可选的,所述数据信道可以为下行数据信道。
第二UE接收来自第二无线网络设备用于配置所述数据信道的参数的信息,所述数据信道的参数包括所述数据信道的子载波间隔的信息。可选的,所述数据信道可以为上行数据信道。
可选的,所述方法还包括:
S307,第二无线网络设备通过下行控制信道向第二UE发送一个时域资源单位的特征信息;所述时域资源单位包括用于接收所述测量参考信号的资源;
可选的,所述特征信息与所述时域资源单位上的受到的干扰相关,或,与所述时域资源单位上数据传输方向相关。示例的,所述时域资源单位上数据传输方向包括与第二UE与第二UE所在小区的邻区的时域资源单位上的数据传输方向。
第二用户设备(UE)通过下行控制信道接收来自第二无线网络设备的一个时域资源单位的特征信息。
S309,所述第二UE向所述无线网络设备发送测量结果,所述测量结果与所述时域资源单位上的特征信息相关。
所述第二无线网络设备接收来自所述第二UE的测量结果。
这样,可以使得UE获知其一个时域资源单位上受到的干扰情况,从而使基于测量参考信号的测量结果的长时控制更准确。
可选的,所述时域资源单位为用于上行数据传输的时域资源单位。
可选的,S303还可以包括:
第一无线网络设备确定所述用于配置第一用户设备传输的测量参考信号的信息和第二无线网络设备确定所述用于配置第二用户设备传输的测量参考信号的信息。
可选的,第一无线网络设备可以通过与第二无线网络设备之间的交互来确定所述用于配置第一用户设备或第二用户设备传输的测量参考信号的信息。
可选的,所述测量参考信号的子载波间隔的信息为所述测量参考信号的子载波间隔的值。可选的,可以为子载波间隔的值的索引值。
可选的,所述测量参考信号的子载波间隔的信息包括测量参考信号的子载波间隔较所述UE的数据信道的子载波间隔的倍数信息。可选的,可以为倍数信息的索引值。
可选的,所述配置信息携带在下行控制信道,或者,所述配置信息携带在广播信道或高层信令中。
可选的,所述倍数为整数倍。
可选的,所述测量参考信号的信息还包括所述测量参考信号的时域资源信息,频域资源信息,序列信息和定时信息中的一个或多于一个。
可选的,所述测量参考信号的传输在用于保护间隔的区域内。
可选的,所述传输包括发送和/或接收。
可选的,所述特征信息为多于一种特征信息中的一种。
示例的,所述多于一种特征信息为根据所述UE在一个时域资源单位上受到的干扰级别(也可以称为干扰信息的类别)进行编码获得,编码可以为一一对应的,比如,将有交叉干扰的时域资源单位上的特征信息编为1,将没有交叉干扰的时域资源单位上的特征信息编为0,或者,将没有交叉干扰的时域资源单位上的特征信息编为0,将有1个交叉干扰的时域资源单位上的特征信息编为1,将2个交叉干扰的时域资源单位上的特征信息编为2。
通过本发明实施通过的方法,可以提供一种适用于5G系统的测量参考信号的传输方式,而且,进一步的,通过无线网络设备下发一个时域资源单位的特征信息,可以提高该无线网络设备服务的UE上报给无线网络设备的测量结果的准确性。可以理解的是,本发明所有实施例中的服务可以指有通信连接,也可以指具体的有数据传输,或是,有控制信息传输,在此不予限定。
本发明实施例还提供一种信息传输的方法,如图4所示,该方法可以包括:
S401,无线网络设备通过下行控制信道向UE发送一个时域资源单位上的特征信息;
可选的,所述特征信息与所述时域资源单位上的受到的干扰相关,或,与所述时域资源单位上数据传输方向相关;
用户设备(UE)通过下行控制信道接收来自无线网络设备的一个时域资源单位上的特征信息;
S403,所述UE向所述无线网络设备发送测量结果,所述测量结果与所述时域资源单位上的特征信息相关;
所述无线网络设备接收来自所述UE的测量结果。
可选的,所述时域资源单位上包括用于参考信号传输的时域资源。
可选的,所述参考信号包括测量参考信号,和/或,下行参考信号。
可以理解的是,在如图3所示的实施例中就给出了一种应用于测量参考信号的测量方法,因而,相关描述可以参考如图3所示的实施例,在此不予赘述。
可选的,所述测量参考信号的子载波间隔大于所述UE的数据信道的子载波间隔。
可选的,所述测量参考信号的子载波间隔与所述UE的数据信道的子载波间隔不同。
可选的,所述测量参考信号的子载波间隔为所述UE的数据信道的子载波间隔的倍数。可选的,所述倍数大于1。
可选的,所述倍数为整数倍。
可选的,所述子载波间隔的配置可以参考如图3所示的实施例中的描述,在此不予赘述。
可选的,所述参考信号在所述时域资源单位的保护间隔区域或空白资源上传输,所述空白资源为未被配置用于传输的资源。
可选的,所述特征信息为多于一种特征信息中的一种。
下面以一种具体的时域资源单位的结构为例,对上述如图3或如4的实施例进行具体描述。
在一种可选的方案中,提出了一种演进型子帧或时隙结构(如图11所示),这种子帧或时隙结构包括下行控制区域和上行数据区域,或者,下行控制区域和下行数据区域,并且,在下行控制区域与上行数据区域之间插入GP,以及相同的子帧或时隙上,在下行控制区域与下行数据区域之间插入GP,并将GP中的部分区域用于进行基站间和/或UE间的干扰的测量。
本申请的发明人在研究的过程中发现,GP中插入的测量参考信号也需要考虑上下行转换的间隔,那么如果在GP中插入的测量参考信号采用与数据信道相同的子载波间隔,原本仅用于上下行转换而设置的GP的时间长度则需拉长,才能容纳用于传输测量参考信号的部分,并保证测量参考信号在基站和/或UE处接收的准确性。比如如果测量参考信号时域上占用1个符号,而为保证测量参考信号在基站和/或UE处接收的准确性,需额外空出1个符号用作发送定时调整,这样的话,会使得一个子帧或时隙中能用来传输数据信道的符号数减少。
有鉴于此,本申请提供应用于上述结构的参考信号的传输方法,既可以支持基站间和/或UE间的干扰的测量,又可以减少用于干扰测量的资源的开销。
如图5b所示,本发明实施例提供的一种信息传输的方法,对应的时域资源单位的结构示意图如5a所示,该方法包括:
S501,UE基于时域资源单位的结构进行通信,所述时域资源单位的结构包括用于控制信号传输的第一部分和用于上行或下行数据传输的第三部分,在所述第一部分和第三部分中间有用于参考信号传输的第二部分,其中,所述参考信号的子载波间隔为所述上行或下行数据的子载波间隔的倍数。
该方法还可以包括:
S502,无线网络设备基于所述时域资源单位的结构进行通信。
其中,传输包括发送或接收。
上行是指UE发送,无线网络设备接收的方向,下行是指UE接收,无线网络设备发送的方向。
其中,所述第二部分还用于上下行切换(含上行至下行的切换,或,下行至上行的切换)所需的保护间隔。
一种可能的情况为:
时域资源单位为一个子帧或时隙,也可以为其他时域资源上的单位。时域资源单位的结构包括时域资源单位的第一结构和时域资源单位的第一结构,其中,第一结构包括用于控制信号接收的第一部分和用于下行数据接收的第三部分,在所述第一部分和第三部分中间有用于参考信号发送的第二部分;第二结构包括用于控制信号接收的第一部分和用于上行数据发送的第三部分,在所述第一部分和第三部分中间有用于参考信号接收的第二部分。
可选的,上述时域资源单位的结构还可以包括用于上行控制信号传输的第四部分。
具体的,UE可以包括第一UE和第二UE,上述方法中S501可以包括:
S5011,第一UE基于时域资源单位的第一结构进行通信,包括:第一UE在第一部分接收控制信号,在第二部分发送参考信号,在第三部分接收下行数据;和/或
S5012,第二UE基于时域资源单位的第二结构进行通信,包括:第二UE在第一部分接收控制信号,在第二部分接收参考信号,在第三部分发送上行数据。
这样,第二UE在第二部分接收参考信号,如测量参考信号,从而可以获知第一UE对第二UE的干扰,并且可以根据信道互异性,获知第二UE的第三部分上上行数据的发送对第一UE的第三部分上下行数据的接收的干扰。
上述方法中S502可以包括:
S5021,第一无线网络设备在第一部分向第一UE发送控制信号,在第三部分向第一UE发送下行数据;和/或,
S5022,第二无线网络设备在第一部分向第二UE发送控制信号,在第三部分接收来自第二UE的上行数据。
这样,一方面可以通过利用上下行切换的保护间隔这个时间区域进行UE之间的干扰的测量,另一方面,由于用于干扰测量的参考信号的子载波间隔比数据传输的子载波间隔大,因此参考信号的OFDM符号周期小于数据的OFDM符号周期,可以在保证参考信号的收发在时域上对齐的同时减少时域资源的开销,从而减少了参考信号对数据信道的影响,充分利用了时域资源。此外,由于子载波间隔越大,FFT变换的处理越简单,因为,本方案也进一步简化了UE侧对参考信号的处理,减少了UE的处理的开销。
可选的,上述S501中的参考信号为第一参考信号,可以用于UE间的干扰的测量,上述S5021还可以包括:
第一无线网络设备在第二部分接收第二参考信号;
上述S5022还可以包括:
第二无线网络设备在第二部分发送第二参考信号。
其中,第二参考信号用于无线网络设备之间的干扰的测量。
第二参考信号和第一参考信号的序列不同。
第二参考信号的子载波间隔为数据(也可以数据信道)的子载波间隔的倍数。
这样,还可以同时利用第二部分进行无线网络设备间的干扰测量,进一步提高了时域资源的利用率。
可选的,上述参考信号(第一参考信号,和/或,第二参考信号)的子载波间隔可以是预先定义的,如由系统或标准协议预先定义好,这样,无线网络设备和UE就可以依据预先定义的子载波间隔进行参考信号的传输。
可选的,上述参考信号(第一参考信号,和/或,第二参考信号)的子载波间隔可以是显式指示的,比如,第一参考信号(用于UE间干扰测量)通过动态或半静态信令进行配置,其中,动态信令可以承载在控制信道上,比如通过承载在控制信道上的下行控制信息(downlink control information,DCI)进行指示,半静态信令可以承载在高层信令(如无线资源控制(radio resource control,RRC)信令)或广播信道中。第二参考信号(用于无线网络设备间干扰测量)通过无线网络设备间的交互来指示,在交互中采用显式指示。
可选的,上述参考信号(第一参考信号,和/或,第二参考信号)的子载波间隔可以是隐式指示的,比如,可以采用与某一信道的子载波间隔相同或与某一信道的子载波间隔具有固定关系,所述某一信道可以包括同步信号或广播信道。其中,所述某一信道的子载波间隔可以为预先定义的,也可以为显式或隐式指示的。所述固定关系可以为预先定义的,也可以为显式或隐式指示的。
进一步的,上述方法还可以包括:
S5001,第一无线网络设备向所述第一UE发送所述第一参考信号的配置信息,所述配置信息包括所述第一参考信号的子载波间隔信息。
第二无线网络设备向所述第二UE发送所述第一参考信号的配置信息,所述配置信息包括所述第一参考信号的子载波间隔信息。
可选的,所述配置可以为上述显式配置或隐式配置。
可选的,所述第一参考信号的子载波间隔信息可以为子载波间隔的值,也可以为指示子载波间隔的信息,在此可以不予限定。
可选的,上述方法还可以包括:
第一无线网络设备与第二无线网络设备确定第二参考信号的子载波间隔。
可选的,所述确定可以为上述预先定义,也可以为上述显式或隐式指示的,所述指示可以通过第一无线网络设备与第二无线网络设备之间的交互来实现。
如图6b所示,本申请实施例还提供一种信息传输的方法,对应的时域资源单位的结构示意图如6a所示,该方法包括:
S601,无线网络设备基于时域资源单位的结构进行通信,所述时域资源单位的结构包括用于控制信号传输的第一部分和用于上行或下行数据传输的第三部分,在所述第一部分和第三部分中间有用于参考信号传输的第二部分,其中,所述参考信号的子载波间隔为所述上行或下行数据的子载波间隔的倍数。其中,控制信号可以包括下行控制信号。
该方法还可以包括:
S602,UE基于所述时域资源单位的结构进行通信。
其中,传输包括发送或接收。
上行是指UE发送,无线网络设备接收的方向,下行是指UE接收,无线网络设备发送的方向。
其中,所述第二部分还用于上下行切换(含上行至下行的切换,或,下行至上行的切换)所需的保护间隔。
一种可能的情况为:
时域资源单位为一个子帧或时隙,也可以为其他时域资源上的单位。时域资源单位的结构包括时域资源单位的第一结构和时域资源单位的第一结构,其中,第一结构包括用于控制信号发送的第一部分和用于下行数据发送的第三部分,在所述第一部分和第三部分中间有用于参考信号接收的第二部分;第二结构包括用于控制信号发送的第一部分和用于上行数据接收的第三部分,在所述第一部分和第三部分中间有用于参考信号发送的第二部分。
可选的,上述时域资源单位的结构还可以包括用于上行控制信号传输的第四部分。
具体的,无线网络设备可以包括第一无线网络设备和第二无线网络设备,上述方法中S601可以包括:
S6011,第一无线网络设备基于时域资源单位的第一结构进行通信,包括:第一无线网络设备在第一部分发送控制信号,在第二部分接收参考信号,在第三部分发送下行数据;和/或
S6012,第二无线网络设备基于时域资源单位的第二结构进行通信,包括:第二无线网络设备在第一部分发送控制信号,在第二部分发送参考信号,在第三部分接收上行数据。
这样,第一无线网络设备在第一部分接收参考信号,如测量参考信号,从而可以获知第二无线网络设备对第一无线网络设备的干扰,并且可以根据信道互异性,获知第一无线网络设备的第三部分上下行数据的发送对第二无线网络设备的第三部分上上行数据的接收的干扰。
上述方法中S602可以包括:
S6021,第一UE在第一部分接收来自第一无线网络设备的控制信号,在第三部分接收来自第一无线网络设备的下行数据;和/或,
S6022,第二UE在第一部分接收来自第二无线网络设备的控制信号,在第三部分向第二无线网络设备发送上行数据。
这样,一方面可以通过利用上下行切换的保护间隔这个时间区域进行无线网络设备之间的干扰的测量,另一方面,由于用于干扰测量的参考信号的子载波间隔比数据传输的子载波间隔大,因此参考信号的OFDM符号周期小于数据的OFDM符号周期,可以在保证参考信号的收发在时域上对齐的同时减少时域资源的开销,从而减少了参考信号对数据信道的影响,充分利用了时域资源。此外,由于子载波间隔越大,FFT变换的处理越简单,因为,本方案也进一步简化了无线网络设备侧对参考信号的处理,减少了无线网络设备的处理的开销。
可选的,上述S601中的参考信号为第二参考信号,用于无线网络设备间的干扰的测量,上述S6021还可以包括:
第一UE在第二部分发送第一参考信号;
上述S6022还可以包括:
第二UE在第二部分接收第一参考信号。
其中,第一参考信号用于UE间的干扰的测量。
第一参考信号和第二参考信号的序列不同。
第一参考信号的子载波间隔为数据的子载波间隔的倍数。
这样,还可以同时利用第二部分进行UE间的干扰测量,进一步提高了时域资源的利用率。
可选的,上述参考信号(第一参考信号,和/或,第二参考信号)的子载波间隔可以是预先定义的,如由系统或标准协议预先定义好,这样,无线网络设备和UE就可以依据预先定义的子载波间隔进行参考信号的传输。
可选的,上述参考信号(第一参考信号,和/或,第二参考信号)的子载波间隔可以是显式指示的,比如,第一参考信号(用于UE间干扰测量)通过动态或半静态信令进行配置,其中,动态信令可以承载在控制信道上,比如通过承载在控制信道上的下行控制信息(downlink control information,DCI)进行指示,半静态信令可以承载在高层信令(如无线资源控制(radio resource control,RRC)信令)或广播信道中。第二参考信号(用于无线网络设备间干扰测量)通过无线网络设备间的交互来指示,在交互中采用显式指示。
可选的,上述参考信号(第一参考信号,和/或,第二参考信号)的子载波间隔可以是隐式指示的,比如,可以采用与某一信道的子载波间隔相同或与某一信道的子载波间隔具有固定关系,所述某一信道可以包括同步信号或广播信道。其中,所述某一信道的子载波间隔可以为预先定义的,也可以为显式或隐式指示的。所述固定关系可以为预先定义的,也可以为显式或隐式指示的。
进一步的,上述方法还可以包括:
S6001,第一无线网络设备与第二无线网络设备确定第二参考信号的子载波间隔。
可选的,所述确定可以为上述预先定义,也可以为上述显式或隐式指示的,所述指示可以通过第一无线网络设备与第二无线网络设备之间的交互来实现。
可选的,上述方法还可以包括:
S6002,无线网络设备向所述UE配置所述第一参考信号的子载波间隔。
可选的,所述配置可以为上述显式配置或隐式配置。
通过上述实施例,一方面可以保证无线网络设备和/或UE间的干扰测量,另一方面可以 减少用于测量的参考信号传输以及所述参考信号的保护间隔所带来的开销,进而可以提高时域资源的利用率,保证数据传输的效率。
通过上述实施例的参考信号的传输,可以实现根据本时域资源单位的干扰测量的结果进行短时调控,如进行本时域资源单位的功率控制,速率调整等,也可以根据多个时域资源单位的干扰测量结果进行长时调控,比如根据测量结果进行用户调度或资源分配等。
根据多个时域资源单位的干扰测量结果进行长时调控的场景中,由于动态TDD下不同邻区所使用的上述时域资源单位的结构可以是所述第一结构也可以是所述第二结构(即可以是不同的),且一个小区的邻区可能有一个或多个,那么不同时域资源单位上,一个小区的UE所受到的邻小区的UE的干扰也可能是不同的。比如如图7所示,为一个小区有2个邻区的情况,该小区称为第一小区,邻区包括第二小区和第三小区。第一小区的UE为第一UE,第二小区的UE为第二UE,第三小区的UE为第三UE。为了表述方便,前述第一结构可以简称为下行(UL)结构,第二结构可以简称为上行(UL)结构。可以看到,图7中所示的5个时域资源单位上,第一UE的UL结构中的第二部分所接收到的第二UE和第三UE的参考信号是有变化的,比如,第一UE的第一个UL结构中,第一UE可以测到来自邻区的两个UE(第二UE和第三UE)的测量参考信号(因为第二UE和第三UE也是UL结构);第一UE的第二个UL结构中,第一UE测不到来自邻区的测量参考信号(因为第二UE和第三UE也都为UL结构),第一UE的第三个UL结构中,第一UE可以测到来自一个邻区的UE(第二UE)的测量参考信号(因为第三UE为UL结构,第二UE为DL结构)。所以第一UE的不同时域资源单位的UL结构,其测到的干扰量不相同。
此外,第一UE还可以在UL结构中接收来自无线网络设备侧的参考信号(并不限于前述时域资源单位的结构,这里的UL结构也可以是其他时域资源单位的结构下的UL结构,参考信号也可以不是UL结构中第二部分承载的参考信号,比如来自无线网络设备侧的参考信号占用的是下行控制传输部分,比如所述参考信号为下行参考信号),对下行链路进行测量,此时,第一UE的UL结构所测得的参考信号,可以来自服务第一UE的第一无线网络设备和/或邻区所属的无线网络设备(如服务第二UE的第二无线网络设备和服务第三UE的第三无线网络设备),由于在邻区相同的时域资源单位上,如果为DL结构,则邻区所属的无线网络设备所下发的参考信号也可以由第一UE的下行控制传输部分进行接收,这样,在相同的时域资源单位上,第一UE不但可以测到第一无线网络设备下发的参考信号,还可以测到邻区中DL结构的无线网络设备下发的参考信号,从而可以测量到邻区对本小区(第一UE所在小区)的干扰。这样,由于不同的小区的时域资源单位的结构是可变的,第一UE测到的下行链路的干扰也是可变的。
有鉴于此,本发明实施例还提出了一种信息的传输方法,如图8所示,包括:
S801,第一无线网络设备向第一UE发送时域资源单位的特征信息。其中,所述特征信息与时域资源单位上受到的干扰相关,或者,与时域资源单位上的数据传输方向相关。其中,时域资源单位上的数据传输方向可以包括第一UE(或第一UE所在小区)以及第一小区所在小区的邻区在时域资源单位上的数据传输方向的信息。
可选的,S801之前包括第一无线网络设备确定第一UE(或第一UE所属第一小区)的一个时域资源单位的特征信息;
其中,一个时域资源单位的特征信息可以用于指示第一小区的时域资源单位的结构以及与第一小区相邻的小区(也可简称为邻区)的时域资源单位的结构的信息。
其中,第一小区相邻的小区属于第二无线网络设备,或者,属于第一无线网络设备。
可选的,所述时域资源单位为用于第一UE的上行数据传输的时域资源单位。
可选的,可以将上述第一UE(或者第一UE所在小区)的时域资源单位上数据传输的方向以及与第一小区的邻区的时域资源单位上数据传输的方向的信息(简称为时域资源单位集合的方向信息)进行编码。可选的,针对第一小区的用于上行数据传输的时域资源单位而言,可以按照邻区的时域资源单位上用于下行数据传输的时域资源单位的个数进行编码,比如,个数为0时,将所述时域资源单位集合的方向信息编为第一信息,比如为0,个数为1时,将所述时域资源单位集合的方向信息编为第二信息,比如为1,个数为2时,将所述时域资源单位集合的方向信息编为第三信息,比如为2,以此类推。相应的,所述时域资源单位的特征信息可以根据所述时域资源单位集合的方向信息确定,不同的时域资源单位集合的方向信息对应不同的时域资源单位的特征信息。一种可选的方式为,时域资源单位的特征信息等于所述时域资源单位集合的方向信息。可以理解的是,时域资源单位的特征信息的编码方式可以为系统预先定义的,这样第一无线网络设备和第一UE之间可以根据时域资源单位的特征信息确定时域资源单位集合的方向信息,从而确定所测得的干扰信息所属的类别(也称为干扰级别)。其中干扰信息所属的类别可以对应于时域资源单位集合的方向信息,当邻区的时域资源单位的方向与本小区的时域资源单位的方向不同时,则可以视作干扰,而依据干扰有无,或者干扰个数的不同,可以确定不同的干扰信息所属的类别。比如,干扰个数为0,干扰信息所属的类别为第一类,干扰个数为1,干扰信息所属的类别为第二类,干扰个数为2,干扰信息所属的类别为第三类,以此类推。可选的,可以将本小区和邻区的时域资源单位上的数据传输方向进行编码,比如,0表示数据传输方向为上行,1表示数据传输方向为下行,用每1比特(bit)表示相应的小区,如以三个小区为例,最高位表示本小区,其他位依次表示邻区(可以按照邻区id进行排序或按照其他规则,该规则在整个系统中可以为预定义的,不需空口配置),000,表示一个时域资源单位上的三个小区的数据传输方向均为上行,010,表示一个时域资源单位上的本小区的数据传输方向为上行,邻区中一个为下行,另一个为上行,001,表示一个时域资源单位上的本小区的数据传输方向为上行,邻区中一个为上行,另一个为下行,011,表示一个时域资源单位上的本小区的数据传输方向为上行,两个邻区均为下行。这种方式下,可选的,由于010和001,UE受到的干扰的个数均为1个,即干扰信息的类别相同,UE可以将010和001这两个编码对应的测量结果采用相同的处理方式,并将测量结果进行合并后上报。
可选的,无线网络设备确定第一UE(或第一UE所属第一小区)的一个时域资源单位的特征信息可以具体包括:
无线网络设备与第一小区的邻区所属的无线网络设备之间进行交互各自的时域资源单位的结构,从而使得无线网络设备获知第一UE所属第一小区以及第一小区的邻区的时域资源单位的结构,进而确定第一UE所属第一小区的一个时域资源单位的特征信息。
可选的,S801中一个时域资源单位的特征信息可以通过动态或半静态信令进行发送。
其中,动态信令可以承载在控制信道中,如下行控制信道上的下行控制信息(DCI)中。
半静态信令可以承载在广播信道或高层信令,如无线资源控制(RRC)信令中。
当一个时域资源单位上的数据传输方向是通过动态信令进行配置的,则该时域资源单位的特征信息可以通过动态信令进行配置;或者,
当一个时域资源单位上的数据传输方向是通过半静态信令进行配置的,则该时域资源单 位的特征信息可以通过半静态信令进行配置。
可以理解的是,虽然本实施例针对第一UE进行的描述,但第一UE并非特指的UE,针对第二UE和第三UE,服务第二UE的无线网络设备也可以执行图8所对应的方法,服务第三UE的无线网络设备也可以执行图8所对应的方法。
可选的,S801还可以包括:
第一UE接收来自第一无线网络设备的所述时域资源单位的特征信息。
所述方法还可以包括
S803,第一UE根据所述时域资源单位的特征信息对时域资源单位上获得的测量结果进行处理。
S804,第一UE向第一无线网络设备上报测量结果。
可选的,S803可以包括:第一UE根据至少两个时域资源单位的特征信息对至少两个时域资源单位上的测量结果进行处理;一种可能的方式为:将特征信息相同的时域资源单位上的测量结果进行合并处理。另一种可能的方式为:根据特征信息所对应的干扰信息的类别将多个时域资源单位上的测量结果进行合并处理;其中,特征信息和干扰信息的类别之间的对应关系可以为预定义的。
可选的,所述合并处理可以为:将具有同一干扰信息的类别的时域资源单位的测量结果进行平均或是加权处理(如平滑滤波),并将平均或加权处理后的结果发给无线网络设备。这样,无线网络设备就可以根据所接收的结果较准确的获知信道状态。具体的,无线网络设备获知所上报的测量结果对应的干扰级别,可以通过所上报的测量结果的特定的时频资源(不同级别对应不同时频资源),或所上报的测量结果的特定的编码(不同级别对应不同编码),或所上报的测量结果为根据无线网络设备相应的指示进行的上报,或者,不同干扰级别对应的测量结果的序号不同,等各种方式中一种进行获知,在此不予限定。
根据前述方法,如图9所示,本发明实施例还提供一种用于信息传输的装置,该装置可以为无线设备10。该无线设备10可以对应上述方法中的无线网络设备(如第一无线网络设备或第二无线网络设备)。其中,无线网络设备可以为基站,也可以为其他设备,在此不予限定。
该装置可以包括处理器110、存储器120、总线系统130、接收器140和发送器150。其中,处理器110、存储器120、接收器140和发送器150通过总线系统130相连,该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以控制接收器140接收信号,并控制发送器150发送信号,完成上述方法中无线网络设备(如基站)的步骤。其中,接收器140和发送器150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
作为一种实现方式,接收器140和发送器150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线接入设备。即将实现处理器110,接收器140和发送器150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,接收器140和发送器150的功能。
该装置所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,如图10所示,本发明实施例还提供另一种用于信息传输的装置,该装置可以为无线设备20,该无线设备20对应上述方法中的用户设备(如第一UE或第二UE)。可以理解的是,无线设备可以为UE,也可以为微基站或小基站,在此不予限定。
该装置可以包括处理器210、存储器220、总线系统230、接收器240和发送器250。其中,处理器210、存储器220、接收器240和发送器250通过总线系统230相连,该存储器220用于存储指令,该处理器210用于执行该存储器220存储的指令,以控制接收器240接收信号,并控制发送器250发送信号,完成上述方法中UE的步骤。其中,接收器240和发送器250可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
作为一种实现方式,接收器240和发送器250的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器210可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本发明实施例提供的无线接入设备。即将实现处理器210,接收器240和发送器250功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器210,接收器240和发送器250的功能。
所述装置所涉及的与本发明实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据本发明实施例提供的方法,本发明实施例还提供一种通信系统,其包括前述的无线网络设备和一个或多于一个用户设备。
应理解,在本发明实施例中,处理器110或210可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器120或220可以包括只读存储器和随机存取存储器,并向处理器310提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。
该总线系统130或230除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器110或210中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先 后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种信息传输方法,其特征在于,包括:
    发送和/或接收测量参考信号,所述测量参考信号的子载波间隔为数据信道的子载波间隔的倍数。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    接收来自无线网络设备的配置信息,所述配置信息包括用于配置所述测量参考信号的信息,所述测量参考信号的信息包括所述测量参考信号的子载波间隔的信息。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    通过下行控制信道接收来自无线网络设备的一个时域资源单位上的特征信息;所述特征信息与所述时域资源单位上的受到的干扰相关,或,与所述时域资源单位上数据传输方向相关;所述时域资源单位上包括用于传输所述测量参考信号的资源;
    向所述无线网络设备发送测量结果,所述测量结果与所述时域资源单位上的特征信息相关。
  4. 一种信息传输方法,其特征在于,包括:
    发送用于配置终端设备发送和/或接收的测量参考信号的信息,所述信息包括所述测量参考信号的子载波间隔的信息。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    确定所述用于配置所述测量参考信号的信息。
  6. 根据权利要求4或5所述的方法,其特征在于,还包括:
    通过下行控制信道向终端设备发送一个时域资源单位上的特征信息;所述特征信息与所述时域资源单位上的受到的干扰相关,或,与所述时域资源单位上数据传输方向相关;所述时域资源单位包括用于发送和/或接收所述测量参考信号的资源;
    接收来自所述终端设备的测量结果,所述测量结果与所述时域资源单位上的特征信息相关。
  7. 根据权利要求2-6中任一项所述的方法,其特征在于,所述测量参考信号的子载波间隔的信息为所述测量参考信号的子载波间隔的值。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述测量参考信号的子载波间隔的信息包括测量参考信号的子载波间隔较所述终端设备的数据信道的子载波间隔的倍数信息。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述配置信息携带在下行控制信道。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述配置信息携带在广播信道或高层信令中。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述倍数为整数倍。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述测量参考信号的信息还包括所述测量参考信号的时域资源信息,频域资源信息,序列信息和定时信息中的一个或多于一个。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述测量参考信号的发送和/或接收在用于保护间隔的区域内。
  14. 根据权利要求3,6和7-13任一项所述的方法,其特征在于,所述特征信息为多于一种特征信息中的一种。
  15. 一种无线网络设备,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述无线网络设备用于完成如权利要求4-14中任意一项所述的方法。
  16. 一种终端设备,其特征在于,包括处理器、存储器和收发器,
    所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,以控制收发器进行信号的接收和发送,当处理器执行所述存储器存储的指令时,所述终端设备用于完成如权利要求1-3和7-14中任意一项所述的方法。
  17. 一种通信装置,其特征在于,包括处理器和存储器,
    所述存储器用于存储计算机程序或指令,所述处理器用于执行所述存储器存储的计算机程序或指令,当处理器执行所述存储器存储的计算机程序或指令时,所述通信装置用于完成如权利要求1-14任意一项所述的方法。
  18. 一种通信装置,其特征在于,用于执行如权利要求1-14任一项所述的方法。
  19. 一种可读存储介质,包括程序或指令,当所述程序或指令被运行时,如权利要求1-14任一项所述的方法被执行。
PCT/CN2017/109382 2016-11-04 2017-11-03 一种信息传输方法、装置和系统 WO2018082669A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17866443.9A EP3528415B1 (en) 2016-11-04 2017-11-03 Information transmission method and apparatus
US16/402,924 US20190260565A1 (en) 2016-11-04 2019-05-03 Information transmission method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610963575.2A CN108023701B (zh) 2016-11-04 2016-11-04 一种信息传输方法、装置和系统
CN201610963575.2 2016-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/402,924 Continuation US20190260565A1 (en) 2016-11-04 2019-05-03 Information transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018082669A1 true WO2018082669A1 (zh) 2018-05-11

Family

ID=62076451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109382 WO2018082669A1 (zh) 2016-11-04 2017-11-03 一种信息传输方法、装置和系统

Country Status (4)

Country Link
US (1) US20190260565A1 (zh)
EP (1) EP3528415B1 (zh)
CN (1) CN108023701B (zh)
WO (1) WO2018082669A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108260139B (zh) * 2016-12-28 2019-10-15 维沃移动通信有限公司 一种测量配置方法、网络设备及终端设备
CN110535581B (zh) * 2018-08-10 2022-11-08 中兴通讯股份有限公司 上行信号的资源确定方法、设备和计算机可读存储介质
CN110972156B (zh) * 2018-09-28 2021-12-28 华为技术有限公司 一种干扰测量方法、装置、芯片及存储介质
CN110972178B (zh) * 2018-09-29 2022-11-18 中国电信股份有限公司 测量方法、系统、基站和计算机可读存储介质
CN113448279B (zh) * 2020-12-17 2022-08-30 芯创通(南京)半导体科技有限公司 一种远程低功耗通信解调方式
CN115913498A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154980A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 上行参考信号资源确定方法及模块
WO2010106923A1 (en) * 2009-03-19 2010-09-23 Nec Corporation Insertion of downlink demodulation reference signals into ofdm frames
CN102088309A (zh) * 2009-12-04 2011-06-08 重庆无线绿洲通信技术有限公司 用于估计信道质量的参考信号生成方法及装置
CN102300244A (zh) * 2011-07-15 2011-12-28 中兴通讯股份有限公司 一种干扰测量参考信息的通知方法、干扰测量方法及装置
CN102917371A (zh) * 2012-10-25 2013-02-06 北京大学 适合室内信道的lte小区专用参考信号优化方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2635087A1 (en) * 2012-02-28 2013-09-04 Alcatel Lucent Apparatus, method and computer program for controlling transmission points in a mobile communication system
KR20150103359A (ko) * 2013-01-02 2015-09-10 엘지전자 주식회사 무선 통신 시스템에서 간섭을 측정하기 위한 방법 및 이를 위한 장치
CN104348564B (zh) * 2013-08-06 2016-11-09 普天信息技术研究院有限公司 一种确定参考信号接收功率的方法
CN103813347B (zh) * 2014-02-28 2018-01-26 电信科学技术研究院 一种基站频率资源配置方法及网络设备
WO2016004634A1 (en) * 2014-07-11 2016-01-14 Mediatek Singapore Pte. Ltd. Method for enb, ue uplink transmission and reception
US10090905B2 (en) * 2014-12-29 2018-10-02 Electronics And Telecommunications Research Institute Method and apparatus for transmitting pilot in multi-antenna communication system, and method and apparatus for allocating pilot in multi-antenna communication system
ES2700452T3 (es) * 2015-03-04 2019-02-15 Telefonica Sa Procedimiento, sistema y dispositivos para reducir interferencias en redes de comunicación inalámbrica de OFDMA
WO2018030804A1 (ko) * 2016-08-11 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
US10405353B2 (en) * 2016-09-23 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for random access in wireless systems
WO2018090327A1 (zh) * 2016-11-18 2018-05-24 广东欧珀移动通信有限公司 传输参考信号的方法和通信设备
JP6918015B2 (ja) * 2016-12-14 2021-08-11 株式会社Nttドコモ 端末、無線通信方法及び基地局
KR102355817B1 (ko) * 2017-01-17 2022-01-26 삼성전자 주식회사 이동 통신 시스템에서의 반영속적 채널 상태 보고 방법 및 장치
CN115664615A (zh) * 2017-03-24 2023-01-31 中兴通讯股份有限公司 信道状态信息导频的接收方法和装置、以及存储介质
EP3711211A4 (en) * 2017-11-17 2021-07-14 Telefonaktiebolaget LM Ericsson (publ) NEW DEFINITION OF A REFERENCE RESOURCE OF CSI FOR REPORT OF CSI IN NR
US10904785B2 (en) * 2018-06-08 2021-01-26 Qualcomm Incorporated Using channel state information (CSI) report framework to support positioning measurements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154980A (zh) * 2006-09-25 2008-04-02 华为技术有限公司 上行参考信号资源确定方法及模块
WO2010106923A1 (en) * 2009-03-19 2010-09-23 Nec Corporation Insertion of downlink demodulation reference signals into ofdm frames
CN102088309A (zh) * 2009-12-04 2011-06-08 重庆无线绿洲通信技术有限公司 用于估计信道质量的参考信号生成方法及装置
CN102300244A (zh) * 2011-07-15 2011-12-28 中兴通讯股份有限公司 一种干扰测量参考信息的通知方法、干扰测量方法及装置
CN102917371A (zh) * 2012-10-25 2013-02-06 北京大学 适合室内信道的lte小区专用参考信号优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3528415A4 *

Also Published As

Publication number Publication date
EP3528415B1 (en) 2021-10-27
EP3528415A4 (en) 2019-09-25
CN108023701A (zh) 2018-05-11
CN108023701B (zh) 2021-07-20
US20190260565A1 (en) 2019-08-22
EP3528415A1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
TWI719274B (zh) 用於選擇或發送針對相位追蹤參考信號的頻域模式的系統和方法
US10686629B2 (en) Demodulation reference signal management in new radio
TWI749027B (zh) 設備到設備通訊系統中基於優先順序的資源選擇
JP6545910B2 (ja) 複数のトーンホッピング距離をもつ狭帯域prach
WO2018082670A1 (zh) 通信方法、装置、网络设备及终端
WO2018127181A1 (zh) 一种信号传输方法和装置
TWI725195B (zh) 用於共存的技術的偵測
WO2018082669A1 (zh) 一种信息传输方法、装置和系统
JP2019531641A (ja) 制御ビームとデータチャネルビームとの間のマッピング
JP2022543974A (ja) データを伝送するための方法及び端末装置
JP2018538766A (ja) 狭帯域アップリンクシングルトーン送信のためのシステムおよび方法
JP2019517746A (ja) 同期チャネルおよびブロードキャストチャネルのリソース選択による仮説の伝達
WO2018059202A1 (zh) 信息传输的方法和装置
JP2018523389A (ja) デバイス・ツー・デバイス通信のためのスケジューリング割り当て最適化
JP2019534605A (ja) ビームの切替え
WO2018082672A1 (zh) 一种上行测量参考信号传输方法、装置和系统
JP2023552433A (ja) RedCap UEの識別のための方法及び装置
CN108476491B (zh) 一种无线通信方法、设备及系统
US20230092704A1 (en) Method and apparatus for parameter setting
TW202126088A (zh) 針對配置的路徑損耗參考信號和啟用的路徑損耗參考信號的ue能力報告
WO2020222896A1 (en) Methods and apparatus for resource pool switching and pilot adaptation
CN116158184A (zh) 感测带宽调整的能量检测门限
WO2023202659A1 (zh) 信息传输方法、装置及通信设备
JP2024514131A (ja) 処理能力が制約されたシナリオにおいてマルチrtt測位を改善するためにprsとsrsとの関連付けを定義すること
CN117459985A (zh) 波束指示方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866443

Country of ref document: EP

Effective date: 20190513